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Sequential Hypothesis Test With Online
Usage-Constrained Sensor Selection

Shang Li, Xiaoou Li, Xiaodong Wang™, Fellow, IEEE, and Jingchen Liu

Abstract—This paper investigates the sequential hypothesis
testing problem with online sensor selection and sensor usage
constraints. That is, in a sensor network, the fusion center
sequentially acquires samples by selecting one “‘most informative™
sensor at each time until a reliable decision can be made.
In particular, the sensor selection is carried out in the online
fashion since it depends on all the previous samples at each time.
Our goal is to develop the sequential test (i.e., stopping rule and
decision function) and sensor selection strategy that minimize
the expected sample size subject to the constraints on the error
probabilities and sensor usages. To this end, we first recast the
usage-constrained formulation into a Bayesian optimal stopping
problem with different sampling costs for the usage-contrained
sensors. The Bayesian problem is then studied under both
finite- and infinite-horizon setups, based on which, the optimal
solution to the original usage-constrained problem can be readily
established. Moreover, by capitalizing on the structures of the
optimal solution, a lower bound is obtained for the optimal
expected sample size. In addition, we also propose algorithms to
approximately evaluate the parameters in the optimal sequential
test so that the sensor usage and error probability constraints are
satisfied. Finally, numerical experiments are provided to illustrate
the theoretical findings, and compare with the existing methods.

Index Terms— Sequential hypothesis test, online sensor selec-
tion, reliability, sensor usages, dynamic programming.

I. INTRODUCTION

OWADAYS the sequential hypothesis test has been

widely applied in many applications because it generally
requires smaller sample size on average compared to its fixed-
sample-size counterpart. Notably, [1] proved that the sequen-
tial probability ratio test (SPRT) yields the minimum expected
sample size under both null and alternative hypotheses given
the error probabilities. Since this pioneering work, a rich body
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of studies on the sequential test have emerged under different
circumstances [2]. One of the most important applications of
sequential test is found in sensor networks [3]-[7]. In this
work, we consider the sequential hypothesis test when sensor
access at the fusion center is restricted, and efficient sensor
scheduling/selection is of interest. That is, the sensor network
with different types of sensors (i.e., heterogenous sensors)
and a fusion center aims to test between two hypotheses;
however, only one of the available sensors can take samples
and communicate with the fusion center at each sampling
instant. Such a setup often arises when the fusion center pos-
sessses limited processing capability/resources, or the sensors
contradict/exclude one another. For instance, the echo-based
sensors like sonar sensors can interfere with each other [8].
In practice, the heterogenous sensors could also refer to
multiple information resources, and the processing unit (i.e.,
fusion center) can only analyze one at a time. This model well
describes, for example, the human decision process. As such,
in order to reach a quick and reliable decision, strategically
selecting the “most informative” sensor, which often depends
on the parameter values or the true hypothesis that is unknown,
has become the pivotal problem.

In the context of fixed-sample-size statistical inference,
sensor selection has been well studied, mainly from the
optimization standpoint. In particular, [8] proposed a ran-
dom selection scheme to minimize the error covariance
of a process tracking problem; for the Kalman filter, [9]
devised a multi-stage strategy to select a subset of sensors
so that an objective function related to the error covariance
matrix was minimized; [10] put forth a convex-optimization-
based approach to select multiple sensors for the parame-
ter estimation in linear system. For the fixed-sample-size
hypothesis test, [11] investigated sensor scheduling based
on information-metric criteria such as Kullback-Leibler and
Chemoff distances.

The studies on the sensor selection for sequential hypothesis
test have mainly branched into the offline (a.k.a. open-loop)
and online (a.k.a. closed-loop) approaches. The former cate-
gory essentially involves independent random selection over
time, with the probability preassigned to each sensor. Along
this direction, [12], [13] introduced random sensor selec-
tion to the multi-hypothesis sequential probability ratio test
(MSPRT), and designed the selection probability such that its
approximate decision delay was minimized. They concluded
that the optimal random selection strategy involve at most
two sensors for binary-hypothesis test. Namely, the fusion
center should either always use one sensor, or randomly
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switch between two sensors, and disregard the rest. Similar
teniques were later applied to the quickest detection with
stochastic surveillance control [14]. Recently, focusing on the
binary-hypothesis test, [15] further imposed constraints on the
sensor usages, i.e., sensors, on average, cannot be selected
more than their prescribed limits, and obtained the selection
probabilities for SPRT with random sensor selection.

Despite their simple implementations, the open-loop
approaches do not make use of the accumulating sample
information, thus are suboptimal in general. On the contrary,
the online approaches take all previous samples into account
at each step for sensor selection, and generally yield superior
performance. As a matter of fact, dynamic sensing control is
one of the major advantages of sequential processing. To this
end, [16] selected the sensor that was most informative under
the most likely true hypothesis at each step. [17]-[19] inves-
tigated the sequential multi-hypothesis test with observation
control, and provided lower and upper bound for its asymp-
totic performance. Two asymptotically optimal algorithms
were proposed there. The variant of sequential hypothesis
test—changepoint detection with observation control were
considered by [20], [21] based on Bayesian and non-Bayesian
settings respectively. Meanwhile, [22] assumed identical sen-
sors, and studied the Bayesian changepoint detection with
control on the number of active sensors. Most of the above
online approaches are based on heuristics and perform well in
the asymptotic regime, where error probabilities are extremely
low. On the other hand, focusing on the non-asymptotic
regime, [23] considered the online sensor selection strategy
for the SPRT. However, it aimed to minimize the deci-
sion delay given that SPRT was used. Instead, the recent
work [24] jointly solved a Bayesian hypothesis testing prob-
lem for both the optimal sequential test and online selection
strategy.

In this work, we also aim for the optimal sequential test and
online sensor selection simultaneously. Moreover, we further
introduce the constraints on the sensor usages into the formula-
tion, which would potentially embrace a much wider range of
practical problems. That is, certain sensors in the network are
not allowed to be selected more than a prescribed number of
times on average. The usage constraints naturally arise when
one intends to restrain the sensors from being overused due to
their limited battery/lifetime, or if the fairness for all sensors in
the network is important [15]. We summarize the contributions
as follows:

« To the best of our knowledge, this is the first work
that jointly solves for the optimal sequential test
and online sensor selection when sensor usage con-
straints are considered. Moreover, this work distinguishes
from [15], where the usage-contrained sensor selec-
tion is also studied, in terms of its online/closed-loop
setup.

« Note that most of the existing works on sensor selection
for sequential test only apply to infinite-horizon, where
sample size (or decision delay) at a specific realization
can go to infinity if necessary. This may not be realistic
in some applications. In contrast, we consider both the
infinite-horizon and finite-horizon scenarios. In the later
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case, a fixed upper bound is imposed on the random
sample size at every realizations.

« We propose practical algorithm to systematically evaluate
the parameters in the optimal sequential test and selection
strategy. As long as the test performance constraints
and the sensor usage constraints remain the same, this
algorithm only needs to be run once offline. That is, once
the parameters are calculated, they can be stored at the
fusion center, based on which, the sequential test can be
easily implemented.

The reminder of the paper is organized as follows. We first
formulate the usage-constrained sequential hypothesis test
in Section II. Then the optimal sequential test and sensor
selection strategy are derived in Section III. In Section IV,
we propose practical algorithms to design the parameters in
the optimal scheme. Section V provides numerical results to
illustrate the theoretical results, and to compare with the offline
random selection scheme. Finally, Section VI concludes this

paper.

II. PROBLEM FORMULATION

Consider a system consisting of K sensors and a fusion
center that aims to test between two hypotheses, whose priors
are given as P(H =i) = m;, i = 0, 1. At each time instant,
the fusion center selects one sensor to take a sample that
is sent to the fusion center. This process continues until a
reliable decision can be made. It is assumed that the fusion
center possesses the statistical characterization of all sensors.
That is, the conditional probability density functions fqig (x)
of the random samples collected by sensor £, £ =1,2,..., K
are known to the fusion center. Without loss of generality,
we assume that the sensor network is heterogenous, i.e., there
are no two sensors with identical f?i: (x)’s. In addition, the ran-
dom samples are assumed to be independent and identically
distributed (i.i.d.) over time for the same sensor £, and inde-
pendent across different sensors.

On one hand, if there is a dominant sensor that always
outperforms all other sensors, the fusion center should always
use it in the absence of usage constraint. Then the problem
reduces to a single-sensor sequential hypothesis test, and the
SPRT yields the quickest decision. One such example is the
test between zero (Hp) and non-zero Gaussian means (H1),
where the sensor with the largest mean shift under H; should
prevail. On the other hand, the efficiency of a sensor generally
depends on the true hypothesis. For example, some sensors
can be more informative under Hp and less so under Hj,
thus accelerating the decision speed when Hy is true, and
slowing down the decision speed otherwise. Moreover, even
the dominant sensor cannot be used all the time if its usage
is restrained. In general, the online sensor selection procedure
is performed based on the accumulated sample information,
which is explained as follows.

There are three essential operations in the online procedure:

1) Sensor selection strategy: Let II £ (1,2,...,K} be

the set of all sensors, and {Xi,..., X;]} denote the
sequence of samples received at the fusion center. Then
the sensor selected at time ¢ can be defined as & :
{X1,..., X1} — j € II. In addition, we denote the
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sequence of sensor selections from time i to time j as
d;.j, and 6;; 2 @ifi > Jj. Note that since at any
time, the distribution of the next sample depends on the
selection function, the fusion center observes dependent
random samples {X,}.

2) Stopping rule: The random sample size is characterized
by the stopping time T. In specific, the event {T =
t} means that the sample size is equal to #, which
depends on {X1, ..., X;}. In this work, we focus on the
deterministic stopping rule, i.e., P(T = | Xy, ..., X,) is
either zero or one.

3) Decision function: Upon stopping at T = ¢, a final
decision between the two hypotheses is made, D; :
{X1,..., X¢e} = {0, 1}.

As such, the fusion center is faced with the following hypoth-
esis testing problem:

Ho: X ~ fo(x), t=1,2,...
Hi: X~ (), t=1,2,....

The performance indicators for sequential hypothesis test
include the expected sample size and the error probabilities.
In particular, the expected sample size ET = xoEq (T) +
m1E;1 (T) is the weighted sum of the conditional expected
sample sizes, and the type-I and type-1I error probabilities
are Pop(Dy=1) and P; (DT =0) respectivelyl. Here the
expectation E (-) is taken over the joint distribution of H and
X;, and E; (+) is taken over the distribution of X; conditioned
on {H =i}.

Moreover, we also impose constraints on the usage of
sensors. Denote Q as the set of sensors whose usages are
restrained. Then for each sensor £ € Q, the average number
of times that sensor £ is selected, E (ZLI ]L[J;:{}g)

strained to be no greater than T¢ € R*. As such, we arrive at
the following constrained sequential problem:

ET
Po(Dr=1)=<a, P1(Dr=0) <5,
E(XLilg=a) <T%, teQ.

, is con-

ming, . pr,T)

subject to (P1)

In fact, if one intends to limit the percentage of time that
certain sensors should be selected, for example, due to the con-
cern of fairness among the sensors, another constraint for the
per unit time usage can also be defined as E (ZL] ]L[g;,:g}) =
€¢E (T). Interestingly, the per-unit-time-usage constraint lead
to the same framework as the constraint in (P1) by recasting
itas E (ZLI (Lig=ty — e;)) < 0. Thus we particularly focus
on the constraint on the total usage in this work.

In the following sections, we will solve (P1) under both the
finite-horizon and infinite-horizon setups. The finite-horizon
setup imposes an upper bound on T for any realization, beyond
which no sample can be taken; whereas the infinite-horizon
setup allows the sequential test to continue as long as the
termination condition is not met. In addition to its relevance
in many applications, the finite-horizon case can also be

1One can also use the weighted sum of type-I and type-1I error rates as the
error probability. Here we adopt the formulation in [15], and consider them
individually. Nevertheless, the method developed in this work can be applied
to the former case.
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used as a building block for the infinite-horizon problem. For
notational convenience, we define the class of infinite-horizon
procedures:

C (o B,V eca) 2 {617, D1, T} : Po(DT = D) < @

.
Pi(Dr=0)<p, and B D 1p-0) =T" ¢}, (1)

t=1

and the class of finite-horizon procedures:

Cn (ﬂ, B, {T{}fen) £

[, orTre (a8 (Tea) : TN} @
Our goal is to find the optimal triplets {&1.1, T, Dt} that
yield the smallest expected sample sizes ET in the classes

Cy (@, B, {T%}¢eq) and C (a, B, {T }rcq) respectively.

III. OPTIMAL SEQUENTIAL TEST WITH CONSTRAINED
ONLINE SENSOR SELECTION

In this section, we first recast (P1) into an unconstrained
optimal stopping problem, which we then solve under both
finite-horizon and infinite-horizon setups. The solutions lead us
to the optimal sequential solutions to the original constrained
problem (P1).

By introducing Lagrange multipliers to (P1), we first obtain
the Bayes objective function in (3) (on the top of page 4395),
where C; £ 1+ 4j and 2; > 0 for j € Q, and C; £ 1 for
j#Q.

A. Finite-Horizon Solution to the Bayes Problem

In this subsection, under the finite-horizon setup, we aim to
find the optimal sensor selection, stopping time and decision
rule such that the Bayes risk in (3) is minimized, i.e.,

.
R @11, DT, )=E | >"Cs + u (D1, H)

min
[8I:TaDT’T},T5N =1

(4)
Define the cumulative log-likelihood ratio (LLR)
n %

(X1)
L,,éZlogflai =z, (5)

= Jo (Xo)

R e

lg (X1)

and the posterior probabilities z;(f) £ P (H =i|X1, 81+4),
i € {0, 1} with #;(0) = =;. These two statistics relate to each
other as follows

wyeln m1(n — 1)eln
mo+ metn mon — 1)+ x(n — 1)e'n
mom1(n)
L,=1lo . 6
n = log p—— (6)
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R@1.1, D1, T) £ ET + pomoPo (D1 = 1) + pimP1 (D1 = 0) + >~ 4 E

4395

.
> L=
t=1

fed
.
=E || T+ uol{p=1;1=0) + #11{Dr=0;H=1} + Zit’ Z Lis=e)
tea  \i=1
.
=E Z 1+1[§,en}1&)+#01{m 17 H= 0}+#11[DT =0;H=1) 3)
=t Cs (D1, H)

1) Decision Function: We begin with solving the terminal
decision function. Since

.
2_Ca
=1

R(SI:TJ DTJT) —-E

o0
=2 E[Lr= (k01 (pr=11=0) + #11(Dr=0:1=1)]
=1

oo
ZZE[EH(#OJL{D,=1;H=0}+#11{D,=0;H=1}|X1:r, 81:)L{T=]
=1

o0
= ZE [(romo(D)Lip, 20y + 11 ()LD, 21)) Lr=], (7
=1

we have D} = 1juon()<pm (1)) given T =1, ie.,

Dy = Lpomo(M=p1m (M- (8)

2) Selection Strategy and Stopping Rule: For notational
convenience, define the class

AN 2 (8,11, Ty :n<T <N}, )

in which the procedures do not stop before n and can not go
beyond N. By substituting Dt with (8), (4) becomes

min

L ZCJ,+mln{#ufro(T) mzi (M} |, (10)
1:Ts

¢5(I1(T}}

where ¢(x) £ min{ux, zo(1 — x)}. We next solve (10) to
obtain the optimal sensor selection strategy and stopping rule.

Define the optimal cost of the procedures that do not stop
before f = n, i.e., the “cost-to-go” function

v;j;v (Xl:m al'n) =

ZC& + ¢ @1(T)| X1:n, 81:n (11)

{8ny1:1s T}GAN

Note that Vc‘?f (which is not a function of any samples) is
equal to (10) by definition and vﬁ(xl:N, S1:n) =@ (m1(N))+
2;11 Cs, since the test has to stop at N if not before it. Invok-
ing the technique of dynamic programming, the cost-to-go (11)
can be recursively solved by the backward recursion (12) (on
the top of page 4396) [2]. withn =N —1,N —2,...,1,0.
According to the principle of optimality, the optimal stopping

time happens when the cost of stopping at the present instant
is lower than the expected cost of continuing [1], [25], i.e.,

T*=min {P‘l : gn(Xl:m al:rz) £
I's (Xl:m sl:n) —Ie (X]:m al:n) = 0}:

with g,(-) defined in (13), where the second equality is due
to the definition of V¥ in (11).

In theory, (12) and T* fully characterize the optimal
stopping rule and selection strategy from the first to the N-th
steps. However, this result is of limited practical value due to
the high complexity brought by the high-dimensional quan-
tities (i.e., X1., and &1.,). To this end, the following lemma
significantly simplifies T* and (13), since it states that the
hypothesis posterior (or equivalently, the LLR) is the sufficient
statistic for the optimal stopping rule. In fact, Lemma 1-3
can be established under the general setup of Markov deci-
sion process [26]-[28] by recasting the control parameters
as the stopping indicator 1r—,; and sensor selection dr.
Nonetheless, considering that these lemmas are crucial to the
further development, and for the sake of completeness of this
work, we have included our proofs for these lemmas in the
appendix for the interested readers. In particular, for the proofs
of Lemma 1-2, we adopt the framework devised by [1], and
Lemma 3 is proved using the same technique of induction as
that in [27] and [28].

Lemma 1. The optimal stopping rule for (4) is a function of
time and hypothesis posterior, i.e., a time-variant function of
the posterior, T* = min{n : g,(w1(n)) < 0}.

Proof: See Appendix. O

The important implication of Lemma 1 is that the selection
strategy, which depends on all previous samples, can be
summarized into a more compact form.

Lemma 2. The optimal selection strategy for (4) is charac-
terized by a time-variant function of the hypothesis posterior
(or equivalently, the LLR), i.e., 5, ; = yny1(w1(n)).

Proof: See appendix. O

This result agrees with the intuition. Since the sensor
efficiency depends on the actual hypothesis, it is reasonable
to base the sensor selection upon the present belief (i.e.,
posterior) on the hypothesis.
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vf(Xl:n, sl:n) = min ¢(ﬂ1(ﬁ)) + Zcﬁp gn[ll [E (V,?L_] (Xl:n—l—ls 81:n+1)| X]:m 81:n)] (12)
=1 Ln+
rs(XI::,&l:n} rc(Xl:m‘slm)
N
&n (X] M 31:{) = ¢5 (ﬂ-'l(n)) + ZC& g:ln [E (Vn+1 (Xl:n+l, sl:n—l—l)l X1, sl:n):l
=1
T
=¢@@) —min {1Cs .+  min Bl $@ M)+ 3 Ca| Xin, i (13)
n+1

(niaT. Tie AN,

t=n-+2

Next we continue to study the stopping rule T* in more
details. Define

grl;v(X]:m sl:n) £ V;;V (Xl:m 6l:n) - ZC@
t=1

= min E
(Bn1m TheAY

T
Z Cﬁ, +¢(751(T)) X]:m d

t=n+1
(14)
Meanwhile, g;;“ (X1.,81.n) can be written as a function of
m1(n) by using (56) as
Gy (X1n, 1) = ¢ (1 (n)) — max {gn(m1(n)), 0}
=Gy (m(n),
and GY (X1.n, 81:n) = ¢ (x1(N)).

Then, by substracting > ,_;C; on both sides of (12),
we obtain

(15)

— > Cs = p(mi(n)), (16)
t=1
and
rc(Xl:n,sl:n)_Zcér
t=1
:lg:-“? E|:V;?;_] (Xl:n+lsal:n+l)_zcé; Xl:mal:n]
* =1
= min E[ sy + Gy @i+ D) Xim,1a]  (17)
n+1
= min (’5,,+,+IE[ N (m(n—i—l))|9r1(n)] (18)
n+1
where (17) follows from the definition of g;;“ ,
and (18) holds since Cs,,, is constant given
(X1, 81n) ~and E[GY, (:n(n+1))|X1,,,81n] =

E[GN | (mi(n+ 1))| xl(n)] Subsututmg (16)-(18) into (12),
the backward recursion is significantly simplified to (19) (on
the top of page 4397), withn = N —1,N —2,...,1,0.
Obviously, we have

Gy (m1) = V¥ (z1)

due to the definition in (14).

(20)

With the lemma below, we can further analyze the optimal
stopping rule given in Lemma 1.

—-,N . .
Lemma 3. G, (71(n), d,4+1) is a concave function of w1 (n).
Moreover, the function

G’ (e1 () £ min G (x1(n), dusr) @1)

is concave with Q’;}’(O) >0, 55(1) >0, forn=0,1,...,N.
Proof: See appendix. O

Together with Lemma 1, Lemma 3 reveals the following
optimal stopping rule.

Lemma 4. T* = min{n : =1 (n) & (an, b,)}, where a, and b,
are roots for

po(1—x)=G)'(x) and mx =Gy (x),  (22)

respectively. Moreover, agm-c a < ... <ay = E}%’ and
bg>b1>...>by= _’_..HD+#|'

Proof: See Appendix. O

Interestingly, the similar result of curved stopping bound-
ary is also reported in [29] for the one-sensor sequential
hypothesis testing problem with stochastic horizon deadline
N. In [29], only the stopping time is optimized, whereas
here we jointly optimize the stopping time and other control
parameter, i.e., sensor selection. Now we have obtained the
optimal solution {87 1+, DF., T*} to (4), which is summarized
in the theorem below. Note that we have changed the sufficient
statistic w1(n) to its equivalent form, i.e., LLR L, to draw
parallel to the well-known SPRT, and with an abuse of
notation, the selection function is also denoted as w;41(L;).

Theorem 1. The optimal sequential procedure that solves (4)
features a sequential probability ratio test with curved stop-
ping boundary, and time-variant sensor selection strategy, i.e.,

1) The optimal sensor selecrion rule is a time-variant
Jfunction of LLR: Jf | = 2 w1 (Ly);
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CJIH—I +]E (

-

GY (z1(n)) =min{ ¢ (z1(n)), min

4397

m1(n) exp (Ig,,,)

GN
n+l mo(n) + m1(n) exp (lﬁm)

(19)

(st o)

=

G (21(n),0ns1)

2) The optimal stopping rule is in the form of a truncated

SPRT, ie.,
T* — min{t : L, ¢ (—Ay, By)}, with (23)
By > By > ...> By =log #0?10,
H1T
and Ag> Ay > ...> Ay = —log 2970 (24)
T

3) The optimal decision rule Dfr,, decides Hp
L1+ < —AT+, and decides 'Hy if L1+ = Bt+.

if

For the scheme given in Theorem 1, T* < N is guaranteed
by noting that —Ay = By = log %, and (—Ay, By) is an
empty set. In other words, any value of Ly results in stopping.
In specific, Ly > By gives decisiondy = 1,and Ly < —Apn
gives decision dy = 0. Since Ly = —Ay = By = log%
holds with zero probability, the equality situation for decision
can be ignored in this case. Theorem 1 reveals the important
structure of the optimal solution to (4), while the specific
values of A, By and y;41(L;) need to be evaluated by solving
the dynamic program (19). In specific, in the posterior domain,
the continuation region (i.e., the sequential test stops if the
posterior goes beyond this region) and the selection region for
sensor £ are given respectively by

R 2 {z1(t) : (m1(1)) = GV (=m1(D)},
Df 2 {71(t) : € = arg min Y@, 8}, £=1,... K.

(25)

(26)

Transforming R; and Df into the LLR domain according
to (6), which we denote as R; and Df , then the thresholds
in Theorem 1 are evaluated as

Ay =—min{L, : L, € R;}, By =max{L,: L, € R;}. (27)

Moreover, Lemma 3 and (26) indicate that the selection
strategy boils down to finding the minimum of K concave
functions, i.e., Cn (m1(t),d), d=1,..., K, in the domain of
posterior. In light of the analytical expression (26), the follow-
ing insights for the sensor selection function are noteworthy.
« Since concave functions are nicely behaved functions,
the resulting selection scheme essentially partitions the
domain of posterior into a finite number of intervals
(assuming K is finite) and assign each interval with the
sensor index, whose value of G, is minimum within that
interval. This observation suggests that, once computed
offline, the sensor selection strategy can be easily stored
in the fusion center.
In general, there can be multiple intervals corresponding
to a certain sensor. In other words, the selection region
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for a sensor can be disjoint intervals. This insight will
be corroborated by the numerical results in Section V.
It also in part explains why the existing two-phase test
in [18] and [19] can be sub-optimal in the non-asymptotic
regime since they in effect assign each sensor only with
one selection interval.

Increasing the sampling cost of a sensor, i.e., C; shifts the
concave risk function of that sensor upwards, thus shrink-
ing its selection intervals; and vice versa. In the extreme
cases, as the sampling cost C; — oo, the corresponding
sensor will not be assigned any selection interval, and
remains idle due to its high sampling cost. On the other
hand, as C; — 1, the sensor becomes an unconstrained
one.

In practice, the recursion (19), the sensor selection func-
tion (26), and the stopping rule (25) and (27) are implemented
by discretizing the domain of posterior 71 (f). We summarize
this procedure in Algorithm 1, where v and L are vectors
containing the discrete values of m1(f) and L, respectively,
G(v,1) and w(v,f + 1) and w(L,t + 1) are vectors formed
by evaluating the function for each element of v and L,
representing the functions g{“ (m1(r)) and wry1(71()), and
wi+1(Ly) respectively. The expectation E(-) = zoE(-|Ho) +
m1E(-|H1) therein is taken w.r.t. the distribution of random
sample X, and is evaluated by numerical integration. The
output w(L,f +1),t =0,1,..., N — 1 (i.e., a sequence of
vectors) and {A(t), B(r)} give the selection function and deci-
sion thresholds respectively, and G(x1,0) gives the optimal
cost ggf (1) (or equivalently, Vé‘f (1)), which will be used in
Section IV.

B. Infinite-Horizon Solution to the Bayes Problem

Next, by building on the finite-horizon results developed in
the last subsection, we consider the infinite-horizon version of
the problem in (4).

The essential step of bridging the two problems is to show
that the finite-horizon case approaches the infinite-horizon
case as N — oo [2], [24], [25]. Then the results in the last
subsection can be readily generalized to the infinite-horizon
scenario. Defining the optimal cost of the infinite-horizon
Bayesian problem:

V(r1) £ min

R (31, D1, T
s g G DT T

(28)

where 71 is the prior on H;. First, note that the optimal
decision function derived in (7) is independent of the horizon
limit, thus D7 in (8) can be substituted into (28), which gives
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Algorithm 1 Procedure for Computing A;, B and w;41(L;)
in Theorem 1
1: Input: N, 71, po, p1, {2} jeq, the distributions of X under
‘Ho and H1
2: Initialization:
G(w,N) < min(g1v, go(1 —v)), w(v,N) < 0, L «

)

log ==
3:for t=N—11to0do

4: Evaluate selection function at ¢ + 1:
pels(X)
w(v,t+1)<arg mm{Cg—l—Ei:{] E—rok
5: Update “cost-to-go™:

G(v, 1) < min [ min (4119, uo(1 — v)),

velwﬁr,r-{-l}(x}

Crossn+ B |:9(1 — v 4 pelvarn(X)’

)

a(t) <« minlv e v :min (u1v, go(1 —v)) = Cyu,e41)

6: Evaluate stopping thresholds:

Ly(w,e+1)(X)
+E|g— e 4 1) ]

1—v + vgfwf\-‘.f+l}(x} ’

b(t) < maxlv e v :min(uiv, po(l —v)) = Cy,r+1)

+E|G(

t41)

velvw+)(X) 1
1 — v 4 velvwrnX)’

7: Transform to the domain of LLR:
A(f) < —log -Z02®)

:r|lat

w(L,t+ 1) <« y/(m’_’:;eut + 1) (which is evaluated in
step 4)

8: end

9: Output:

G(x1,0), w(L,t +1), A®®), B(t) fort =0,1,...,N

the similar optimal stopping problem as that in (10):

min

V(zy) =
[T.81.T}eAR

.
> Cs + p(mi(T)) (29)
=1

Recalling that VY (z1) = ming . p; 1).7<n R (81.1, D1, T)
according to (11), we have the following lemma.
Lemma 5. limy_,o VY (71) = V(m1) for all z1 € [0, 1].

Proof: See appendix. O

Meanwhile, in the finite-horizon solution (19), since
QN (r1(n)) is a function of the homogenous Markov chain
m1(n), we have GN(x) = géf "x) = Vév "(x). The first
equality follows from the homogeneity property, and second
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equality follows from definitions. Therefore, the backward
induction (19) can be equivalently expressed as the recursion
(30) (on the top of page 4399), with Vg(x) = ¢(x). By letting
N — o0, and invoking Lemma 5, we arrive at

V)=
x exp (Is)

min [(p(x),main [CJ+E (V (1 —x +xexp(fa)))]] -
(31)

This is the Bellman equation for the infinite-horizon Bayesian
problem (28). Note that, thanks to Lemma 5, % (x) preserves
the concavity of Vé\r . Therefore, (31) reveals that the stopping
boundaries under infinite-horizon are constants. Moreover,
the sensor selection function &1 depends only on the pos-
terior/LLR, and is independent of time. We summarize the
optimal solution to the infinite-horizon problem in the theorem
below.

Theorem 2. The optimal procedure that solves (4) features
an SPRT with stationary sensor selection strategy, i.e.,
1) The optimal sensor selection rule is a time-invariant
Jfunction of the likelihood raito, i.e., 5} | = w(L¢).
2) The stopping rule is in the form of the SPRT T* =
min{t : L; ¢ (—A, B)}.
3) The optimal decision rule D7, decides Ho if LT~ < —A,
and decides H, if LT+ = B.
The function w(L.) and the thresholds A, B can be evaluated
numerically by solving the Bellman equation (31).

The proof for Theorem 2 follows similarly to that of
Theorem 1 by using the Bellman equation (31). In brief,
V(x) and £(x) £ min; [Cg +E (ﬁ ( l—i—?—’)‘cpe(iﬁg(fé))))J can be
proved to be concave functions with £(0) > 0 and £(1) > 0
by letting N — oo in Lemma 3; then the operation ming
in £(x) indicates that the selection rule is a time-invariant
function of the posterior, leading to Theorem 2-(1); moreover,
analogous to (22) in Lemma 3, the stopping thresholds are
given by the roots for po(l — x) = &(x) and p1x =
&(x) which are constants, leading to Theorem 2-(2). The
key difference here is that £(x) is independent of n in
contrast with QN (x) in the proof of Theorem 1. Interestingly,
Theorem 2 implies that the stopping thresholds and selection
strategy of the infinite-horizon Bayesian problem converge
to a sequential procedure that, in essence, is a combination
of the SPRT and stationary sensor selection function y(L;).
Several approaches are available to solve the Bellman equation
for w(L;) and A, B. In this work, by virtue of Lemma 5,
we solve a finite-horizon problem with sufficiently large N
to approximately obtain them, which will be explained in
Section IV.

C. Optimal Solution to the Usage-Constrained Problem

Now that the Bayesian optimal stopping problem is solved
in the previous subsections, we are ready to establish the
optimal sequential procedure for (P1) as follows.

Corollary 1. Let p ES [po, p1] be chosen such that
the reliability constraints are satisfied with equalities; let
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N—n — mi i o !
Vo (x) = min {¢ ), g:illl |:an+, + E(V (1 — X +Xxexp (fﬁwl)))i“

4399

x exp (1)

(30)

A £ {1j}jeq be chosen such that all usage constraints are
satisfied, and moreover, the usage constraints for the sensors
in Q. 2 {£ : k¢ > 0} are satisfied with equalities. Then the
optimal sequential procedure given by Theorem 1 and 2 give
the optimal triplets {T*, DT, T:T*} that solve the constrained
problem (P1) in finite-horizon and infinite-horizon scenarios,
respectively.

Proof: The proofs are the same for finite-horizon and
inifite-horizon problems, thus we only show the latter for
conciseness.

Considering the results in Section III-A&B, we have
R @11,D1,T) > R(8.71+, D},, T*) for any procedure
{81.1, D1, T}. This can be seen in (32) on the top of page
4400. Note that gg = 0, g1 = 0 and A > 0 for £ € Q,, thus
ET = ET* must hold true for any procedure {§;.T, D1, T} €

C(ﬂ, ﬁJ{T{}f’EQ)- D

The insight for Corollary 1 is intuitive. The sensors in Q.
(referred to as the effective set henceforth) will be overused
without imposing the constraint, thus additional sampling cost
A¢ > 0is assigned to penalize their usages (recall the definition
of Cs in (3)). Nevertheless, in order to optimize the test
performance, they should be used at full capacity, i.e., usage
constraints are satisfied with equalities. Section I'V will address
how we obtain €. from a general set (2 that are under usage
constraints in the formulation (P1).

Next, we investigate the performance of the optimal sequen-
tial procedure under infinite-horizon. The challenge stems
from the fact that random samples are no longer i.i.d., and the
typical method based on Wald’s identity fails to given valid
performance analysis. However, by capitalizing on the optimal
structures revealed in Theorem 2 and Corollary 1, together
with Wald’s approximation that neglects the overshoot upon
stopping of the sequential test, we can derive an insightful
approximate bound to characterize the performance. Define
the Kullback-Leibler divergence (KLD):

s X
eATHIAE E,-( £ (X))

Proposition 1. Based on the Wald’s approximation [2] (i.e.,
L+ = —A given D}, = 0 or Ly« = B given D}, = 1),
the expected sample size for the optimal procedure for the
infinite-horizon problem of (P1) is lower bounded by

(33)

D 1- D(1—
ET" > 7 (al] ﬁ;) 1 ( ﬁlla{)
max{Enc Dy max, g D
Y DL
—Z(max{ 1 7> 0 f]_l)Tf’
£eQ, max, g D} max,.g D

(34)

where D (pllq) = plogZ + (1 —p) logll_Tg is the KLD of
binary distribuitons, and Q.
except those in €.

£ T\, contains all sensors

Proof: See Appendix. O

The performance characterization agrees with intuition. The
first two terms on right-hand side of (34) characterize the
asymptotic performance of the optimal sequential procedure
as a and £ go to zero, or D (al||l — ) and D (1 — B||a) go
to infinity. It is seen that the asymptotic expected sample size
is determined by the KLDs of the sensors in Q., i.e., the
free sensors that do not reach their full usage. This result is
consistent with that in [17], where all sensors are constraint-
free. Meanwhile, the third term on the right-hand side of (34)
accounts for the effect of the fully used sensors, which
depends on their KLDs compared to that of the free sensors.
Df Dg
X ree Dy’ MaXy De g
the expected sample size due to its larger KLDs; otherwise,
sensor £ increases the expected sample size.

In addition, we can provide an asymptotic
(ie., a,f — 0) upper bound for E(T*) by leveraging
on the results in [13]. In particular, E (T*) should be upper
bounded by the algorithm proposed in [13] (denoted as
{T D 5}) using only the unconstrained sensors due to the
following two reasons: 1) both constrained and unconstramed
sensors are allowed in {T*, D*, d*}; 2) {T*, D*, d* )i
obtained through optimal procedure, whereas {T D, 4} is
proposed as a heuristic solution. Correspondingly, we have

D@i-p  _DA—Alla)

_ £ _ £ ?
maxy g Dy maXy g 2

If max > 1, then sensor { decreases

E(T*) <E(T) - =0

as a, f# — 0, where the right-hand side of the inequality holds
true due to [13, Theorem 7]. Together with Proposition 1, it is
safe to conclude that the approximate characterization in (34)
is tight and asymptotically optimal as a, # — 0.

I'V. PARAMETERS DESIGN FOR THE OPTIMAL
SEQUENTIAL TEST

In previous sections, we derived the optimal solutions to
(P1) under both finite-horizon and infinite-horizon setups,
given that u and A are set to satisfy certain conditions as
given in Corollary 1. These multipliers determine the para-
meters in the optimal sequential test and selection function,
i.e., A¢, By, wir1(L,) for finite-horizon, and A, B, w(L,) for
infinite-horizon. In practice, one can choose the multipliers
by manually refining their values according to the simulation
results; however, it is not an efficient approach, especially
when the number of constraints is large. In this section,
we propose a systematic approach to approximately evaluate
the multipliers, which involves minimizing a concave function.
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T

ET+uomoPo (Dr = 1) + pimiP1 (DT =0) + Z AeE Z Lis=¢)

e, t=1

Tﬁ
= ET* + POIDPO (D‘T'r = 1) + ,l’-llﬂ']]Pl (D?r = 0) + z zl{]E 21[5;»:{}

=ET* + pomoa + pimB+ »_ AcT*

=N

= =1
(32)

By drawing on the idea of the recent work [30], we evaluate
the multipliers by introducing the dual problem of (P1):

max min

L{811, D1, T} A, ),
{A,p}eRT {8,.7,D7,T}

(35)

where the Lagrangian admits

L8], D1, ThA, 1)
£ ET + pomo (Po (D1 = 1) — a)

T
+ pimy Py (D :0)—ﬁ)+21f Zl{&=f} —7°

teq  \r=1
= R@1.1, D1, T) — pomoa — imip— D 4eTE. (36)
1=

The reason is that if there exist multipliers such that the
constraints hold as equalities, they must reside in the saddle
point as expressed in (35).

We first begin with the N-horizon problem. Since the
Bayesian problem is solved in Section III, (35) becomes

max Ly(h, p) 2
o max. . N, @)
T
min E Cs +p (DT, H)
(D.T.37) g ks
vo”(’”«lﬂu]
— D" 4Tt — pomoa — pymi B, 37

fef)

where Ly (A, i) is a concave function of A and u. Note that
Vé\r (1, X, p) is the same function as defined in (20) while we
explicitly show the variables A and p here for clarity.

Note that (37) is a constrained concave problem that still
requires complex solving process, for example, the interior-
point method [31]. In this work, we propose a simple proce-
dure based on gradient ascent. In brief, we first assume that the
effective set of constraints €. is known, based on which, (37)
can be recast into an unconstrained optimization problem; we
then give the scheme for evaluating Q.. The detailed procedure
includes the following steps:

« Given any €., it is known that the optimal multipliers
po > 0, uy > 0, 4; > 0for j € Q. and 4; = 0
for j € Q. (cf. Corollary 1). Consequently, the original
problem (37) can be reduced to an unconstrained problem

by removing 1;, j € Qg:
max Ly (hq., p) £
A1

Vo (1, ke, ) — D 4eT" — pomoa — mimi B, (38)
e,

with g, = {1;}eq,. since the optimal values of 1;, j €
Q. and p reside in the interior of the positiveness
constraint. Now (38) can be solved with the gradient
ascent algorithm. To this end, note that Vé\r (w1, Aa., 1)
can be obtained efficiently given any value of the vari-
ables p,iq. through the dynamic programming (19),
i.e., Algorithm 1. This allows us to approximate the gra-
dients at the fth iteration by using small shifts Ay and Ay
for Aq, and p respectively. Moreover, since p and Aq, are
typically at different scales, for example, p are usually in
the order of hundreds, while Ag_ are fractional numbers,
we apply the alternating minimization to speed up the
convergence. Algorithm 2 summarizes the procedure for
evaluating the multipliers and the resulting parameters
(i.e., A¢, By, wer1(Ly)) for the finite-N optimal sequential
test, where Alg,(-) invokes Algorithm 1. In addition,
p: and g, are step-sizes obtained by backtracking line
search [31], ftiy, Aine are initial values to begin the iter-
ations.
« To obtain the effective set ., we add an outer iteration
to Algorithm 2. In particular,
1) Begin with an empty set of effective usage con-
straints (i.e., Q. = @).
2) Solve the problem

min ET. 39
{81.7, D1, T}eCp (@, B,(T hecq, )

3) Evaluate the sensor usages based on the solution
to (39), and find the set of sensors in € whose
constraints are violated (denoted as A). Update the
effective set Q. <— Q.U A.

4) Go to step 2) and solve (39) for the updated Q..

This loop of 2)-4) continues until no inequality con-
straints are violated. Upon termination, €. is effective set
of constraints, whose associated multipliers are positive,
whereas the rest of constraints are naturally satisfied with
zero multipliers.

Next we consider the infinite-horizon scenario, whose
evaluation of multipliers boils down to the optimization
problem (40) on the bottom of page 4401. One option is to
adopt the method in [30] (only SPRT and g were of interest
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Algorithm 2 Procedure for Solving (38)

1: Initialization: f < 0, ,u,(u} < Mints lg’c} < Aint

2: while ||V Z¥0.Y) , nO) 2> €0 or [VaZ¥AE, nO)]l2 > €1
do
update p:

3 VY (1,08, 1w ®) < G(x1,0) < Algy(x1,18), )

4 V1, A5, mO+A L) <G, 0)-Alg, (1, A5, wO+A L)
s:  Evaluate L',N(lgg,,u(‘)) and ﬁN(lg, p® + Ay) by its
definition in (38) _
6: Approximate the gradient V, Ly (7, lgl, n®)
7. Update pu+) = u® + p,v, Ly (x, lgz, un®), where p;
is the step-size computed by
backtracking line search

update A:
8: Vé"(m,lgl,”(rm) - Q(m,0)<—Alg1(:r1,l£2,n(f+1))

o: VY (1, A5) + Ax, kD) < G(m1,0) < Alg(x1,1§) +
Ay, n+D)

10: Evaluate EN(m,lgg, n Dy and Ly (xi, lgz +
Ay, p*D) by its definition in (38)

11:  Approximate the gradient V; Ly (, lgl, p+0)

122 Update A4S = A8) + ¢, Va Ly (x,A3), n+D) where
q; is the step-size computed by

backtracking line search

13 <t+1

14: end while

15: Output:
A, < DL wr < pnO, (WL, 0, A0, BOYY, <
A‘lgl (7"'-] » )LEC: ﬂ*)

there), which discretizes x, X, i, and recasts the above prob-
lem into a linear program. However, this approach becomes
computationally infeasible due to the high-dimensional vari-
ables in our problem. To that end, by the virtue of Lemma 5,
we propose to approximate the infinite-horizon problem
through finite-horizon approach (37), i.e., V ~ VE‘;V with
sufficiently large N. Moreover, we obtain the multipliers
and the resulting test parameters (i.e., A, B, w(L,)) for the
optimal infinite-horizon sequential test by setting A < A(0),
B < B(0), w(L) < w(L, 1), where A(0), B(0) and w(L, 1)
are the thresholds and selection function respectively evaluated
for the finite-horizon problem with large N.

V. NUMERICAL RESULTS

In this section, we provide numerical results to illustrate the
theoretical findings in previous sections, and also to compare

4401

TABLE I
PARAMETER VALUE AND KLD AT EACH SENSOR.
m | m | D§ Df
Sensor 1 | 0.5 1 0.3069 | 0.1931
Sensor 2 1 0.5 | 0.1931 | 0.3069
Sensor 3 | 0.52 1 0.2692 | 0.1739
Sensor 4 1 0.52 | 0.1739 | 0.2692

with the existing methods. Our experiments focus on the
following hypotheses

Hozx,wexp(qg), t=1,2,..., £e{l,2,...,4),
HI:X,Nexp(q{), t=1,2,..., te{l,2,...,4).

In particular, the LLR at sensor £ is

¢
(X)) = X, (,,5 - :;f) + log(q—}) 41)
Mo
and the KLDs are expressed respectively as
qt’ ’?C
Df:Eo(:*’):—?,—l—log ), (42)
m m
¢ I3
DS:[EO(—EE):'?_;—I—log(q—}). (43)
Mo Mo

Table I lists the distribution parameters and KLD for each sen-
sor. Throughout the experiment, the domain of posterior [0, 1]
is discretized into 8000 points to implement Algorithm 1.

A. Finite-Horizon Scenario

We first consider a finite-horizon problem with sample size
limit N = 100.
Fig. 1 illustrates the decision region of the N-horizon
sequential test, including the stopping boundaries (i.e.,
[—A;, B¢]) and selection function (i.e., y;y1(L)). Note that,
hereafter, we represent the results in terms of the sufficient
statistic LLR, which is equivalent to the posterior given the
prior. The black, blue, red, and green colors represent the
intervals within which Sensor 1, 2, 3, and 4 should be selected
respectively. The following observations are made:
« The curved stopping boundaries comply with the result
in Theorem 1-(b).

« The selection function w;i1(L;) in Theorem 1-(a) is
represented by simple partitions of the LLR domain.
In specific, the fusion center decides the selected sensor at
t + 1 based on the region that L, resides in. Interestingly,
the selection function from f = 1 — N is highly
structured, and does not require large memory for storage.

max
{LpleRT

V(x1, &, 1) — pomoa — p1mi f — ZizT‘f
£eQ)

~ _ ) ~ xeld
s.t. V(x, A, p)=min{uo(l —x), p1x, min (I—I—Ag—I—E (V(m, A, ,u,)))] , x €[0,1]

(40)
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Fig. 1.
sensor 4. (a) Unconstrained. (b) '=7,12=1. (c) Tl =672 =09.

« The sensor usages are equal to the discrete time that
LLR spends in the corresponding region before stopping.
Thus the selection strategy controls the sensor usages by
altering these selection regions. In Fig. 1-(a), if all sensors
are constraint-free, then Sensor 1 and Sensor 2 are always
preferred over the other two. Intuitively Sensor 1 domi-
nates sensor 3, Sensor 2 dominates Sensor 4, since their
KLDs under both hypotheses are larger. In Fig. 1-(b),
if we impose the usage constraints on Sensors 1 and 2,
then Sensors 3 and 4 are used more, thus the partition of
LLR domain is reassigned to comply with the constraints.
That is, the selection region for Sensor 1 is split mainly
by Sensor 3, while that of Sensor 2 by Sensor 2. Fig. 1-(c)
shows that the selection regions alter as the usage con-
straints change from T! =6, 7> =9to T! =7, 7> = 7.
In specific, the selection region of Sensor 1 shrinks while
that of Sensor 2 expands.

From Section III, we know that the selection regions,

and thus the sensor usages, are governed by the multipliers,
which are the parameters one can choose to meet the usage

i ol 70 30 a0 100
Time

()

The stopping boundaries and selection region for N = 100. We set & = 0.01, § = 0.01. Black: sensor 1. Blue: sensor 2. Red: sensor 3. Green:

constraints. Bearing this in mind, Fig. 2 illustrates how the
sensor usages vary along with different values of multipliers.
In particular, it shows that the usage of Sensor 1 decreases
from the full usage to zero as 41 increases, while other sensors
increase their usages. In addition, it demonstrates that altering
the value of one multiplier does not only adjust the usage
of one particular sensor, but also that of the other sensors.
It essentially re-assigns the partition of the continuation region
for sensor selection.

Finally, in Fig. 3, we compare the proposed finite- N sequen-
tial test with the existing method in [15], which is an offline
random selection algorithm. The comparison is carried out at
varying error probabilities @ = g, and fixed sensor usage
constraints for Sensor 1 and 2 (T] = 60, T? = 9, and
Sensor 3 and 4 are free sensors). The corresponding multipliers
are evaluated using the algorithm in Section IV. It is seen
that the proposed online algorithm consistently outperforms
the offline scheme with the same usage constraints and error
probabilities. The improvement becomes more significant as
the error probabilities decrease. Furthermore, Fig. 4 depicts
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Fig. 3. Comparison of the proposed sequential test and the SPRT with offline random selection strategy.

the sensor usages of the proposed scheme in this experiment,
which are controlled by tuning the multipliers via the method
introduced in Section I'V. When error probabilities are moder-
ate (&« = 0.1 — 0.06 in Fig. 4), Sensors 1 and 2 operate in
free mode, and Sensors 3 and 4 are idle, which corresponds to
the unconstrained scenario (i.e., the effective set of constraints
are empty Q. = ). This is similar to the case in Fig. 1-(a).
As error rates decrease (a¢ = 0.04 and 0.02), Sensor 1 reaches
the usage constraint first, while Sensor 2 still operates in
free mode (i.e., Q. = {1}). After « < 0.01, both Sensor
1 and 2 reach their usage limit and are under constraints (i.e.,
Q. = {1,2}). In this regime, we find multipliers such that
constraints are satisfied with equalities. As error rates further

decrease, free sensors like Sensors 3 and 4 are used more often,

while Sensor 1 and 2 remain maximum usages at T! =6 and
T2 =9.

B. Infinite-Horizon

In this subsection, the performance of the proposed
scheme in the infinite-horizon setup is examined. We use a
finite-horizon problem with sufficiently large N = 200 to
approximately evaluate the parameters (i.e., A, B and selection
regions) of the optimal sequential test.

Again, Fig. 5 depicts the decision regions for the
finite-horizon problem with N = 200. Since a larger N is used,
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Fig. 4. Sensor usages of the proposed scheme corresponding to the experiment in Fig. 3.
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Fig. 5. The stopplng boundanes and se]ectlon function for N = 200. We set a =2 0.01, § = 0.01. Black: sensor 1. Blue: sensor 2. Red: sensor 3. Green:

sensor 4. (a)T _6T =9. (b)T =7,T2=1.

compared to Fig. 1, Fig. 5 shows that the stopping boundaries
and section strategy converge to the stable one at r = 0,
which is approximately the infinite-horizon solution according
to Lemma 5. Unlike in the finite-horizon scenario, the fusion
center only needs to store stopping boundaries and selection
regions at f = 0, which is depicted in Fig. 6, and use it for
any f. This further lowers the storage demand. In specific,
the selected sensor at f 4 1 is decided by which interval
the LLR resides in at time ¢ within the stopping boundaries.
We clearly see that the selection functions in Fig. 6-(a) change
to that in Fig. 6-(b) as the usage constraints alter.

Finally, in Fig. 7, we compare the proposed scheme with the
existing offline random selection scheme in [15]. Compared to
Fig. 3, the expected sample size slightly decreases due to the
removal of the hard limit on horizon N. Again, the proposed

online scheme increasingly outperforms the offline selection
scheme as the error probabilities become small. In fact,
we can analytically show that the offline selection scheme is
asymptotically outperformed by the proposed scheme in this
work. Since the sensor usage constraints in [15] are also given
as a fixed number of total usage, its asymptotic performance is
only determined by the free sensors as a, § — 0. In particular,
the asymptotic stopping time of the offline selection scheme
can be obtained by [15, Sec. V]

D (alll = p)
q™Do

]ET—>II}1in (:r m'D(l—ﬂHa)),

q™D,

of random selection for each sensor,

where q is the mebabl it
717, and Q. = {ki,ka, ..., k) is the
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set of unconstrained sensors. Note that since

D - —
min (e 2@IL=8) DA —Blle
q q™Dy q7D;
D(a||l - ) D1~ Blle)
<mo -+ 7>
max,.5_ Dy max,.5_ Dj

with the equality holds if and only if all the KLDs across
sensors are equal, i.e. Df' = D{Q =...= Dk which is not
the case in our problem setup. Therefore, as a, f — 0, the
random selection based SPRT is strictly outperformed by the
proposed scheme.

In addition, we also plot the close-form approximation for

the optimal performance in Fig. 7, which is given by (34). Note

Comparison of the proposed sequential test and the SPRT with offline random selection strategy.

that this analytical result (i.e., the red solid line) lies parallel to
the performance curve of the proposed scheme (i.e., the black
line with circle marks), indicating its accurate characterization
for the asymptotical performance. The constant gap in between
is largely caused by the inequality (74) that lower bounds the
constant term (i.e., independent of a and £) in (73), which
ultimately leads to (34). Therefore, the constant gap can be
small if (74) is tight, depending on the specific model. To see
this, assuming that we derive the performance formula directly
based on (73) (specifically, 7§ and T{ in (73) need to be
evaluated through simulation), it is shown in Fig. 7 that the
resulting lower bound (i.e., the green dash line) aligns closely
to the performance of the proposed scheme.
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VI. CONCLUSIONS

In this work, we have studied the sequential hypothesis
testing with online sensor selection and sensor usage con-
straints. The optimal sequential test and selection strategy
are obtained for both the finite-horizon and infinite-horizon
scenarios. We have also proposed algorithms to approximately
evaluate the parameters in the optimal sequential procedure.
Finally, extensive numerical results have been provided to
illustrate the theoretical findings and comparison with the
existing method. Future works may include applying the same
framework to address the usage-constrained sensor selection
in other sequential problems, for example, change-point detec-
tion. Instead of the average sample size, other objective can
also be studied, for example, the worst-case sample size. The
applications in distributed sensor networks can be considered
as well. For example, dynamic selection of quantization mode
in the sequential detection [6], [32].

APPENDIX
A. Proof of Lemma 1-5

Proof of Lemma 1: We want to prove that
gn (X1:,61:2) = gn(mi(n)). It suffices to prove that
for any realizations of {Xi.,81:}, i€, {X1un,S1:x} and
{X1:n, S1:}, that lead to equal posteriors 71(n) = mi(n),
we have g, (X1, 51:n) = gn (X1:n, S1:n)-

Conditioned on the event {T = n}, by (13), it is obvious
that g, (X1:n, S1:n) = gn (X1:n, §1:n) = @ (w1(n)). Conditioned
on the event {n < T < N}, we will prove by contradiction.
On one hand, assume that g, (x1.,, S1.:n) > &n (X1.n, 51.n), then
there exists a procedure i Ont1, {‘Sn+2T"T} € A:H—l} (given
{X1:, 51:n}) such that

gn(x]:msl:n) =
E ¢(rlﬁ))+z (’a X1:n =X1:n, 81:0n =S1:n

t=n-+1

¢ (w1(n))—

gn(xl:msl:n}

> Bn (f]:m El:n)s (44)

due to the definition of g, in (13).
On the other hand, we construct the following procedure

{Bns1, (8,157 Th € AV} (given {E1n, 51 })- Let

ﬂ+l(xl's"'1xﬂ) = n+](x1: ey Xp), (45)

and, given the same samples after time n (denoted as
Xni 1, Xn g2, -« -)s

5f(j]1"'1jﬂjxﬂ+11"'7xf—l) =
Or(X1, ..., Xn, Xpaly .., Xe1), t=n+2,...,N. (46)

Moreover, let T stop if T stops given the same samples
{Xn+1, Xn42, ...}, and the decision rule

D@y, ... L x3) = D(x1, ... , X5).

In short, the procedure (5" Rhe T} is designed to yleld the

exact same actions as that of the procedure [Sn A T} given
the same samples at time n, i.e., {Xp4+1, Xn42, ...}. Note that,

Jjﬂaxﬂ—l—]s" :-fnsxn+]:---
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according to the above construction process, r 11T T] and
{§n+1.T’ T] are not identical procedures since {X1.,, 512} #
{xl:m Sl.n}

Again, due to the definition of g, in (13), we also have

&n (fl:m El:n) =

¢ (Wl (H))— E ¢ (7"-'1(:[-))"'z(’ggr Xl:n:-fl:m sl:nzfl:n
t=n+1
& GinsSin)
47)
Next, we prove that
?(j]:m El:rz) :g(xl:m Sl:n): (48)
which requires
Ej¢ (ﬂ'lﬁ))_f' Z CE X1 =X1:n, 81:0 =S1:n
t=n-+1
5
B¢ (miMMH D G| Xin=F1m, S1m=51 | . (49)
t=n+1
First, due to the construction of {5ﬂ h e :I:], we have
:|= - nl {X1:m = X1, S = S1:m)
::I:_n| {X]:n:x]:ma]:n:-gl:n}, a.s.. (50)

To show that the first terms on both sides of (49) are equal,
ie.,

E (¢ (21)| X1, 81) = E (¢ (11D) | X1, 1)
(51)
notice that

.
T (n)eran I,

1 (T) = _ (52)
zo(n) + 71 (n)e =+ b

has the same distribution conditioned on {X.,, §1.,} as that of

-
1 (n)eran I

1 (T) = - (53)
7o(n) + 71 (n)ei=n+t
conditioned on_{x1., S1.,}. This is true because mi(n) =
wi(n) and_ ZrT—n 4103 has the same posterior distribu-
tion as Zt—n 1115 due to (45)-(46) and (50). In addition,
the second terms on both sides of (49) are also equal by
combining (45)-(46) and (50).
Using (47)-(48), we arrive at

&n ()_Cl:m El:n) = grz ()_Cl:m El:n) = 'gn (x]:m Sl:rz) (54)

which contradicts with (44).
Similar contradiction appears if we assume g, (X1, 01:0) <
8n (Xl:m sl:ﬂ)- O
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Proof of Lemma 2: From (12), the optimal selection strat-
egy fort =n+1is

r1 = arg min E (V) Kranst, dran)| K, B1) . (55)
and, by its definition, we have

V;?;.] (Xl:n—l—ls 81:n+1)
:l'I]iI'l{."s (leﬂ-l-lsa]:?!—l—]),rﬂ (X]:n—l—]; 31:n+l)}

=min {0, —gn+1(ﬂ'1(” + 1)} +rs (Xl:n—l—ls 81:n+1)
n+1

=¢ (mi(n+ 1))+ D Cs

t=1

—max {gn41(71(n + 1)), 0}. (56)

Substituting (56) into (55) and neglecting the term > ;_; Cs,
that is independent of d,y1, we arrive at (57) on the top
ofpage 4408. Note that the fact that the expectation term in
the bracket is a time-variant function of 71 (n) and d,41 (i.e.,
Up (r1(n), dps1)) follows from the relation between 71 (n) and
m1(n+1) given by (6). Then 8}, | = argming uy, (71(n), J) £
Cs + un (r1(n), d) which implies that the optimal selection
is a time-variant function of the posterior, i.e., 5; 4 =
Ynt1 (w1(n)). 0

Proof of Lemma 3: First, Qﬁ(m(N)) = ¢(m1(N)) =
min{z71(N), go(1 —m1(N))} is concave. Second, the recur-
sion (19) suggests that, if Q,H_] (m1(n + 1)) is concave,
QN (m1(n)) is concave as well. This can be shown as follows:

xexp(f,j" 1
Assume that G +](3:) is concave, since ———————~
1—x+x exp(f,gnH )

is an increasing function of x and the expectation oper-
ation preserves the concavity, the compound function

x exp(.!"jn 1 ) ) )
E{ G¥ | ———+ = ){=1(n) = x ] is concave, which
l—x+4x exp(f,gnH )

further leads to the concavity of G
of m1(n); in addition, regarding Qf(m(n),éwlj as a series
of concave functions indexed by d,y1, since the point-wise
minimum preserves the concavity, (j'f (m1(n)) is a concave
function; due to the same argument, the point-wise minimum
of GN(x1(n)) and $(x1(n)), i.e., GY(x1(n)), is concave as
well.

Therefore, by induction, we conclude that Q,f,v (r1(n)),
n = 0,1,..., N are concave functions. Furthermore, from
the proof above, we know that the concavity of QN (mr1(n))

leads to the concavities of g (m1(n), dpa1) and QN (1 (n)).
Thus g (w1(n), dps1) and GV (z1(n)) forn =0, 1,..., N are
concave functions. O

G, (w1(n), 6p41) in terms

Proof of Lemma 4: By the concavity of (j'f (x), we know
that the continuation region at f = n is an interval confined
by the roots of the following equations (denoted as a, and b,
respectively):

po(1 —x)GY (x), and pix = G (x),

Since GV (x) < GN(x), thus an_1 < @, and by_1 > by.
At t = N, the procedure has to stop and make decision, thus
ay = by. 1z (N)Z pomo(N) which gives 71(N)Zay =
uo/(po + p1). O

n<N. (58)

4407

Proof of Lemma 5: Let {87].r1., D}, T*} be the optimal
solution to the infinite-horizon problem (28). Define the aux-
iliary procedure {87 = % , Ty} where Ty = min{T*, N},
then we have N

R (511,

1Ty’

D5 Tv) = R (87, D}, T)

29

(39)
(60)

= ]E(]]_[szN} (¢ (?TI(TN)) —¢ (FI(T*))

E (Lrsn (6 (m1(Tw))))
=E(p @) I,y

where (59) follows from the fact that ¢(z1(T*)) and Cj
are positive, and (60) is true because TN = N holds with
probability one given that T* > N due to the definition of TN
Using (60) and the fact that Vg(m) is the optimal cost for all
T < N whereas {81 Ty ’T‘N,TN} is a constructed scheme for
T < N, we arrive at the following inequalities

V¥ (z1) {R( o %N,?N)
<R (B Db T) +E (¢ (V) 17, _y) -
(61)

By the strong law of large number, we know that
Ly — oo, as. asa N — oo, thus ¢ (71(N)) =
min{zomo(N), g171(N)} — 0 as. as N — oo [25]. Taking
N — oo on both sides of (61), we have

Jlim V{’,V(m)gR(S’f:T*, T TY) =

[A

V(r1). (62)

On the other hand, V' (z1) > R( 11> D%, T*), since
Vo (m1) is the minimal cost for the finite-horizon problem,
ie., T < N, whereas R (8].1+, D., T*) is the minimal cost for
the infinite-horizon problem, where no bound on T is imposed.
Thus, we have limy_.o V) (1) > R (8.1, D5, TY) =
V(:rl) that, together with (62), completes the proof. |

B. Proof of Proposition 1
Proof of Proposition 1: Note that for the LLR statistic,
we have
T

Z Z ls Lig=ey + 151560,

t=1 \£eQ,
The first term of (63) can be expressed as

.
> D lalp=n

Eo (L) =Eo (63)

t=1 £eQ,
=> Eo(zl«zl{@ f}llTw})
te),
oo
=> ED(ZEO (6| X1:0=1), 81:-1) 1{6,:8]1{Tzr])
teQ.  \i=1
o0
=— > DjEo Z]L{é:=£’}1[T2f})
eQc =1
=— > D{Ty, (64)
£l
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Bry1 = arg min {Cs,,, +E [¢ (r1(n -+ 1) — max (guss (ran + 1)), 0} Xion, 1 |}

£ell,. £e),.

= arg min { Cs,,, +E [¢ @1 (n+ 1) — max {gups (r1 (0 -+ D, +1),0)| mi ()] (57)
'+
up (71 (n),6041)
where Df £ —lI¢) is the KL divergence of sensor £ -
¢ . EO$ J . £ =Ei ZEI (I 1 F2-1) s ir=n
and Ty = Eo (Zt=] ]L[Ls,:g}) is the mean usage under Hp. =
Furthermore, the second term of (63) can be bounded as
follows <max D E, 1 1
e, ! (Z [6:Qc} lT>f})
T
Is1,5 .6
Z oL (g etn) —maxD{ (E,;T— > 7¢], (70)
=1 £,
00 £
=Eg (ZI@]L[J‘E{—H]L{TE,}) that lead to
t=1 T T
N B (Ln)=Ei| > > lalo=n [+Ei | 2 lalpen,
=Eo (ZEO (1s, | Xi:—1), 81:4—1) ]L{&Eﬁd:”-{—l—zt}) (65) t=1 £cQ, t=1
=1
¢
= — max Do]Eo(Z l{a,enc}l[ur}) = 2. DTy max Dy | EiT = 2| an
=

t=1

= —max D§ | EoT — Z ¢,
e, =
where inequality (65) holds because

Eo (15;_| Xixe—1), 81:0-1) Lis ey = min, g Eo (le) 15, cq,)-
Applying (64) and (66) to (63) results in

(66)

Eo (LT) > — Z DuTo —l:’na)(D0 EoT — Z To , (67)

£ef), £l
which leads to the bound for mean sample size under Ho:
EoT

1
3
max, g D0

IV

—Eo(LT) — Y DGT§ —|—m?1): Dy > Ty

feQ), feQd,
Df
+> ( — ) T¢.
parey maX, g D
Under Hi, similarly as in (64) and (66), we have

.
D D lalp=g | = D DITf

t=1 £l £e),.

—Eo(L1)

maX, g D

(68)

(69)

and

T
Zlarl{&eﬁcl
=1

o0
=K, (Z fafl[a,eﬁf}l{Tzr})
t=1

As a result, we can bound the mean sample size under H; by
EiT

> | Ei (L) — > DiTf +mafo >orf 71){
£eQ, feQ. MaXeen,
E; (L D!
_Eidn > ( 73) T, (72)
maxzenc Df pary max,.g_ D

Finally, the expected mean sample size, i.e., ET = moEoT +
m1E1 T, can be bounded below as follows:

—Eo (L Ei (L
ET > 7o EO(T){ ] 1(T){
max, o D max, g Dj
D D!
P31 3 (R )
£eQ, fen, \ Mg, Do max, 5. Dj
(73)
—Eo (L1) Ei (L1)
3
max, o D max, g Dj
D{ Df
+Z(1—max[ L 7, 0 {])Tf,
£eQ, max,.g Dy max,.g Dy
(74)
where the second inequality is obtained by noting that mq T‘f +
mT! =TY, thus
D} D!
max,. g Dy maX, g D;
D! D{
< max L, 0__trt,  (75)
maxe.g Dj max,.g D

Authonzed licensed use limited to: University of Minnesota. Downloaded on July 02,2020 at 15:42:29 UTC from |EEE Xplore. Restrictions apply.



LI et al.: SEQUENTIAL HYPOTHESIS TEST WITH ONLINE USAGE-CONSTRAINED SENSOR SELECTION

with

arg max

equality holds if T°¢ i =
Df Df

[ £
max, g, Dy’ max, g, Dy

¢
;i Ty,

Next, by drawing on the Wald’s approximation [2],

ie.,

L+ =~ —A given D}, = 0 or L1« = B given D?,k =1,

we obtain

Eo (LT1+)

E1 (L1)

= aEy (L1+|DF. = 1) + (1 — @)Eo (L1+| D}, = 0)
aB — (1 —a)A, (76)
(1 — BB (L1+|D%. = 1) + BE; (L1+| D%, = 0)

=(1—pB)B — BA. (77

Moreover, invoking the change of measure technique and the
Wald’s approximation, we have

a=Ep (1{D$*=1]) =E, (I[D}*=l}€_LT*) ~e P (1-p),

(78)
p=E (1[D$*=0}) =Eo (I{D%*=0]‘3LT*) ~et(1-a),
(79)
which lead to
Bxlogl_ﬁ, A~log 2. (80)
a B
Substituting (80) into (76)-(77) gives Eo(LT1+) =~ —D(al|1—A)
and E(L1+) = D(1 — Bla). 0
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