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ABSTRACT. A domain exchange map (DEM) is a dynamical system defined on a smooth
Jordan domain which is a piecewise translation. We explain how to use cut-and-project
sets to construct minimal DEMs. Specializing to the case in which the domain is a square
and the cut-and-project set is associated to a Galois lattice, we construct an infinite family
of DEMs in which each map is associated to a PV number. We develop a renormalization
scheme for these DEMs. Certain DEMs in the family can be composed to create multistage,
renormalizable DEMs.
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1. INTRODUCTION

A smooth Jordan domain X is non-empty closed bounded set in R? whose boundary
is a piecewise smooth Jordan curve. We construct a dynamical system on X which is a
piecewise translation known as a domain exchange map (DEM). The dynamical system
is a 2-dimensional generalization of an interval exchange transformation.

Definition 1.1. Let X be a Jordan domain partitioned into smaller Jordan domains, with
disjoint interiors, in two different ways

N N
X:UMZU&
k=0 k=0

such that for each k, Ay and By, are translation equivalent, i.e., there exists v, € R? such
that Ay = By + v,.. A domain exchange map is the piecewise translation on X defined
for xz € A by

T(x) =z + vy.
The map is not defined for points x € Uszo 0A.

In section 2 we explain how to use cut-and-project sets to define a DEM on any smooth
Jordan domain X.

Definition 1.2. Let L be a full-rank lattice in R® and X a domain in the xy-plane in R3.
Define

P={m,(p) : pe L and my(p) € X}.
where 7, is the projection onto the z axis and m,, is the projection onto the xy-plane. The
point set P is a cut-and-project set if the following two properties are satisfied:
(1) .| is injective
(2) mpy(L) is dense in R?.
In this setting we define A(X, L) to be the set of lattice points
AMX,L)={xe L : my(x) e X}

The projection m,, (A(X, L)) is dense in X.

The DEM is defined by projecting a dynamical system on A(X, L) onto X. Figure 1 shows
a DEM, in which X is the unit disk, constructed in this manner. The boundary of each tile
is an arc of a circle with unit radius. For almost every point x the forwards and backwards
orbits of x under the DEM are well-defined. We characterize the orbits of DEMs constructed
using cut-and-project sets:

Theorem 1.3. For a DEM in R? associated to a cut-and-project set from R3, every well-
defined orbit is dense and equidistributed.
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F1GURE 1. Domain exchange map on a disk and the forward orbit of a point.
One iteration of the map consists in translating each of the seven regions
delineated by the black boundaries in the first panel to its position shown in
the second panel.

The DEMs produced by our construction are amenable to analysis when the lattice and
domain have a special algebraic structure. A Pisot- Vijayaraghavan number, more
simply called a PV number, is a real algebraic integer with modulus larger than 1 whose
Galois conjugates have modulus strictly less than one.

Let A = A3 be a PV number whose Galois conjugates Aj, Ay are real. Then Q[A] has three
embeddings into R, and we can identify R? with the product of these three embeddings, with
the z-, y- and z-coordinates corresponding to embeddings sending A to A1, Aa, A3 respectively.
Then Z[)] is a lattice in R?® of the above type, and

Tay(a 4+ b+ cA?) = (a4 bA; + A}, a + by + cA).

Multiplication by A is an integer transformation of Z[\]. We call this the Galois embedding
of the lattice Z[)\]. Note that Z[\] can be identified with Z* under the map

(a,b,¢) — a+ b\ + cA*.

When X is a smooth Jordan domain and L is the Galois embedding of a PV number
whose Galois conjugates are real then the point set A(X, L) satisfies the conditions of being
a cut-and-project set. We call a DEM associated to a Galois lattice a PV DEM . We give
a detailed analysis of PV DEMs in the case when the lattice is a Galois lattice and X is the
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unit square [0, 1], Since the tiles inherit their shape from the boundary of X, under these
assumptions the tiles are rectilinear polygons. We call these DEMs rectangle exchange
maps (REMs).

One way to construct a PV DEM is to find a Pisot matrixz whose eigenvalues are all real.
A Pisot matrix is an integer matrix with one eigenvalue greater than 1 in modulus and the
remaining eigenvalues strictly less than 1 in modulus (in particular, its leading eigenvalue is
a PV number). Define S to be the following set of matrices:

0 1 0
S=<{M,=10 0 1 n>6
1 —n n+1

We will show in Section 5.2 that every matrix M, € § is a Pisot matrix. For M, € S,
let A be the leading eigenvalue of M,,. The Galois embedding of Z[\] gives rise to a PV
REM (Section 2.3). Let Ty denote the PV REM associated to the Galois embedding of the
eigenvalues of M.

We extend the family {7y, : M, € S} of PV REMs to a larger family of REMs via
the monoid of matrices M consisting of nonempty products of matrices in §. Lemma 1.4
establishes that M is in fact a monoid of Pisot matrices.

Lemma 1.4. If W € M then its eigenvalues A1, Ao and A3 are real and satisfy the inequalities
0< A <A <1l<As.

Avila and Delecroix in [AD15] give a neat criterion for checking whether a family of
matrices generates a monoid of Pisot matrices. Even though our (computational) proof of
Lemma 1.4 is somewhat along the same lines, we were not able to apply their results directly
to this family.

Admissible REMs are defined by a subset of admissible matrices M, C M for
which the REM Ty associated to the matrix W € M4 has the same combinatorics as the
REM Ty, (see definition 5.1). We say that two REMs, T,7" : X — X with associated
partitions A = {A4;}N,, A’ = { A/}, respectively, have the same combinatorics if

(1) The cardinalities of the partitions A, A" are equal.

(2) For each i, the polygons A; € A and A, € A" have the same number of edges and
edge directions, that is, they are the same up to changing edge lengths.

(3) Two elements A; and A; in A meet along a common edge if and only if A] and A
share an edge in the corresponding position.

See Figure 2 for an example of two REMs with the same combinatorics. The admissibility
condition on M4 C M is a set of linear equations in the eigenvectors of M (see definition
5.1).

Let W € M4 be written W = M,,, ... M,,M,,. Define Wy, = M,, ... M,,M,, for1 <
k < L. When each REM Ty, has the same combinatorics as Ty for every k =1,...,L we
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F1GURE 2. The REM described by the top panels has the same combinatorics
as the REM described by the lower two panels.

call Ty a multistage REM (see Definition 5.2). We use Mpr C My to denote the subset
of admissible matrices which produce multi-stage REMs.

For a multistage REM we study the first return map to one of the tiles in the partition
and prove that it is affinely conjugate to the original map. This is known as a renormal-
ization scheme. Renormalization schemes are an essential tool in the study of long term
behavior of dynamical systems.
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Definition 1.5. Let T : X — X be a map and Y C X. The first return map T|y maps
a point p € Y to the first point in the forward orbit of p lying in'Y, i.e.
Tly(p) = T™(p) where m = min{k € Z : T*(p) € Y}.

The notation Ty means the dynamical system T restricted to 'Y .

When X is a finite measure space and 7' a measure-preserving transformation, the Poincaré
Recurrence Theorem [Poil7] ensures that the first return map is well-defined for almost every
point in the domain.

Definition 1.6. A dynamical system Ty : X1 — X; has a renormalization scheme if there
exists a proper subset Xo C X1, a dynamical system Ty : Xo — Xs, and a homeomorphism
¢ X1 — Xy such that R

Tily, = ptoTyo .

A dynamical system is renormalizable or self-induced if T, = T} .

1.1. Main Results. The main focus of our paper is the development of a renormalization
scheme for the multistage REM T}, defined in Section 2.3 below, for every M € M 4.

Theorem 1.7. Let M € S be a matrixz and Ty; the PV REM associated to the Galois lattice
Ly where X is the leading eigenvalue of M. Label the eigenvalues of M by A1, Ay and A3
in increasing order. Let'Y C X be the tile in the partition corresponding to the rectangle
[1— A, 1] x [1 = X, 1]. The REM T) is renormalizable, i.e.,

Tuly =¢ " oTho¢
where ¢ : X — Y s the affine map

A o—1 Ay — 1
¢ (z,y) — v ,y+ 2 :
A Ao

We next prove that multistage REMs are minimal and have a renormalization scheme
with multiple steps.

Theorem 1.8. Multistage REMs are minimal.

Theorem 1.9. Let W = M, ---M,,M,, € Mg and define W), = M,, --- M,,M,, for
1 < k < L. The associated multistage REM is renormalizable, i.e., for each k there exists
Y. C X and an affine map ¢ : Y, — X such that

fWk+1|Yk+1 = ¢I;1 © TWk O Q.

Each affine map has the form

r+x,—1 y+y,—1
(bk : (:C7 y) = ( ’
Tk Yk
where x and yi are the dimensions of the tile in the partition corresponding to the rectangle

[1 —.Tk,l] X [1 —yk,l].
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We conjecture that the closure of the set of renormalizable multistage REMs is topologi-
cally a Cantor set.

1.2. Background. A DEM is an example of a discrete dynamical system which is a piece-
wise affine isometry. These systems have applications to the study of substitutive dynamical
systems, outer billiards, and digital filters. Originally J. Moser proposed studying outer bil-
liards as a toy model for celestial dynamics. In much the same manner, DEMs provide a toy
problem for the study of Hamiltonian dynamical systems with nonzero field. See [Goe03] for
a nice survey including many open questions related to 2-dimensional piecewise isometries.

Although the maps we study are locally translations, the sharp discontinuities produce
a dynamical system with extremely rich long-term behavior. This complexity can even be
seen in the 1-dimensional case of interval exchange transformations (IETs). We wish to
classify points in the domain by the long-term behavior of their orbits. The domain of an
affine isometry is subdivided into tiles on which the map is locally constant. Each point in
a piecewise isometry can be classified by the sequence of tiles visited by the forward orbit
of a point. The most basic question is to give an encoding for each point in terms of this
sequence. While this problem is particularly challenging, there has been some success in
classifying points into sets of points whose orbits are eventually periodic and those whose
orbits are not periodic. Such a classification has been carried out successfully in a few
particular cases, [AKTO1], [Goe03], [LKV04], [AH13], [Hool3] and [Sch14].

In each case the authors used the principle of renormalization to study the dynamical
system. Renormalization provides a way to understand the long-term behavior of a discrete
dynamical system. Unfortunately for piecewise isometries in dimension 2 or higher there
are no general methods for developing a renormalization scheme for a dynamical system. In
the 1-dimensional case of the IET, G. Rauzy developed a general technique known as Rauzy
induction for finding a renormalization scheme for an IET [Rau79]. His method does not
generalize to higher dimensions.

REMs were first studied by Haller who gave a minimality condition [Hal81]. Unfortunately
this condition is extremely difficult to check in practice. Finding a recurrent REM was
included as question #19 in a list of open problems in combinatorics at the Visions in
Mathematics conference [Gow00]. Hooper developed the first renormalization scheme for a
family of REMs parametrized by the square [Hoo13]. In [Sch14] Schwartz used multigraphs
to construct polytope exchange transformations (PETSs) in every dimension. He developed
a renormalization scheme for the simplest case in which the corresponding multigraphs are
bigons. The renormalization map is a piecewise Mobius map.

The topological entropy of a dynamical system gives a numerical measure of its complexity.
For a dynamical system defined on a compact topological space the topological entropy is an
upper bound for the exponential growth rate of points whose orbits which remain a distance
e apart as € — 0 [Thul4]. The topological entropy gives an upper bound on the metric
entropy of the dynamical system. In [Buz01] J. Buzzi proved that the topological entropy
is zero for piecewise isometries defined on a finite union of polytopes in R¢ which are actual
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isometries on the interior of each polytope. The REMs we study in this paper are examples
of such systems and as a consequence have zero topological entropy. However when the
domain is not a union of polytopes the techniques in [Buz01] must be modified. We expect
that our technique for constructing domain exchange maps produces dynamical systems with
zero topological entropy but have not proved this.

Throughout this paper we make extensive use of the connection between non-negative
integer matrices and Perron numbers. A Perron number is a positive real algebraic integer
A which is strictly larger than the absolute value of any of its Galois conjugates. In [Lin84]
it was proven that for every Perron number \ there exists a non-negative integer matrix M
which is irreducible (i.e. M* is positive for some power k) and has \ as a leading eigenvalue.

In this paper we use algebraic properties of a subset of Perron numbers known as Pisot-
Vijayaraghavan numbers or PV numbers to find REMs which are renormalizable. A PV
number is a positive real algebraic integer whose Galois conjugates lie in the interior of
the unit disk. We use cut-and-project sets associated to PV numbers to produce DEMs.
Cut-and-project sets were introduced in [Mey95] and further studied in [Lag96].

Our proof of the renormalization schemes in this paper rely on algebraic properties of PV
numbers. In two recent works monoids of matrices were discovered whose leading eigenvalues
are PV numbers ([AIO1] and [AD15]). The authors called these matrices Pisot matrices. We
find a new monoid of Pisot matrices with an infinite generating set.

The techniques we use in this paper are influenced by [Ken92] and [Ken96]. These works
focused on self-similar tilings of the plane whose expansion constant is a complex Perron
number. Unlike the tiles in our DEMs, the tiles in [Ken96] have a fractal boundary. Our
construction of DEMs also share similarities with the Rauzy fractal [Rau82].

2. CONSTRUCTING MINIMAL DEMS WITH CUT-AND-PROJECT SETS

2.1. Definition. Let X be a smooth Jordan domain in R? and L a lattice in R? such that
A = A(X,L) is a cut-and-project set: A = {p € L| m,y(p) € X}. We construct a DEM
on X by projecting a dynamical system on A onto the window X. Projection onto the
z-coordinate gives an ordering of the points in A. Order the points in A by increasing z-
coordinate: A = {...,x_1,X0,X1,...}. Let T : A — A be the dynamical system defined
by
T(Xz) = Xi+1-
Consider the set of steps in the lattice walk
E={T(x)—x:x €A}

Since L is a lattice, £ is a finite set. Suppose there are N 4 1 vectors in £ and label them by
E ={no,m,...,nn}. Projection onto the z-coordinate induces an order on £. We assume
that £ is indexed so that

(o) < m(m) < -+ < T(nN).
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Define V = {v; = m4y(n) : 7€ E}. The DEM T : X — X is defined by
T(p) =p+ v with i =min{0,...,N : v; € V and p+v; € X}.

Note that T is well-defined and bijective on X. The map T is a piecewise translation on X.
The DEM induces a partition of X into subdomains {4;}Y, for which T'(p) = p + v; for

all p € A;. Likewise T~ ! induces a partition {B;}"_, for which T~(p) = p—wv; for all p € B;.
Note that

N N
X=JAa=JB
k=0 k=0
and Ay = B+, verifying that T' is a DEM. The subdomains are not necessarily connected.

However, each connected component of a subdomain is bounded by a smooth Jordan curve
as long as X is a smooth Jordan domain.

In Figure 3 we show both the lattice walk T and the resulting DEM T

FIGURE 3. Lattice walk in A(X, L) and the partition associated to the DEM
on X. Each colored region in the partition is translated by the projection of
the step in the lattice walk, with the same color, onto the xy-plane.

For a dynamical system T : X — X, the orbit of p is the set O(p) = {TV(p) | j € Z}.

We also define O**(p) = {T7(p)| j € Z,0 < j < k} the k-th forward orbit of p, and
O*(p) ={T(p) | 7 = 0} the forward orbit.

2.2. Vertical flow. Let T? = R3/L. We can consider X as a subset of T?: the inclusion
map ¢ : X — T3 is injective by our conditions on L. On T? the vertical linear flow is defined
by ®,((z,y,2)) = (x,y,2z +t) mod L for t € R.

By Weyl’s Equidistribution Theorem (see e.g. [SS03]), the vertical flow is equidistributed
on T? in the following sense. Take any open set () in the image of the zy-plane in T3, and a

point = € 2. The iterates of the first return map to {2 of the vertical flow, when applied to
x, are equidistributed in €.

So to prove Theorem 1.3 above, it suffices to establish the following result.



10 IAN ALEVY !, RICHARD KENYON 2, AND REN YT 3
Theorem 2.1. T is conjugate to the first return map to X of the vertical linear flow ®, that
is «(T(p)) = @, (¢(p)) where

7 =1inf{t > 0 | ®(c(p)) € L X}.

Proof. The vertical linear flow on T? lifts to the vertical flow on R3. Consider all translates
of X € R? C R3 by lattice translations in L. Each of these intersects X x R in some
(possibly empty) subset. Order those with nonempty intersections by their z-coordinate. By
construction the translates ng + X, ..., ny + X are the first N + 1 such translates, and the
projections to R? of these cover X. U

FIGURE 4. The two partitions associated to the REM T,

2.3. PV REMs. We explain here the details of the REM construction when X = [0, 1] x
[0,1] and L is the Galois embedding of Z[A] where A is a certain family of PV numbers.
Define for each n > 6 a polynomial

qn(r) = 2° — (n+ 1)2* + nx — 1.
Lemma 2.2. The polynomial q, has three real roots, A1, Ao and A3, which satisfy the in-
equalities 0 < Ay < Ag < 1 < A3.

Proof. The discriminant of ¢, is
D(n) = n* — 6n® + 7Tn* + 6n — 31.

It has two real roots n = 1/2(3 + v/13 + 16v/2) and 1/2(3 — /13 4 161/2). Thus for n > 6

the discriminant is strictly positive and we find ¢, has three distinct real roots.
Since
)\1/\2>\3:1 and )\1+)\2+/\3=n+1
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it follows that A3 > 1 and A\; < 1. However, \3 < n+ 1 and so A\; + Ay > 0. This implies
A2 > 0. The product of the three roots is one which implies that A; > 0.
It remains to show that Ay < 1. Evaluating ¢, and its derivative at 0 and 1 gives

QH(()) =—1, qu<0) =n, Qn<1) =—1 and q;(1> =1-n.
We find that ¢, (z) has two roots between 0 and 1 and conclude that 0 < A\ < Ap < 1. O

Note that ¢, is the characteristic polynomial of the matrix

0 1 0
M,=10 0 1
1 —n n+1

Let Ty, : X — X be the PV REM associated to the Galois embedding of the roots of ¢,.
The two partitions associated to the REM T}, are shown in figure 4. When L has this form
there are seven possible steps in the lattice walk &,. It is convenient to identify points in L
by their representation in Z3, i.e., if (a,b, c¢) € Z3 then
Tay(a,b,¢) = (a+ b\ + e\, a+ by + c\3) and 7. (a, b, c) = a + bz + c)3.

Using this representation the vectors in &, are

770:(_1’170)7 m = (07]-’0)7 n2:n0+7]1:(_17270)
(2.3) ns=(L,=3,1), m=mno+ns=(0,-21),

ns=m+mn=(1,-2,1), and ns=mno+m+ns=(0,-11).
Theorem 4.1 establishes that the steps in the lattice walk are independent of n and as a
consequence we set &, = €.

The partition associated to the REM T}, is constructed as follows. A visual depiction

of the construction is shown in figure 5. Define the projections onto the xy-plane of the
translation vectors in € by

Vi = {v; = myy(my), for i =0,1,...6}.

Note that V,, depends on n since the projection m,, is a function of the roots of g,.
For a vector v € R? let f, be the translation f,(z) = x + v for x € R% We define the
partition A = {A;}, of X associated to T}y, inductively as follows:

vo

k—1
(2.4) Ag=f,/(X)NX and A, = (f,(X)NX)\ U A; for k>0.
j=0

For a point x in the interior of a tile in the partition A, the dynamical system is defined by

Tu, | a3 (x) = fo () = 2 + g

Each tile in the partition A is a rectilinear polygon (refer to the example in Figure 4) and
can be written as a disjoint union of rectangles. We use the standard notation for a rectangle

[a,b] x [c,d] = {(z,y) ER*:a <2 <band c <y <d}.
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X X Ao X X Ao
___‘FO//’J sssse #
-Vi =V2

A2

FIGURE 5. The steps in the construction of the partition A associated to the
REM T}, and the resulting partition.

Recall that A; and Ay are roots of the polynomial ¢,(x) with 0 < A\; < Ay < 1. The tiles are
as follows

[1— A, 1] x [1— Ao, 1]
=10,1—M\] x[0,1—\y]
([1 =221, 1 = M) X [1 =X, 2 = 2X)) U ([1 = A, 1] x [0,1 = \y])
=10,3)\; — A3 x [=1 43Xy — A2, 1]
(2.5) A4 [BA1 — A2, 1 — A\i] x [2X0 — A3, 1]

As =1[0,20 — A3] x [1 — Ao, —1 4+ 3Xy — 3]

As = ([1 = 2M1, 30 = ATl X [2 = 2X9, =1+ 3Xs — A3])

(220 = A%, 1= 20] X [1 = g, =1 43Xy — AJ])

(BA = A1, 1= A1) X [2 = 2X9,2X0 — AJ]).

U
U

3. ANALYSIS OF THE PV REM T);, AND ITS RENORMALIZATION

Before analyzing the general case, we give a detailed description of the PV REM T}, in
which the Galois lattice Ly is determined by the polynomial ¢g(z) = 23 — 72? + 62 — 1.

Let V = {v;}¢_, be the set of translation vectors of the REM T}y, where v; = 7., (n;) for
n; € & listed in Lemma 3.1. We obtain the REM T}, : X — X defined on the partition
{A;}8_, as shown in Figure 4.

Lemma 3.1. Let & = {n;}$ where the n; are defined in (2.3). The set of translation vectors
of Ty, are {may(n)}Ly for n =6,
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Proof. The characteristic polynomial of the matrix

0 1 0
Mg=10 0 1
1 -6 7

is gs(x) = 23 — T2? + 62 — 1. By Lemma 2.2, the polynomial g,(x) has three roots A;, Ay
and A3 with 0 < A\; < Xy < 1 < A3. The eigenvector & of Mg associated to A; is (1, A\;, \?)
for : = 1,2 and 3.

By direct computation, we find that the seven vectors 7, 71, . . ., 16 are the seven solutions
for vectors in Z3 of the following inequalities

—l<v-&§ <1
—l<v-&<1
0<wv-& <31,
The first two equations ensure that the projection of each step of the lattice walk in Z3 is
a translation vector in the REM. The third equation ensures that these are the first seven
vectors in € which define a partition of the unit square. The set of real solutions to the

above inequalities is a convex polytope in R3 which contains exactly seven integer points.
Each solution corresponds to a permissible step in the lattice walk on Ax. 0

Theorem 3.2. Let Y = Ay. The first return map TM6|y to the set Y 1is conjugate to Ty, by
the affine map ¢ 1 Y — X given by

B LIJ+>\1—1 y-i-)\g—l
¢n($7y) - ( )\1 ) )\2 >

where 0 < Ay < Ay < 1 are the smaller eigenvalues of the matriz M.

Theorem 3.2 is a particular case of Theorem 1.7 whose proof is given in Section 4.2. In
the Appendix we give a computational proof of Theorem 3.2 and a symbolic encoding of the
partition of Y induced by the first return map Ty, |y

FIGURE 6. The REM T}, and the partition induced by the first return map
TM6|Y toY = Ao.
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4. THE RENORMALIZATION SCHEME FOR PV REMSs

4.1. Analyzing the lattice walk for M, € §. Let T}, be the PV REM constructed from
a matrix M, € § using the method outlined in section 2.3. Let L = Ly be the associated
Galois lattice. In this section, we analyze the dynamical system 7" on L and prove

Theorem 4.1. Lemma 3.1 holds for alln > 6.

There are a number of steps in the proof. The first step is proving a more refined version
of Lemma 2.2.

Lemma 4.2. Label the roots of g, AT, A5, N5 with 0 < AT < A < 1 < A§. Then Ay and
Ay are monotonically increasing functions of n while A} is monotonically decreasing as a
function of n. Moreover we have the following inequalities

n<Ay<n+1

1—

<Ay <1-—

n—3 n—2

1 1
< A < .
1 n—2

Proof. The polynomial is cubic and therefore changes sign at most three times. We find
three disjoint intervals in which ¢, changes sign. Since the polynomial is cubic each root
must lie in one of these intervals.

n—1

gn(n) =-1<0 and Gun+1)=n*+n—-1>0,

1 1 1 11 — Tn + n?
w1 — =—— =<0 d w1 — = >0,
q( n—2> (n—2)° o q( n—B) (n—3)°
1 3—2n 1 11— 7n + n?
¢ (n—l) (n—1)3 < o ¢ (n—2> (n—2)3
This establishes the desired inequalities. The monotonicity of the roots can be verified from
the inequalities by inspection. 0

Recall the definitions of 79,71, 73 from (2.3). Since 79,7, and 73 are independent over Z,
every element w € Z3 can be written as

w = any + bny + cns, for a,b, and ¢ € Z.
The following lemma is an important step in the proof of Theorem 4.1.
Lemma 4.3. Each element of £, is a nonnegative linear combination of 1y, n1,ns3.

Proof. Note that 7,(n;) > 0 for i = 0,...,3 and 72 = 19 + 1;. Here we discuss all possible
cases of w € Z? such that

(1) mpy(w) € (—1,1)% which ensures that m,,(w) is a translation vector on X.
(2) 0 < m(w) < m.(n;) for some ¢ = 0,1 and 3.
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Case 1: w = any — b, for positive integers a and b. Suppose that the vector
w=any — by = (—a,a—5,0)
has 7, (w) > 0 and 7, (w) € (—=1,1)% The y-component of the projection 7, (w) is
—a+ (a—b)As
where )\, is the second largest eigenvalue of matrix M,, for some n. By assumption, we have
—1<—a+(a—b)A < 1.
It follows that

—1+a - b < 1+a
a_
A2 A2
2
By Lemma 4.2 and 3 <A <1
—1+a 14+a 3
-1 < <a—-0b< < —(1 .
+a )\2 a N 2( +a)
Then, we can conclude that
—-2<b<1

which contradicts to the assumption that a,b > 1.
This argument also shows that if w = ang— by, with a, b € Z?* positive, m, (—w) ¢ (—1,1)%

Case 2: w = cn3 — by, for positive integers b and c. Note that
w=-cng—bmy =c(1,-3,1) —b(0,1,0) = (¢, =3¢ — b, ¢).
Consider the y-component of m,,(w): we have

c—(Bc+ by +cA3 <c(14+A3) — (Bc+ 1)y

3

< L 3< 1
——c——<-1.
4 4~

It follows that 7, (w) ¢ (—1,1)? for all ¢z — by with v, ¢t € Z. Similarly, 7, (w) ¢ (—1,1)?
for all w = by — cn3 with positive integers b and c.

Case 3: w = cn3 — any for positive integers a and c. Note that
ens —ano = c(1,-3,1) —a(—1,1,0) = (a + ¢, =3¢ — a, ¢).

Consider the z-coordinate of the projection m,,(w). By Lemma 4.2, \; < 1/4 and we have
1
(a4c)— (Bc+a)d\ +cAi>(a+c)— (30%—@)4—1 + A

3
> c+1a+cAf21.

I,



16 IAN ALEVY !, RICHARD KENYON 2, AND REN YT 3

Therefore, 7., (w) ¢ (—1,1)% for all w = cn3 — any with integers a,c > 1. Similarly, if
w = any — cns with positive coeflicients a, ¢, then the xz-coordinate of 7., (w) is less than —1.

Case 4: w = cn3 + ang — by, with positive integers a, b and c¢. Consider the y-component
of Ty (w)

me(cnii + Qarlo — bnl)y = me(cnii - bnl)y + aﬂ-xy(n())y

By Case 2, m,,(cns — b ), < —1 for all b, ¢ € Z,.. Moreover, m,,(1), < 0. Thus, there is no
possible w = cn3+ang— by with 7, (w) € (—1,1)%. For the same reason, 7, (—w) ¢ (—1,1)%

Case 5: w = cn3 — an + by for a,b,c € Z,. Consider the z-component m,,(w), of the
projection m,,(w) given as
Ty (€3 — ano +bm)z = oy (3 — ano)e + 07y (Mo
In Case 3, we show that m,,(cns — any), > 1 for all positive integers a and c. Since
Tay(M)e > 0

we have 7, (+w) ¢ (—1,1)%

Case 6: w = cn3 — ang — by for positive integers a, b, c. Since w = (a+¢,—3c—a—b,c)
Toy(W) = (a+c— (Bc+a+bA +cA], atc— (Bc+a+b)a+cA).
We consider the difference |7, (w), — 74y (w),| which is
Ty (W)y = Tay (@)a] = | = Be+ a+b)(Ag — A1) + c(A2 = \2)]
= (A2 — A)[c(A\1 + A2 —3) —a — V]|

By Lemma 4.2, we have 0 < \; < 1/5 and 3/4 < Ay < 1 where )\, is the second largest
eigenvalue for matrix M,, with n > 7. Therefore,

1
|7sz(w)y - Wzy(w)m| > 2 lc(A + A2 —3) —a— 0
1
25 | —2c—a—10|.

Since a, b, ¢ > 1 are integers, it means that |7, (w),—m,(w),| > 2. It follows that 7, (w), and
Tzy(w), cannot be in the interval (—1,1) at the same time. It follows that 7, (w) ¢ (—1,1)?
for any positive integer a, b, c. Moreover, 7, (—w) ¢ (—1,1)2.

Case 7. w = any+bn, for non-negative integers a and b with a > 2 or b > 2. We compute
the case when @ = 2. Then w = 21y = (—2,2,0) which implies that the x-coordinate of
Tay(w) € (—1,1) by Lemma 4.2. Similarly, when b = 2 we compute w = 2n; = (0,2,0) and
the y-coordinate of the projection m,,(w) is not in the interval (—1,1).
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Therefore, we remain to check the case when a + b > 3 for non-negative integers a and b.
We have the vector w = any + any = (—a,a + b,0). Therefore

a+b a+b
— < <
a+n_1—7rxy(w):c_ a+’]7,—2
a+b a+b
b—n_3§7rzy(w)y§b—n_2
so that
1 1
ny(U)y_me(U)x > ((Z+b)(1—n_3—n_2)
2
> 3(1—m)22 for n > 9.
When n =7,

n 1 < o (w)e < n 3
—a+ = < mpy(w)e < —a+ -
g =" 5
so that if m,,(w), € (—1,1), then a must be 0 or 1. It means that b = 3 or b = 2 respectively.

However,

3 3
b_Z S’ﬂ'my(u])y Sb—g
For either case, m,,(w), > 1. The proof of the case n = 8 is the same. O

Proof of Theorem 4.1. Recall that &, is defined to be a set of steps in the lattice walk T :
A(X,L) — A(X, L). By Lemma 4.3 every vector in &, is a non-negative linear combination
of 1o, m and n3. We show that the seven vectors in &, with the smallest projections under
7, are sufficient to describe all steps in the lattice walk T. Moreover, Lemma 4.3 establishes
that the seven vectors in Equation 2.3 are exactly the seven shortest vectors in &,.

In Equation 2.5 we construct the partition A = {4;}% , with translation vectors v; =
Tay(1:). Applying the inequalities from Lemma 4.2 one can verify that A gives a partition
of X into seven rectilinear polygons with disjoint interiors. Let p € A(X, L) and A; the tile
with 7., (p) € A;. Then m,,(p)+v; € X since X overlaps with X +v; for each i =0,1,...,6.
It follows that p +n; € A(X, L) and therefore 7; is a valid step in the lattice walk. Since p
is an arbitrary point in A(X, L) we conclude that the vectors in &, = {n;}{_, are sufficient
to define all of the steps in the lattice walk in A(X, L). O

4.2. Proof of Theorem 1.7. Fix n > 6 and consider the REM T}, : X — X. Let Y bg
the rectangle Ay € A. It is sufficient to compute the first return map for the lattice walk T
because the lattice is dense in X and points which are sufficiently close in X have the same

sequence of translation of vectors for finite time.
Define

Ax = A(X, L) and Ay = {(z,y,2) € Z* | Tuy(z,y,2) €Y}
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Since Y C X, we have Ay C Ax. Let (a,b,c) be a lattice point in Ax. Consider the map ¥
defined by

a a 1
U |b| = (M) |b| +|—1
c c 0

We show that ¥ maps Ax to Ay. Then

Ty O W

has the i-th coordinate
(c+ 1)+ Nila—nc—1)+X2(b+ (n+1)c)
for i = 1 and 2. Since ); is a root of the characteristic polynomial
qo(z) =2° — (n+ 1)2* + nz — 1
we have
(c+ 1)+ Xila—nc—1)+ A 2(b+ (n+1)c)
= Ni(a+\b) + [(n+ DA —nX + 1e+ 1=\
= Ni(a+ b\ + X)) + (1= N).
It follows that for element (a,b,c) € Ax, we have

a a
Tay o W b €Y and WV |b| € Ay.

In addition, the map ¥ : Ax — Ay is a bijection with the inverse

a n 1 0 a 1
v lpl |l =]|-(n+1) 0 1 bl — | -1
c 1 0 0 c 0

Lemma 4.4. The map ¥ preserves the ordering of the lattice walk {wqy,wi,ws -} corre-
sponding to the orbits {p, T(p), T*(p),-- -}, i.e.

o (w;) < m(w;) if and only if m, 0 ¥(w;) <, 0 U(wj).

Proof. The proof follows directly from the calculation

S|

a
ﬂzokII b :)\3(a+b>\3+0)\§)+(1—)\3):)\371'2 b —F(l—)\g)
C

where A3 > 1 is a root of the polynomial g,(x).
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Suppose wy € A(Y, L) and g = 7, (w;). Consider the sequence {wy,ws, - -} of consecutive
points of the lattice walk in Ay. Let wj = ¥~ (w;) and {w],w), -} be the lattice walk in
Ay starting at wj. We claim that

wy = wy + ¥(wh — wi).
To see this, note that W is bijective and
U Hw + W (wh — W) =) +wh —w) =wh € Ax.

Also note that w) is the point in A(X, L) of smallest z-coordinate after wj.

5. MULTI-STAGE REMS

5.1. Construction. Recall that for n > 6 there is a PV REM T}, associated to a matrix

0 1 0
M,=10 0 1
1 —n n+1

Let {v/}Y_, be the translation vectors of T}y, constructed as in section 2.3. Certain products
of the matrices in S define REMs with the same combinatorics as Ty, (recall that the family
of REMs defined by single matrices in S all have the same combinatorics).

Let W € M and define the normalized eigenvectors of W associated to Ay, Ay to be

& =(La,a') and &= (Lyy),
scaled so that the first coordinate is 1. Lemma 1.4 establishes that W has real and positive
eigenvalues. Since W is an integer matrix the eigenvectors are also real and we can define
the projection 7., : Z* — R? by
Tay i X (X &, X &).
There is a dynamical system induced by W whose translation vectors are
V = {v; = myy(nm;), for i =0,1,...6}
where £ = {n;}5_, are
no=(—110), m=(0,1,0), n2=mno+m=(-12,0)
n3=(1,-3,1), na=mo+n3=(0,-2,1),
ns=m+n3=(1,-2,1), and ng=mno+m +n3=(0,—-1,1)
(their representations in Z* are the same as in (2.3)).

Definition 5.1. We say that W is an admissible matriz when &;,& € R3; and the follow-
ing two conditions are satisfied for each i =0,1...,6:

(1) v; € (—1,1)?

(2) v; and v} lie in the same quadrant of R?.
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We let Ty be the REM constructed with these translation vectors whose partition is con-
structed using the method in section 2.3; we call it an admissible REM. Let M4 C M be
the subset of admissible matrices.

The tiles in the partition A = {A,,. .., Ag} associated to Ty are
(0) Ao [1—a2,1] x[1—y,1]

1 =10,1—z] x[0,1—1y]
(1—2x,1—z|x[1—y,2—2y])U ([l —x,1] x[0,1—1y])
3=10,3x — 2] x [-14+ 3y — ¢/, 1]
s=Br—a 1 —2x] x[2y —v,1]

5 =102z — 2| x [1 —y,—1+4 3y — /]

6= ([1—-2z,3z—2] x [2—2y, -1+ 3y —¥])
([Qx—x 1 —2z] x [1—y,—1+3y—y’])
([3:6 —2/,1—x] x [2—2y,2y —y’]).

Within M 4 there is a subset Mg of matrices whose resulting REMs are renormalizable.
Suppose W € M, written in terms of generators as W = M,,, M,,, ,---M,, with each
M,, € §. We develop an L-step renormalization scheme for the multistage REM Tyy.

To simplify the exposition, we introduce a notation for partial matrix products. Let
Wi = M, and set

(1) A
()A
(3) Az =
(4) Ay =
(5) A5 =
(6) As =

U

Wi =M, - M, fork=12..L

with W = W,. For k =1,2,--- | L, define the vectors &¥ = (1, x4, 2}) and & = (1, yp, v} to
be scalings of
W& and Wi

normalized so that the first coordinate is 1. Define the projection 7T : 73 — R? by the
formula

whixes (x- € x-€)).
At the k-th stage the translation vectors
Vi = {vF = ﬂl;y(m), fori=0,1,...6}

define a REM Ty, with partition A, = {Ao,...As} where © = z,2" = 2}, y = yr and
Y =Yy
Definition 5.2. An admissible REM Ty, is a multi-stage REM when the two conditions:

(1) Uzk € (_171)2

(2) vF and v} lie in the same quadrant of R?
are satisfied for all i =0,1...,6 and all k=1,2..., L.

At every stage ¢ the REM Ty, has the same combinatorics as Ty,. We prove that a

multistage REM associated to a word W decomposed into a product of L generating elements
S has a L-step renormalization scheme.
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Theorem (Detailed statement of Theorem 1.9). Let W = M,,, M, . ---M,, € Mg and
Tw, : X = X be the k-th stage of the multistage REM Ty,. For each stage k let Yy, = Af be
the rectangle of width xy and height y whose upper left vertex is (1,1). Then

T\Wk|Yk = ¢I;1 © TWk+1 o Py

where ¢, 1 Y, — X is defined by

r4+xr—1 y+y—1

qbk : (CE, y) = ( ’ .
Tk Yk

Figure 7 shows the sequence of partitions in the renormalization scheme for a multistage

REM with four stages.

BLIPL L

FI1GURE 7. The multi-stage REM Ty and associated REMs Ty, , Tw,, Tw, and
TW4 = TW with W = M7M7M8M6.

Proof of theorem 1.8. Let W € M 4 with eigenvalues Ai, Ao, A3 and associated eigenvectors
&1, &9, and &3 normalized so that the first coordinate is one. The multistage REM Ty, can be
constructed using cut-and-project sets with

AMX,L)={x€Z’: my(x) € X}

where the projection ,, is defined as above. Therefore the same method as used in the proof
of Theorem 1.3 can be used to show that multistage REMs are minimal. However it remains
to show that 7., (A(X, L)) is dense in X. This follows from irreducibility: by admissibility,
+1 are not eigenvalues of W, so the characteristic polynomial of W is irreducible over Q.
This implies that W cannot have a proper Q-invariant subspace, and thus the projection
Ty (A(X, L)) is dense. O

5.2. M is a monoid of Pisot matrices. We prove Lemma 1.4 establishing that M is a
monoid of Pisot matrices.

Proof of lemma 1.4. For a 3 x 3 matrix M label its eigenvalues A; (M), \a(M), and A3(M)
and assume that they are ordered by increasing modulus. Let W = M, ---M,, , where
each M,, € S.
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FIGURE 8. Detailed view of the renormalization scheme shown in Figure 7.
The first row shows the first return set Yy bordered in black with the partition
induced by the first return map overlayed. An arrow points to the REM in
the sequence to which the first return map is affinely conjugate. The second
row shows the same for Y;.

By a change of basis we have

where S =

S ~ O
o O =
— = O
—_ o O

01
P,=S"'M,S= 1|0 1
10

The matrix P, is primitive (has a strictly positive power) because

1 1 1+n
PP=1|14n 2 14n+n?
n? 14+n 1+ n3

therefore by the Perron-Frobenius theorem A3(F,) > 1. It follows that that the leading
eigenvalue of the product P = P, ---P,, --- P,,P,, is real and larger than 1 since it is a
finite product of primitive matrices and therefore primitive. Note that the products P =
PP, ,and W = M, ---M,, , have the same eigenvalues. Thus, we conclude that

the leading eigenvalue A\3(1V) is real and larger than 1.
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Arguing similarly as in the previous paragraph, we can use the Perron-Frobenius theorem
to show \;(M,,) > 0: by a change of basis of M, ! we have

0 1 0 021
Q=AM "TA= |0 2 1 where A= 10 1 0
1 -5+n —2+n 1 00
Note that @, is primitive because
1 —1+n n
Q= n —14+(=3+n)n —1+(-1+4+n)n

1+ (=3+n)n 5+ (=5+n)(—1+n)n 3+ (—4+n)n?

which is positive for n > 6. By the Perron-Frobenius this implies 1/A;(Q,) > 1 and thus
A1(@») is real, positive, and less than 1. Using the same argument as above, the product ¢ =
QnyQny - Qn, = AY (M, -~ M,,M,,) ' A is primitive and therefore its leading eigenvalue
is real and larger than one. Thus we find 0 < A\ (W) < 1.

It remains to show Ay(W) < 1. For simplicity we show this for the conjugated matrices
P,. The characteristic polynomial gp of the matrix P has the form

qp(z) = 2° —Tr(P)a* +b(P)x —1
= 2’ — (Piy+ Poa + Ps3)a® + ([Plig + [Plag + [Plsa)z — 1
where P, ; denotes the entry of the matrix in the i-th column and j-th row and [P]; ; denotes
the minor of P obtained by deleting the i-th row and j-th column (i.e., the determinant of

the submatrix obtained by deleting row i and column j). Evaluating gp and its derivatives
at —1 and 1 we find

ar(—1) = =1, gp(0) = B(P), (1) = —Te(P)+b(P) and g,(1) =3 —2Tx(P) +b(P).

Since A; > 0 we find that A\, < 1 as long as b(P) < Tr(P).
In order to prove that b(P) < Tr(P) we need one fact about the signs of the minors of P.
We claim that P~! can be written as

a1; —aiz2 Q13
-1
P =1 an —ax ass
—aszp  azz  —as3

where a;; are non-negative integers for 7, j = 1,2 and 3. The proof of this fact is postponed
until after our main argument in which we prove b(P) < Tr(P). For an arbitrary 3 x 3
matrix A, the inverse can be calculated in terms of the minors of A

—1

A1 3 b ; 1 [‘Ei]ﬁvl —[Lf]ﬂm [z[‘lf]ﬁ,g
B g b  det(A) [A]gil —[Aﬁg [A];j

Since [Plas < 0 and [P]s3 < 0, we have
b(P) = [Plii+ [Plag + [Plas < [Plia
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Thus [P];; < Tr(P) implies that b(P) < Tr(P). We use induction on the length of the
product P to prove that [P];; < Ps3. Since P has non-negative entries this will imply
[Pl11 < Tr(P).

In the base case, P = P,,, and we have

(Poolii=n0o<ng+1=Ps;.

For the inductive step assume that [P];; < Tr(P) for any P a product of L — 1 matrices.
Let P' be a product of L matrices. We can write P’ = PP, where

X111 T12 T13
P:Pno"'PnL_1: To1 T2 T23
xr31 T32 X33

The matrix P’ has the form

T13 T11 + T2 T2 +Npxi3

/
P"=PP,, = |x23 %21 + Ta2 Tog +NpTo3
T3z T31 + T3z T3z +NpTs3

Now we have

[Pl]l,l = T91T32 — Toa%31 + Np(To2Ts3 — Toz¥s2) + Np (L2133 — Ta3xs1)
= [Pls1 — [Plain + [Pliang

Between lines three and four we applied the inductive hypothesis and between lines four and
five we used the fact that the matrix has non-negative entries.
Next we prove the fact about the signs of the entries of P~1. Label the entries of P71 as

@13 —ai2 Q13

-1
P~ = Q21 —QA22 (33
—a3; azz —ass

where a;; > 0. First we use induction on the length of the matrix product to show the
following six inequalities

ay; > 3&2]' for j=1,2, or 3
ay; > 3a3j for J = 1,2, or 3.
In the base case we have
ny —na 1
P'=11 0 0
-1 1 0
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Since n > 6 the inequalities hold by inspection. For the inductive step let P’ = PP,, be a
product of L + 1 matrices. Then we have

—ag1 +np(a —ag) agy+np(age —ae) —ags +np(as — ags)
/—1 —1p-1
P = PnL P = aiq —Qa12 a13

a21 — Q11 a1z — Q22 Q23 — Q13

Using the inductive hypothesis we have

1 1
(all — a9 )ng — asy > ay(ng — gnL - g) > 3an
since ny, > 6. This shows a;; > 3ag;. For P, again using the inductive hypothesis
1 2
(all - a21)nL —ag > an(ng — —) —amng > (ng — 1)(@11 — Q1) — a9 + zan

3
> (np —1)(a1 — an)
and ny > 6 from which we deduce that a;; > 3asz;. The calculations in the proofs of the
remaining four inequalities are identical.
Finally we complete the proof of the signs of the entries of P~!. Once again we induct on
the length of the matrix product. The base case holds by inspection. In the inductive step
we compute the signs of the entries of the first column of P'~!. We have

3

—as +TLL((111 — agl) > CLH(HL — ]_/3 — ]./3) >0
and
as — argp < CL11(1 — 1/3) < 0.

Similar calculations show that the signs of the other entries are as stated. 0

5.3. Proof of Theorem 1.9. Let W = M,,, --- M,,, be a matrix in Mg (Section 5.1) and

A1, A2, A3 be the eigenvalues of W such that 0 < A} < Ay < 1 < A3 (Lemma 1.4). Let

& = (1,20, 2() and & = (1,y0,y,) be eigenvectors of W with respective eigenvalues A\; and

A2 Define the product Wy, = M,,, -+ M, and &¥ = (1,24, 2}) as a scaling of W,&;.
Although the &; are not eigenvectors they do satisfy the important property

k k+1
Mnk+1€1 = Ik€1+

because
0 1 0 1 T,
0 0 1 x| = @),
I =gy nger + 1] |2 1 — 2gnpsr + 2 (ng41 + 1)
1
= I} x) [/ xg

(1 = zpnisr + 25 (g1 + 1)) /2n

= xkdﬁ_l'
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\ eigenvalues of matrix products with length 1
=,

eigenvalues of matrix products with length 2

’ . eigenvalues of matrix products with length 3

= eigenvalues of matrix products with length 4
o3 e e S R S S S S R S SR A2
0.00 0.01 0.02 0.03 0.04 0.05 0.06

FIGURE 9. Two of the three eigenvalues for matrices in the monoid. Each
cluster of points corresponds to matrix products with the same length.

Similarly we define £§ = (1, y,y,.) be a scaling of W;&,. Recall the projection W’;y at stage
k where 1 < k < L is defined by the formula

Ty (%) = (61 X, &)

Let Y, be the set Af of the multistage REM Ty associated to W. More precisely, Y} is a
rectangle of width x; and height y; and the upper right vertex of Yy is (1,1). Define

Ax, ={x¢€ 73| ﬂf(x) € X} and Ay, ={x¢ 73| Wf(x) €Y}
Define the affine map

a a 1
Uy |b] = (M) |b] + | -1
c 0

We claim that Wy : Ax, ., — Ay, is a bijection. To prove the statement, we first show that
Ui(x) € Ay, forx € Ay, ., ie.

mh o Up(w) = (& - Wi(w), & - Wi(w)) € (1 —ap, 1) x (1 — g, 1).
We compute the x-component of the projection W’;y o W (w)
1
& Uw) = & | My, wt -1

Nk+1
0

= Mnk+1§f % gf ’ (17 _170)

k+1
= $k£1+ ~w—|—1—xk
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By the assumption w € Ay, ,,, we have el e (0,1). Therefore we conclude that
ff . \I’k(CU) c (1 — Tk, 1)

Using the same argument, we can show that the y-component of 7., o ¥y (w) € (1 — yy,1).
Moreover, the inverse ! is given by

Uoliwe (MEL;H)_1 w— |—1
0
Thus, the map Wy : Ax,,, — Ay, is a bijection.

We apply the same argument as in Section 4.2 to show the renormalization of multistage
REMs. Here we show that W, corresponds to a return map of the multistage REM Ty, .
Let wy € Ay, and g = 7% (w) € Yy Define wj = ¥} (wo) € Ax,,, and ¢ = 75 (wp).
Let {wj,w], -} be a sequence of consequence points of the lattice walk in Ay, , where
wy € Ax,,, and

N :
We have
0 = qo+ 7z 0 Wi(w) —wp) € Vi
since
G =qo+ 7 0 Up(wy —wp) = my,(wo) + 3, 0 Up(w) —wp)

=y, (wo + Wi (w)) — Wi(wp))
= Wiy(wo — Wwo + \Ifk(wi))
= ﬂ-];y o \Ifk(w’l) € Yk

Moreover, because the map ¥y is bijective, the point ¢; must be the image of the first
return map Tw, (qo)|y, = ¢1. It means that

- 1
TWk|Yk - ¢k © TWk+1 © gbk

where the affine map ¢, maps Y} to the unit square X = Xj.

6. PARAMETER SPACE OF MULTISTAGE REMS

The space of multistage REMs is a subset of R*. It can be naturally parametrized by
the two eigenvectors associated to a matrix in My whose associated eigenvalues are less
than one. Let A, Ay and A3 denote the eigenvalues of a matrix in My ordered by increasing
magnitude. Scale the eigenvectors of Mp so that the first coordinate is 1. Let (1,z,2’)
denote the eigenvector associated to the eigenvalue A\; and let (1, y,%’) denote the eigenvector
associated to the eigenvalue \o. In Figure 10 we plot points in the parameter space with
(x,2’,y)-coordinates colored by their y'-coordinate.

Conjecture 6.1. The closure of the parameter space of all renormalizable multistage REMs
is a Cantor set in R*.



28 IAN ALEVY !, RICHARD KENYON 2, AND REN YT 3

0.70
0.85

0.60

F1GURE 10. The 4-dimensional parameter space of multi-stage REMs. Each
point in coordinates (z,2’,y,%’) corresponds to a pair of eigenvectors (1, x, z’)
and (1,y,y") of a matrix determining a multi-stage REM. Points are colored
by the coordinate 7/.

7. APPENDIX

We give a computational proof of Theorem 1.7 when n = 6.

Proof. Note that Y = ¢-(X) and we consider the first return map Ty, |y restricting to
each element A, = ¢ '(A;) for k = 0,1,---,6. Let p : X — X be the map given by
(x,y) — (Mz, Ay). Let vy be the translation vector on the set A € A. We show that the
map Thy,|y consists of translations by vectors p(vy) on each A,

For each point in flk, we associate a symbolic sequence tracking its orbit until it returns
to the set Y. More precisely, let Q = {0,1,---,6}%" be the set of sequences in {0,1,--- ,6},
and define ¢+ : X — €2 to be the coding

L(p) =Qg Q1 Oy, for a] c {0’ ]_, . e 76} a,nd Tm(p> - Y,

where A, is the tile containing 77(p). Define R,y = {q € Y| ¢(q) = ¢(p) }Athe maximal set
of points with the same coding associated to ¢(p). The first return map 7’|y restricting to
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R.(p) is the translation given by

m—1

P+ () m)-
i=0

By computation, we obtain that 1210 = Ro5 URp13 U Ro31. The first return map restricting
on Ay is the translation by the vector v] = m,, (1) where
1o = (0,—=1,1) = no + 15 = 0o + 1 +n3 =10 + N3 + 11
Then we have
oy () = (=M + AL, =2 + A3) = (A (=1 + M), Aa(=1+ X))
Since 19 = (=1,1,0) we have vy = 74y (1) = p(7zy(m0)) = p(vo).

~

The element A; = Rop3; so that the map TM6|Y translates A; by vector 7., (7)) where

mo=mno+m+ns+m=mn+2m+n;=(0,0,1).
Therefore,
Tay(1)) = (A1, A3) = p o may(m).

Since Ay = Rosaz1 U Roizazt U Roizes and 15 = 11 + 13, we have Thyly : p = p + Ty (1)
where

My = 1o + N5 + M2 + 15 = 2n9 + 3+ 213 = (0, —1,2).
It follows that
ny(ﬁé) = (=M + 2)‘% —A2 + /\g) = (M(=142X), Xa(=1+2);)) = po ny(772)-
The set Aj is the disjoint union of seven subsets
As = Roaizass U Roziees U Rosazes U Rosess U Rosezss U Rosesia U Roseaaia-
Since
) 5 =m+mns and ng =10+ M+,
the map Ty, |y translates every well-defined point in Az by the vector 7, (n5) for
Ny = 3o + 4 + iz = (1, -5,4).
Then we compute
Tey(Mh) = (1 —=5A1 +4X3, 1 =5y +4A))
= (A =3AT+ A, A5 = 3A3 + )
(A(1=3M\ + A1), Ao(1=3X +A3))
= poTuy(n).
The element A; = Rosieee13 With translation vector Tuy(ny) under the first return map

TM6|Y where
0y = 419 + 5y + 53 =y + 05 = (1, —6,5).
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We have shown that for each j = 0,1 and 3, we have m,,(n}) = p o 7, (n;). Therefore,

7Txy<77£1> = ny(% + 77:/3)
= Ty (1)) + Tay (1)
= pOTuy(m) + pomey(ns)
= poTuy(m +n3) = pomey(n).

The set Aj is the union of seven disjoint subsets

Rose613231 U Ros2se13231 U Ros2se132s U Ros2s1a1325 U Ros2sie32s U Roissieszs U Ro13231665-
The vector
1y = 410 + 611 + 513 = (1, -5,5).
On the other hand,
M5 =1y + 0.
By the same argument as above, we have
Tay(05) = p © Tay(15)-

The element Ag is partitioned into 19 subsets which are listed here

R031666132317 R05666132317 R056236132317 7205623613257 RO56231413257 R05661323257
R056231323257 R05623163257 RO52361323257 730523231323257 R052323163257 R01323166657
R05236132657 R052323132657 R05232316657 R052314132657 R05231632657 R013231632657 R01323166613-

Then
ns = 5o + Ty + 6mz = 10 + 11 + 75

The translation vector for the map TMG ly on Ag satisfies the equality

ny(rr](,i) = me(ﬁ(l) + 77/1 + Ué) =po ny(rrIO +m+ 773) =po Wzy(nﬁ)

an

F1GURE 11. The first return set Y partitioned into tiles with the same sym-
bolic codings
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