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Abstract
Point process models have been extensively used in many areas of science and engi-
neering, from quantitative sociology to medical imaging. Computing the maximum
likelihood estimator of a point process model often leads to a convex optimization
problem displaying a challenging feature, namely the lack of Lipschitz-continuity of
the objective function. This feature can be a barrier to the application of common first
order convex optimization methods. We present an approach where the estimation of
a point process model is framed as a saddle point problem instead. This formulation
allows us to develop Mirror Prox algorithms to efficiently solve the saddle point prob-
lem.We introduce a general Mirror Prox algorithm, as well as a variant appropriate for
large-scale problems, and establish worst-case complexity guarantees for both algo-
rithms. We illustrate the performance of the proposed algorithms for point process
estimation on real datasets from medical imaging, social networks, and recommender
systems.
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The last decade has witnessed a tremendous growth of interests and successes in
point process modeling for event data analysis. Applications range from the classi-
cal imaging sciences such as nuclear medicine and microscopy using homogeneous
Poisson processes (see, e.g., [1] for a comprehensive survey on this topic), stock and
option pricing using marked point processes [2,3], all the way to the recent studies of
information diffusion over social networks using Hawkes processes [4–8]. A recur-
ring theme of these applications is the requirement of efficient statistical estimation
from real-time and large-scale event data. Penalized maximum likelihood estimation
has been a mainstream approach to learn estimators for point process models from
data. However, existing optimization tools for computing these estimators are far from
being optimal and remain a major obstacle to their applicability in practice.

In thiswork,we present a general formof penalizedmaximum likelihood estimation
for point process models. The problem of interest writes as follows:

min
x∈Rn+

f (x) := L(x) + h(x), where L(x) := sT x −
∑m

i=1
ci log(a

T
i x). (1)

Here m is the number of observations, Rn+ := {x ∈ R
n : x ≥ 0} stands for the set

of nonnegative vectors, the coefficients {c, ai , i = 1, . . .m} are given nonnegative
values. The component L(x) stands for the negative log-likelihood, and the function
h(x) can be a (possibly nonsmooth) convex penalty term used to promote desired
structural properties of the solution such as sparsity or low-rank structure. Note that
the above problem is well defined and convex. We will refer to this as the penalized
point process likelihood model. We show later that this general form covers a wide
range of likelihood-based objectives for point processes, e.g., Poisson processes, self-
exciting and mutual-exciting Hawkes processes.

A key challenge to computing maximum likelihood estimators of point process
models lies in the fact that the likelihood function is neither globally Lipschitz con-
tinuous nor globally Lipschitz differentiable. We shall explain this in more detail
in Sect. 2.1. This makes it fundamentally different from and computationally more
difficult than those pertaining to Gaussian processes or generalized linear mod-
els. Despite a large body of work on efficient gradient-based (a.k.a. first-order)
methods for likelihood-based estimation in the literature, ranging from proximal
algorithms (see, e.g., [9,10]) to stochastic and incremental algorithms (see, e.g., [11–
13]), the overwhelming majority of work assume the log-likelihood to be globally
Lipschitz-continuous. Therefore, the application of these algorithms to compute to
likelihood-based estimators goes beyond the range of their theoretical guarantees,
which may lead to disappointing results in practice. This is indeed evidenced in the
results we present in Sect. 4. Hence, there is a need for optimization algorithms,
with theoretical guarantees, that could ideally handle both the non-Lipschitzness of
the log-likelihood and the potential non-smoothness of the regularization penalty.
Another obstacle to computing such point process estimators, especially in the large-
scale regime, comes from the computational side, namely, the expensive overhead for
computing the gradient based on the entire data.
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Related Work Few works have attempted to address the non-Lipschitzness issue of
likelihood objectives for point process estimation. [14] propose to add a tolerance ε to
each logarithmic term, which results in a smooth objective yet with a large Lipschitz
constant L ∼ O(1/ε2). [15] instead propose to impose strict positivity constraints
aTi x ≥ ε,∀i = 1, . . . ,m to the problem, at the cost of computationally expensive
projections. Another approach is explored in [16], where the authors exploit the self-
concordance nature of the logarithmic term and propose a sophisticated proximal
gradient method, yet only with locally linear convergence. In a different line of work,
[17] treat this problem as a general non-smoothminimization using theMirror Descent
algorithm [18]. This approach avoids the requirement on Lipschitz continuity of the
gradient, but in the sacrifice of having a worse rate of convergence, i.e., O(1/

√
t).

[19] tackle the problem with an instance of the alternating direction method of multi-
pliers (ADMM), which is guaranteed to converge but requires expensive computation
of matrix inversion at each iteration. Hence, none of these algorithms are efficient
for the general purpose of solving the point process likelihood models, especially at
large scale. Recent work [20,21] address a general class of relatively smooth convex
problems which includes the problem of interest as a special case, but their approaches
are fundamentally different from ours.

Main Contributions We present Mirror Prox algorithms to efficiently compute point
process estimators from penalized maximum likelihood objectives. The algorithms
hinge upon a saddle point reformulation, circumventing the need for the common
Lipschitz-continuity assumptions in the design of first-order methods. The basic algo-
rithm, called the Composite Mirror Prox algorithm, enjoys aO(1/t) convergence rate
in theory, in contrast to the typical O(1/

√
t) rate of the non-smooth minimization

alternative [17]. To tackle large sample and high dimensional problems, we propose
a fully randomized block-decomposition variant that enjoys a cheaper cost per itera-
tion. Finally, we present experimental results obtained with the proposed algorithms
and competing ones when applied to several applications of point process modeling
to medical imaging, social network estimation, and recommendation systems. The
results obtained demonstrate the consistent performance of the proposed algorithms
when compared to existing methods.

1 Point Process Models

In this section, we consider several examples of point processes models. We then pro-
vide a saddle point formulation of penalized maximum likelihood estimation, central
to the development of the algorithms in this paper.

1.1 Point Process, Maximum Likelihood Estimation, andMotivating Examples

Point Process This is a widely used probabilistic and statistical model of occurrences
of events. The model builds off an intensity function λ(t), such that
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Prob
[
N (t + dt) − N (t) = 1

∣∣F t] = λ(t)dt + o(dt), (2)

Prob
[
N (t + dt) − N (t) > 1

∣∣F t] = o(dt), (3)

where N (t) is the corresponding counting process adapted to a filtration F t . Some
important examples of point processes include: (i) homogeneous Poisson process
where the intensity function λ(t) = λ is a constant; (ii) nonhomogeneous Poisson
process where λ(t) is a general function of t ; (iii) self-exciting Hawkes process where
λ(t) = v(t) + ∫ t

0 γ (t − τ)dN (τ ); here v(t) is the base intensity of the process and
γ (t) expresses the positive influence of the past events on the current state; (iv) Cox
process, also called doubly stochastic Poissonprocesswithλ(t) itself being a stochastic
process. These point processes have found amyriad of applications in classical imaging
science andmodernmachine learning areas such as social networks for their capability
of capturing temporal dynamics of time series data.

Maximum Likelihood Estimation The associated estimation and prediction problems
with these point processes often rely on maximum likelihood estimation. Given a
sequence of events {ti }Ni=1 from some point process within time interval T with inten-
sity λ(t; θ) and model parameter θ , the negative log-likelihood is

L(θ) =
∫ T

0
λ(t; θ)dt −

N∑

i=1

log(λ(ti ; θ)).

Note that as long as the intensity functionλ(t; θ) is nonnegative and linearwith respect
to the parameter θ , the negative likelihood L(θ) is always well-defined and convex
in θ . Maximum likelihood estimation leads to a convex optimization problem. Often
times, additional penalty terms are imposed to exploit desired structural properties of
the estimator such as sparsity and low rank in high dimensional problems.

Below we give a couple of interesting examples emerging in imaging science and
machine learning; see; e.g., [6,19,22–24].

Example 1 (Poisson Imaging) Recovering Poissonian images is a classical problem
occurring in many medical and astronomical applications. Typically, we observe the
number of event counts from independent homogeneous Poisson processes, whose
intensity vector is assumed to be a linear combination of an unknown image. Let
ci , i = 1, . . . ,m denote the observed counts and λi (t) = aTi x, i = 1, · · · ,m denote
the underlying intensity of each dimension, where x ∈ R

n+ stands for an unknown
image to be learned, and aTi is the i-th row of a given observation operator A ∈ R

m×n .
For example, for position emission tomography, each entry ai j of this matrix A stands
for the probability that the pair of gamma-quants originating from voxel j ( j =
1, . . . , n) registered by the i-th (i = 1, . . . ,m) pair of detectors. Computing the
penalized maximum likelihood estimator boils down to solving:

min
x∈Rn+

m∑

i=1

aTi x −
m∑

i=1

ci log(a
T
i x) + h(x), (4)

123



Applied Mathematics & Optimization

where h(x) is some penalty function that promotes smoothness of the image, e.g.,
the total variation regularization term. Obviously, this likelihood model falls into the
general problem of our interest in (1).

Example 2 (Social Network Estimation) Discovering the latent influence and recipro-
cating relationships among social communities has been an active research topic in the
last decade. A common practice to model the so-called mutual excitation effect among
these communities is throughmultivariateHawkes processes. Let N1(t), . . . , Np(t) be
p-dimensional counting processes such that the intensity of one dimension is affected
by the arrivals of other dimensions through:

λi (t; μ, A) := μi +
p∑

j=1

∫ t

0
ai j ·k(t−τ)dN j (τ ) = μi +

p∑

j=1

N j (t)∑

n=1

ai j ·k(t−τ jn), (5)

for i = 1, . . . , p. Here, the timestamp τ jn is the n-th arrival time of the j-th dimension.
The parameterμi ≥ 0 stands for the base intensity for each dimension. The parameter
ai j ≥ 0 stands for the influence from the j-th dimension to i-th dimension; thus
matrix A = [ai j ] captures the hidden network structure of social influences. The
function k(·) : R → R represents the triggering kernel and captures the decaying
effect of the influence; e.g., a common choice is to set k(t) = exp(−t/σ) with some
σ > 0 when t > 0 and k(t) = 0 when t ≤ 0. Now given a sequence of events
{τin : i = 1, . . . , p, n = 1, . . . Np(T )} observed within time interval T > 0, we
would like to infer the actual base intensity vector μ and influence matrix A. For
example, the sparse maximum likelihood estimation can be formulated as follows [6]:

min
μ≥0,A≥0

p∑

i=1

⎛

⎝
∫ T

0
λi (t; μ, A)dt −

Ni (T )∑

n=1

log(λi (τin; μ, A))

⎞

⎠ + γ ‖A‖1, (6)

where γ > 0 is some regularization coefficient and the penalty function based
on �1-norm is used to promote sparsity of the influence matrix A. Here ‖A‖1 :=∑p

i=1

∑p
j=1 |ai j |. Note that the intensity functions λi (t;μ, A), i = 1, . . . , p are lin-

ear inμ and A; hence, the above problem can be viewed as a special case of our general
problem of interest in (1).

Example 3 (Temporal Recommendation System) Incorporating temporal behaviors of
customers into recommendation systems has been recently studied to improve person-
alized suggestions. A natural way to model the recurrent activities for any user-item
pair is using the self-exciting Hawkes process. Let Ni j (t) be the counting process
associated with each user i ∈ I and item j ∈ J with intensity given by

λi j (t; U , A) = ui j + ai j

Ni j (t)∑

n=1

k(t − τi jn). (7)

Here ui j ≥ 0 and ai j ≥ 0 are the base intensity and self-exciting coefficient for each
user-item pair (i, j), which form into the matrices U = [ui j ] and A = [ai j ]. And
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τi jn stands for the n-th arrival time of the events in the counting process. Now given
a sequence of events {τi jn : i ∈ I , j ∈ J , n = 1, . . . , Ni j (T )} within time interval
T > 0, we would like to estimate the intensity and self-exciting matrices U and A in
order to make time-sensitive recommendations. Incorporating low-rank constraints, a
penalized maximum likelihood estimation problem can be formulated as follows [24]:

min
U≥0,A≥0

∑

i∈I

∑

j∈J

⎛

⎝
∫ T

0
λi j (t; U , A)dt −

Ni j (T )∑

n=1

log(λi j (τi jn; U , A))

⎞

⎠

+ γ1‖U‖nuc + γ2‖A‖nuc, (8)

where γ1, γ2 > 0 are some regularization coefficients and the penalty functions based
on the nuclear norm ‖ · ‖nuc are used to promote low rank of the base intensity matrix
U and the self-exciting coefficient matrix A. Here ‖A‖nuc := ∑min{|I |,|J |}

i=1 σi (A),
where σi (A), i = 1, . . . ,min{|I |, |J |} are the singular values of matrix A. Again, in
this example, the intensity functions λi j (t; U , A) are linear in terms of the model
parameters U and A. Hence, the above problem can be viewed as as another special
case of our general problem of interest in (1).

1.2 Problem Statement

Recall that the goal of this paper is to address problems related to the computation of
penalized maximum likelihood estimators of point process models of the form: (1):

min
x∈Rn+

f (x) := L(x) + h(x), where L(x) := sT x −
∑m

i=1
ci log(a

T
i x).

As discussed above, the previous examples for Poisson imaging, social network esti-
mation, as well as temporal recommendation systems, can all be characterized as
special cases of (1).

Before proceeding, we first define the notion of Bregman proximal operator of
a convex function. Given input x0 and ξ , the Bregman proximal operator (we will
simply refer to proximal operator below, see [25–27] and references therein) of a
convex function h(x) is defined as

Proxhx0(ξ) := argminx∈Rn+{Vω(x, x0) + 〈ξ, x〉 + h(x)},

where Vω(x, x0) := ω(x) − ω(x0) − ∇ω(x0)T (x − x0) is the Bregman divergence
defined by some distance generating function ω(x). We assume that the function
ω(x) : Rn+ → R is compatible, i.e., continuously differentiable and 1-strongly convex
on Rn+ with respect to a given norm defined on Rn . For instance, the function ω(x) =
1
2‖x‖22: Rn → R is compatible with respect to the Euclidean norm ‖ ·‖2 and gives rise
to the Euclidean distance. The entropy function ω(x) = ∑n

i=1 xi log(xi ): Rn+ → R is
compatible with respect to the �1-norm ‖ · ‖1 and gives rise to the Kullback-Leibler
divergence. Throughout the paper, we make the following assumption below.
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Assumption 1 Function h(x) is convex and is proximal-friendly, i.e., the proximal
operator can be exactly computed for some distance generating function ω(x) asso-
ciated with norm ‖ · ‖x on R

n+.
Note that the above assumptions hold true for a wide range of sparsity-promoting
penalty functions, including those used in the motivating examples. See, e.g., [28,29]
for a survey of proximal operators in machine learning and signal processing.

Remark 1 The point process likelihood model considered here is similar but more
general than the classical Poisson linear model (sometimes coined as Poisson com-
pressed sensing, or Poisson intensity reconstruction) that assumes Poisson noise of
linear measurements, i.e., ci ∼ Poisson(aTi x), i = 1, . . . ,m. The latter leads to a neg-
ative log-likelihood of L(x) = ∑m

i=1 a
T
i x−∑m

i=1 ci log(a
T
i x), which can be reviewed

as a special case of (1), as discussed in Example 1. However, one should note that
(1) also covers many other likelihood estimation problems based on general point
processes, e.g., those described in Examples 2 and 3 below. These problems cannot
necessarily be viewed as a pure Poisson linear model.

Remark 2 The above problem is different from thePoisson log-linearmodel or Poisson
regression (a special case of generalized linear model), which assumes Poisson obser-
vations ci ∼ Poisson(ea

T
i x ), i = 1, . . . ,m. This leads to the negative log-likelihood:

L̃(x) = ∑m
i=1 e

aTi x − ci (aTi x), which differs from that of the point process likelihood
model considered in this paper.Without additional regularization constraint, the maxi-
mum likelihood estimation problem for the Poisson log-linear model is unconstrained,
while the one we consider here is constrained with positivity constraints.

Remark 3 A major difference between (1) and the objective for maximum likelihood
estimation of Poisson log-linear model lies in the Lipschitz condition of the (negative)
likelihood. On any compact set, the function L̃(x) is globally Lipschitz differentiable,
while this is not necessarily true for L(x). In fact, for any compact set X := {x ∈
R
n+ : ‖x‖x ≤ R} with R > 0, there does not exist a finite Lipschitz constant M > 0

such that

|L(x) − L(x ′)| ≤ M · ‖x − x ′‖x ,∀x, x ′ ∈ X .

This can be easily shown as follows: let x ∈ X , and x ′ = εx ∈ X with 0 < ε < 1, we
see that |L(x) − L(x ′)| = |(1 − ε)sT x + ∑m

i=1 ci log(ε)| becomes unbounded when
ε goes to zero. Hence, although the function L is convex and differentiable, it is i) not
globally Lipschitz continuous; ii) not Lipschitz differentiable even on a compact set.
As a result, the problem (1) we consider here essentially falls beyond the theoretical
grasp of the common gradient-based optimization algorithms, such as (accelerated)
proximal gradient method [9,30], (composite) mirror descent [17,31,32], as well as a
wide family of coordinate descent algorithms [33–35].

1.3 Saddle Point Formulation

We present our approach to solve this family of non-Lipschitz optimization problems.
The approach leads to algorithms enjoying theoretical guarantees with competitive
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practical performance. Central to the approach is an equivalent saddle point formu-
lation allowing us to circumvent difficulties arising from the non-Lipschitz of the
original objective (1).

Specifically, by invoking the Fenchel representation of the log function log(u) =
minv≥0{uv − log(v) − 1}, we can rewrite the problem of interest as

min
x∈Rn+

max
v∈Rm+

sT x +
∑m

i=1
ci [log(vi ) − vi a

T
i x + 1] + h(x).

Now replacing yi = civi , the above problem can be further simplified to the convex-
concave saddle point problem:

min
x∈Rn+

max
y∈Rm+

ψ(x, y) := sT x − yT Ax +
∑m

i=1
ci log(yi ) + h(x) + c0, (9)

where the matrix A = [aT1 ; aT2 ; . . . ; aTm ] and c0 = ∑m
i=1 ci (1− log(ci )) is a constant.

The cost function ψ(x, y) is convex in x for any given y ∈ R
m+ and is concave in y

for any given x ∈ R
n+, and moreover, f (x) = maxy∈Rm+ ψ(x, y). Notice that the cost

function is still non-Lipschitz due to the logarithmic term
∑m

i=1 ci log(yi ). However,
a key difference from the negative log-likelihood function is that this non-Lipschitz
term, is separable and admits a closed-form solution when computing its proximal
operator.

In particular, we can show the following property: let y+ = argminy∈Rm+
{ 1
2‖y||22 +

〈η, y〉 − β
∑m

i=1 ci log(yi )
}
given η ∈ R

m and β > 0, then y+ can be computed in
closed-form as

y+
i = Qβ(ηi ) := ( − ηi +

√
η2i + 4βci

)
/2,∀i = 1, . . . ,m (10)

In other words, the proximal operator of p(y) := −∑m
i=1 ci log(yi ) with respect to

the usual Euclidean distance can be computed efficiently and naturally lends itself to
parallelization. To our best knowledge, this simple yet powerful observation has not
been exploited to design algorithms for point process model estimation. An exception
is the independent work [36]where related non-negativematrix factorization problems
were considered with a similar approach to ours.

Our second key observation is that the above saddle point formulation can be
regarded as a well-structured composite saddle point problem. This consists of a
smooth convex-concave function and two separable penalty functions – a convex
penalty, h(x), for variable x and a concave penalty, −p(y), for variable y. The sad-
dle point perspective we present here paves the way to the development of principled
and efficient algorithms for point process model estimation using penalized maximum
likelihood. In the next section, we first introduce the CompositeMirror Prox algorithm
to solve such composite saddle point problems, and then introduce a fully randomized
block-decomposition variant for problems with large sample and high dimensions.
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Algorithm 1 Composite Mirror Prox (CMP) for Saddle Point Problems
Input: (x1, y1) ∈ X × Y , α1 > 0 and α2 > 0, stepsize {γt }
1: for t = 1, 2, . . . , T do
2: x̂ t = argminx∈X {α1V1(x, xt ) + γt 〈∇xφ(xt , yt ), x〉 + γt h(x)}
3: ŷt = argminy∈Y {α2V2(y, yt ) − γt 〈∇yφ(xt , yt ), y〉 + γt p(y)}
4: xt+1 = argminx∈X {α1V1(x, xt ) + γt 〈∇xφ(x̂ t , ŷt ), x〉 + γt h(x)}
5: yt+1 = argminy∈Y {α2V2(y, yt ) − γt 〈∇yφ(x̂ t , ŷt ), y〉 + γt p(y)}
6: end for
Output: xT = ∑T

t=1 γt x̂ t/
∑T

t=1 γt and yT = ∑T
t=1 γt ŷt/

∑T
t=1 γt

2 Composite Saddle Point Problem

Consider the following convex–concave composite saddle point problem

min
x∈X max

y∈Y ψ(x, y) := φ(x, y) + h(x) − p(y) (11)

under the situation

– X ⊆ Ex andY ⊆ Ey are nonempty closed convex sets in Euclidean spaces Ex , Ey ;
– φ(x, y) is a convex-concave function on X×Y with Lipschitz continuous gradient;
– h : X → R and p : Y → R are convex functions, perhaps non-Lipschitz, but
are proximal-friendly in the following sense: there exist some distance generat-
ing functions ω1(·) and ω2(·) that are compatible with respect to (Ex , ‖ · ‖x )
and (Ey, ‖ · ‖y) and the subproblems minx∈X {αω1(x) + 〈ξ, x〉 + βh(x)} and
miny∈Y {αω2(y) + 〈η, y〉 + β p(y)} are easy to solve for any α > 0, β > 0 and
input ξ ∈ Ex , η ∈ Ey .

In addition, we denote ψ(x) := supy∈Y ψ(x, y) and ψ(y) := infx∈X ψ(x, y).
We assume saddle point exists and denote as (x∗, y∗). The distance generating func-
tions define the Bregman distances V1(x, x ′) = ω1(x) − ω1(x ′) − ∇ω1(x ′)T (x − x ′)
and V2(y, y′) = ω2(y) − ω2(y′) − ∇ω2(y′)T (y − y′) such that V1(x, x ′) ≥
1
2‖x − x ′‖2x and V2(y, y′) ≥ 1

2‖y − y′‖2y . Given two scalars α1 > 0, α2 > 0,
we can build an aggregated distance generating function on U = X × Y with
ω̄(u = [x; y]) = α1ω1(x) + α2ω2(y),, which is compatible to the induced norm

‖u = [x; y]‖ =
√

α1‖x‖2x + α2‖y‖2y . The dual norm of ‖u‖ is ‖v = [ξ ; η]‖∗ =
√

α−1
1 ‖ξ‖2x,∗ + α−1

2 ‖η‖2y,∗ where ‖ · ‖x,∗ and ‖ · ‖y,∗ are the dual norms to ‖ · ‖x and
‖ · ‖y , respectively.

2.1 Composite Mirror Prox Algorithm

The Composite Mirror Prox (CMP) algorithm was originally introduced in [37] for
solving a general class of variational inequalities. We specifically tailor it for solving
the composite saddle point problem (11) and present the algorithm in Algorithm 1.
The algorithm generalizes the proximal gradient methodwith Bregman distances from
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the usual composite minimization to composite saddle point problems and works “as
if” there were no non-smooth terms h(x) and p(y).

Assumption 2 We assume that φ(x, y) has L-Lipchitz continuous gradient, namely:
‖∇φ(u) − ∇φ(u′)‖∗ ≤ L‖u − u′‖, where ∇φ(u) = [∇xφ(x, y);−∇yφ(x, y)].

For any set U ′ ⊂ U := X × Y , let us define the diameter of U ′ as Θ[U ′] =
maxu=[x;y]∈U ′ {α1V1(x, x1) + α2V2(y, y1)}, where V1(x, x1) and V2(y, y1) are the
Bregman distances associated with ω1(x) and ω2(y). We have the following results:

Lemma 1 ([37]) Under Assumption 2 and setting stepsize 0 < γt ≤ L−1, the can-
didate solution (xT , yT ) generated by Composite Mirror Prox leads to the efficiency
estimate:

ψ(xT , y) − ψ(x, yT ) ≤ Θ[X × Y ]
∑T

t=1 γt
,∀x ∈ X , y ∈ Y . (12)

Moreover, if we set γt = L−1, then we further have

ψ(xT ) − ψ(x∗) ≤ Θ[{x∗} × Y ]L
T

. (13)

In the situation discussed above, CMP achieves the O(1/T ) convergence rate for
solving composite saddle point problems. The rate is known to be unimprovable
already in the simple case of bilinear saddle point problems; see, e.g., [18].We empha-
size that this is not the only algorithm available for solving composite saddle point
problems; alternative options include primal–dual algorithms [38–41], hybrid proxi-
mal extragradient type algorithms [42,43], smoothing proximal gradient [44,45], just
to list a few.

CMP shares some similarity with these algorithms, but possesses distinct features
in several aspects: (i) unlike primal–dual algorithms, the primal and dual variables are
updated simultaneously, thus can easily accommodate parallelism; (ii) the algorithm
benefits from the use of non-Euclidean Bregman distances for proximal operators,
which could potentially improve the constant factor in the convergence rate in terms
of dimension dependence1; we point out that in a recent work by [40], the authors
have extended the primal–dual method to embrace non-Euclidean Bregman distances
as well; (iii) the stepsize can be self-tuned using line-search without requiring a priori
knowledge of Lipschitz constant; see details in [37]; and lastly, (iv) unlike the proximal
gradient methods based on Nesterov’s smoothing, the algorithm does not need to tune
any extra smoothness hyperparameter, which is often critical for achieving satisfactory
empirical performance. Due to these consideration, we particularly adopt CMP as
our working horse to solve the composite saddle point problems. We show later in
the numerical experiments that for several specific applications, CMP can slightly
outperform the primal–dual algorithm in practice.

1 Particularly for �1 minimization, it has been well studied that non-Euclidean gradient methods achieve a
nearly optimal dependence on dimension [17,31].
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2.2 Fully Randomized Composite Mirror Prox Algorithm

In this section, we introduce a fully randomized variant of the Composite Mirror Prox
algorithm, appropriate for solving problems with large samples and high dimensions.
Block-decomposition and randomization techniques have been successful in solving
high-dimensional convex minimization problems; see, e.g., [33–35,46,47] and refer-
ence therein. When considering saddle point problems, a few block-decomposition
variants were developed based on primal–dual algorithms, e.g., stochastic primal–
dual coordinate descent algorithm [48] and randomized primal dual algorithm [49,50].
However, most of these algorithms make a randomized update for the dual variable
while making a full gradient update for the primal variable. Here we present what we
call a fully randomized CMP. This natural extension of CMP performs randomized
block updates for both primal and dual variables.

ProblemSetting Consider the following situation in addition to the composite saddle
point problem described in (11):

– x = [x1; x2; . . . ; xb1 ] and X = X1 × X2 ×· · ·× Xb1 , where Xk, k = 1, 2, . . . , b1
are closed convex sets;

– y = [y1; y2; . . . ; yb2 ] and Y = Y1 × Y2 × · · · × Yb2 , where Yl , l = 1, 2, . . . , b2
are closed convex sets;

– h(x) = ∑b1
k=1 hk(xk) is separable and each is proximal-friendly under some dis-

tance generating function ω1,k(xk) : Xk → R that is compatible w.r.t. the norm
‖·‖x,k (with dual norm ‖·‖x,k,∗) and induces the Bregman divergence V1,k(xk, x ′

k);

– p(x) = ∑b2
l=1 pl(yl) is separable and each is proximal-friendly under some dis-

tance generating function ω2,l(yl) : Yl → R that is compatible w.r.t. the norm
‖ · ‖y,l (with dual norm ‖ · ‖y,l,∗) and induces Bregman divergence V2,l(yl , y′

l ).

The fully randomized Composite Mirror Prox algorithm works as follows: at each
iteration, a primal block from {x1, x2, . . . , xb1} and a dual block from {y1, y2, . . . , yb2}
are randomly selected and performed with block proximal coordinate descent updates.
The explicit algorithm is provided below in Algorithm 2. Before deriving the conver-
gence, we first make the following assumption on the function φ(x, y):

Assumption 3 For any k = 1, 2, . . . , b1 and l = 1, 2, . . . , b2, let x ∈ X, x ′ ∈ X be
such that xk′ = x ′

k′ , k′ �= k, and let y ∈ Y , y′ ∈ Y be such that yl ′ = y′
l ′ , l

′ �= l.
Namely, only the k-th block between x and x ′ and l-th block between y and y′ differ.
We assume that there exist some constants Lxx

k > 0, Lxy
l > 0, Lyy

l > 0, and Lyx
k > 0

such that the following conditions hold true:

‖∇xkφ(x, y) − ∇xkφ(x ′, y)‖x,k,∗ ≤ Lxx
k ‖xk − x ′

k‖x,k , ∀x, x ′ ∈ X , s.t . xk′ = x ′
k′ , k′ �= k,

‖∇xkφ(x, y) − ∇xkφ(x, y′)‖x,k,∗ ≤ Lxy
l ‖yl − y′

l‖y,l , ∀y, y′ ∈ Y , s.t . yl ′ = y′
l ′ , l

′ �= l,

‖∇ylφ(x, y) − ∇ylφ(x ′, y)‖l,y,∗ ≤ Lyx
k ‖xk − x ′

k‖x,k , ∀x, x ′ ∈ X , s.t . xk′ = x ′
k′ , k′ �= k,

‖∇ylφ(x, y) − ∇ylφ(x, y′)‖l,y,∗ ≤ Lyy
l ‖yl − y′

l‖y,l , ∀y, y′ ∈ Y , s.t . yl ′ = y′
l ′ , l

′ �= l.
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Algorithm 2 Fully Randomized CMP for Saddle Point Problems
Input: (x1, y1) ∈ X × Y , α1 > 0 and α2 > 0, stepsize {γt }
1: for t = 1, 2, . . . , T do
2: Pick kt uniformly at random in {1, . . . , b1} and pick lt uniformly at random in {1, . . . , b2}
3: x̂ t =

{
argminxk∈Xk

{α1V1,k (xk , xtk ) + γt 〈∇xkφ(xt , yt ), xk 〉 + γt hk (xk )}, k = kt
xtk , k �= kt

4: ŷt =
{
argminyl∈Yl {α2V2,l (yl , ytl ) − γt 〈∇yl φ(xt , yt ), yl 〉 + γt pl (yl )}, l = lt
ytl , l �= lt

5: xt+1 =
{
argminxk∈Xk

{α1V1,k (xk , xtk ) + γt 〈∇xkφ(x̂ t , ŷt ), xk 〉 + γt hk (xk )}, k = kt
xtk , k �= kt

6: yt+1 =
{
argminyl∈Yl {α2V2,l (yl , ytl ) − γt 〈∇yl φ(x̂ t , ŷt ), yl 〉 + γt pl (yl )}, l = lt
ytl , l �= lt

7: end for
8: Output: xT = ∑T

t=1 γt x̂ t/
∑T

t=1 γt and yT = ∑T
t=1 γt ŷt/

∑T
t=1 γt

Further, we assume that the mappings ∇xkφ(x, y) and ∇ylφ(x, y) are bounded on
X × Y . More specifically, for any k = 1, 2, . . . , b1 and l = 1, 2, . . . , b2, there exist
some constants Mx

k > 0 and My
l > 0 such that

‖∇xkφ(x, y)‖2x,k,∗ ≤ Mx
k , ‖∇ylφ(x, y)‖2y,l,∗ ≤ My

l ,

hold true for any x ∈ X , y ∈ Y .

Under the above assumption, we can define Mx = ∑b1
k=1 M

x
k , My = ∑b2

l=1 M
y
l

which can be viewed as uniform bounds for the gradients. Further, we define the
following quantities that will be used in the convergence analysis:

Cxx = ∑b1
k=1 D

x
k L

xx
k Mx

k , Cxy = ∑b1
k=1 D

x
k

∑b2
l=1 L

xy
l My

l /b2,
C yy = ∑b2

l=1 D
y
l L

yy
l M y

l , C yx = ∑b2
l=1 D

y
l

∑b1
k=1 L

yx
k Mx

k /b1,

and denote B1 = 1
2Mx +Cxx +C yx ,B2 = 1

2My +C yy +Cxy . We have the following
convergence result.

Theorem 1 Let the sequence of step-sizes {γt }Tt=1 in the above algorithm satisfy that
1 ≥ γ1 ≥ γ2 ≥ · · · γT ≥ 0. Assume that the Assumption 3 holds and assume further
that the functions |h(x)| and |p(y)| are bounded above by B0 > 0 on X × Y . Then
the fully randomized CMP algorithm returns a solution (xT , yT ) that satisfies

E[ψ(xT , y∗) − ψ(x∗, yT )] ≤
α1b1Θ1 + α2b2Θ2 + 4B0 + ∑T

t=1 γ 2
t

(B1
α1

+ B2
α2

)

∑T
t=1 γt

,

where Θ1 = V1(x∗, x1) := ∑b1
k=1 V1,k(x

∗
k , x

1
k ) and Θ2 = V1(y∗, y1) :=∑b2

l=1 V2,l(y
∗
l , y1l ). In particular, when setting γt ≡ 1√

T
,∀t , α1 = √B1/b1Θ1 and

α2 = √B2/b2Θ2, this simplifies to
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E[ψ(xT , y∗) − ψ(x∗, yT )] ≤ 2
√
b1B1Θ1 + 2

√
b2B2Θ2 + 4B0√
T

.

The above convergence result implies that with properly selected stepsize, for
example, a decaying stepsizes γt = O (

1/
√
t
)
, the fully randomized CMP yields

a convergence rate of O(1/
√
T ). This is slower than the batch CMP, but comes with

a cheaper cost per iteration, since only one block from the primal variable and one
from the dual variable are updated. Notice that the convergence rate is worse than the
O (1/T ) convergence rate achieved by the randomized primal dual algorithm (see,
e.g., [49]). However, the latter typically requires a full update of the primal variable,
whereas the proposed algorithm only updates a random block of the primal variable.
Therefore, a slower convergence is somewhat expected. It is also worthwhile to point
out that a recent paper by [51] also considered randomized block coordinate schemes
for the original mirror prox algorithm in the context of solving variational inequali-
ties. Their result differs from ours in two aspects: first, our algorithm is specifically
designed to address composite saddle point problems and able to handle nonsmooth
regularization terms; second, our algorithm randomly chooses one block from primal
variable and another one from dual variable, while their algorithmic scheme would
choose only one block either from the primal or dual variable.Another recentwork [52]
introduced a variance reduced stochastic primal–dual method which also performs a
similar randomized update for the primal and dual variables with O(1) per-iteration
cost in the inner loop of their algorithm; however, the algorithm requires both Lips-
chitz smoothness and strong convexity of the primal objectives, which clearly do not
apply to the problem we consider in this paper.

3 Composite Mirror Prox Algorithms for Point Process Models

As shown in Sect. 1.3, the original optimization problem for point process model
estimation can be formulated as a saddle point problem (9). The resulting saddle point
problem can be solved with the Composite Mirror Prox algorithm (CMP) outlined in
Sect. 2 with

X = R
n+; Y = R

m+; φ(x, y) = sT x−yT Ax+c0; p(y) = −
∑m

i=1
ci log(yi ). (14)

Based on Assumption 1 and (10), the proximal operators of h(x) and p(y) can be
exactly computed when selecting the distance generating functions to be ω1(x) =
ω(x) and ω2(y) = 1

2‖y‖22, associated with norms ‖ · ‖x and ‖ · ‖y = ‖ · ‖2,
respectively. In the wake of this fact, we now apply CMP and its fully randomized
block-decomposition variant to solving (9). In particular, we adopt themixed proximal

setup by setting ω(u) = αωx (x) + 1
2‖y‖22 and the norm ‖u‖ =

√
α‖x‖2x + ‖y‖22 for

some positive number α > 0.
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Algorithm 3 CMP for Point Process Models
Input: x1 ∈ R

n+, y1 ∈ R
m++, α > 0, γt ≥ 0

1: for t = 1, 2, . . . , T do
2: x̂ t = Proxγt h/α

xt
(
γt (s − AT yt )/α

)

3: ŷti = Qγt (γt (aTi xt − yti )), i = 1, . . . ,m

4: xt+1 = Proxγt h/α

xt
(
γt (s − AT ŷt )/α

)

5: yt+1
i = Qγt (γt (aTi x̂ t − ŷti )), i = 1, . . . ,m

6: end for
7: Output: xT = ∑T

t=1 γt x̂ t/
∑T

t=1 γt and yT = ∑T
t=1 γt ŷt/

∑T
t=1 γt

3.1 The Composite Mirror Prox Algorithm

Applying CMP to solving problem (9) then gives rise to Algorithm 3. In terms of
iteration cost, Algorithm 3 is highly efficient. The y-updates can easily be computed
in parallel. Below we provide the iteration complexity analysis for the algorithm.

Denote f (x) = L(x) + h(x). Given any subset X ⊂ R
n+, let Y [X ] := {y : yi =

1/(aTi x), i = 1, . . . ,m, x ∈ X}. Clearly, Y [X ] ⊂ R
m++. Following Lemma 1, we

arrive at the result below.

Theorem 2 Assume we have some a priori information on the optimal solution to
problem in (1): a convex compact set X0 ⊂ R

n+ containing x∗ and a convex compact
set Y0 ⊂ R

m++ containing Y [X0]. Denote Θ[X0] = maxx∈X0 Vω(x, x1) and Θ[Y0] =
maxy∈Y0 1

2‖y− y1‖22. Let L = ‖A‖x→2 := maxx∈Rn+:‖x‖x≤1{‖Ax‖2} and let stepsizes
in Algorithm 3 satisfy 0 < γt ≤ √

αL−1 for all t > 0. We have

f (xT ) − f (x∗) ≤ αΘ[X0] + Θ[Y0]∑T
t=1γt

(15)

In particular, by setting γt = √
αL−1 for all t and α = Θ[Y0]/Θ[X0], one further

has

f (xT ) − f (x∗) ≤
√

Θ[X0]Θ[Y0]‖A‖x→2

T
. (16)

Remark 4 As an immediate result, the algorithm exhibits an overall O(1/t) rate of
convergence, which is better than the O(1/

√
t) rate for a non-smooth optimization

alternative such as MD [17] and matches the rate (best known so far) achieved by the
NoLips algorithm recently established in [20]. Aside from achieving same complexity
estimates, these two algorithms, CMP and NoLips, are fundamentally distinct from
the algorithmic point of view and they behave differently in practice as later illustrated
in Sect. 4.1. NoLips is a purely primal algorithm, while CMP builds on solving an
equivalent saddle point problem.

Remark 5 Note that Algorithm 3 works without requiring aTi x > 0,∀i , or any global
Lipschitz continuity of the original objective function. The prior sets X0 and Y0 only
appear in the theoretical guarantee. Neither set is involved as theAlgorithm3 proceeds.
Knowing the geometry of these prior sets can guide the choice of a favorable proximal
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setup. We shall provide in Sect. 4 several illustrations of the practical benefits of an
appropriate choice of proximal setup. Furthermore, compact prior sets X0 and Y0 are
easy to construct in practice and in fact readily available for the problem of interest.
For example, when h(x) is positive homogeneous, we can set X0 to be

X0 =
{
x ∈ R

n+ : sT x + h(x) ≤
m∑

i=1

ci

}
. (17)

Clearly, X0 is convex and compact. The reason why x∗ ∈ X0 is due to the fact:

Proposition 1 Assume that h(x) is positive homogeneous, i.e., for any a ∈ R, h(ax) =
|a|h(x). Then the optimal solution x∗ to problem (1) satisfies

sT x∗ + h(x∗) =
∑m

i=1
ci .

Proof This is because, for any t > 0, t x∗ is a feasible solution and the objective at
this point is φ(t) := L(t x∗) + h(t x∗) = t(sT x∗ + h(x∗)) − ∑m

i=1 ci log(a
T
i x∗) −

log(t)
∑m

i=1ci . By optimality, φ′(1) = 0, i.e. the desired equation holds. ��
Remark 6 Theorem 2 implies that the performance of Algorithm 3 is essentially
determined by the distance between the initial point (x1, y1) to the optimal solu-
tion (x∗, y∗). Therefore, if the initial point is close enough to the optima, then one
can expect the algorithm to converge quickly. In practice, the optimal choice of
α = 1

2‖y1− y∗‖22/Vω(x∗, x1) is often unknown. One can instead select α from empiri-
cal considerations, for instance by treating α as a hyper-parameter and tuning it during
a burn-in phase or with a validation set.

3.2 Fully RandomizedVariants for Problems with High Dimension and Large
Sample

While the saddle point formulation overcomes the non-Lipschitzness issue of the orig-
inal objective, it also requires the introduction of m dual variables, where m equals
to the number of data points. Hence, if one would consider a problem with a large
number of data points, the computation cost of the dual update at each iteration would
slow down Algorithm 3. Similarly, if one would consider problems with high dimen-
sions, the computation cost of the primal update at each iteration would also slow
it down. Thus, in order to efficiently tackle problems with large samples and high
dimensions, we use a block-decomposition strategy with randomization, to develop
the fully randomized CMP, updating only a block of primal and dual variables at a
time.

With a slight abuse of notation, denote x = [x1; . . . ; xb1 ] and A = [ Ǎ1, . . . , Ǎb],
where xk ∈ R

nk , Ǎk ∈ R
m×nk , k = 1, . . . , b1 such that n1 + . . . + nb1 = n. Let us

further assume that the penalty function h(x) is separable, i.e. h(x) = ∑b1
k=1 h(xk).

Let us denote y = [y1; . . . ; yb2 ] and A = [A1; . . . ; Ab1 ], where yl ∈ R
ml , Al ∈
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Algorithm 4 Fully Randomized CMP for Point Process Models
Input: x1 ∈ R

n+, y1 ∈ R
n++

1: for t = 1, 2, . . . , T do
2: Pick kt uniformly at random in {1, . . . , b1} and pick lt uniformly at random in {1, . . . , b2}

3:
x̂ t =

{
Prox

γt hk/α
xtk

(
γt (sk − ǍTk yt )/α

)
, k = kt

xtk , k �= kt

ŷt =
{
Qγt (γt (Al x

t − ytl )), l = lt
ytl , l �= lt

4:
xt+1 =

{
Prox

γt hk/α
xtk

(
γt (sk − ǍTk ŷt )/α

)
, k = kt

xtk , k �= kt

yt+1 =
{
Qγt (γt (Al x̂

t − ytl )), l = lt
ytl , l �= lt

5: end for
6: Output: xT = ∑T

t=1 γt x̂ t/
∑T

t=1 γt and yT = ∑T
t=1 γt ŷt/

∑T
t=1 γt

R
ml×n, l = 1, . . . , b2 such thatm1+ . . .+mb2 = m. The fully randomized Composite

Mirror Prox algorithm tailored to solve (9) is described in Algorithm 4.
Directly applying Theorem 1, we obtain that with properly decaying stepsizes,

E[ψ(xT , y∗) − ψ(x∗, yT )] ≤ O
(√

b1 + √
b2√

T

)
.

Unlike the full batch version, the fully randomized Composite Mirror Prox algorithm
exhibits a slower rate of convergence, i.e.,O(1/

√
T ), yet with relatively cheaper iter-

ation cost, making it attractive for large scale problems. Note that, without additional
assumptions, the above error bound does not necessarily imply a guarantee in terms
of function values E[ f (xT ) − f∗] ≤ O(1/

√
T ). Indeed, establishing such a result

can be challenging when considering randomized algorithms for general saddle point
problems, as pointed out in [49]. However, if one would make the additional assump-
tion that ψ(x, y) is strongly convex in x over X and strongly concave in y over Y
(and the corresponding constants are known), then one could obtain a convergence
guarantee in terms of primal function values, moreover with a faster convergence rate;
see, e.g., [48,51,53]. We leave this for future investigation.

4 Applications

In this section, we present numerical experiments for the proposed algorithms as
applied to the three examples introduced earlier: Poisson imaging, temporal recom-
mendation systems, and social network estimation. For clarity of the exposition and
fairness of the comparison,we compare the proposed algorithms tofirst order optimiza-
tion algorithms previously considered and used successfully in the context of point
process model estimation. Algorithms such as ADMM that require solving expensive
subproblems are therefore not considered in the numerical experiments.

123



Applied Mathematics & Optimization

4.1 Poisson Imaging

In this experiment, we examine the Poison imaging problem (4). For simplicity, we
do not consider any regularization penalty for this particular application, namely,
h(x) = 0. Invoking Proposition 1, we have

∑n
j=1 x j = ∑m

i=1 ci =: θ. We can add to
problem (4) the above equality constraint without affecting its optimality. Invoking the
saddle point formulation in the previous section, solving (4) is equivalent to solving
the convex-concave saddle point problem

min
x∈Δn

max
y∈Rm++

−yT Ax +
m∑

i=1

ci log(yi ) + θ̃ ,

where Δn = {x ∈ R
n+ : ∑n

j=1 x j = θ} and θ̃ = 2θ − ∑m
i=1 ci log(ci ) is a constant.

Remark 7 Let x∗ be the true image. Note that when there is no Poisson noise, ci =
[Ax∗]i for all i . In this case, the optimal solution y∗ corresponding to the y-component
of the saddle point problem (4.1) is given by y∗,i = ci/[Ax∗]i = 1,∀i . Thus, we
may hope that under the Poisson noise, the optimal y∗ is still close to 1. Assuming
that this is the case, the efficiency estimate for T -step CMP algorithm after invoking
Theorem 2when setting α = r2m for some r > 0 and the distance generating function
ω(x) = ∑n

j=1 x j log(x j ), will be

O(1)

(
log(n) + 1

2r2

)
rθ

√
m‖A‖1→2

T
.

Since A is m × n stochastic matrix, the Euclidean norms of columns in A are of order
O(m−1/2), yielding the efficiency estimate O (log(n) · θ/T ). It is worth pointing out
that the dependence on dimension is only logarithmic, making the efficiency esti-
mate nearly optimal in terms of the dependence on dimension. In contrast, Euclidean
extragradient methods or primal–dual algorithms would have a worse dependence on
dimension, e.g., O(

√
n) in this case. This difference is clear in the numerical results

discussed below. In fact, if we look at what happens in this model when x∗ is “uni-
form”, i.e., all entries in x∗ are θ/n, the optimal value is θ − θ log(θ) + θ log(n),
which is typically of order O(θ). This implies that relative to optimal value, the rate
of convergence is about O(log(n)/T ).

Experimental Setup We compare three different choices of distance generating func-
tions (see [31]) to set up the proximal operator for the proposed algorithm: (i)
entropy setup: ω(x) = ∑n

j=1 x j log(x j ); (ii) �2-setup: ω(x) = 1
2‖x‖22; (iii) �p-

setup: ω(x) = C
∑n

j=1 |x j |p, where C = 2e log(n) and p = 1 + 1/(2 log(n)). We
compare to several existing algorithms: the classic Richardson-Lucy algorithm [54],
Mirror Descent (MD) [17], Non-monotone Maximum Likelihood (NMML) [15], Pri-
mal Dual [38], and the recent NoLips algorithm [20]. For the CMP algorithm under
each setup, the stepsize is self-tuned using line-search as described in [37], while the
the scaling factor α > 0 is fined-tuned. More specifically, we run the algorithm among
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(a) (b)
Fig. 1 Poisson imaging reconstruction: a convergence behaviors of the CMP algorithm under different
proximal setups, b convergence comparison among CMP, Richardson-Lucy, Mirror Descent, NMML, and
NoLips

a pre-fixed range of values {10, 1, 0.5, 0.1, 0.01} of α and chose the one that outputs
the best accuracy within 100 iterations. For the Richardson-Lucy algorithm, there is
no tuning parameter. For MD, the stepsize is in the order of O(γ /

√
t) where γ is

also fine-tuned through a given range of values {10, 1, 0.5, 0.1, 0.01}. For NoLips,
the stepsiz γ = O(1/L) (L is the unknown relative Lipschitz constant) is a constant,
which is also fine-tuned among the same set of choices. For NMML, we follow the
same stepsize used in the original paper (which is explicitly given) and fine tune the
corresponding control parameter used in the algorithm. For Primal Dual algorithm,
the stepsize is set to be a constant and is also fine-tuned.

Numerical ResultsWe run experiments on several phantom images of size 256× 256,
and we build the matrix A, which is of size 43530×65536. To evaluate the efficiency,
we consider the noiseless situation; hence, the optimal solution and objective value
are known. For all algorithms, we evaluate and compare the relative accuracy, i.e.,
(min1≤i≤t f (xi ) − f∗)/ f∗. Results are presented in Fig. 1. From Fig. 1a, we can see
that aside from the advantage of preserving positivity without projections, the CMP
algorithm under the entropy setup also converges faster than the commonly used �2
setup. Hence, we adopt the entropy setup for bothMD andCMP in the subsequent text.
Figure 1b demonstrates that CMP consistently outperforms the competitors including
the NoLips and Primal Dual algorithms, even though they attain the same conver-
gence rate theoretically. Figure 2 provides mid-slices of recovery images of the CMP
algorithm; it can be seen that CMP is able to provide relatively good recovery of the
true images within less than 100 iterations. These results demonstrate that CMP is a
competitive algorithm for solving Poisson imaging reconstruction.

4.2 Temporal Recommendation System

We consider the same experimental setup as in (8) for temporal recommendation
systems). Here we consider an alternative convex formulation of (8):
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Table 1 Datasets for temporal
recommendation systems

Dataset User Item Pair Event

Synthetic 64 64 2048 2,048,000

Last.fm (small) 297 423 492 31,353

Last.fm (medium) 568 1162 1822 127,724

Last.fm (large) 727 2247 6737 454,375

min
U≥0,A≥0,U ′,A′ L(U , A) + γ1‖U ′‖nuc + γ2‖A′‖nuc + ρ‖U −U ′‖22 + ρ‖A − A′‖22,

(18)

where the negative log-likelihood term is explicitly given by

L(U , A) =
∑

i, j

[
TUi j +

Ni j (T )∑

n=1

[Ai j g(T − τi jn) − log(Ui j + Ai j

∑

l<n

k(τi jn − τi jl))]
]
.

The function g(t) is defined as g(t) = ∫ t
0 k(τ )dτ with k(τ ) = exp(−τ), τ > 0.

MatricesU ′, A′ are copies of variablesU , A to decouple the nuclear norm constraints
and the positivity constraints.

Experimental SetupWe compare CMP to several algorithms includingMirror Descent
(MD, non-Euclidean setup) for composite objective [32], proximal gradient descent
(PG, Euclidean setup) and accelerated proximal gradient (APG, Euclidean setup) [9].
For CMP and MD, we use the following proximal setup for x = [U , A,U ′, A′]:
ω(x) = ∑

i j Ui j logUi j + ∑
i j Ai j log Ai j + 1

2‖U ′‖2F + 1
2‖A′‖2F , where ‖ · ‖F is the

Frobenius norm. The stepsize of CMP is self-tuned using line-search as described in
[37] at each iteration. The stepsize of MD is in the order of O(γ /

√
t) where γ is

fine-tuned as described earlier. For PG and APG, the stepsizes are selected through
back-tracking line-search since the objective is non-globally Lipschitz continuous.

Numerical Results We run the experiments on both synthetic and real-world datasets
as described in Table 1. The number of events in the last.fm dataset ranges from
30,000 to 500,000. We set the regularization parameters to be the same and range
from {0.1, 1, 10} and set ρ = 1. The results are presented in Fig. 3. Figure 3 again
demonstrates that i) using non-Euclidean setup improves the performance ii) when
taking into account the non-Lipschitzness, CMP performs better empirically than MD
and APG on these problems.

4.3 Social Network Estimation

In the last experiment, we consider the convex problem introduced in (6) for estimating
the influence matrix among users in a social network.

Experimental SetupWe test the performance of the proposed fully randomized block
CMP (denoted as RB-CMP) and compare it to Composite Mirror Prox (CMP) and
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Fig. 4 Social network estimation

Mirror Descent (MD). For all algorithms, we use the entropy proximal setup for the
x-component: ω(μ, A) = ∑

i μi log(μi ) + ∑
i, j ai j log(ai j ). Note that the primal

variable (μ, A) can be naturally decomposed into blocks that corresponds to each
user, and the dual variable y can be naturally divided into blocks that corresponds to
the datapoints of each user. In our experiment, at each iteration, we randomly pick one
user and only update the corresponding blocks in the primal and dual variables using
their block gradients. Unlike the full gradient with size O(n2 +m), the average size of
the block gradient effectively reduces to O(n +m/n), where m is the total number of
events, and n is the number of users. We compare these algorithms both on synthetic
and real Twitter datasets. The synthetic dataset consists of 50 users and 50,000 events.
The Twitter dataset consists of 100 users and 98,927 events.

NumericalResultsWerun the three algorithmswith their best-tunedparameters respec-
tively, under different regularization parameters λ ∈ {1, 100}. For MD and RB-CMP,
we fine tune the stepsize as described earlier; for CMP, the stepsize is self-tuned via
line-search at each iteration. We evaluate their relative accuracy vs number of effec-
tive passes through data. The results are presented in Fig. 4, which indicate that CMP
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performs consistently better than MD. Furthermore, the randomized block variant
performs even better on large datasets.

5 Conclusion

We introduced a saddle point formulation of penalized maximum likelihood estima-
tion of point process models. This formulation overcomes the issue arising from the
non-Lipschitzness of the likelihood objective, which is an obstacle to a direct appli-
cation of common first order optimization algorithms. The saddle point algorithm we
presented enjoys aO(1/t) convergence rate, in contrast to the typicalO(1/

√
t) rate for

non-smooth optimization.We also presented a fully randomized block-decomposition
variant, with a slower rate of convergence yet with a cheaper cost per iteration, mak-
ing it appropriate for problems with both large samples and high dimensions. The
two algorithms demonstrated competitive performance on several challenging real-
world datasets. The extension of the proposed approach to more general classes of
non-Lipschitz problems is an interesting venue for future work.

Acknowledgements This work was first presented at the Fifth International Conference on Continuous
Optimization (ICCOPT) inAugust 2016. This workwas supported byNSFCMMI-1761699, NCSAFaculty
Fellowship, NSF CCF-1740551, the project Titan (CNRS-Mastodons), the MSR-Inria joint centre, the
project Macaron (ANR-14-CE23-0003-01), the program “Learning in Machines and Brains” (CIFAR), and
faculty research awards. The authorswould like to thankAnatoli Juditsky, JulienMairal, ArkadiNemirovski,
and Joseph Salmon for fruitful discussions. The authors are also grateful to the reviewers and the editor for
their valuable remarks and thoughtful comments.

A Convergence Analysis of Fully Randomized CMP

To prove the above result, we need the technical lemma below.

Lemma 2 Suppose U ⊂ E is closed convex on an Euclidean space E, V (u, u′) is
the Bregman divergence induced by some distance generating function ω(x) that is
1-strongly convex with respect to some norm ‖ · ‖ on U, and Ψ (u) is convex. For
any u ∈ U, and g ∈ E, define the prox operator u+(g) := argminu′∈U {αV (u′, u) +
〈g, u′〉 + Ψ (u′)}, where α > 0. Then

(i) For a given g ∈ E, denote u+ := u+(g). It holds true that

〈g, u+ − u′〉+Ψ (u+)−Ψ (u′) ≤ α[V (u′, u)−V (u′, u+)−V (u+, u)],∀u′ ∈ U .

(19)
(ii) The prox operator is 1

α
-Lipschitz, i.e., ∀g1, g2 ∈ E,

‖u+(g1) − u+(g2)‖ ≤ 1

α
‖g1 − g2‖∗,

where ‖ · ‖∗ is the dual norm to ‖ · ‖.
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Similar results can be found in [55] and [56]. In fact, this can be proved based on the
optimality condition and the generalized triangle inequality of Bregman divergence.
For completeness, we provide a proof below.

Proof We first prove (i). By optimality of u+, we have

〈α[∇ω(u+) − ∇ω(u)] + g + ∂Ψ (u+), u+ − u′〉 ≤ 0,∀u′ ∈ U .

By convexity of Ψ (u), we also have Ψ (u+)−Ψ (u′) ≤ 〈∂Ψ (u+), u+ − u′〉,∀u′ ∈ U .

Combining these two inequalities implies that

〈g, u+ − u′〉 + Ψ (u+) − Ψ (u′) ≤ α〈∇ω(u+) − ∇ω(u), u′ − u+〉
= V (u′, u) − V (u′, u+) − V (u+, u).

The latter equality follows from the definition of Bregman divergence. We now prove
(i i). Denoting u1 = u+(g1) and u2 = u+(g2), by optimality of u1 and u2, we have

−[α∇ω(u1) − α∇ω(u) + g1] ∈ ∂(Ψ + δU (·))(u1)
−[α∇ω(u2) − α∇ω(u) + g2] ∈ ∂(Ψ + δU (·))(u2)

where δU (·) is the indicator function of the setU . By monotonicity of the subgradient,
it holds that

([α∇ω(u2) − α∇ω(u) + g2] − [α∇ω(u1) − α∇ω(u) + g1])T (u1 − u2) ≥ 0.

Hence,

〈g2 − g1, u1 − u2〉 ≥ α〈∇ω(u1) − ω(u2), u1 − u2〉 ≥ α‖u1 − u2‖2.

The last inequality comes from the 1-strongly convexity ofω(u). By Cauchy-Schwarz
inequality, we obtain the desired result. ��

We now provide the convergence analysis for Theorem 1. Invoking the definition
of xt+1 and yt+1 and Lemma 2, we end up with for any t = 1, . . . , T and for any
x ∈ X , y ∈ Y :

γt [〈∇xkt φ(x̂ t , ŷt ), xt+1
kt

− xkt 〉 + hkt (x
t+1
kt

) − hkt (xkt )]
≤ α1[V1,kt (xkt , xtkt ) − V1,kt (xkt , x

t+1
kt

) − V1,kt (x
t+1
kt

, xtkt )] , (20)

and

γt [〈−∇ylt φ(x̂ t , ŷt ), yt+1
lt

− ylt 〉 + plt (y
t+1
lt

) − plt (ylt )]
≤ α2[V2,lt (ylt , ytlt ) − V2,lt (ylt , y

t+1
lt

) − V2,lt (y
t+1
lt

, ytlt )] , (21)
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We first take a look at Eq. (20). This implies that

γt [〈∇xkt φ(xt , yt ), xtkt − xkt 〉 + hkt (x
t
kt ) − hkt (xkt )]

≤ α1[V1,kt (xkt , xtkt ) − V1,kt (xkt , x
t+1
kt

)] + γt [hkt (xtkt ) − hkt (x
t+1
kt

)]
︸ ︷︷ ︸

At

−α1V1,kt (x
t+1
kt

, xtkt ) + γt 〈∇xkt φ(x̂ t , ŷt ), xtkt − xt+1
kt

〉
︸ ︷︷ ︸

Bt

+ γt [〈∇xkt φ(xt , yt ) − ∇xkt φ(x̂ t , ŷt ), xtkt − xkt 〉]︸ ︷︷ ︸
Ct

. (22)

First, recall that V1(x, x ′) = ∑b1
k=1 V1,k(xk, x

′
k). This implies that

V1(x, x
t ) − V1(x, x

t+1) = V1,kt (xkt , x
t
kt ) − V1,kt (xkt , x

t+1
kt

).

Similarly, by definition of h(x) = ∑
k hk(xk), we have h(xt ) − h(xt+1) = hkt (x

t
kt

) −
hkt (x

t+1
kt

). Combing these two facts, we obtain

At ≤ α1[V1(x, xt ) − V1(x, x
t+1) + γt [h(xt ) − h(xt+1)]. (23)

Second, applying Young’s inequality, the term Bt can be bounded as

Bt ≤ −α1V1,kt (x
t+1
kt

, xtkt ) + γ 2
t

2α1
‖∇xkt φ(x̂ t , ŷt )‖2x,kt ,∗ + α1

2
‖xtkt − xt+1

kt
‖2x,kt

≤ γ 2
t

2α1
‖∇xkt φ(x̂ t , ŷt )‖2x,kt ,∗ ≤ γ 2

t M
x
kt

2α1
. (24)

Third, using the block-Lipschitzness of the gradient, we can obtain an upper bound of
the term Ct as follows:

Ct ≤ γt‖∇xkt φ(xt , yt ) − ∇xkt φ(x̂ t , ŷt )‖x,kt ,∗‖xtkt − xkt ‖x,kt
≤ γt D

x
kt

(
Lxx
kt ‖x̂ tkt − xtkt ‖x,kt + Lxy

lt
‖ŷtlt − ytlt ‖y,lt

)
. (25)

Invoking the Lipschitzness of the prox mappings, we further have

Ct ≤ γ 2
t D

x
kt

(
Lxx
kt

α1
‖∇xkt φ(xt , yt )‖x,kt ,∗ + Lxy

lt

α2
‖∇ylt φ(xt , yt )‖y,lt ,∗

)

≤ γ 2
t D

x
kt

(
Lxx
kt
Mx

kt

α1
+ Lxy

lt
M y

lt

α2

)
. (26)
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Note that xt , yt are independent of the random variables kt and lt . Taking expectation
with respect to the probability distributions associated with kt and lt in Eq. (22), we
show that

γtEkt ,lt [〈∇xkt φ(xt , yt ), xtkt − xkt 〉 + hkt (x
t
kt ) − hkt (xkt )]

= γt

b1

b1∑

k=1

[〈∇xkφ(xt , yt ), xtk − xk〉 + hk(x
t
k) − hk(xk)]

= γt

b1
[〈∇xφ(xt , yt ), xt − x〉 + h(xt ) − h(x)] . (27)

Combining with Eqs. (23), (24), and (25) and taking expectations, we end up with

γtE[〈∇xφ(xt , yt ), xt −x〉+h(xt )−h(x)] ≤ b1 ·E[At ]+γ 2
t

(Mx + 2Cxx

2α1
+ Cxy

α2

)
.

(28)
Using a similar analysis for Eq. (21), we obtain

γtE[−〈∇yφ(xt , yt ), yt−y〉+p(yt )−p(y)] ≤ b2·E[ Ãt ]+γ 2
t

(My + 2C yy

2α2
+ C yx

α1

)
.

(29)
CombingEqs. (28) and (29) and invoking the convex-concavity of the functionφ(x, y),
we have

γtE[ψ(xt , y) − ψ(x, yt )] ≤ b1 · E[At ] + b2 · E[ Ãt ] + γ 2
t

(B1

α1
+ B2

α2

)
. (30)

Taking summation over t and further exploiting the convex-concavity of ψ(x, y), we
end up with

E[ψ(xT , y)−ψ(x, yT )] ≤ b1

T∑

t=1

E[At ]+b2

T∑

t=1

E[ Ãt ]+
T∑

t=1

γ 2
t

(B1

α1
+ B2

α2

)
. (31)

Note that

T∑

t=1

E[At ] ≤ α1V1(x, x
1) + γ1h(x1) − γTE[h(xT )] ≤ α1V1(x, x

1) + 2γ1B0,

T∑

t=1

E[ Ãt ] ≤ α2V2(y, y
1) + γ1 p(y

1) − γTE[p(yT )] ≤ α2V2(y, y
1) + 2γ1B0.

Therefore, plugging into x = x∗, y = y∗, we have arrived at the desired result. ��
Remark 8 Note that we did not use the independence of kt and lt within each iteration
to prove the above results. Moreover, the above convergence analysis can be extended
to non-uniform sampling, which we omit for simplicity of presentation.
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35. Richtárik, P., Takáč, M.: Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function. Math. Program. 144(1–2), 1–38 (2014)

36. Yanez, F., Bach, F.: Primal-dual algorithms for non-negative matrix factorization with the Kullback-
Leibler divergence. In: 2017 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 2257–2261 (2017)

37. He, N., Juditsky, A., Nemirovski, A.: Mirror prox algorithm for multi-term composite minimization
and semi-separable problems. Comput. Optim. Appl. 61(2), 275–319 (2015)

38. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to
imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

39. Yang, T., Mahdavi, M., Jin, R., Zhu, S.: An efficient primal dual prox method for non-smooth opti-
mization. Mach. Learn. 98(3), 369–406 (2015)

40. Chambolle, A., Pock, T.: On the ergodic convergence rates of a first-order primal-dual algorithm.Math.
Program. 159(1–2), 253–287 (2015)

41. Chen, Y., Lan, G., Ouyang, Y.: Optimal primal-dual methods for a class of saddle point problems.
SIAM J. Optim. 24(4), 1779–1814 (2014)

42. He, Y., Monteiro, R.D.: An accelerated HPE-type algorithm for a class of composite convex-concave
saddle-point problems. SIAM J. Optim. 26(1), 29–56 (2016)

43. Tseng, P.: On accelerated proximal gradientmethods for convex-concave optimization. SIAMJ.Optim.
2, 3 (2009)

44. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)
45. Chen, X., Lin, Q., Kim, S., Carbonell, J.G., Xing, E.P.: Smoothing proximal gradient method for

general structured sparse regression. Ann. Appl. Stat. 6(2), 719–752 (2012)
46. Shalev-Shwartz, S., Zhang, T.: Stochastic dual coordinate ascent methods for regularized loss. J. Mach.

Learn. Res. 14(1), 567–599 (2013)
47. Dang, C.D., Lan, G.: Stochastic block mirror descent methods for nonsmooth and stochastic optimiza-

tion. SIAM J. Optim. 25(2), 856–881 (2015)
48. Zhang, Y., Xiao, L.: Stochastic primal-dual coordinate method for regularized empirical risk mini-

mization. J. Mach. Learn. Res. 18(1), 2939–2980 (2017)
49. Dang, C.D.: Randomized first order methods for convex and nonconvex optimization. PhD Thesis

(2015)
50. Gao, X., Xu, Y.Y., Zhang, S.Z.: Randomized primal-dual proximal block coordinate updates. J. Oper.

Res. Soc. China 7(2), 205–250 (2019)
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