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S e q u e nti al  H y p ot h esis  Test  Wit h  O nli n e
Us a g e- C o nstr ai n e d S e ns or S el e cti o n

S h a n g  Li,  Xi a o o u  Li,  Xi a o d o n g  Wa n g , Fell o w, I E E E , a n d Ji n g c h e n  Li u

A bstr a ct —  T hi s p a p e r i n v esti g at es t h e s e q u e nti al h y p ot h esi s
t esti n g p r o bl e m  wit h o nli n e s e n s o r s el e cti o n a n d s e n s o r u s a g e
c o n st r ai nt s.  T h at i s, i n a s e n s o r n et w o r k, t h e f u si o n c e nt e r
s e q u e nti all y a c q ui r es s a m pl es b y s el e cti n g o n e “ m ost i nf o r m ati v e ”
s e n s o r at e a c h ti m e u ntil a r eli a bl e d e ci si o n c a n b e  m a d e.
I n p a rti c ul a r, t h e s e n s o r s el e cti o n i s c a r ri e d o ut i n t h e o nli n e
f as hi o n si n c e it d e p e n d s o n all t h e p r e vi o u s s a m pl es at e a c h ti m e.
O u r g o al i s t o d e v el o p t h e s e q u e nti al t est (i. e., st o p pi n g r ul e a n d
d e ci si o n f u n cti o n) a n d s e n s o r s el e cti o n st r at e g y t h at  mi ni mi z e
t h e e x p e ct e d s a m pl e si z e s u bj e ct t o t h e c o n st r ai nts o n t h e e r r o r
p r o b a biliti es a n d s e n s o r u s a g es.  T o t hi s e n d,  w e fi rst r e c ast t h e
u s a g e- c o n st r ai n e d f o r m ul ati o n i nt o a  B a y esi a n o pti m al st o p pi n g
p r o bl e m  wit h diff e r e nt s a m pli n g c osts f o r t h e u s a g e- c o nt r ai n e d
s e n s o rs.  T h e  B a y esi a n p r o bl e m i s t h e n st u di e d u n d e r b ot h
fi nit e- a n d i n fi nit e- h o ri z o n s et u p s, b as e d o n  w hi c h, t h e o pti m al
s ol uti o n t o t h e o ri gi n al u s a g e- c o n st r ai n e d p r o bl e m c a n b e r e a dil y
est a bli s h e d.  M o r e o v e r, b y c a pit ali zi n g o n t h e st r u ct u r es of t h e
o pti m al s ol uti o n, a l o w e r b o u n d i s o bt ai n e d f o r t h e o pti m al
e x p e ct e d s a m pl e si z e. I n a d diti o n,  w e al s o p r o p os e al g o rit h ms t o
a p p r o xi m at el y e v al u at e t h e p a r a m et e rs i n t h e o pti m al s e q u e nti al
t est s o t h at t h e s e n s o r u s a g e a n d e r r o r p r o b a bilit y c o n st r ai nts a r e
s ati s fi e d.  Fi n all y, n u m e ri c al e x p e ri m e nt s a r e p r o vi d e d t o ill u st r at e
t h e t h e o r eti c al fi n di n gs, a n d c o m p a r e  wit h t h e e xi sti n g  m et h o d s.

I n d e x  Ter ms — S e q u e nti al h y p ot h esi s t est, o nli n e s e n s o r s el e c-
ti o n, r eli a bilit y, s e n s o r u s a g es, d y n a mi c p r o g r a m mi n g.

I. I N T R O D U C T I O N

N O W A D A Y S t h e s e q u e nti al h y p ot h e sis t e st h a s b e e n
wi d el y a p pli e d i n  m a n y a p pli c ati o ns b e c a us e it g e n er all y

r e q uir es s m all er s a m pl e si z e o n a v er a g e c o m p ar e d t o its fi x e d-
s a m pl e- si z e c o u nt er p art.  N ot a bl y, [ 1] pr o v e d t h at t h e s e q u e n-
ti al pr o b a bilit y r ati o t est ( S P R T) yi el d s t h e  mi ni m u m e x p e ct e d
s a m pl e si z e u n d er b ot h n ull a n d alt er n ati v e h y p ot h e s es gi v e n
t h e err or pr o b a biliti es. Si n c e t his pi o ne eri n g  w or k, a ri c h b o d y

M a n us cri pt r e c ei v e d J a n u ar y 5, 2 0 1 6; r e vis e d S e pt e m b er 1 1, 2 0 1 7; a c c e pt e d
J a n u ar y 2 8, 2 0 1 9.  D at e of p u bli c ati o n  A pril 1 1, 2 0 1 9; d at e of c urr e nt v ersi o n
J u n e 1 4, 2 0 1 9. S.  Li  w as s u p p ort e d i n p art b y t h e  U. S.  N ati o n al S ci e n c e
F o u n d ati o n ( N S F) u n d er  Gr a nt  CI F 1 0 6 4 5 7 5, a n d i n p art b y t h e  U. S.  Of fi c e
of  N a v al  R es e ar c h ( O N R) u n d er  Gr a nt  N 0 0 0 1 4 1 4 1 0 6 6 7.  X.  Li  w as s u p p ort e d
b y  N S F  D M S- 1 7 1 2 6 5 7. J.  Li u  w as s u p p ort e d i n p art b y  N S F u n d er  Gr a nt
S E S- 1 3 2 3 9 7 7,  Gr a nt S E S- 1 8 2 6 5 4 0, a n d  Gr a nt II S- 1 6 3 3 3 6 0, a n d i n p art b y
t h e  Ar m y  R es e ar c h  Of fi c e u n d er  Gr a nt  W 9 1 1 N F- 1 5- 1- 0 1 5 9.  T his p a p er  w as
pr es e nt e d i n p art at t h e 2 0 1 6 I E E E I nt er n ati o n al S y m p osi u m o n I nf or m ati o n
T h e or y (I SI T).

S.  Li a n d  X.  Wa n g ar e  wit h t h e  D e p art m e nt of  El e ctri c al
E n gi n e eri n g,  C ol u m bi a  U ni v ers it y,  N e w  Y or k,  N Y 1 0 0 2 7  U S A ( e- m ail:
s h a n g @ e e. c ol u m bi a. e d u;  w a n g x @ e e. c ol u m bi a. e d u).

X.  Li is  wit h t h e S c h o ol of St atisti cs,  U n i v ersit y of  Mi n n es ot a,  Mi n n e a p olis,
M N 5 5 4 5 5  U S A ( e- m ail: li x x 1 7 6 6 @ u m n. e d u).

J.  Li u is  wit h t h e  D e p art m e nt of St atisti cs,  C ol u m bi a  U ni v ersit y,  N e w  Y or k,
N Y 1 0 0 2 7  U S A ( e- m ail: j cli u @st at. c ol u m bi a. e d u).

C o m m u ni c at e d b y  N.  Ki y a v as h,  Ass o ci at e  E dit or f or St atisti c al  L e ar ni n g.
C ol or v ersi o ns of o n e or  m or e of t h e fi g ur es i n t his p a p er ar e a v ail a bl e
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of st u di e s o n t h e s e q u e nti al t e st h a v e e m er g e d u n d er diff er e nt
cir c u m st a n c e s [ 2].  O n e of t h e  m o st i m p ort a nt a p pli c ati o n s of
s e q u e nti al t e st is f o u n d i n s e n s or n et w or k s [ 3] –[ 7]. I n t his
w or k,  w e c o n si d er t h e s e q u e nti al h y p ot h e sis t e st  w h e n s e n s or
a c c e ss at t h e f u si o n c e nt er is r e stri ct e d, a n d ef fi ci e nt s e n s or
s c h e d uli n g/s el e cti o n is of i nt er e st.  T h at is, t h e s e n s or n et w or k
wit h diff er e nt t y p e s of s e n s or s (i. e., h et er o g e n o u s s e n s or s)
a n d a f u si o n c e nt er ai m s t o t e st b et w e e n t w o h y p ot h e s es;
h o w e v er, o nl y o n e of t h e a v ail a bl e s e n s or s c a n t a k e s a m pl es
a n d c o m m u ni c at e  wit h t h e f u s i o n c e nt er at e a c h s a m pli n g
i n st a nt. S u c h a s et u p oft e n aris es  w h e n t h e f u si o n c e nt er p o s-
s esss es li mit e d pr o c essi n g c a p a bilit y/r es o ur c es, or t h e s e n s or s
c o ntr a di ct/ e x cl u d e o n e a n ot h er. F or i n st a n c e, t h e e c h o- b a s e d
s e n s or s li k e s o n ar s e n s or s c a n i nt erf er e  wit h e a c h ot h er [ 8].
I n pr a cti c e, t h e h et er o g e n o u s s e n s or s c o ul d als o r ef er t o
m ulti pl e i nf or m ati o n r es o ur c es, a n d t h e pr o c essi n g u nit (i. e.,
f u si o n c e nt er) c a n o nl y a n al y z e o n e at a ti m e.  T hi s  m o d el  w ell
d e s cri b e s, f or e x a m pl e, t h e h u m a n d e cisi o n pr o c e ss.  As s u c h,
i n or d er t o r e a c h a q ui c k a n d r eli a bl e d e cisi o n, str at e gi c all y
s el e cti n g t h e “ m o st i nf or m ati v e ” s e n s or,  w hi c h oft e n d e p e n d s
o n t h e p ar a m et er v al u e s or t h e tr u e h y p ot h e sis t h at is u n k n o w n,
h a s b e c o m e t h e pi v ot al pr o bl e m.

I n t h e c o nt e xt of fi x e d- s a m pl e- si z e st atisti c al i nf er e n c e,
s e n s or s el e cti o n h a s b e e n  w ell st u di e d,  m ai nl y fr o m t h e
o pti mi z ati o n st a n d p oi nt. I n p arti c ul ar, [ 8] pr o p o s e d a r a n-
d o m s el e cti o n s c h e m e t o  mi ni mi z e t h e err or c o v ari a n c e
of a pr o c e ss tr a c ki n g pr o bl e m; f or t h e  K al m a n filt er, [ 9]
d e vis e d a  m ulti- st a g e str at e g y t o s el e ct a s u b s et of s e n s or s
s o t h at a n o bj e cti v e f u n cti o n r el at e d t o t h e err or c o v ari a n c e
m atri x  w as  mi ni mi z e d; [ 1 0] p ut f ort h a c o n v e x- o pti mi z ati o n-
b as e d a p pr o a c h t o s el e ct  m ulti pl e s e n s or s f or t h e p ar a m e-
t er esti m ati o n i n li n e ar s y st e m. F or t h e fi x e d- s a m pl e- si z e
h y p ot h e sis t e st, [ 1 1] i n v esti g at e d s e n s or s c h e d uli n g b a s e d
o n i nf or m ati o n- m etri c crit eri a s u c h as  K ull b a c k- L ei bl er a n d
C h er n off di st a n c e s.

T h e st u di e s o n t h e s e n s or s el e cti o n f or s e q u e nti al h y p ot h e sis
t est h a v e  m ai nl y br a n c h e d i nt o t h e of fli n e ( a. k. a. o p e n-l o o p)
a n d o nli n e ( a. k. a. cl o s e d-l o o p) a p pr o a c h e s.  T h e f or m er c at e-
g or y ess e nti all y i n v ol v e s i n d e p e n d e nt r a n d o m s el e cti o n o v er
ti m e,  wit h t h e pr o b a bilit y pr e assi g n e d t o e a c h s e n s or.  Al o n g
t his dir e cti o n, [ 1 2], [ 1 3] i ntr o d u c e d r a n d o m s e n s or s el e c-
ti o n t o t h e  m ulti- h y p ot h esis s e q u e nti al pr o b a bilit y r ati o t est
( M S P R T), a n d d esi g n e d t h e s el e cti o n pr o b a bilit y s u c h t h at its
a p pr o xi m at e d e cisi o n d el a y  w a s  mi ni mi z e d.  T h e y c o n cl u d e d
t h at t h e o pti m al r a n d o m s el e cti o n str at e g y i n v ol v e at  m o st
t w o s e n s or s f or bi n ar y- h y p ot h e sis t e st.  N a m el y, t h e f u si o n
c e nt er s h o ul d eit h er al w a y s u s e o n e s e n s or, or r a n d o ml y
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s wit c h b et w e e n t w o s e n s or s, a n d disr e g ar d t h e r est. Si mil ar
t e ni q u es  w er e l at er a p pli e d t o t h e q ui c k est d et e cti o n  wit h
st o c h asti c s ur v eill a n c e c o ntr ol [ 1 4].  R e c e ntl y, f o c u si n g o n t h e
bi n ar y- h y p ot h e sis t e st, [ 1 5] f urt h er i m p o s e d c o n str ai nts o n t h e
s e n s or u s a g e s, i. e., s e n s or s, o n a v er a g e, c a n n ot b e s el e ct e d
m or e t h a n t h eir pr es cri b e d li mits, a n d o bt ai n e d t h e s el e cti o n
pr o b a biliti es f or S P R T  wit h r a n d o m s e n s or s el e cti o n.

D es pit e t h eir si m pl e i m pl e m e nt ati o n s, t h e o p e n-l o o p
a p pr o a c h e s d o n ot  m a k e u s e of t h e a c c u m ul ati n g s a m pl e
i nf or m ati o n, t h u s ar e s u b o pti m al i n g e n er al.  O n t h e c o ntr ar y,
t h e o nli n e a p pr o a c h e s t a k e all pr e vi o u s s a m pl es i nt o a c c o u nt
at e a c h st e p f or s e ns or s el e cti o n, a n d g e n er all y yi el d s u p eri or
p erf or m a n c e.  As a  m att er of f a ct, d y n a mi c s e n si n g c o ntr ol is
o n e of t h e  m aj or a d v a nt a g e s of s e q u e nti al pr o c e ssi n g.  T o t his
e n d, [ 1 6] s el e ct e d t h e s e n s or t h at  w a s  m o st i nf or m ati v e u n d er
t h e  m o st li k el y tr u e h y p ot h e sis at e a c h st e p. [ 1 7] –[ 1 9] i n v es-
ti g at e d t h e s e q u e nti al  m ulti-h y p ot h e sis t e st  wit h o b s er v ati o n
c o ntr ol, a n d pr o vi d e d l o w er a n d u p p er b o u n d f or its a s y m p-
t oti c p erf or m a n c e.  T w o as y m pt oti c all y o pti m al al g orit h m s
w er e pr o p o s e d t h er e.  T h e v ari a nt of s e q u e nti al h y p ot h e sis
t est — c h a n g e p oi nt d et e cti o n  wit h o b s er v ati o n c o ntr ol  w er e
c o n si d er e d b y [ 2 0], [ 2 1] b a s e d o n  B a y e si a n a n d n o n- B a y e si a n
s etti n gs r es p e cti v el y.  M e a n w hil e, [ 2 2] ass u m e d i d e nti c al s e n-
s or s, a n d st u di e d t h e  B a y e si a n c h a n g e p oi nt d et e cti o n  wit h
c o ntr ol o n t h e n u m b er of a cti v e s e n s or s.  M o st of t h e a b o v e
o nli n e a p pr o a c h e s ar e b a s e d o n h e uristi cs a n d p erf or m  w ell i n
t h e as y m pt oti c r e gi m e,  w h er e err or pr o b a biliti es ar e e xtr e m el y
l o w.  O n t h e ot h er h a n d, f o c u si n g o n t h e n o n- a s y m pt oti c
r e gi m e, [ 2 3] c o n si d er e d t h e o nli n e s e n s or s el e cti o n str at e g y
f or t h e S P R T.  H o w e v er, it ai m e d t o  mi ni mi z e t h e d e ci-
si o n d el a y gi v e n t h at S P R T  w a s u s e d. I n st e a d, t h e r e c e nt
w or k [ 2 4] j oi ntl y s ol v e d a  B a y e si a n h y p ot h e sis t e sti n g pr o b-
l e m f or b ot h t h e o pti m al s e q u e nti al t e st a n d o nli n e s el e cti o n
str at e g y.

I n t his  w or k,  w e als o ai m f or t h e o pti m al s e q u e nti al t est a n d
o nli n e s e n s or s el e cti o n si m ult a n e o u sl y.  M or e o v er,  w e f urt h er
i ntr o d u c e t h e c o n str ai nts o n t h e s e n s or u s a g e s i nt o t h e f or m ul a-
ti o n,  w hi c h  w o ul d p ot e nti all y e m br a c e a  m u c h  wi d er r a n g e of
pr a cti c al pr o bl e m s.  T h at is, c ert ai n s e n s or s i n t h e n et w or k ar e
n ot all o w e d t o b e s el e ct e d  m or e t h a n a pr e s cri b e d n u m b er of
ti m e s o n a v er a g e.  T h e u s a g e c o n str ai nt s n at ur all y ari s e  w h e n
o n e i nt e n d s t o r estr ai n t h e s e n s or s fr o m b ei n g o v er u s e d d u e t o
t h eir li mit e d b att er y/lif eti m e, or if t h e f air n ess f or all s e n s or s i n
t h e n et w or k is i m p ort a nt [ 1 5].  We s u m m ari z e t h e c o ntri b uti o n s
as f oll o ws:

• T o t h e b e st of o ur k n o wl e d g e, t his is t h e fir st  w or k
t h at j oi ntl y s ol v es f or t h e o pti m al s e q u e nti al t est
a n d o nli n e s e n s or s el e cti o n  w h e n s e n s or u s a g e c o n-
str ai nts ar e c o n si d er e d.  M or e o v er, t his  w or k disti n g uis h e s
fr o m [ 1 5],  w h er e t h e u s a g e- c o ntr ai n e d s e n s or s el e c-
ti o n is als o st u di e d, i n t er m s of its o nli n e/ cl o s e d-l o o p
s et u p.

• N ot e t h at  m o st of t h e e xisti n g  w or k s o n s e n s or s el e cti o n
f or s e q u e nti al t e st o nl y a p pl y t o i n fi nit e- h ori z o n,  w h er e
s a m pl e si z e ( or d e cisi o n d el a y) at a s p e ci fi c r e ali z ati o n
c a n g o t o i n fi nit y if n e c ess ar y.  T his  m a y n ot b e r e alisti c
i n s o m e a p pli c ati o n s. I n c o ntr a st,  w e c o n si d er b ot h t h e
i n fi nit e- h ori z o n a n d fi nit e- h ori z o n s c e n ari o s. I n t h e l at er

c a s e, a fi x e d u p p er b o u n d is i m p o s e d o n t h e r a n d o m
s a m pl e si z e at e v er y r e ali z ati o ns.

• We pr o p o s e pr a cti c al al g orit h m t o s y st e m ati c all y e v al u at e
t h e p ar a m et er s i n t h e o pti m al s eq u e nti al t est a n d s el e cti o n
str at e g y.  As l o n g a s t h e t e st p erf or m a n c e c o n str ai nt s
a n d t h e s e n s or u s a g e c o n str ai nts r e m ai n t h e s a m e, t his
al g orit h m o nl y n e e d s t o b e r u n o n c e of fli n e.  T h at is, o n c e
t h e p ar a m et ers ar e c al c ul at ed, t h e y c a n b e st or e d at t h e
f u si o n c e nt er, b a s e d o n  w hi c h, t h e s e q u e nti al t e st c a n b e
e asil y i m pl e m e nt e d.

T h e r e mi n d er of t h e p a p er is or g a ni z e d a s f oll o ws.  We fir st
f or m ul at e t h e u s a g e- c o n str ai n e d s e q u e nti al h y p ot h e sis t e st
i n S e cti o n II.  T h e n t h e o pti m al s e q u e nti al t est a n d s e n s or
s el e cti o n str at e g y ar e d eri v e d i n S e cti o n III. I n S e cti o n I V,
w e pr o p o s e pr a cti c al al g orit h m s t o d e si g n t h e p ar a m et er s i n
t h e o pti m al s c h e m e. S e cti o n  V pr o vi d es n u m eri c al r es ults t o
ill u str at e t h e t h e or eti c al r es ults, a n d t o c o m p ar e  wit h t h e of fli n e
r a n d o m s el e cti o n s c h e m e. Fi n all y, S e cti o n  VI c o n cl u d e s t his
p a p er.

II.  P R O B L E M F O R M U L A T I O N

C o n si d er a s y st e m c o n sisti n g of K s e n s or s a n d a f u si o n
c e nt er t h at ai m s t o t e st b et w e e n t w o h y p ot h e s es,  w h o s e pri or s
ar e gi v e n as P (H = i) = π i , i = 0 , 1.  At e a c h ti m e i nst a nt,
t h e f u si o n c e nt er s el e cts o n e s e n s or t o t a k e a s a m pl e t h at
is s e nt t o t h e f u si o n c e nt er.  T his pr o c ess c o nti n u es u ntil a
r eli a bl e d e cisi o n c a n b e  m a d e. It is ass u m e d t h at t h e f u si o n
c e nt er p oss ess es t h e st atisti c al c h ar a ct eri z ati o n of all s e ns ors.
T h at is, t h e c o n diti o n al pr o b a bilit y d e n sit y f u n cti o n s fH ( x )
of t h e r a n d o m s a m pl es c oll e ct e d b y s e n s or , = 1 , 2 , . . . , K
ar e k n o w n t o t h e f u si o n c e nt er.  Wit h o ut l o ss of g e n er alit y,
w e a ss u m e t h at t h e s e n s or n et w or k is h et er o g e n o u s, i. e., t h er e
ar e n o t w o s e n s or s  wit h i d e nti c al fH ( x )’s. I n a d diti o n, t h e r a n-
d o m s a m pl es ar e a ss u m e d t o b e i n d e p e n d e nt a n d i d e nti c all y
distri b ut e d (i.i. d.) o v er ti m e f or t h e s a m e s e n s or , a n d i n d e-
p e n d e nt a cr o ss diff er e nt s e n s or s.

O n o n e h a n d, if t h er e is a d o mi n a nt s e n s or t h at al w a y s
o ut p erf or m s all ot h er s e n s or s, t h e f u si o n c e nt er s h o ul d al w a y s
u s e it i n t h e a b s e n c e of u s a g e c o n str ai nt.  T h e n t h e pr o bl e m
r e d u c e s t o a si n gl e- s e n s or s e q u e nti al h y p ot h e sis t e st, a n d t h e
S P R T yi el d s t h e q ui c k e st d e cisi o n.  O n e s u c h e x a m pl e is t h e
t est b et w e e n z er o (H 0 ) a n d n o n- z er o  G a u ssi a n  m e a n s (H 1 ),
w h er e t h e s e n s or  wit h t h e l ar g e st  m e a n s hift u n d er H 1 s h o ul d
pr e v ail.  O n t h e ot h er h a n d, t h e e f fi ci e n c y of a s e ns or g e n er all y
d e p e n d s o n t h e tr u e h y p ot h e sis. F or e x a m pl e, s o m e s e n s or s
c a n b e  m or e i nf or m ati v e u n d er H 0 a n d l e ss s o u n d er H 1 ,
t h u s a c c el er ati n g t h e d e ci si o n s p e e d  w h e n H 0 is tr u e, a n d
sl o wi n g d o w n t h e d e ci si o n s p e e d ot h er wi s e.  M or e o v er, e v e n
t h e d o mi n a nt s e n s or c a n n ot b e u s e d all t h e ti m e if its u s a g e
i s r e str ai n e d. I n g e n er al, t h e o nli n e s e n s or s el e cti o n pr o c e d ur e
i s p erf or m e d b a s e d o n t h e a c c u m ul at e d s a m pl e i nf or m ati o n,
w hi c h is e x pl ai n e d as f oll o ws.

T h er e ar e t hr e e ess e nti al o p er ati o n s i n t h e o nli n e pr o c e d ur e:
1) S e n s or s el e cti o n str at e g y:  L et {1 , 2 , . . . , K } b e

t h e s et of all s e n s or s, a n d { X 1 , . . . , X t } d e n ot e t h e
s e q u e n c e of s a m pl e s r e c ei v e d at t h e f u si o n c e nt er.  T h e n
t h e s e ns or s el e ct e d at ti m e t c a n b e d e fi n e d a s δ t :
{ X 1 , . . . , X t− 1 } → j ∈ . I n a d diti o n,  w e d e n ot e t h e
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s e q u e n c e of s e n s or s el e cti o n s fr o m ti m e i t o ti m e j as
δ i: j , a n d δ i: j ∅ if i > j.  N ot e t h at si n c e at a n y
ti m e, t h e distri b uti o n of t h e n e xt s a m pl e d e p e n d s o n t h e
s el e cti o n f u n cti o n, t h e f u si o n c e nt er o b s er v es d e p e n d e nt
r a n d o m s a m pl es { X t }.

2) St o p pi n g r ul e:  T h e r a n d o m s a m pl e si z e is c h ar a ct eri z e d
b y t h e st o p pi n g ti m e T . I n s p e ci fi c, t h e e v e nt {T =
t} m e a n s t h at t h e s a m pl e si z e is e q u al t o t, w hi c h
d e p e n d s o n { X 1 , . . . , X t }. I n t his  w or k,  w e f o c u s o n t h e
d et er mi nisti c st o p pi n g r ul e, i. e., P (T = t|X 1 , . . . , X t ) is
eit h er z er o or o n e.

3)  D e cisi o n f u n cti o n:  U p o n st o p pi n g at T = t, a fi n al
d e cisi o n b et w e e n t h e t w o h y p ot h e s es is  m a d e, D t :
{ X 1 , . . . , X t } → {0 , 1 }.

A s s u c h, t h e f u si o n c e nt er is f a c e d  wit h t h e f oll o wi n g h y p ot h-
esis t esti n g pr o bl e m:

H 0 : X t ∼ f δ t
0 ( x ), t = 1 , 2 , . . .

H 1 : X t ∼ f δ t
1 ( x ), t = 1 , 2 , . . . .

T h e p erf or m a n c e i n di c at or s f or s e q u e nti al h y p ot h e sis t e st
i n cl u d e t h e e x p e ct e d s a m pl e si z e a n d t h e err or pr o b a biliti es.
I n p arti c ul ar, t h e e x p e ct e d s a m pl e si z e E T = π 0 E 0 (T ) +
π 1 E 1 (T ) is t h e  w ei g ht e d s u m of t h e c o n diti o n al e x p e ct e d
s a m pl e si z es, a n d t h e t y p e-I a n d t y p e-II err or pr o b a biliti es
ar e P 0 ( D T = 1 ) a n d P 1 ( D T = 0 ) r es p e cti v el y1 . H er e t h e
e x p e ct ati o n E (·) is t a k e n o v er t h e j oi nt distri b uti o n of H a n d
X t , a n d E i (·) is t a k e n o v er t h e distri b uti o n of X t c o n diti o n e d
o n {H = i}.

M or e o v er,  w e als o i m p o s e c o n str ai nts o n t h e u s a g e of
s e n s or s.  D e n ot e a s t h e s et of s e n s or s  w h o s e u s a g e s ar e
r e str ai n e d.  T h e n f or e a c h s e n s or ∈ , t h e a v er a g e n u m b er

of ti m e s t h at s e n s or is s el e ct e d, E T
t= 1 {δ t = } , is c o n-

str ai n e d t o b e n o gr e at er t h a n T ∈ R + .  As s u c h,  w e arri v e at
t h e f oll o wi n g c o n str ai n e d s e q u e nti al pr o bl e m:

mi n {δ 1 :T , D T ,T } E T
s u bj e ct t o P 0 ( D T = 1 ) ≤ α, P 1 ( D T = 0 ) ≤ β,

E T
t= 1 {δ t = } ≤ T , ∈ .

( P 1)

I n f a ct, if o n e i nt e n d s t o li mit t h e p er c e nt a g e of ti m e t h at
c ert ai n s e n s or s s h o ul d b e s el e ct e d, f or e x a m pl e, d u e t o t h e c o n-
c er n of f air n e ss a m o n g t h e s e n s or s, a n ot h er c o n str ai nt f or t h e

p er u nit ti m e u s a g e c a n als o b e d e fi n e d a s E T
t= 1 {δ t = } ≤

E (T ). I nt er e sti n gl y, t h e p er- u nit-ti m e- u s a g e c o n str ai nt l e a d
t o t h e s a m e fr a m e w or k a s t h e c o n str ai nt i n ( P 1) b y r e c a sti n g

it as E T
t= 1 {δ t = } − ≤ 0.  T h u s  w e p arti c ul arl y f o c u s

o n t h e c o n str ai nt o n t h e t ot al u s a g e i n t his  w or k.
I n t h e f oll o wi n g s e cti o n s,  w e  will s ol v e ( P 1) u n d er b ot h t h e

fi nit e- h ori z o n a n d i n fi nit e- h ori z o n s et u p s.  T h e fi nit e- h ori z o n
s et u p i m p o s e s a n u p p er b o u n d o n T f or a n y r e ali z ati o n, b e y o n d
w hi c h n o s a m pl e c a n b e t a k e n;  w h er e a s t h e i n fi nit e- h ori z o n
s et u p all o ws t h e s e q u e nti al t est t o c o nti n u e as l o n g as t h e
t er mi n ati o n c o n diti o n is n ot  m et. I n a d diti o n t o its r el e v a n c e
i n  m a n y a p pli c ati o n s, t h e fi nit e- h ori z o n c a s e c a n als o b e

1 O n e c a n als o us e t h e  w ei g ht e d s u m of t y p e-I a n d t y p e-II err or r at es as t h e
err or pr o b a bilit y.  H er e  w e a d o pt t h e f or m ul ati o n i n [ 1 5], a n d c o nsi d er t h e m
i n di vi d u all y.  N e v ert h el es s, t h e  m et h o d d e v el o p e d i n t his  w or k c a n b e a p pli e d
t o t h e f or m er c as e.

u s e d a s a b uil di n g bl o c k f or t h e i n fi nit e- h ori z o n pr o bl e m. F or
n ot ati o n al c o n v e ni e n c e,  w e d e fi n e t h e cl a ss of i n fi nit e- h ori z o n
pr o c e d ur e s:

C α, β, { T } ∈ {δ 1 :T , D T , T } : P 0 ( D T = 1 ) ≤ α,

P 1 ( D T = 0 ) ≤ β, a n d E

⎛

⎝
T

t= 1

{δ t = }

⎞

⎠ ≤ T , ∈ , ( 1)

a n d t h e cl a ss of fi nit e- h ori z o n pr o c e d ur e s:

C N α, β, { T } ∈

{δ 1 :T , D T , T } ∈ C α, β, { T } ∈ : T ≤ N . ( 2)

O ur g o al is t o fi n d t h e o pti m al tri pl ets {δ 1 :T , T , D T } t h at
yi el d t h e s m all est e x p e ct e d s a m pl e si z es E T i n t h e cl ass es
C N α, β, { T } ∈ a n d C α, β, { T } ∈ r e s p e cti v el y.

III.  O P T I M A L S E Q U E N T I A L T E S T W I T H C O N S T R A I N E D

O N L I N E S E N S O R S E L E C T I O N

I n t hi s s e cti o n,  w e fir st r e c a st ( P 1) i nt o a n u n c o n str ai n e d
o pti m al st o p pi n g pr o bl e m,  w hi c h  w e t h e n s ol v e u n d er b ot h
fi nit e- h ori z o n a n d i n fi nit e- h ori z o n s et u p s.  T h e s ol uti o n s l e a d u s
t o t h e o pti m al s e q u e nti al s ol uti o n s t o t h e ori gi n al c o n str ai n e d
pr o bl e m ( P 1).

B y i ntr o d u ci n g  L a gr a n g e  m ulti pli er s t o ( P 1),  w e fir st o bt ai n
t h e  B a y e s o bj e cti v e f u n cti o n i n ( 3) ( o n t h e t o p of p a g e 4 3 9 5),
w h er e C j 1 + λ j a n d λ j ≥ 0 f or j ∈ , a n d C j 1 f or
j /∈ .

A.  Fi nit e- H o riz o n S ol uti o n t o t h e  B a y e s  P r o bl e m

I n t his s u b s e cti o n, u n d er t h e fi nit e- h ori z o n s et u p,  w e ai m t o
fi n d t h e o pti m al s e n s or s el e cti o n, st o p pi n g ti m e a n d d e cisi o n
r ul e s u c h t h at t h e  B a y es ris k i n ( 3) is  mi ni mi z e d, i. e.,

mi n
{δ 1 :T , D T ,T },T ≤ N

R (δ 1 :T , D T , T ) = E

⎛

⎝
T

t= 1

C δ t + µ ( D T , H )

⎞

⎠ .

( 4)

D e fi n e t h e c u m ul ati v e l o g-li k eli h o o d r ati o ( L L R)

L n

n

t= 1

l o g
f δ t
1 ( X t )

f δ t
0 ( X t )

lδ t ( X t )

, ( 5)

a n d t h e p o st eri or pr o b a biliti es π i (t) P (H = i|X 1 :t , δ 1 :t ),
i ∈ { 0 , 1 } wit h π i (0 ) = π i .  T h es e t w o st atisti cs r el at e t o e a c h
ot h er as f oll o ws

π 1 (n ) =
π 1 e

L n

π 0 + π 1 e L n
=

π 1 (n − 1 )e lδ n

π 0 (n − 1 ) + π 1 (n − 1 )e lδ n
,

L n = l o g
π 0 π 1 (n )

π 1 π 0 (n )
. ( 6)

A ut h ori z e d li c e n s e d u s e li mit e d t o: U ni v er sit y of Mi n n e s ot a. D o w nl o a d e d o n J ul y 0 2, 2 0 2 0 at 1 5: 4 2: 2 9 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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R (δ 1 :T , D T , T ) E T + µ 0 π 0 P 0 ( D T = 1 ) + µ 1 π 1 P 1 ( D T = 0 ) +
∈

λ E

⎛

⎝
T

t= 1

{δ t = }

⎞

⎠

= E

⎛

⎝ T + µ 0 { D T = 1 ;H = 0 } + µ 1 { D T = 0 ;H = 1 } +
∈

λ

⎛

⎝
T

t= 1

{δ t = }

⎞

⎠

⎞

⎠

= E

⎛

⎜
⎜
⎝

T

t= 1

1 + {δ t ∈ } λ δ t

C δ t

+ µ 0 { D T = 1 ;H = 0 } + µ 1 { D T = 0 ;H = 1 }

µ( D T ,H )

⎞

⎟
⎟
⎠ ( 3)

1)  D e cisi o n  F u n cti o n: We b e gi n  wit h s ol vi n g t h e t er mi n al
d e cisi o n f u n cti o n. Si n c e

R (δ 1 :T , D T , T ) − E

⎛

⎝
T

t= 1

C δ t

⎞

⎠

=

∞

t= 1

E {T = t} µ 0 { D T = 1 ;H = 0 } + µ 1 { D T = 0 ;H = 1 }

=

∞

t= 1

E E H µ 0 { D t = 1 ;H = 0 }+ µ 1 { D t = 0 ;H = 1 } X 1 :t , δ 1 :t {T = t}

=

∞

t= 1

E µ 0 π 0 (t) { D t = 0 } + µ 1 π 1 (t) { D t = 1 } {T = t} , ( 7)

w e h a v e D t = {µ 0 π 0 (t)≤ µ 1 π 1 (t)} gi v e n T = t, i. e.,

D T = {µ 0 π 0 (T )≤ µ 1 π 1 (T )} . ( 8)

2) S el e cti o n Str at e g y a n d St o p pi n g  R ul e: F or n ot ati o n al
c o n v e ni e n c e, d e fi n e t h e cl a ss

A N
n {δ n + 1 :T , T } : n ≤ T ≤ N , ( 9)

i n  w hi c h t h e pr o c e d ur e s d o n ot st o p b ef or e n a n d c a n n ot g o
b e y o n d N .  B y s u b stit uti n g D T wit h ( 8), ( 4) b e c o m e s

mi n
{δ 1 :T ,T } ∈A N

0

E

⎛

⎜
⎝

T

t= 1

C δ t + mi n {µ 0 π 0 (T ),  µ1 π 1 (T )}

φ ( π 1 (T ))

⎞

⎟
⎠ , ( 1 0)

w h er e φ ( x ) mi n {µ 1 x , µ0 (1 − x )}.  We n e xt s ol v e ( 1 0) t o
o bt ai n t h e o pti m al s e n s or s el e cti o n str at e g y a n d st o p pi n g r ul e.

D e fi n e t h e o pti m al c o st of t h e pr o c e d ur e s t h at d o n ot st o p
b ef or e t = n , i. e., t h e “ c o st-t o- g o ” f u n cti o n

V N
n ( X 1 :n , δ 1 :n )

mi n
{δ n + 1 :T ,T } ∈A N

n

E

⎛

⎝
T

t= 1

C δ t + φ (π 1 (T )) X 1 :n , δ 1 :n

⎞

⎠ ( 1 1)

N ot e t h at V N
0 ( w hi c h is n ot a f u n cti o n of a n y s a m pl es) is

e q u al t o ( 1 0) b y d e fi niti o n a n d V N
N ( X 1 :N , δ 1 :N ) = φ (π 1 ( N )) +

N
t= 1 C δ t si n c e t h e t e st h a s t o st o p at N if n ot b ef or e it. I n v o k-

i n g t h e t e c h ni q u e of d y n a mi c pr o gr a m mi n g, t h e c o st-t o- g o ( 1 1)
c a n b e r e c ur si v el y s ol v e d b y t h e b a c k w ar d r e c ur si o n ( 1 2) ( o n
t h e t o p of p a g e 4 3 9 6) [ 2].  wit h n = N − 1 , N − 2 , . . . , 1 , 0.
A c c or di n g t o t h e pri n ci pl e of o pti m alit y, t h e o pti m al st o p pi n g

ti m e h a p p e n s  w h e n t h e c o st of st o p pi n g at t h e pr e s e nt i n st a nt
is l o w er t h a n t h e e x p e ct e d c o st of c o nti n ui n g [ 1], [ 2 5], i. e.,

T = mi n n : g n ( X 1 :n , δ 1 :n )

r s ( X 1 :n , δ 1 :n ) − r c ( X 1 :n , δ 1 :n ) ≤ 0 ,

wit h g n (·) d e fi n e d i n ( 1 3),  w h er e t h e s e c o n d e q u alit y is d u e
t o t h e d e fi niti o n of V N

n i n ( 1 1).
I n t h e or y, ( 1 2) a n d T f ull y c h ar a ct eri z e t h e o pti m al

st o p pi n g r ul e a n d s el e cti o n str at e g y fr o m t h e fir st t o t h e N -t h
st e p s.  H o w e v er, t his r es ult is of li mit e d pr a cti c al v al u e d u e t o
t h e hi g h c o m pl e xit y br o u g ht b y t h e hi g h- di m e n si o n al q u a n-
titi es (i. e., X 1 :n a n d δ 1 :n ).  T o t his e n d, t h e f oll o wi n g l e m m a
si g ni fi c a ntl y si m pli fi es T a n d ( 1 3), si n c e it st at es t h at t h e
h y p ot h e sis p o st eri or ( or e q ui v al e ntl y, t h e  L L R) is t h e s uf fi ci e nt
st atisti c f or t h e o pti m al st o p pi n g r ul e. I n f a ct,  L e m m a 1- 3
c a n b e e st a blis h e d u n d er t h e g e n er al s et u p of  M ar k o v d e ci-
si o n pr o c e ss [ 2 6] –[ 2 8] b y r e c a sti n g t h e c o ntr ol p ar a m et er s
a s t h e st o p pi n g i n di c at or {T = t} a n d s e n s or s el e cti o n δ t+ 1 .
N o n et h el e ss, c o n si d eri n g t h at t h e s e l e m m a s ar e cr u ci al t o t h e
f urt h er d e v el o p m e nt, a n d f or t he s a k e of c o m pl et e n e ss of t hi s
w or k,  w e h a v e i n cl u d e d o ur pr o of s f or t h e s e l e m m a s i n t h e
a p p e n di x f or t h e i nt er e st e d r e a d er s. I n p arti c ul ar, f or t h e pr o of s
of  L e m m a 1- 2,  w e a d o pt t h e fr a m e w or k d e vis e d b y [ 1], a n d
L e m m a 3 is pr o v e d u si n g t h e s a m e t e c h ni q u e of i n d u cti o n as
t h at i n [ 2 7] a n d [ 2 8].

L e m m a 1. T h e o pti m al st o p pi n g r ul e f o r ( 4) is a f u n cti o n of
ti m e a n d h y p ot h e sis p o st eri o r, i. e., a ti m e- v a ri a nt f u n cti o n of
t h e p o st eri o r, T = mi n {n : g n ( π1 (n )) ≤ 0 }.

P r o of: S e e  A p p e n di x.

T h e i m p ort a nt i m pli c ati o n of  L e m m a 1 is t h at t h e s el e cti o n
str at e g y,  w hi c h d e p e n d s o n all pr e vi o u s s a m pl es, c a n b e
s u m m ari z e d i nt o a  m or e c o m p a ct f or m.

L e m m a 2. T h e o pti m al s el e cti o n str at e g y f o r ( 4) is c h a r a c-
t eriz e d b y a ti m e- v a ri a nt f u n cti o n of t h e h y p ot h e sis p o st eri o r
( o r e q ui v al e ntl y, t h e L L R), i. e., δ n + 1 = ψ n + 1 ( π1 (n )).

P r o of: S e e a p p e n di x.

T his r e s ult a gr e e s  wit h t h e i nt uiti o n. Si n c e t h e s e n s or
ef fi ci e n c y d e p e n d s o n t h e a ct u al h y p ot h e sis, it is r e a s o n a bl e
t o b a s e t h e s e n s or s el e cti o n u p o n t h e pr e s e nt b eli ef (i. e.,
p o st eri or) o n t h e h y p ot h e sis.

A ut h ori z e d li c e n s e d u s e li mit e d t o: U ni v er sit y of Mi n n e s ot a. D o w nl o a d e d o n J ul y 0 2, 2 0 2 0 at 1 5: 4 2: 2 9 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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V N
n ( X 1 :n , δ 1 :n ) = mi n

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ (π 1 (n )) +

n

t= 1

C δ t

r s ( X 1 :n ,δ 1 :n )

, mi n
δ n + 1

E V N
n + 1 ( X 1 :n + 1 , δ 1 :n + 1 ) X 1 :n , δ 1 :n

r c ( X 1 :n ,δ 1 :n )

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

( 1 2)

g n ( X 1 :n , δ 1 :n ) = φ (π 1 (n )) +

n

t= 1

C δ t − mi n
δ n + 1

E V N
n + 1 ( X 1 :n + 1 , δ 1 :n + 1 ) X 1 :n , δ 1 :n

= φ (π 1 (n )) − mi n
δ n + 1

⎧
⎨

⎩
C δ n + 1 + mi n

{δ n + 2 :T ,T } ∈A N
n + 1

⎡

⎣ E

⎛

⎝ φ ( π 1 (T )) +

T

t= n + 2

C δ t X 1 :n , δ 1 :n

⎞

⎠

⎤

⎦

⎫
⎬

⎭
( 1 3)

N e xt  w e c o nti n u e t o st u d y t h e st o p pi n g r ul e T i n  m or e
d et ails.  D e fi n e

G N
n ( X 1 :n , δ 1 :n ) V N

n ( X 1 :n , δ 1 :n ) −

n

t= 1

C δ t

= mi n
{δ n + 1 :T ,T } ∈A N

n

E

⎛

⎝
T

t= n + 1

C δ t + φ (π 1 (T )) X 1 :n , δ 1 :n

⎞

⎠ .

( 1 4)

M e a n w hil e, G N
n ( X 1 :n , δ 1 :n ) c a n b e  writt e n as a f u n cti o n of

π 1 (n ) b y u si n g ( 5 6) a s

G N
n ( X 1 :n , δ 1 :n ) = φ (π 1 (n )) − m a x {g n ( π1 (n )), 0 }

= G N
n (π 1 (n )) , ( 1 5)

a n d G N
N ( X 1 :N , δ 1 :N ) = φ (π 1 ( N )) .

T h e n, b y s u b str a cti n g n
t= 1 C δ t o n b ot h si d e s of ( 1 2),

w e o bt ai n

r s −

n

t= 1

C δ t = φ ( π 1 (n )), ( 1 6)

a n d

r c ( X 1 :n , δ 1 :n ) −

n

t= 1

C δ t

= mi n
δ n + 1

E V N
n + 1 ( X 1 :n + 1 , δ 1 :n + 1 ) −

n

t= 1

C δ t X 1 :n , δ 1 :n

= mi n
δ n + 1

E C δ n + 1 + G N
n + 1 (π 1 (n + 1 )) X 1 :n , δ 1 :n ( 1 7)

= mi n
δ n + 1

C δ n + 1 + E G N
n + 1 (π 1 (n + 1 )) π 1 (n ) , ( 1 8)

w h er e ( 1 7) f oll o ws fr o m t h e d e fi niti o n of G N
n ,

a n d ( 1 8) h ol d s si n c e C δ n + 1 i s c o n st a nt gi v e n
{ X 1 :n , δ 1 :n } a n d E G N

n + 1 (π 1 (n + 1 )) X 1 :n , δ 1 :n =

E G N
n + 1 (π 1 (n + 1 )) π 1 (n ) . S u b stit uti n g ( 1 6)-( 1 8) i nt o ( 1 2),

t h e b a c k w ar d r e c ur si o n is si g ni fi c a ntl y si m pli fi e d t o ( 1 9) ( o n
t h e t o p of p a g e 4 3 9 7),  wit h n = N − 1 , N − 2 , . . . , 1 , 0.
O b vi o u sl y,  w e h a v e

G N
0 ( π1 ) = V N

0 ( π1 ) ( 2 0)

d u e t o t h e d e fi niti o n i n ( 1 4).

Wit h t h e l e m m a b el o w,  w e c a n f urt h er a n al y z e t h e o pti m al
st o p pi n g r ul e gi v e n i n  L e m m a 1.

L e m m a 3. G
N
n ( π1 (n ), δ n + 1 ) is a c o n c a v e f u n cti o n of π 1 (n ).

M o r e o v e r, t h e f u n cti o n

G N
n ( π1 (n )) mi n

δ n + 1

G
N
n ( π1 (n ), δ n + 1 ) ( 2 1)

is c o n c a v e  wit h G N
n (0 ) > 0 , G N

n (1 ) > 0 , f o r n = 0 , 1 , . . . , N.

P r o of: S e e a p p e n di x.

T o g et h er  wit h  L e m m a 1,  L e m m a 3 r e v e als t h e f oll o wi n g
o pti m al st o p pi n g r ul e.

L e m m a 4. T = mi n {n : π 1 (n ) /∈ (a n , b n )}, w h e r e an a n d b n

a r e r o ots f o r

µ 0 (1 − x ) = G N
n ( x ) a n d µ 1 x = G N

n ( x ), ( 2 2)

r e s p e cti v el y.  M or e o v er, a 0 < a 1 < . . .  < a N = µ 0
µ 0 + µ 1

, a n d

b 0 > b 1 > . . .  > b N = µ 0
µ 0 + µ 1

.

P r o of: S e e  A p p e n di x.

I nt er e sti n gl y, t h e si mil ar r e s ult of c ur v e d st o p pi n g b o u n d-
ar y is als o r e p ort e d i n [ 2 9] f or t h e o n e- s e n s or s e q u e nti al
h y p ot h e sis t e sti n g pr o bl e m  wit h st o c h a sti c h ori z o n d e a dli n e
N . I n [ 2 9], o nl y t h e st o p pi n g ti m e is o pti mi z e d,  w h er e a s
h er e  w e j oi ntl y o pti mi z e t h e st o p pi n g ti m e a n d ot h er c o ntr ol
p ar a m et er, i. e., s e n s or s el e cti o n.  N o w  w e h a v e o bt ai n e d t h e
o pti m al s ol uti o n {δ 1 :T , D T , T } t o ( 4),  w hi c h is s u m m ari z e d
i n t h e t h e or e m b el o w.  N ot e t h at  w e h a v e c h a n g e d t h e s uf fi ci e nt
st atisti c π 1 (n ) t o its e q ui v al e nt f or m, i. e.,  L L R L n t o dr a w
p ar all el t o t h e  w ell- k n o w n S P R T, a n d  wit h a n a b u s e of
n ot ati o n, t h e s el e cti o n f u n cti o n is als o d e n ot e d as ψ t+ 1 ( L t ).

T h e o r e m 1. T h e o pti m al s e q u e nti al p r o c e d u r e t h at s ol v e s ( 4)
f e at ur es a s e q u e nti al p r o b a bilit y r ati o t est  wit h c ur v e d st o p-
pi n g b o u n d a r y, a n d ti m e- v a ri a nt s e n s o r s el e cti o n str at e g y, i. e.,

1) T h e o pti m al s e n s o r s el e cti o n r ul e is a ti m e- v a ri a nt
f u n cti o n of L L R: δ t+ 1 ψ t+ 1 ( L t );

A ut h ori z e d li c e n s e d u s e li mit e d t o: U ni v er sit y of Mi n n e s ot a. D o w nl o a d e d o n J ul y 0 2, 2 0 2 0 at 1 5: 4 2: 2 9 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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G N
n ( π1 (n )) = mi n

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

φ (π 1 (n )) , mi n
δ n + 1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

C δ n + 1 + E G N
n + 1

π 1 (n ) e x p lδ n + 1

π 0 (n ) + π 1 (n ) e x p lδ n + 1

π 1 (n )

G
N
n ( π1 (n ), δn + 1 )

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

( 1 9)

2) T h e o pti m al st o p pi n g r ul e is i n t h e f o r m of a tr u n c at e d
S P R T, i. e.,

T = mi n {t : L t /∈ (− A t , B t )}, wit h ( 2 3)

B 0 > B 1 > . . . > B N = l o g
µ 0 π 0

µ 1 π 1
,

a n d  A 0 > A 1 > . . . > A N = − l o g
µ 0 π 0

µ 1 π 1
; ( 2 4)

3) T h e o pti m al d e cisi o n r ul e  D T d e ci d e s H 0 if
L T ≤ − A T , a n d d e ci d e s H 1 if LT ≥ B T .

F or t h e s c h e m e gi v e n i n  T h e or e m 1, T ≤ N is g u ar a nt e e d
b y n oti n g t h at − A N = B N = l o g µ 0 π 0

µ 1 π 1
, a n d (− A N , B N ) is a n

e m pt y s et. I n ot h er  w or d s, a n y v al u e of L N r e s ults i n st o p pi n g.
I n s p e ci fi c, L N ≥ B N gi v e s d e cisi o n δ N = 1, a n d L N ≤ − A N

gi v e s d e cisi o n δ N = 0. Si n c e L N = − A N = B N = l o g µ 0 π 0
µ 1 π 1

h ol d s  wit h z er o pr o b a bilit y, t h e e q u alit y sit u ati o n f or d e cisi o n
c a n b e i g n or e d i n t his c a s e.  T h e or e m 1 r e v e als t h e i m p ort a nt
str u ct ur e of t h e o pti m al s ol uti o n t o ( 4),  w hil e t h e s p e ci fi c
v al u es of A t , B t a n d ψ t+ 1 ( L t ) n e e d t o b e e v al u at e d b y s ol vi n g
t h e d y n a mi c pr o gr a m ( 1 9). I n s p e ci fi c, i n t h e p o st eri or d o m ai n,
t h e c o nti n u ati o n r e gi o n (i. e., t h e s e q u e nti al t est st o p s if t h e
p o st eri or g o e s b e y o n d t his r e gi o n) a n d t h e s el e cti o n r e gi o n f or
s e n s or ar e gi v e n r es p e cti v el y b y

R t {π 1 (t) : φ ( π 1 (t)) ≥ G N
t ( π1 (t))}, ( 2 5)

D t π 1 (t) : = ar g  mi n
δ

G
N
t ( π1 (t), δ ) , = 1 , . . . , K .

( 2 6)

Tr a n sf or mi n g R t a n d D t i nt o t h e  L L R d o m ai n a c c or di n g
t o ( 6),  w hi c h  w e d e n ot e as R t a n d D t , t h e n t h e t hr e s h ol d s
i n  T h e or e m 1 ar e e v al u at e d as

A t = − mi n { L t : L t ∈ R t }, B t = m a x { L t : L t ∈ R t }. ( 2 7)

M or e o v er,  L e m m a 3 a n d ( 2 6) i n di c at e t h at t h e s el e cti o n
str at e g y b oils d o w n t o fi n di n g t h e  mi ni m u m of K c o n c a v e

f u n cti o n s, i. e., G
N
n ( π1 (t), δ ), δ = 1 , . . . , K , i n t h e d o m ai n of

p o st eri or. I n li g ht of t h e a n al yti c al e x pr e ssi o n ( 2 6), t h e f oll o w-
i n g i n si g hts f or t h e s e n s or s el e cti o n f u n cti o n ar e n ot e w ort h y.

• Si n c e c o n c a v e f u n cti o n s ar e ni c el y b e h a v e d f u n cti o n s,
t h e r es ulti n g s el e cti o n s c h e m e ess e nti all y p artiti o n s t h e
d o m ai n of p o st eri or i nt o a fi nit e n u m b er of i nt er v als
( a ss u mi n g K is fi nit e) a n d assi g n e a c h i nt er v al  wit h t h e

s e n s or i n d e x,  w h o s e v al u e of G
N
n i s  mi ni m u m  wit hi n t h at

i nt er v al.  T his o b s er v ati o n s u g g e sts t h at, o n c e c o m p ut e d
of fli n e, t h e s e n s or s el e cti o n str at e g y c a n b e e a sil y st or e d
i n t h e f u si o n c e nt er.

• I n g e n er al, t h er e c a n b e  m ulti pl e i nt er v al s c orr e s p o n di n g
t o a c ert ai n s e n s or. I n ot h er  w or d s, t h e s el e cti o n r e gi o n

f or a s e n s or c a n b e disj oi nt i nt er v als.  T his i n si g ht  will
b e c orr o b or at e d b y t h e n u m eri c al r e s ults i n S e cti o n  V.
It als o i n p art e x pl ai n s  w h y t h e e xisti n g t w o- p h a s e t est
i n [ 1 8] a n d [ 1 9] c a n b e s u b- o pti m al i n t h e n o n- a s y m pt oti c
r e gi m e si n c e t h e y i n eff e ct a ssi g n e a c h s e n s or o nl y  wit h
o n e s el e cti o n i nt er v al.

• I n cr e a si n g t h e s a m pli n g c o st of a s e n s or, i. e., C j s hifts t h e
c o n c a v e ris k f u n cti o n of t h at s e n s or u p w ar d s, t h u s s hri n k-
i n g its s el e cti o n i nt er v als; a n d vi c e v er s a. I n t h e e xtr e m e
c a s e s, as t h e s a m pli n g c o st C j → ∞ , t h e c orr e s p o n di n g
s e n s or  will n ot b e a ssi g n e d a n y s el e cti o n i nt er v al, a n d
r e m ai n s i dl e d u e t o its hi g h s a m pli n g c o st.  O n t h e ot h er
h a n d, a s C j → 1, t h e s e n s or b e c o m e s a n u n c o n str ai n e d
o n e.

I n pr a cti c e, t h e r e c ur si o n ( 1 9), t h e s e n s or s el e cti o n f u n c-
ti o n ( 2 6), a n d t h e st o p pi n g r ul e ( 2 5) a n d ( 2 7) ar e i m pl e m e nt e d
b y dis cr eti zi n g t h e d o m ai n of p o st eri or π 1 (t).  We s u m m ari z e
t his pr o c e d ur e i n  Al g orit h m 1,  w h er e ν a n d L ar e v e ct or s
c o nt ai ni n g t h e dis cr et e v al u es of π 1 (t) a n d L t r e s p e cti v el y,
G (ν , t) a n d ψ ( ν , t + 1 ) a n d ψ ( L , t + 1 ) ar e v e ct or s f or m e d
b y e v al u ati n g t h e f u n cti o n f or e a c h el e m e nt of ν a n d L ,
r e pr e s e nti n g t h e f u n cti o n s G N

t ( π1 (t)) a n d ψ t+ 1 ( π1 (t)), a n d
ψ t+ 1 ( L t ) r e s p e cti v el y.  T h e e x p e ct ati o n E (·) = π 0 E (·|H 0 ) +
π 1 E (·|H 1 ) t h er ei n is t a k e n  w.r.t. t h e distri b uti o n of r a n d o m
s a m pl e X , a n d is e v al u at e d b y n u m eri c al i nt e gr ati o n.  T h e
o ut p ut ψ ( L , t + 1 ), t = 0 , 1 , . . . , N − 1 (i. e., a s e q u e n c e of
v e ct or s) a n d { A (t), B (t)} gi v e t h e s el e cti o n f u n cti o n a n d d e ci-
si o n t hr e s h ol d s r e s p e cti v el y, a n d G ( π1 , 0 ) gi v e s t h e o pti m al
c o st G N

0 ( π1 ) ( or e q ui v al e ntl y, V N
0 ( π1 )),  w hi c h  will b e u s e d i n

S e cti o n I V.

B. I n fi nit e- H o riz o n S ol uti o n t o t h e  B a y e s  P r o bl e m

N e xt, b y b uil di n g o n t h e fi nit e- h ori z o n r e s ults d e v el o p e d i n
t h e l a st s u b s e cti o n,  w e c o n si d er t h e i n fi nit e- h ori z o n v er si o n of
t h e pr o bl e m i n ( 4).

T h e ess e nti al st e p of bri d gi n g t h e t w o pr o bl e m s is t o s h o w
t h at t h e fi nit e- h ori z o n c a s e a p pr o a c h e s t h e i n fi nit e- h ori z o n
c as e as N → ∞ [ 2], [ 2 4], [ 2 5].  T h e n t h e r e s ults i n t h e l a st
s u b s e cti o n c a n b e r e a dil y g e n er ali z e d t o t h e i n fi nit e- h ori z o n
s c e n ari o.  D e fi ni n g t h e o pti m al c o st of t h e i n fi nit e- h ori z o n
B a y e si a n pr o bl e m:

V ( π1 ) mi n
{T , D T ,δ 1 :T }

R (δ 1 :T , D T , T ) ( 2 8)

w h er e π 1 is t h e pri or o n H 1 . Fir st, n ot e t h at t h e o pti m al
d e cisi o n f u n cti o n d eri v e d i n ( 7) is i n d e p e n d e nt of t h e h ori z o n
li mit, t h u s D T i n ( 8) c a n b e s u b stit ut e d i nt o ( 2 8),  w hi c h gi v es
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Al g o rit h m 1 Pr o c e d ur e f or  C o m p uti n g A t , B t a n d ψ t+ 1 ( L t )
i n  T h e or e m 1
1: I n p ut: N , π1 , µ0 , µ1 , {λ j } j ∈ , t h e distri b uti o n s of X u n d er

H 0 a n d H 1

2: I niti ali z ati o n:
G (ν , N ) ← mi n (µ 1 ν , µ0 (1 − ν )), ψ ( ν , N ) ← 0, L ←
l o g π 0 ν

π 1 (1 − ν )
3: f o r t = N − 1 t o 0 d o
4: E v al u at e s el e cti o n f u n cti o n at t + 1:

ψ ( ν ,t + 1 ) ← ar g  mi n
δ

C δ + E G
ν e lδ ( X )

1 − ν + ν e lδ ( X )
, t + 1

5: U p d at e “ c o st-t o- g o ”:

G (ν , t) ← mi n mi n (µ 1 ν , µ0 (1 − ν )) ,

C ψ ( ν ,t+ 1 ) + E G (
ν e lψ ( π, t+ 1 ) ( X )

1 − ν + ν e lψ ( π, t+ 1 ) ( X )
, t + 1 )

6: E v al u at e st o p pi n g t hr e s h ol d s:

a (t) ← mi n ν ∈ ν : mi n (µ 1 ν,  µ 0 (1 − ν ) ) ≥ C ψ ( ν, t+ 1 )

+ E G (
ν e lψ ( ν, t+ 1 ) ( X )

1 − ν + ν e lψ ( ν, t+ 1 ) ( X )
, t + 1 )

b (t) ← m a x ν ∈ ν : mi n (µ 1 ν,  µ 0 (1 − ν ) ) ≥ C ψ ( ν, t+ 1 )

+ E G (
ν e lψ ( ν, t+ 1 ) ( X )

1 − ν + ν e lψ ( ν, t+ 1 ) ( X )
, t + 1 )

7: Tr a n sf or m t o t h e d o m ai n of  L L R:
A (t) ← − l o g π 0 a (t)

π 1 (1 − a (t))

B (t) ← l o g π 0 b (t)
π 1 (1 − b (t))

ψ ( L , t + 1 ) ← ψ ( π 1 e L

π 0 + π 1 e L , t + 1 ) ( w hi c h is e v al u at e d i n
st e p 4)

8: e n d
9: O ut p ut:

G ( π1 , 0 ), ψ ( L , t + 1 ), A (t), B (t) f or t = 0 , 1 , . . . , N

t h e si mil ar o pti m al st o p pi n g pr o bl e m a s t h at i n ( 1 0):

V ( π1 ) = mi n
{T ,δ 1 :T } ∈A ∞

0

E

⎛

⎝
T

t= 1

C δ t + φ ( π 1 (T ))

⎞

⎠ . ( 2 9)

R e c alli n g t h at V N
0 ( π1 ) = mi n {δ 1 :T , D T ,T },T ≤ N R (δ 1 :T , D T , T )

a c c or di n g t o ( 1 1),  w e h a v e t h e f oll o wi n g l e m m a.

L e m m a 5. li mN → ∞ V N
0 ( π1 ) = V ( π1 ) f o r all π 1 ∈ [ 0 , 1 ].

P r o of: S e e a p p e n di x.

M e a n w hil e, i n t h e fi nit e- h ori z o n s ol uti o n ( 1 9), si n c e
G N

n ( π1 (n )) is a f u n cti o n of t h e h o m o g e n o u s  M ar k o v c h ai n
π 1 (n ), w e h a v e G N

n ( x ) = G N − n
0 ( x ) = V N − n

0 ( x ). T h e fir st
e q u alit y f oll o ws fr o m t h e h o m o g e n eit y pr o p ert y, a n d s e c o n d

e q u alit y f oll o ws fr o m d e fi niti o n s.  T h er ef or e, t h e b a c k w ar d
i n d u cti o n ( 1 9) c a n b e e q ui v al e ntl y e x pr e ss e d as t h e r e c ur si o n
( 3 0) ( o n t h e t o p of p a g e 4 3 9 9),  wit h V 0

0 ( x ) = φ ( x ).  B y l etti n g
N → ∞ , a n d i n v o ki n g  L e m m a 5,  w e arri v e at

V ( x ) =

mi n φ ( x ) , mi n
δ

C δ + E V
x e x p (lδ )

1 − x + x e x p (lδ )
.

( 3 1)

T his is t h e  B ell m a n e q u ati o n f or t h e i n fi nit e- h ori z o n  B a y esi a n
pr o bl e m ( 2 8).  N ot e t h at, t h a n k s t o  L e m m a 5, V ( x ) pr e s er v es
t h e c o n c a vit y of V N

0 .  T h er ef or e, ( 3 1) r e v e als t h at t h e st o p pi n g
b o u n d ari e s u n d er i n fi nit e- h ori z o n ar e c o n st a nts.  M or e o v er,
t h e s e n s or s el e cti o n f u n cti o n δ t+ 1 d e p e n d s o nl y o n t h e p o s-
t eri or/ L L R, a n d is i n d e p e n d e nt of ti m e.  We s u m m ari z e t h e
o pti m al s ol uti o n t o t h e i n fi nit e- h ori z o n pr o bl e m i n t h e t h e or e m
b el o w.

T h e o r e m 2. T h e o pti m al p r o c e d u r e t h at s ol v e s ( 4) f e at u r e s
a n S P R T  wit h st ati o n a r y s e n s o r s el e cti o n str at e g y, i. e.,

1) T h e o pti m al s e n s o r s el e cti o n r ul e is a ti m e-i n v a ri a nt
f u n cti o n of t h e li k eli h o o d r ait o, i. e., δ t+ 1 = ψ ( L t ).

2) T h e st o p pi n g r ul e is i n t h e f o r m of t h e S P R T T =
mi n {t : L t /∈ (− A , B )}.

3) T h e o pti m al d e cisi o n r ul e  D T d e ci d e s H 0 if LT ≤ − A,
a n d d e ci d e s H 1 if LT ≥ B.

T h e f u n cti o n ψ ( L t ) a n d t h e t h r e s h ol d s  A , B c a n b e e v al u at e d
n u m eri c all y b y s ol vi n g t h e  B ell m a n e q u ati o n ( 3 1).

T h e pr o of f or  T h e or e m 2 f oll o ws si mil arl y t o t h at of
T h e or e m 1 b y u si n g t h e  B ell m a n e q u ati o n ( 3 1). I n bri ef,

V ( x ) a n d E ( x ) mi n δ C δ + E V x e x p (lδ )
(1 − x + x e x p (lδ )) c a n b e

pr o v e d t o b e c o n c a v e f u n cti o n s  wit h E (0 ) > 0 a n d E (1 ) > 0
b y l etti n g N → ∞ i n  L e m m a 3; t h e n t h e o p er ati o n  mi nδ
i n E ( x ) i n di c at es t h at t h e s el e cti on r ul e is a ti m e-i n v ari a nt
f u n cti o n of t h e p o st eri or, l e a di n g t o  T h e or e m 2-( 1);  m or e o v er,
a n al o g o u s t o ( 2 2) i n  L e m m a 3, t h e st o p pi n g t hr e s h ol d s ar e
gi v e n b y t h e r o ots f or µ 0 (1 − x ) = E ( x ) a n d µ 1 x =
E ( x ) w hi c h ar e c o n st a nts, l e a di n g t o  T h e or e m 2-( 2).  T h e
k e y diff er e n c e h er e is t h at E ( x ) is i n d e p e n d e nt of n i n
c o ntr a st  wit h G N

n ( x ) i n t h e pr o of of  T h e or e m 1. I nt er e sti n gl y,
T h e or e m 2 i m pli es t h at t h e st o p pi n g t hr e s h ol d s a n d s el e cti o n
str at e g y of t h e i n fi nit e- h ori z o n  B a y e si a n pr o bl e m c o n v er g e
t o a s e q u e nti al pr o c e d ur e t h at, i n e ss e n c e, is a c o m bi n ati o n
of t h e S P R T a n d st ati o n ar y s e n s or s el e cti o n f u n cti o n ψ ( L t ).
S e v er al a p pr o a c h e s ar e a v ail a bl e t o s ol v e t h e  B ell m a n e q u ati o n
f or ψ ( L t ) a n d A , B . I n t his  w or k, b y virt u e of  L e m m a 5,
w e s ol v e a fi nit e- h ori z o n pr o bl e m  wit h s uf fi ci e ntl y l ar g e N
t o a p pr o xi m at el y o bt ai n t h e m,  w hi c h  will b e e x pl ai n e d i n
S e cti o n I V.

C.  O pti m al S ol uti o n t o t h e  Us a g e- C o n str ai n e d  P r o bl e m

N o w t h at t h e  B a y e si a n o pti m al st o p pi n g pr o bl e m is s ol v e d
i n t h e pr e vi o u s s u b s e cti o n s,  w e ar e r e a d y t o est a blis h t h e
o pti m al s e q u e nti al pr o c e d ur e f or ( P 1) a s f oll o ws.

C o r oll a r y 1. L et μ [µ 0 , µ1 ] b e c h o s e n s u c h t h at
t h e r eli a bilit y c o nstr ai nts a r e s atis fi e d  wit h e q u aliti es; l et

A ut h ori z e d li c e n s e d u s e li mit e d t o: U ni v er sit y of Mi n n e s ot a. D o w nl o a d e d o n J ul y 0 2, 2 0 2 0 at 1 5: 4 2: 2 9 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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V N − n
0 ( x ) = mi n φ ( x ) , mi n

δ n + 1

C δ n + 1 + E V N − n − 1
0

x e x p lδ n + 1

1 − x + x e x p lδ n + 1

( 3 0)

λ {λ j } j ∈ b e c h o s e n s u c h t h at all u s a g e c o n str ai nts a r e
s atis fi e d, a n d  m o r e o v e r, t h e u s a g e c o n str ai nts f o r t h e s e n s o rs
i n c { : λ > 0 } a r e s atis fi e d  wit h e q u aliti es. T h e n t h e
o pti m al s e q u e nti al p r o c e d u r e gi v e n b y T h e o r e m 1 a n d 2 gi v e
t h e o pti m al tri pl ets {T , D T , δ 1 :T } t h at s ol v e t h e c o n str ai n e d
p r o bl e m ( P 1) i n fi nit e- h o riz o n a n d i n fi nit e- h o riz o n s c e n a ri o s,
r es p e cti v el y.

P r o of: T h e pr o of s ar e t h e s a m e f or fi nit e- h ori z o n a n d
i ni fit e- h ori z o n pr o bl e m s, t h u s  w e o nl y s h o w t h e l att er f or
c o n cis e n ess.

C o n si d eri n g t h e r e s ults i n S e cti o n III- A & B,  w e h a v e
R (δ 1 :T , D T , T ) ≥ R δ 1 :T , D T , T f or a n y pr o c e d ur e
{δ 1 :T , D T , T }.  T his c a n b e s e e n i n ( 3 2) o n t h e t o p of p a g e
4 4 0 0.  N ot e t h at µ 0 ≥ 0, µ 1 ≥ 0 a n d λ > 0 f or ∈ c , t h u s
E T ≥ E T m u st h ol d tr u e f or a n y pr o c e d ur e {δ 1 :T , D T , T } ∈
C α, β, { T } ∈ .

T h e i n si g ht f or  C or oll ar y 1 is i nt uiti v e.  T h e s e n s or s i n c

(r ef err e d t o a s t h e eff e cti v e s et h e n c ef ort h)  will b e o v er u s e d
wit h o ut i m p o si n g t h e c o n str ai nt , t h u s a d diti o n al s a m pli n g c o st
λ > 0 is assi g n e d t o p e n ali z e t h eir u s a g es (r e c all t h e d e fi niti o n
of C δ t i n ( 3)).  N e v ert h el ess, i n or d er t o o pti mi z e t h e t est
p erf or m a n c e, t h e y s h o ul d b e u s e d at f ull c a p a cit y, i. e., u s a g e
c o n str ai nts ar e s atis fi e d  wit h e q u aliti es. S e cti o n I V  will a d dr ess
h o w  w e o bt ai n c fr o m a g e n er al s et t h at ar e u n d er u s a g e
c o n str ai nts i n t h e f or m ul ati o n ( P 1).

N e xt,  w e i n v e sti g at e t h e p erf or m a n c e of t h e o pti m al s e q u e n-
ti al pr o c e d ur e u n d er i n fi nit e- h ori z o n.  T h e c h all e n g e st e m s
fr o m t h e f a ct t h at r a n d o m s a m pl es ar e n o l o n g er i.i. d., a n d t h e
t y pi c al  m et h o d b as e d o n  Wal d’s i d e ntit y f ails t o gi v e n v ali d
p erf or m a n c e a n al y si s.  H o w e v er , b y c a pit ali zi n g o n t h e o pti m al
str u ct ur e s r e v e al e d i n  T h e or e m 2 a n d  C or oll ar y 1, t o g et h er
wit h  Wal d’s a p pr o xi m ati o n t h at n e gl e cts t h e o v er s h o ot u p o n
st o p pi n g of t h e s e q u e nti al t e st,  w e c a n d eri v e a n i n si g htf ul
a p pr o xi m at e b o u n d t o c h ar a ct eri z e t h e p erf or m a n c e.  D e fi n e
t h e  K ull b a c k- L ei bl er di v er g e n c e ( K L D):

D i fi || f j E i l o g
fi ( X )

f j ( X )
. ( 3 3)

P r o p o siti o n 1. B a s e d o n t h e  W al d’s a p p r o xi m ati o n [ 2 ] (i. e.,
L T ≈ − A gi v e n  D T = 0 o r L T ≈ B gi v e n  D T = 1 ),
t h e e x p e ct e d s a m pl e siz e f o r t h e o pti m al p r o c e d u r e f o r t h e
i n fi nit e- h o riz o n p r o bl e m of ( P 1) is l o w er b o u n d e d b y

E T ≥ π 0
D (α ||1 − β )

m a x ∈ c
D 0

+ π 1
D (1 − β ||α )

m a x ∈ c
D 1

−
∈ c

m a x
D 1

m a x ∈ c
D 1

,
D 0

m a x ∈ c
D 0

− 1 T ,

( 3 4)

w h e r e D ( p ||q ) p l o g p
q + (1 − p ) l o g 1 − p

1 − q i s t h e  K L D of

bi n a r y distri b uit o n s, a n d c \ c c o nt ai n s all s e n s o rs
e x c e pt t h o s e i n c .

P r o of: S e e  A p p e n di x.

T h e p erf or m a n c e c h ar a ct eri z a ti o n a gr e es  wit h i nt uiti o n.  T h e
fir st t w o t er m s o n ri g ht- h a n d si d e of ( 3 4) c h ar a ct eri z e t h e
a s y m pt oti c p erf or m a n c e of t h e o pti m al s e q u e nti al pr o c e d ur e
as α a n d β g o t o z er o, or D (α ||1 − β ) a n d D (1 − β ||α ) g o
t o i n fi nit y. It is s e e n t h at t h e as y m pt oti c e x p e ct e d s a m pl e si z e
is d et er mi n e d b y t h e  K L Ds of t h e s e n s or s i n c , i. e., t h e
fr e e s e n s or s t h at d o n ot r e a c h t h eir f ull u s a g e.  T hi s r e s ult is
c o n sist e nt  wit h t h at i n [ 1 7],  w h er e all s e n s or s ar e c o n str ai nt-
fr e e.  M e a n w hil e, t h e t hir d t er m o n t h e ri g ht- h a n d si d e of ( 3 4)
a c c o u nts f or t h e eff e ct of t h e f ull y u s e d s e n s or s,  w hi c h
d e p e n d s o n t h eir  K L Ds c o m p ar e d t o t h at of t h e fr e e s e n s or s.

If  m a x
D 1

m a x ∈ c
D 1

,
D 0

m a x ∈ c
D 0

> 1, t h e n s e n s or d e cr e as es

t h e e x p e ct e d s a m pl e si z e d u e t o its l ar g er  K L Ds; ot h er wis e,
s e n s or i n cr e as es t h e e x p e ct e d s a m pl e si z e.

I n a d diti o n,  w e c a n pr o vi d e a n as y m pt oti c
(i. e., α, β → 0) u p p er b o u n d f or E (T ) b y l e v er a gi n g
o n t h e r es ults i n [ 1 3]. I n p arti c ul ar, E (T ) s h o ul d b e u p p er
b o u n d e d b y t h e al g orit h m pr o p o s e d i n [ 1 3] ( d e n ot e d a s
{T , D , δ }) u si n g o nl y t h e u n c o n str ai n e d s e n s or s d u e t o t h e
f oll o wi n g t w o r e a s o n s: 1) b ot h c o n str ai n e d a n d u n c o n str ai n e d
s e n s or s ar e all o w e d i n { T , D , δ }; 2) {T , D , δ } is
o bt ai n e d t hr o u g h o pti m al pr o c e d ur e,  w h er e a s {T , D , δ } is
pr o p o s e d a s a h e uristi c s ol uti o n.  C orr e s p o n di n gl y,  w e h a v e

E T ≤ E T → π 0
D (α ||1 − β )

m a x ∈ ¯ c
D 0

+ π 1
D (1 − β ||α )

m a x ∈ ¯ c
D 1

,

a s α, β → 0,  w h er e t h e ri g ht- h a n d si d e of t h e i n e q u alit y h ol d s
tr u e d u e t o [ 1 3,  T h e or e m 7].  T o g et h er  wit h Pr o p o siti o n 1, it is
s af e t o c o n cl u d e t h at t h e a p pr o xi m at e c h ar a ct eri z ati o n i n ( 3 4)
is ti g ht a n d as y m pt oti c all y o pti m al as α, β → 0.

I V.  PA R A M E T E R S D E S I G N  F O R  T H E O P T I M A L

S E Q U E N T I A L T E S T

I n pr e vi o u s s e cti o n s,  w e d eri v e d t h e o pti m al s ol uti o n s t o
( P 1) u n d er b ot h fi nit e- h ori z o n a n d i n fi nit e- h ori z o n s et u p s,
gi v e n t h at μ a n d λ ar e s et t o s atisf y c ert ai n c o n diti o n s as
gi v e n i n  C or oll ar y 1.  T h es e  m ulti pli er s d et er mi n e t h e p ar a-
m et er s i n t h e o pti m al s e q u e nti al t est a n d s el e cti o n f u n cti o n,
i. e., A t , B t , ψt+ 1 ( L t ) f or fi nit e- h ori z o n, a n d A , B , ψ ( L t ) f or
i n fi nit e- h ori z o n. I n pr a cti c e, o n e c a n c h o o s e t h e  m ulti pli er s
b y  m a n u all y r e fi ni n g t h eir v al u e s a c c or di n g t o t h e si m ul ati o n
r es ults; h o w e v er, it is n ot a n ef fi ci e nt a p pr o a c h, es p e ci all y
w h e n t h e n u m b er of c o n str ai nts is l ar g e. I n t his s e cti o n,
w e pr o p o s e a s y st e m ati c a p pr o a c h t o a p pr o xi m at el y e v al u at e
t h e  m ulti pli er s,  w hi c h i n v ol v es  mi ni mi zi n g a c o n c a v e f u n cti o n.

A ut h ori z e d li c e n s e d u s e li mit e d t o: U ni v er sit y of Mi n n e s ot a. D o w nl o a d e d o n J ul y 0 2, 2 0 2 0 at 1 5: 4 2: 2 9 U T C fr o m I E E E X pl or e.  R e stri cti o n s a p pl y. 
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E T + µ 0 π 0 P 0 ( D T = 1 ) + µ 1 π 1 P 1 ( D T = 0 ) +
∈ c

λ E

⎛

⎝
T

t= 1

{δ t = }

⎞

⎠

≥ E T + µ 0 π 0 P 0 D T = 1 + µ 1 π 1 P 1 D T = 0 +
∈ c

λ E

⎛

⎝
T

t= 1

{δ t = }

⎞

⎠

= E T + µ 0 π 0 α + µ 1 π 1 β +
∈ c

λ T ( 3 2)

B y dr a wi n g o n t h e i d e a of t h e r e c e nt  w or k [ 3 0],  w e e v al u at e
t h e  m ulti pli er s b y i ntr o d u ci n g t h e d u al pr o bl e m of ( P 1):

m a x
{λ ,μ } ∈R +

mi n
{δ 1 :T , D T ,T }

L ({δ 1 :T , D T , T }, λ , μ ), ( 3 5)

w h er e t h e  L a gr a n gi a n a d mits

L ({δ T
1 , D T , T }, λ , μ )

E T + µ 0 π 0 (P 0 ( D T = 1 ) − α )

+ µ 1 π 1 (P 1 ( D T = 0 ) − β ) +
∈

λ

⎛

⎝
T

t= 1

{δ t = } − T

⎞

⎠

= R (δ 1 :T , D T , T ) − µ 0 π 0 α − µ 1 π 1 β −
∈

λ T . ( 3 6)

T h e r e as o n is t h at if t h er e e xist  m ulti pli er s s u c h t h at t h e
c o n str ai nts h ol d as e q u aliti es, t h e y  m u st r esi d e i n t h e s a d dl e
p oi nt a s e x pr e ss e d i n ( 3 5).

We fir st b e gi n  wit h t h e N - h ori z o n pr o bl e m. Si n c e t h e
B a y e si a n pr o bl e m is s ol v e d i n S e cti o n III, ( 3 5) b e c o m e s

m a x
{λ ,μ } ∈R +

L N (λ , μ )

mi n
{ D ,T ,δ 1 :T }

E

⎛

⎝
T

t= 1

C δ t + µ ( D T , H )

⎞

⎠

V N
0 ( π1 ,λ ,μ )

−
∈

λ T − µ 0 π 0 α − µ 1 π 1 β, ( 3 7)

w h er e L N (λ , μ ) is a c o n c a v e f u n cti o n of λ a n d μ .  N ot e t h at
V N

0 ( π1 , λ , μ ) is t h e s a m e f u n cti o n as d e fi n e d i n ( 2 0)  w hil e  w e
e x pli citl y s h o w t h e v ari a bl es λ a n d μ h er e f or cl arit y.

N ot e t h at ( 3 7) is a c o n str ai n e d c o n c a v e pr o bl e m t h at still
r e q uir e s c o m pl e x s ol vi n g pr o c e ss, f or e x a m pl e, t h e i nt eri or-
p oi nt  m et h o d [ 3 1]. I n t his  w or k,  w e pr o p o s e a si m pl e pr o c e-
d ur e b a s e d o n gr a di e nt a s c e nt. I n bri ef,  w e fir st a ss u m e t h at t h e
eff e cti v e s et of c o n str ai nt s c is k n o w n, b a s e d o n  w hi c h, ( 3 7)
c a n b e r e c a st i nt o a n u n c o n str ai n e d o pti mi z ati o n pr o bl e m;  w e
t h e n gi v e t h e s c h e m e f or e v al u ati n g c .  T h e d et ail e d pr o c e d ur e
i n cl u d e s t h e f oll o wi n g st e p s:

• Gi v e n a n y c , it is k n o w n t h at t h e o pti m al  m ulti pli er s
µ 0 > 0, µ 1 > 0, λ j > 0 f or j ∈ c a n d λ j = 0
f or j ∈ c ( cf.  C or oll ar y 1).  C o n s e q u e ntl y, t h e ori gi n al
pr o bl e m ( 3 7) c a n b e r e d u c e d t o a n u n c o n str ai n e d pr o bl e m

b y r e m o vi n g λ j , j ∈ c :

m a x
λ c ,μ

L N (λ c , μ )

V N
0 ( π1 , λ c , μ ) −

∈ c

λ T − µ 0 π 0 α − µ 1 π 1 β, ( 3 8)

wit h λ c {λ j } j ∈ c , si n c e t h e o pti m al v al u es of λ j , j ∈

c a n d μ r e si d e i n t h e i nt eri or of t h e p o siti v e n e ss
c o n str ai nt.  N o w ( 3 8) c a n b e s ol v e d  wit h t h e gr a di e nt
a s c e nt al g orit h m.  T o t his e n d, n ot e t h at V N

0 ( π1 , λ c , μ )
c a n b e o bt ai n e d ef fi ci e ntl y gi v e n a n y v al u e of t h e v ari-
a bl es μ , λ c t hr o u g h t h e d y n a mi c pr o gr a m mi n g ( 1 9),
i. e.,  Al g orit h m 1.  T his all o ws u s t o a p pr o xi m at e t h e gr a-
di e nts at t h e tt h it er ati o n b y u si n g s m all s hifts λ a n d μ

f or λ c a n d μ r e s p e cti v el y.  M or e o v er, si n c e μ a n d λ c ar e
t y pi c all y at diff er e nt s c al es, f or e x a m pl e, μ ar e u s u all y i n
t h e or d er of h u n dr e d s,  w hil e λ c ar e fr a cti o n al n u m b er s,
w e a p pl y t h e alt er n ati n g  mi ni mi z ati o n t o s p e e d u p t h e
c o n v er g e n c e.  Al g orit h m 2 s u m m ari z e s t h e pr o c e d ur e f or
e v al u ati n g t h e  m ulti pli er s a n d t h e r es ulti n g p ar a m et er s
(i. e., A t , B t , ψt+ 1 ( L t )) f or t h e fi nit e- N o pti m al s e q u e nti al
t est,  w h er e  Al g1 (·) i n v o k e s  Al g orit h m 1. I n a d diti o n,
p t a n d q t ar e st e p- si z es o bt ai n e d b y b a c ktr a c ki n g li n e
s e ar c h [ 3 1], μ i nt, λ i nt ar e i niti al v al u es t o b e gi n t h e it er-
ati o n s.

• T o o bt ai n t h e eff e cti v e s et c ,  w e a d d a n o ut er it er ati o n
t o  Al g orit h m 2. I n p arti c ul ar,

1)  B e gi n  wit h a n e m pt y s et of eff e cti v e u s a g e c o n-
str ai nts (i. e., c = ∅ ).

2) S ol v e t h e pr o bl e m

mi n
{δ 1 :T , D T ,T } ∈C N ( α, β, {T } ∈ c )

E T . ( 3 9)

3)  E v al u at e t h e s e n s or u s a g e s b a s e d o n t h e s ol uti o n
t o ( 3 9), a n d fi n d t h e s et of s e n s or s i n w h o s e
c o n str ai nts ar e vi ol at e d ( d e n ot e d a s ).  U p d at e t h e
eff e cti v e s et c ← c ∪ .

4)  G o t o st e p 2) a n d s ol v e ( 3 9) f or t h e u p d at e d c .
T his l o o p of 2)- 4) c o nti n u es u ntil n o i n e q u alit y c o n-
str ai nts ar e vi ol at e d.  U p o n t er mi n ati o n, c i s eff e cti v e s et
of c o n str ai nts,  w h o s e ass o ci at e d  m ulti pli er s ar e p o siti v e,
w h er e as t h e r est of c o n str ai nts ar e n at ur all y s atis fi e d  wit h
z er o  m ulti pli er s.

N e xt  w e c o n si d er t h e i n fi nit e- h ori z o n s c e n ari o,  w h o s e
e v al u ati o n of  m ulti pli er s b oils d o w n t o t h e o pti mi z ati o n
pr o bl e m ( 4 0) o n t h e b ott o m of p a g e 4 4 0 1.  O n e o pti o n is t o
a d o pt t h e  m et h o d i n [ 3 0] ( o nl y S P R T a n d μ w er e of i nt er est
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Al g o rit h m 2 Pr o c e d ur e f or S ol vi n g ( 3 8)

1: I niti ali z ati o n: t ← 0 , μ (0 ) ← μ i nt, λ
(0 )

c
← λ i nt

2: w hil e ∇ λ L N (λ
(t)

c
, μ (t) ) 2 > 0 or ∇ λ L N (λ

(t)
c
, μ (t) ) 2 > 1

d o

u p d at e μ :

3: V N
0 ( π1 , λ

(t)
c
, μ (t) ) ← G ( π1 , 0 ) ← Al g 1 ( π1 , λ

(t)
c
, μ (t) )

4: V N
0 ( π1 , λ (t)

c
, μ (t)+ μ )← G ( π1 , 0 )← Al g 1 ( π1 , λ (t)

c
, μ (t)+ μ )

5: E v al u at e L N (λ
(t)

c
, μ (t) ) a n d L N (λ

(t)
c
, μ (t) + μ ) b y its

d e fi niti o n i n ( 3 8)
6: A p pr o xi m at e t h e gr a di e nt ∇ μ L N ( π, λ (t)

c
, μ (t) )

7: U p d at e μ (t+ 1 ) = μ (t) + p t ∇ μ L N ( π, λ
(t)

c
, μ (t) ), w h er e p t

is t h e st e p- si z e c o m p ut e d b y
b a c ktr a c ki n g li n e s e ar c h

u p d at e λ :

8: V N
0 ( π1 , λ (t)

c
, μ (t+ 1 ) ) ← G ( π1 , 0 )← Al g 1 ( π1 , λ (t)

c
, μ (t+ 1 ) )

9: V N
0 ( π1 , λ (t)

c
+ λ , μ (t+ 1 ) ) ← G ( π1 , 0 ) ← Al g 1 ( π1 , λ (t)

c
+

λ , μ (t+ 1 ) )
1 0: E v al u at e L N ( π1 , λ

(t)
c
, μ (t+ 1 ) ) a n d L N ( π1 , λ

(t)
c

+

λ , μ (t+ 1 ) ) b y its d e fi niti o n i n ( 3 8)
1 1: A p pr o xi m at e t h e gr a di e nt ∇ λ L N ( π, λ

(t)
c
, μ (t+ 1 ) )

1 2: U p d at e λ (t+ 1 )
c

= λ (t)
c

+ q t ∇ λ L N ( π, λ (t)
c
, μ (t+ 1 ) ) w h er e

q t is t h e st e p- si z e c o m p ut e d b y
b a c ktr a c ki n g li n e s e ar c h

1 3: t ← t + 1
1 4: e n d  w hil e
1 5: O ut p ut:

λ
c

← λ (t)
c
, μ ← μ (t) , {ψ ( L , t), A (t), B (t)} N

t= 0 ←
Al g 1 ( π1 , λ

c
, μ )

t h er e),  w hi c h di s cr eti z es x , λ , μ , a n d r e c a st s t h e a b o v e pr o b-
l e m i nt o a li n e ar pr o gr a m.  H o w e v er, t his a p pr o a c h b e c o m e s
c o m p ut ati o n all y i nf e a si bl e d u e t o t h e hi g h- di m e n si o n al v ari-
a bl es i n o ur pr o bl e m.  T o t h at e n d, b y t h e virt u e of  L e m m a 5,
w e pr o p o s e t o a p pr o xi m at e t h e i n fi nit e- h ori z o n pr o bl e m
t hr o u g h fi nit e- h ori z o n a p pr o a c h ( 3 7), i. e., V ≈ V N

0 wit h
s uf fi ci e ntl y l ar g e N .  M or e o v er,  w e o bt ai n t h e  m ulti pli er s
a n d t h e r es ulti n g t est p ar a m et er s (i. e., A , B , ψ ( L t )) f or t h e
o pti m al i n fi nit e- h ori z o n s e q u e nti al t est b y s etti n g A ← A (0 ),
B ← B (0 ), ψ ( L ) ← ψ ( L , 1 ), w h er e A (0 ), B (0 ) a n d ψ ( L , 1 )
ar e t h e t hr e s h ol d s a n d s el e cti o n f u n cti o n r es p e cti v el y e v al u at e d
f or t h e fi nit e- h ori z o n pr o bl e m  wit h l ar g e N .

V.  N U M E RI C A L R E S U L T S

I n t his s e cti o n,  w e pr o vi d e n u m eri c al r es ults t o ill u str at e t h e
t h e or eti c al fi n di n g s i n pr e vi o u s s e cti o n s, a n d als o t o c o m p ar e

T A B L E I

P A R A M E T E R V A L U E  A N D K L D A T E A C H S E N S O R .

wit h t h e e xisti n g  m et h o d s.  O ur e x p eri m e nts f o c u s o n t h e
f oll o wi n g h y p ot h e s es

H 0 : X t ∼ e x p η 0 , t = 1 , 2 , . . . ,  ∈ { 1 , 2 , . . . , 4 },

H 1 : X t ∼ e x p η 1 , t = 1 , 2 , . . . ,  ∈ { 1 , 2 , . . . , 4 }.

I n p arti c ul ar, t h e  L L R at s e n s or is

l ( X t ) = X t η 0 − η 1 + l o g
η 1

η 0

( 4 1)

a n d t h e  K L D s ar e e x pr e ss e d r e s p e cti v el y as

D 1 = E 0 l =
η 0

η 1

− 1 − l o g
η 0

η 1

, ( 4 2)

D 0 = E 0 − l =
η 1

η 0

− 1 − l o g
η 1

η 0

. ( 4 3)

Ta bl e I lists t h e distri b uti o n p ar a m et er s a n d  K L D f or e a c h s e n-
s or.  T hr o u g h o ut t h e e x p eri m e nt, t h e d o m ai n of p o st eri or [0 , 1 ]
is dis cr eti z e d i nt o 8 0 0 0 p oi nts t o i m pl e m e nt  Al g orit h m 1.

A.  Fi nit e- H o riz o n S c e n a ri o

We fir st c o n si d er a fi nit e- h ori z o n pr o bl e m  wit h s a m pl e si z e
li mit N = 1 0 0.

Fi g. 1 ill u str at es t h e d e cisi o n r e gi o n of t h e N - h ori z o n
s e q u e nti al t e st, i n cl u di n g t h e st o p pi n g b o u n d ari e s (i. e.,
[ − A t , B t ]) a n d s el e cti o n f u n cti o n (i. e., ψ t+ 1 ( L t )).  N ot e t h at,
h er e aft er,  w e r e pr es e nt t h e r es ults i n t er ms of t h e s uf fi ci e nt
st atisti c  L L R,  w hi c h is e q ui v al e nt t o t h e p o st eri or gi v e n t h e
pri or.  T h e bl a c k, bl u e, r e d, a n d gr e e n c ol or s r e pr e s e nt t h e
i nt er v als  wit hi n  w hi c h S e n s or 1, 2, 3, a n d 4 s h o ul d b e s el e ct e d
r e s p e cti v el y.  T h e f oll o wi n g o b s er v ati o n s ar e  m a d e:

• T h e c ur v e d st o p pi n g b o u n d ari e s c o m pl y  wit h t h e r e s ult
i n  T h e or e m 1-( b).

• T h e s el e cti o n f u n cti o n ψ t+ 1 ( L t ) i n  T h e or e m 1-( a) is
r e pr es e nt e d b y si m pl e p artiti o n s of t h e  L L R d o m ai n.
I n s p e ci fi c, t h e f u si o n c e nt er d e ci d e s t h e s el e ct e d s e n s or at
t + 1 b a s e d o n t h e r e gi o n t h at L t r e si d e s i n. I nt er e sti n gl y,
t h e s el e cti o n f u n cti o n fr o m t = 1 → N is hi g hl y
str u ct ur e d, a n d d o e s n ot r e q uir e l ar g e  m e m or y f or st or a g e.

m a x
{λ ,μ } ∈R +

V ( π1 , λ , μ ) − µ 0 π 0 α − µ 1 π 1 β −
∈

λ T

s.t. V ( x , λ , μ ) = mi n µ 0 (1 − x ),  µ1 x , mi n
δ

1 + λ δ + E V (
x e lδ

1 − x + x e lδ
, λ , μ ) , x ∈ [ 0 , 1 ] ( 4 0)
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Fi g. 1.  T h e st o p pi n g b o u n d ari es a n d s el e cti o n r e gi o n f or N = 1 0 0.  We s et α ≈ 0 .0 1 , β ≈ 0 .0 1.  Bl a c k: s e ns or 1.  Bl u e: s e ns or 2.  R e d: s e ns or 3.  Gr e e n:
s e ns or 4. ( a)  U n c o nstr ai n e d. ( b) T 1 = 7 , T 2 = 7. ( c) T 1 = 6 , T 2 = 9.

• T h e s e n s or u s a g e s ar e e q u al t o t h e dis cr et e ti m e t h at
L L R s p e n d s i n t h e c orr e s p o n di n g r e gi o n b ef or e st o p pi n g.
T h u s t h e s el e cti o n str at e g y c o ntr ols t h e s e n s or u s a g es b y
alt eri n g t h es e s el e cti o n r e gi o n s. I n Fi g. 1-( a), if all s e n s or s
ar e c o n str ai nt-fr e e, t h e n S e n s or 1 a n d S e n s or 2 ar e al w a y s
pr ef err e d o v er t h e ot h er t w o. I nt uiti v el y S e n s or 1 d o mi-
n at e s s e n s or 3, S e n s or 2 d o mi n at e s S e n s or 4, si n c e t h eir
K L Ds u n d er b ot h h y p ot h e s es ar e l ar g er. I n Fi g. 1-( b),
if  w e i m p o s e t h e u s a g e c o n str ai nts o n S e n s or s 1 a n d 2,
t h e n S e n s or s 3 a n d 4 ar e u s e d  m or e, t h u s t h e p artiti o n of
L L R d o m ai n is r e a ssi g n e d t o c o m pl y  wit h t h e c o n str ai nts.
T h at is, t h e s el e cti o n r e gi o n f or S e n s or 1 is s plit  m ai nl y
b y S e n s or 3,  w hil e t h at of S e n s or 2 b y S e n s or 2. Fi g. 1-( c)
s h o ws t h at t h e s el e cti o n r e gi o n s alt er as t h e u s a g e c o n-
str ai nts c h a n g e fr o m T 1 = 6 , T 2 = 9 t o T 1 = 7 , T 2 = 7.
I n s p e ci fi c, t h e s el e cti o n r e gi o n of S e n s or 1 s hri n k s  w hil e
t h at of S e n s or 2 e x p a n d s.

Fr o m S e cti o n III,  w e k n o w t h at t h e s el e cti o n r e gi o n s,
a n d t h u s t h e s e n s or u s a g es, ar e g o v er n e d b y t h e  m ulti pli er s,
w hi c h ar e t h e p ar a m et er s o n e c a n c h o o s e t o  m e et t h e u s a g e

c o n str ai nts.  B e ari n g t his i n  mi n d, Fi g. 2 ill u str at es h o w t h e
s e n s or u s a g es v ar y al o n g  wit h diff er e nt v al u es of  m ulti pli er s.
I n p arti c ul ar, it s h o ws t h at t h e u s a g e of S e n s or 1 d e cr e a s e s
fr o m t h e f ull u s a g e t o z er o as λ 1 i n cr e a s e s,  w hil e ot h er s e ns ors
i n cr e a s e t h eir u s a g e s. I n a d diti o n, it d e m o n str at e s t h at alt eri n g
t h e v al u e of o n e  m ulti pli er d o es n ot o nl y a dj u st t h e u s a g e
of o n e p arti c ul ar s e n s or, b ut als o t h at of t h e ot h er s e n s or s.
It ess e nti all y r e- assi g n s t h e p artiti o n of t h e c o nti n u ati o n r e gi o n
f or s e n s or s el e cti o n.

Fi n all y, i n Fi g. 3,  w e c o m p ar e t h e pr o p o s e d fi nit e- N s e q u e n-
ti al t est  wit h t h e e xisti n g  m et h o d i n [ 1 5],  w hi c h is a n of fli n e
r a n d o m s el e cti o n al g orit h m.  T h e c o m p aris o n is c arri e d o ut at
v ar yi n g err or pr o b a biliti es α = β , a n d fi x e d s e n s or u s a g e
c o n str ai nts f or S e n s or 1 a n d 2 ( T 1 = 6 , T 2 = 9, a n d
S e n s or 3 a n d 4 ar e fr e e s e n s or s).  T h e c orr e s p o n di n g  m ulti pli er s
ar e e v al u at e d usi n g t h e al g orit h m i n S e cti o n I V. It is s e e n
t h at t h e pr o p o s e d o nli n e al g orit h m c o n sist e ntl y o ut p erf or m s
t h e of fli n e s c h e m e  wit h t h e s a m e u s a g e c o n str ai nts a n d err or
pr o b a biliti es.  T h e i m pr o v e m e nt b e c o m es  m or e si g ni fi c a nt as
t h e err or pr o b a biliti es d e cr e as e. F urt h er m or e, Fi g. 4 d e pi cts
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Fi g. 2.  T h e s e ns or us a g e d e cr e as es as its ass o ci at e d  m ulti pli er i n cr e as es.  T h e err or pr o b a biliti es ar e s et as α ≈ 0 .0 0 1 8 , β ≈ 0 .0 0 2 5, a n d λ 2 = 0.

Fi g. 3.  C o m p aris o n of t h e pr o p os e d s e q u e nti al t est a n d t h e S P R T  wit h of fli n e r a n d o m s el e cti o n str at e g y.

t h e s e n s or u s a g e s of t h e pr o p o s e d s c h e m e i n t his e x p eri m e nt,
w hi c h ar e c o ntr oll e d b y t u ni n g t h e  m ulti pli er s vi a t h e  m et h o d
i ntr o d u c e d i n S e cti o n I V.  W h e n err or pr o b a biliti es ar e  m o d er-
at e ( α = 0 .1 → 0 .0 6 i n Fi g. 4), S e n s or s 1 a n d 2 o p er at e i n
fr e e  m o d e, a n d S e n s or s 3 a n d 4 ar e i dl e,  w hi c h c orr e s p o n d s t o
t h e u n c o n str ai n e d s c e n ari o (i. e., t h e eff e cti v e s et of c o n str ai nt s
ar e e m pt y c = ∅ ).  T his is si mil ar t o t h e c as e i n Fi g. 1-( a).
As err or r at es d e cr e as e ( α = 0 .0 4 a n d 0 .0 2), S e n s or 1 r e a c h e s
t h e u s a g e c o n str ai nt fir st,  w hil e S e n s or 2 still o p er at es i n
fr e e  m o d e (i. e., c = { 1 }).  Aft er α ≤ 0 .0 1, b ot h S e n s or
1 a n d 2 r e a c h t h eir u s a g e li mit a n d ar e u n d er c o n str ai nt s (i. e.,

c = { 1 , 2 }). I n t his r e gi m e,  w e fi n d  m ulti pli er s s u c h t h at
c o n str ai nts ar e s atis fi e d  wit h e q u aliti es.  As err or r at es f urt h er

d e cr e a s e, fr e e s e n s or s li k e S e n s or s 3 a n d 4 ar e u s e d  m or e oft e n,
w hil e S e n s or 1 a n d 2 r e m ai n  m a xi m u m u s a g e s at T 1 = 6 a n d
T 2 = 9.

B. I n fi nit e- H o riz o n

I n t his s u b s e cti o n, t h e p erf or m a n c e of t h e pr o p o s e d
s c h e m e i n t h e i n fi nit e- h ori z o n s et u p is e x a mi n e d.  We u s e a
fi nit e- h ori z o n pr o bl e m  wit h s uf fi ci e ntl y l ar g e N = 2 0 0 t o
a p pr o xi m at el y e v al u at e t h e p ar a m et ers (i. e., A , B a n d s el e cti o n
r e gi o n s) of t h e o pti m al s e q u e nti al t e st.

A g ai n, Fi g. 5 d e pi cts t h e d e cisi o n r e gi o n s f or t h e
fi nit e- h ori z o n pr o bl e m  wit h N = 2 0 0. Si n c e a l ar g er N is u s e d,
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Fi g. 4. S e ns or us a g es of t h e pr o p os e d s c h e m e c orr es p o n di n g t o t h e e x p eri m e nt i n Fi g. 3.

Fi g. 5.  T h e st o p pi n g b o u n d ari es a n d s el e cti o n f u n cti o n f or N = 2 0 0.  We s et α ≈ 0 .0 1 , β ≈ 0 .0 1.  Bl a c k: s e ns or 1.  Bl u e: s e ns or 2.  R e d: s e ns or 3.  Gr e e n:
s e ns or 4. ( a) T 1 = 6 , T 2 = 9. ( b) T 1 = 7 , T 2 = 7.

c o m p ar e d t o Fi g. 1, Fi g. 5 s h o ws t h at t h e st o p pi n g b o u n d ari e s
a n d s e cti o n str at e g y c o n v er g e t o t h e st a bl e o n e at t = 0,
w hi c h is a p pr o xi m at el y t h e i n fi n it e- h ori z o n s ol uti o n a c c or di n g
t o  L e m m a 5.  U nli k e i n t h e fi nit e- h ori z o n s c e n ari o, t h e f u si o n
c e nt er o nl y n e e d s t o st or e st o p pi n g b o u n d ari e s a n d s el e cti o n
r e gi o n s at t = 0,  w hi c h is d e pi ct e d i n Fi g. 6, a n d u s e it f or
a n y t.  T his f urt h er l o w er s t h e st or a g e d e m a n d. I n s p e ci fi c,
t h e s el e ct e d s e n s or at t + 1 is d e ci d e d b y  w hi c h i nt er v al
t h e  L L R r esi d es i n at ti m e t wit hi n t h e st o p pi n g b o u n d ari e s.
We cl e arl y s e e t h at t h e s el e cti o n f u n cti o n s i n Fi g. 6-( a) c h a n g e
t o t h at i n Fi g. 6-( b) as t h e u s a g e c o n str ai nts alt er.

Fi n all y, i n Fi g. 7,  w e c o m p ar e t h e pr o p o s e d s c h e m e  wit h t h e
e xisti n g of fli n e r a n d o m s el e cti o n s c h e m e i n [ 1 5].  C o m p ar e d t o
Fi g. 3, t h e e x p e ct e d s a m pl e si z e sli g htl y d e cr e as es d u e t o t h e
r e m o v al of t h e h ar d li mit o n h ori z o n N .  A g ai n, t h e pr o p o s e d

o nli n e s c h e m e i n cr e a si n gl y o ut p erf or m s t h e of fli n e s el e cti o n
s c h e m e as t h e err or pr o b a biliti es b e c o m e s m all. I n f a ct,
w e c a n a n al yti c all y s h o w t h at t h e of fli n e s el e cti o n s c h e m e is
a s y m pt oti c all y o ut p erf or m e d b y t h e pr o p o s e d s c h e m e i n t his
w or k. Si n c e t h e s e n s or u s a g e c o n str ai nt s i n [ 1 5] ar e al s o gi v e n
a s a fi x e d n u m b er of t ot al u s a g e, its a s y m pt oti c p erf or m a n c e is
o nl y d et er mi n e d b y t h e fr e e s e n s or s a s α, β → 0. I n p arti c ul ar,
t h e as y m pt oti c st o p pi n g ti m e of t h e of fli n e s el e cti o n s c h e m e
c a n b e o bt ai n e d b y [ 1 5, S e c.  V]

E T → mi n
q

π 0
D (α ||1 − β )

q D 0
+ π 1

D (1 − β ||α )

q D 1
,

w h er e q i s t h e pr o b a bilit y of r a n d o m s el e cti o n f or e a c h s e n s or,
D i [D k 1

i , D k 2
i , . . . , D k r

i ] , a n d ¯ c = { k 1 , k 2 , . . . , k r } is t h e
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Fi g. 6.  T h e st o p pi n g b o u n d ari es a n d s el e cti o n i nt er v als f or t h e i n fi nit e- h ori z o n pr o bl e m. ( a) T 1 = 6 , T 2 = 9. ( b) T 1 = 7 , T 2 = 7.

Fi g. 7.  C o m p aris o n of t h e pr o p os e d s e q u e nti al t est a n d t h e S P R T  wit h of fli n e r a n d o m s el e cti o n str at e g y.

s et of u n c o n str ai n e d s e n s or s.  N ot e t h at si n c e

mi n
q

π 0
D (α ||1 − β )

q D 0
+ π 1

D (1 − β ||α )

q D 1

≤ π 0
D (α ||1 − β )

m a x ∈ ¯ c
D 0

+ π 1
D (1 − β ||α )

m a x ∈ ¯ c
D 1

,

wit h t h e e q u alit y h ol d s if a n d o nl y if all t h e  K L Ds a cr o ss
s e n s or s ar e e q u al, i. e., D k 1

i = D k 2
i = . . . = D k r

i ,  w hi c h is n ot
t h e c a s e i n o ur pr o bl e m s et u p.  T h er ef or e, a s α, β → 0, t h e
r a n d o m s el e cti o n b a s e d S P R T is stri ctl y o ut p erf or m e d b y t h e
pr o p o s e d s c h e m e.

I n a d diti o n,  w e als o pl ot t h e cl o s e-f or m a p pr o xi m ati o n f or
t h e o pti m al p erf or m a n c e i n Fi g. 7,  w hi c h is gi v e n b y ( 3 4).  N ot e

t h at t his a n al yti c al r es ult (i. e., t h e r e d s oli d li n e) li es p ar all el t o
t h e p erf or m a n c e c ur v e of t h e pr o p o s e d s c h e m e (i. e., t h e bl a c k
li n e  wit h cir cl e  m ar ks), i n di c ati ng its a c c ur at e c h ar a ct eri z ati o n
f or t h e a s y m pt oti c al p erf or m a n c e.  T h e c o n st a nt g a p i n b et w e e n
i s l ar g el y c a u s e d b y t h e i n e q u alit y ( 7 4) t h at l o w er b o u n d s t h e
c o n st a nt t er m (i. e., i n d e p e n d e nt of α a n d β ) i n ( 7 3),  w hi c h
ulti m at el y l e a d s t o ( 3 4).  T h er ef or e, t h e c o n st a nt g a p c a n b e
s m all if ( 7 4) is ti g ht, d e p e n di n g o n t h e s p e ci fi c  m o d el.  T o s e e
t his, ass u mi n g t h at  w e d eri v e t h e p erf or m a n c e f or m ul a dir e ctl y
b a s e d o n ( 7 3) ( s p e ci fi c all y, T 0 a n d T 1 i n ( 7 3) n e e d t o b e
e v al u at e d t hr o u g h si m ul ati o n), it is s h o w n i n Fi g. 7 t h at t h e
r e s ulti n g l o w er b o u n d (i. e., t h e gr e e n d a s h li n e) ali g n s cl o s el y
t o t h e p erf or m a n c e of t h e pr o p o s e d s c h e m e.
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VI.  C O N C L U S I O N S

I n t his  w or k,  w e h a v e st u di e d t h e s e q u e nti al h y p ot h e sis
t esti n g  wit h o nli n e s e n s or s el e cti o n a n d s e n s or u s a g e c o n-
str ai nts.  T h e o pti m al s e q u e nti al t est a n d s el e cti o n str at e g y
ar e o bt ai n e d f or b ot h t h e fi nit e- h ori z o n a n d i n fi nit e- h ori z o n
s c e n ari o s.  We h a v e als o pr o p o s e d al g orit h m s t o a p pr o xi m at el y
e v al u at e t h e p ar a m et ers i n t h e o pti m al s e q u e nti al pr o c e d ur e.
Fi n all y, e xt e n si v e n u m eri c al r e s ults h a v e b e e n pr o vi d e d t o
ill u str at e t h e t h e or eti c al fi n di n g s a n d c o m p aris o n  wit h t h e
e xisti n g  m et h o d. F ut ur e  w or k s  m a y i n cl u d e a p pl yi n g t h e s a m e
fr a m e w or k t o a d dr e ss t h e u s a g e- c o n str ai n e d s e n s or s el e cti o n
i n ot h er s e q u e nti al pr o bl e m s, f or e x a m pl e, c h a n g e- p oi nt d et e c-
ti o n. I n st e a d of t h e a v er a g e s a m pl e si z e, ot h er o bj e cti v e c a n
als o b e st u di e d, f or e x a m pl e, t h e  w or st- c a s e s a m pl e si z e.  T h e
a p pli c ati o n s i n distri b ut e d s e n s or n et w or k s c a n b e c o n si d er e d
a s  w ell. F or e x a m pl e, d y n a mi c s el e cti o n of q u a nti z ati o n  m o d e
i n t h e s e q u e nti al d et e cti o n [ 6], [ 3 2].

A P P E N D I X

A.  P r o of of L e m m a 1- 5

P r o of of L e m m a 1: We  w a nt t o pr o v e t h at
g n ( X 1 :n , δ 1 :n ) = g n (π 1 (n )). It s uf fi c es t o pr o v e t h at
f or a n y r e ali z ati o n s of { X 1 :n , δ 1 :n }, i. e., { x 1 :n , s 1 :n } a n d
{ x̄ 1 :n , s̄ 1 :n }, t h at l e a d t o e q u al p o st eri or s π 1 (n ) = ¯π 1 (n ),
w e h a v e g n ( x 1 :n , s 1 :n ) = g n ( x̄ 1 :n , s̄ 1 :n ).

C o n diti o n e d o n t h e e v e nt {T = n }, b y ( 1 3), it is o b vi o u s
t h at g n ( x 1 :n , s 1 :n ) = g n ( x̄ 1 :n , s̄ 1 :n ) = φ (π 1 (n )).  C o n diti o n e d
o n t h e e v e nt {n < T ≤ N },  w e  will pr o v e b y c o ntr a di cti o n.
O n o n e h a n d, a ss u m e t h at g n ( x 1 :n , s 1 :n ) > g n ( x̄ 1 :n , s̄ 1 :n ), t h e n

t h er e e xists a pr o c e d ur e δ̃ n + 1 , { δ̃ n + 2 :T , T } ∈ A N
n + 1 ( gi v e n

{ x 1 :n , s 1 :n }) s u c h t h at

g n ( x 1 :n , s 1 :n ) ≥

φ (π 1 (n )) −

⎡

⎣ E

⎛

⎝ φ π 1 (T ) +

T

t= n + 1

C δ t
X 1 :n = x 1 :n , δ 1 :n = s 1 :n

⎞

⎠

⎤

⎦

g n ( x 1 :n ,s 1 :n)

> g n ( x̄ 1 :n , s̄ 1 :n ), ( 4 4)

d u e t o t h e d e fi niti o n of g n i n ( 1 3).
O n t h e ot h er h a n d,  w e c o n str u ct t h e f oll o wi n g pr o c e d ur e

δ n + 1 , {δ n + 2 :T , T } ∈ A N
n + 1 ( gi v e n { x̄ 1 :n , s̄ 1 :n }).  L et

δ n + 1 ( x̄ 1 , . . . , x̄ n ) = δ n + 1 ( x 1 , . . . , x n ), ( 4 5)

a n d, gi v e n t h e s a m e s a m pl es aft er ti m e n ( d e n ot e d a s
x n + 1 , x n + 2 , . . .),

δ t ( x̄ 1 , . . . , x̄ n , x n + 1 , . . . , x t− 1 ) =

δ t ( x 1 , . . . , x n , x n + 1 , . . . , x t− 1 ), t = n + 2 , . . . , N . ( 4 6)

M or e o v er, l et T st o p if T st o p s gi v e n t h e s a m e s a m pl es
{ x n + 1 , x n + 2 , . . .}, a n d t h e d e cisi o n r ul e

D ( x̄ 1 , . . . , x̄ n , x n + 1 , . . . , x T ) = D ( x̄ 1 , . . . , x̄ n , x n + 1 , . . . , x T ).

I n s h ort, t h e pr o c e d ur e δ n + 1 :T , T is d e si g n e d t o yi el d t h e

e x a ct s a m e a cti o n s a s t h at of t h e pr o c e d ur e δ n + 1 :T , T gi v e n
t h e s a m e s a m pl es at ti m e n , i. e., { x n + 1 , x n + 2 , . . .}.  N ot e t h at,

a c c or di n g t o t h e a b o v e c o n str u cti o n pr o c e ss, δ n + 1 :T , T a n d

δ n + 1 :T , T ar e n ot i d e nti c al pr o c e d ur e s si n c e { x 1 :n , s 1 :n } =
{ x̄ 1 :n , s̄ 1 :n }.

A g ai n, d u e t o t h e d e fi niti o n of g n i n ( 1 3),  w e als o h a v e

g n ( x̄ 1 :n , s̄ 1 :n ) ≥

φ (π 1 (n )) −

⎡

⎣ E

⎛

⎝ φ π 1 ( T̂ ) +

T̂

t= n + 1

C δ̂ t
X 1 :n = ¯x 1 :n , δ 1 :n = ¯s 1 :n

⎞

⎠

⎤

⎦

g n ( x̄ 1 :n ,s̄ 1 :n )

.

( 4 7)

N e xt,  w e pr o v e t h at

g ( x̄ 1 :n , s̄ 1 :n ) = g ( x 1 :n , s 1 :n ) , ( 4 8)

w hi c h r e q uir e s

E

⎛

⎝ φ π 1 (T ) +

T

t= n + 1

C δ t
X 1 :n = x 1 :n , δ 1 :n = s 1 :n

⎞

⎠

= E

⎛

⎝ φ π 1 (T ) +

T

t= n + 1

C δ t
X 1 :n = ¯x 1 :n , δ 1 :n = ¯s 1 :n

⎞

⎠ . ( 4 9)

Fir st, d u e t o t h e c o n str u cti o n of δ n + 1 :T , T , w e h a v e

T − n { X 1 :n = ¯x 1 :n , δ 1 :n = ¯s 1 :n }

= T − n { X 1 :n = x 1 :n , δ 1 :n = s 1 :n }, a. s. . ( 5 0)

T o s h o w t h at t h e fir st t er m s o n b ot h si d e s of ( 4 9) ar e e q u al,
i. e.,

E φ π 1 (T ) X 1 :n , δ 1 :n = E φ π 1 ( T̄ ) X̄ 1 :n , δ̄ 1 :n ,

( 5 1)

n oti c e t h at

π 1 (T ) =
π 1 (n )e

T
t= n + 1 lδ t

π 0 (n ) + π 1 (n )e
T
t= n + 1 lδ t

( 5 2)

h a s t h e s a m e distri b uti o n c o n diti o n e d o n { x̄ 1 :n , s̄ 1 :n } a s t h at of

π 1 (T ) =
π̄ 1 (n )e

T
t= n + 1 lδ t

π̄ 0 (n ) + ¯π 1 (n )e
T
t= n + 1 lδ t

( 5 3)

c o n diti o n e d o n { x 1 :n , s 1 :n }.  T hi s is tr u e b e c a u s e π 1 (n ) =

π̄ 1 (n ) a n d T
t= n + 1 lδ t

h a s t h e s a m e p o st eri or distri b u-

ti o n as T
t= n + 1 lδ t

d u e t o ( 4 5)-( 4 6) a n d ( 5 0). I n a d diti o n,
t h e s e c o n d t er m s o n b ot h si d e s of ( 4 9) ar e als o e q u al b y
c o m bi ni n g ( 4 5)-( 4 6) a n d ( 5 0).

Usi n g ( 4 7)-( 4 8),  w e arri v e at

g n ( x̄ 1 :n , s̄ 1 :n ) ≥ g n ( x̄ 1 :n , s̄ 1 :n ) = g n ( x 1 :n , s 1 :n ) ( 5 4)

w hi c h c o ntr a di cts  wit h ( 4 4).
Si mil ar c o ntr a di cti o n a p p e ar s if  w e ass u m e g n ( X 1 :n , δ 1 :n ) <

g n X̄ 1 :n , δ̄ 1 :n .
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P r o of of L e m m a 2: Fr o m ( 1 2), t h e o pti m al s el e cti o n str at-
e g y f or t = n + 1 is

δ n + 1 = ar g  mi n
δ n + 1

E V N
n + 1 ( X 1 :n + 1 , δ 1 :n + 1 ) X 1 :n , δ 1 :n , ( 5 5)

a n d, b y its d e fi niti o n,  w e h a v e

V N
n + 1 ( X 1 :n + 1 , δ 1 :n + 1 )

= mi n {r s ( X 1 :n + 1 , δ 1 :n + 1 ) , r c ( X 1 :n + 1 , δ 1 :n + 1 )}

= mi n {0 , − g n + 1 ( π1 (n + 1 ))} + r s ( X 1 :n + 1 , δ 1 :n + 1 )

= φ (π 1 (n + 1 )) +

n + 1

t= 1

C δ t − m a x { g n + 1 ( π1 (n + 1 )), 0 } . ( 5 6)

S u b stit uti n g ( 5 6) i nt o ( 5 5) a n d n e gl e cti n g t h e t er m n
t= 1 C δ t

t h at is i n d e p e n d e nt of δ n + 1 ,  w e arri v e at ( 5 7) o n t h e t o p
of p a g e 4 4 0 8.  N ot e t h at t h e f a ct t h at t h e e x p e ct ati o n t er m i n
t h e br a c k et is a ti m e- v ari a nt f u n cti o n of π 1 (n ) a n d δ n + 1 (i. e.,
u n (π 1 (n ), δ n + 1 )) f oll o ws fr o m t h e r el ati o n b et w e e n π 1 (n ) a n d
π 1 (n + 1 ) gi v e n b y ( 6).  T h e n δ n + 1 = ar g  mi n δ u n (π 1 (n ), δ )
C δ + u n (π 1 (n ), δ ) w hi c h i m pli es t h at t h e o pti m al s el e cti o n
is a ti m e- v ari a nt f u n cti o n of t h e p o st eri or, i. e., δ n + 1 =
ψ n + 1 (π 1 (n )).

P r o of of L e m m a 3: Fir st, G N
N ( π1 ( N )) = φ ( π 1 ( N )) =

mi n {µ 1 π 1 ( N ),  µ0 (1 − π 1 ( N ))} is c o n c a v e. S e c o n d, t h e r e c ur-
si o n ( 1 9) s u g g e sts t h at, if G N

n + 1 ( π1 (n + 1 )) is c o n c a v e,

G N
n ( π1 (n )) is c o n c a v e as  w ell.  T his c a n b e s h o w n as f oll o ws:

Ass u m e t h at G N
n + 1 ( x ) is c o n c a v e, si n c e

x e x p lδ n + 1

1 − x + x e x p lδ n + 1

i s a n i n cr e asi n g f u n cti o n of x a n d t h e e x p e ct ati o n o p er-
ati o n pr e s er v e s t h e c o n c a vit y, t h e c o m p o u n d f u n cti o n

E G N
n + 1

x e x p lδ n + 1

1 − x + x e x p lδ n + 1

π 1 (n ) = x is c o n c a v e,  w hi c h

f urt h er l e a d s t o t h e c o n c a vit y of G
N
n ( π1 (n ), δ n + 1 ) i n t er m s

of π 1 (n ); i n a d diti o n, r e g ar di n g G
N
n ( π1 (n ), δ n + 1 ) a s a s eri e s

of c o n c a v e f u n cti o n s i n d e x e d b y δ n + 1 , si n c e t h e p oi nt- wis e
mi ni m u m pr e s er v e s t h e c o n c a vit y, G N

n ( π1 (n )) is a c o n c a v e
f u n cti o n; d u e t o t h e s a m e ar g u m e nt, t h e p oi nt- wis e  mi ni m u m
of G N

n ( π1 (n )) a n d φ ( π 1 (n )), i. e., G N
n ( π1 (n )), is c o n c a v e as

w ell.
T h er ef or e, b y i n d u cti o n,  w e c o n cl u d e t h at G N

n ( π1 (n )),
n = 0 , 1 , . . . , N ar e c o n c a v e f u n cti o n s. F urt h er m or e, fr o m
t h e pr o of a b o v e,  w e k n o w t h at t h e c o n c a vit y of G N

n ( π1 (n ))

l e a d s t o t h e c o n c a viti es of G
N
n ( π1 (n ), δ n + 1 ) a n d G N

n ( π1 (n )).

T h u s G
N
n ( π1 (n ), δ n + 1 ) a n d G N

n ( π1 (n )) f or n = 0 , 1 , . . . , N ar e
c o n c a v e f u n cti o n s.

P r o of of L e m m a 4: B y t h e c o n c a vit y of G N
n ( x ),  w e k n o w

t h at t h e c o nti n u ati o n r e gi o n at t = n is a n i nt er v al c o n fi n e d
b y t h e r o ots of t h e f oll o wi n g e q u ati o n s ( d e n ot e d a s a n a n d b n

r e s p e cti v el y):

µ 0 (1 − x )G N
n ( x ), a n d µ 1 x = G N

n ( x ), n < N . ( 5 8)

Si n c e G N
n − 1 ( x ) < G N

n ( x ), t h u s a n − 1 < a n a n d b n − 1 > b n .
At t = N , t h e pr o c e d ur e h a s t o st o p a n d  m a k e d e cisi o n, t h u s
a N = b N . µ 1 π 1 ( N ) >

< µ 0 π 0 ( N ) w hi c h gi v es π 1 ( N ) >
< a N =

µ 0 /( µ 0 + µ 1 ).

P r o of of L e m m a 5: L et {δ 1 :T , D T , T } b e t h e o pti m al
s ol uti o n t o t h e i n fi nit e- h ori z o n pr o bl e m ( 2 8).  D e fi n e t h e a u x-
ili ar y pr o c e d ur e {δ

1 :T N
, D

T N
, T N } w h er e T N = mi n {T , N },

t h e n  w e h a v e

R δ
1 :T N

, D
T N

, T N − R δ 1 :T , D T , T

= E {T ≥ N } φ π 1 (T N ) − φ π 1 (T ) −

∞

t= N + 1

C δ t

≤ E {T ≥ N } φ π 1 (T N ) ( 5 9)

= E φ (π 1 ( N )) {T N = N } , ( 6 0)

w h er e ( 5 9) f oll o w s fr o m t h e f a ct t h at φ ( π 1 (T )) a n d C δ t

ar e p o siti v e, a n d ( 6 0) i s tr u e b e c a u s e T N = N h ol d s  wit h
pr o b a bilit y o n e gi v e n t h at T ≥ N d u e t o t h e d e fi niti o n of T N .
U si n g ( 6 0) a n d t h e f a ct t h at V N

0 ( π1 ) is t h e o pti m al c o st f or all
T ≤ N w h er e as {δ

1 :T N
, D

T N
, T N } is a c o n str u ct e d s c h e m e f or

T ≤ N ,  w e arri v e at t h e f oll o wi n g i n e q u aliti es

V N
0 ( π1 ) ≤ R δ

1 :T N
, D

T N
, T N

≤ R δ 1 :T , D T , T + E φ (π 1 ( N )) {T N = N } .

( 6 1)

B y t h e str o n g l a w of l ar g e n u m b er,  w e k n o w t h at
L N → ∞ , a. s. a s N → ∞ , t h u s φ (π 1 ( N )) =
mi n {µ 0 π 0 ( N ),  µ1 π 1 ( N )} → 0 a. s. a s N → ∞ [ 2 5].  Ta ki n g
N → ∞ o n b ot h si d e s of ( 6 1),  w e h a v e

li m
N → ∞

V N
0 ( π1 ) ≤ R δ 1 :T , D T , T = V ( π1 ). ( 6 2)

O n t h e ot h er h a n d, V N
0 ( π1 ) ≥ R δ 1 :T , D T , T , si n c e

V N
0 ( π1 ) is t h e  mi ni m al c o st f or t h e fi nit e- h ori z o n pr o bl e m,

i. e., T ≤ N ,  w h er e a s R δ 1 :T , D T , T is t h e  mi ni m al c o st f or
t h e i n fi nit e- h ori z o n pr o bl e m,  w h er e n o b o u n d o n T is i m p o s e d.
T h u s,  w e h a v e li m N → ∞ V N

0 ( π1 ) ≥ R δ 1 :T , D T , T =
V ( π1 ) t h at, t o g et h er  wit h ( 6 2), c o m pl et e s t h e pr o of.

B.  P r o of of  P r o p o siti o n 1

P r o of of  P r o p o siti o n 1: N ot e t h at f or t h e  L L R st atisti c,
w e h a v e

E 0 ( L T ) = E 0

⎡

⎣
T

t= 1

⎛

⎝

∈ c

lδ t {δ t = } + lδ t {δ t ∈ c }

⎞

⎠

⎤

⎦ . ( 6 3)

T h e fir st t er m of ( 6 3) c a n b e e x pr e ss e d as

E 0

⎡

⎣
T

t= 1 ∈ c

lδ t {δ t = }

⎤

⎦

=
∈ c

E 0

∞

t= 1

lδ t {δ t = } {T ≥ t}

=
∈ c

E 0

∞

t= 1

E 0 lδ t X 1 :(t− 1 ) , δ 1 :t− 1 {δ t = } {T ≥ t}

= −
∈ c

D 0 E 0

∞

t= 1

{δ t = } {T ≥ t}

= −
∈ c

D 0 T 0 , ( 6 4)
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δ n + 1 = ar g  mi n
δ n + 1

C δ n + 1 + E φ (π 1 (n + 1 )) − m a x {g n + 1 (π 1 (n + 1 )) , 0 } X 1 :n , δ 1 :n

= ar g  mi n
δ n + 1

⎧
⎪⎪⎨

⎪⎪⎩
C δ n + 1 + E φ (π 1 (n + 1 )) − m a x { g n + 1 (π 1 (n + 1 ), n + 1 ) , 0 } π 1 (n )

u n ( π1 (n ), δn + 1 )

⎫
⎪⎪⎬

⎪⎪⎭
( 5 7)

w h er e D 0 E 0 (− l ) is t h e  K L di v er g e n c e of s e n s or

a n d T 0 E 0
T
t= 1 {δ t = } i s t h e  m e a n u s a g e u n d er H 0 .

F urt h er m or e, t h e s e c o n d t er m of ( 6 3) c a n b e b o u n d e d as
f oll o ws

E 0

⎡

⎣
T

t= 1

lδ t {δ t ∈ c }

⎤

⎦

= E 0

∞

t= 1

lδ t {δ t ∈ c } {T ≥ t}

= E 0

∞

t= 1

E 0 lδ t X 1 :(t− 1 ) , δ 1 :t− 1 {δ t ∈ c } {T ≥ t} ( 6 5)

≥ − m a x
∈ c

D 0 E 0

∞

t= 1
{δ t ∈ c } {T ≥ t}

= − m a x
∈ c

D 0

⎛

⎝ E 0 T −
∈ c

T 0

⎞

⎠ , ( 6 6)

w h er e i n e q u alit y ( 6 5) h ol d s b e c a u s e
E 0 lδ t X 1 :(t− 1 ) , δ 1 :t− 1 {δ t ∈ c }

≥ mi n ∈ c
E 0 (l ) {δ t ∈ c }

.
A p pl yi n g ( 6 4) a n d ( 6 6) t o ( 6 3) r e s ults i n

E 0 ( L T ) ≥ −
∈ c

D 0 T 0 − m a x
∈ c

D 0

⎛

⎝ E 0 T −
∈ c

T 0

⎞

⎠ , ( 6 7)

w hi c h l e a d s t o t h e b o u n d f or  m e a n s a m pl e si z e u n d er H 0 :

E 0 T

≥

⎡

⎣ − E 0 ( L T ) −
∈ c

D 0 T 0 + m a x
∈ c

D 0

∈ c

T 0

⎤

⎦ 1

m a x ∈ c
D 0

=
− E 0 ( L T )

m a x ∈ c
D 0

+
∈ c

1 −
D 0

m a x ∈ c
D 0

T 0 . ( 6 8)

U n d er H 1 , si mil arl y a s i n ( 6 4) a n d ( 6 6),  w e h a v e

E 1

⎡

⎣
T

t= 1 ∈ c

lδ t {δ t = }

⎤

⎦ =
∈ c

D 1 T 1 ( 6 9)

a n d

E 1

⎡

⎣
T

t= 1

lδ t {δ t ∈ c }

⎤

⎦

= E 1

∞

t= 1

lδ t {δ t ∈ c } {T ≥ t}

= E 1

∞

t= 1

E 1 lδ t |F t− 1 {δ t ∈ c } {T ≥ t}

≤ m a x
∈ c

D 1 E 1

∞

t= 1
{δ t ∈ c } {T ≥ t}

= m a x
∈ c

D 1

⎛

⎝ E 1 T −
∈ c

T 1

⎞

⎠ , ( 7 0)

t h at l e a d t o

E 1 ( L T ) = E 1

⎡

⎣
T

t= 1 ∈ c

lδ t {δ t = }

⎤

⎦ + E 1

⎡

⎣
T

t= 1

lδ t {δ t ∈ c }

⎤

⎦

≤
∈ c

D 1 T 1 + m a x
∈ c

D 1

⎛

⎝ E 1 T −
∈ c

T 1

⎞

⎠ . ( 7 1)

As a r e s ult,  w e c a n b o u n d t h e  m e a n s a m pl e si z e u n d er H 1 b y

E 1 T

≥

⎡

⎣ E 1 ( L T ) −
∈ c

D 1 T 1 + m a x
∈ c

D 1

∈ c

T 1

⎤

⎦ 1

m a x ∈ c
D 1

=
E 1 ( L T )

m a x ∈ c
D 1

+
∈ c

1 −
D 1

m a x ∈ c
D 1

T 1 . ( 7 2)

Fi n all y, t h e e x p e ct e d  m e a n s a m pl e si z e, i. e., E T = π 0 E 0 T +
π 1 E 1 T , c a n b e b o u n d e d b el o w a s f oll o ws:

E T ≥ π 0
− E 0 ( L T )

m a x ∈ c
D 0

+ π 1
E 1 ( L T )

m a x ∈ c
D 1

+
∈ c

T −
∈ c

π 0 D 0

m a x ∈ c
D 0

T 0 +
π 1 D 1

m a x ∈ c
D 1

T 1

( 7 3)

≥ π 0
− E 0 ( L T )

m a x ∈ c
D 0

+ π 1
E 1 ( L T )

m a x ∈ c
D 1

+
∈ c

1 − m a x
D 1

m a x ∈ c
D 1

,
D 0

m a x ∈ c
D 0

T ,

( 7 4)

w h er e t h e s e c o n d i n e q u alit y is o bt ai n e d b y n oti n g t h at π 0 T 0 +
π 1 T 1 = T , t h u s

π 0 D 0

m a x ∈ c
D 0

T 0 +
π 1 D 1

m a x ∈ c
D 1

T 1

≤ m a x
D 1

m a x ∈ c
D 1

,
D 0

m a x ∈ c
D 0

T , ( 7 5)
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wit h e q u alit y h ol d s if T = π i T i , i =

ar g  m a x
D 1

m a x ∈ c
D 1

,
D 0

m a x ∈ c
D 0

.

N e xt, b y dr a wi n g o n t h e  Wal d’s a p pr o xi m ati o n [ 2],
i. e., L T ≈ − A gi v e n D T = 0 or L T ≈ B gi v e n D T = 1,
w e o bt ai n

E 0 ( L T ) = α E 0 L T |D T = 1 + (1 − α ) E 0 L T |D T = 0

= α B − (1 − α ) A , ( 7 6)

E 1 ( L T ) = (1 − β ) E 1 L T |D T = 1 + β E 1 L T |D T = 0

= (1 − β ) B − β A . ( 7 7)

M or e o v er, i n v o ki n g t h e c h a n g e of  m e a s ur e t e c h ni q u e a n d t h e
Wal d’s a p pr o xi m ati o n,  w e h a v e

α = E 0 { D
T

= 1 } = E 1 { D
T

= 1 } e
− L T ≈ e − B (1 − β ) ,

( 7 8)

β = E 1 { D
T

= 0 } = E 0 { D
T

= 0 } e
L T ≈ e − A (1 − α ) ,

( 7 9)

w hi c h l e a d t o

B ≈ l o g
1 − β

α
, A ≈ l o g

1 − α

β
. ( 8 0)

S u b stit uti n g ( 8 0) i nt o ( 7 6)-( 7 7) gi v es E 0 ( L T ) ≈ − D ( α ||1 − β )
a n d E 1 ( L T ) ≈ D (1 − β ||α ) .
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Xi a o o u  Li r e c ei v e d t h e  B. S. d e gr e e i n  M at h e m ati cs a n d  B. A. i n  E c o n o mi cs
fr o m P e ki n g  U ni v ersit y i n 2 0 1 1, a n d t h e P h. D. d e gr e e i n St atisti cs fr o m
C ol u m bi a  U ni v ersit y i n 2 0 1 6. S h e j oi n e d t h e  U ni v ersit y of  Mi n n es ot a i n 2 0 1 6,
w h er e s h e is c urr e ntl y a n  As sist a nt Pr of es s or i n t h e S c h o ol of St atisti cs.
H er r es e ar c h i nt er ests i n cl u d e s e q u e nti a l a n al ysis, a d a pti v e d esi g n, r ar e e v e nt
a n al ysis, a n d t h eir a p pli c ati o ns.
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Xi a o d o n g  W a n g ( S’ 9 8 – M’ 9 8 – S M’ 0 4 – F’ 0 8) r e c ei v e d t h e P h. D. d e gr e e i n
el e ctri c al e n gi n e eri n g fr o m Pri n c et o n  U ni v ersit y.  H e is a Pr of ess or of el e ctri c al
e n gi n e eri n g at  C ol u m bi a  U ni v ersit y i n  N e w  Y or k.  Dr.  Wa n g’s r es e ar c h
i nt er ests f all i n t h e g e n er al ar e as of c o m p uti n g, si g n al pr o c essi n g, a n d
c o m m u ni c ati o ns, a n d h e h as p u blis h e d e xt e nsi v el y i n t h es e ar e as.  A m o n g
his p u bli c ati o ns is a r e c e nt b o o k e ntitl e d Wir el ess  C o m m u ni c ati o n S yst e ms:
A d v a n c e d Te c h ni q u es f or Si g n al  R e c e pti o n ( Pr e nti c e  H all, 2 0 0 3).

His c urr e nt r es e ar c h i nt er ests i n cl u d e  wir el ess c o m m u ni c ati o ns, st atisti c al
si g n al pr o c essi n g, a n d g e n o mi c si g n al pr o c essi n g.  Dr.  Wa n g r e c ei v e d t h e
1 9 9 9  N S F  C A R E E R  A w ar d, t h e 2 0 0 1 I E E E  C o m m u ni c ati o ns S o ci et y a n d
I nf or m ati o n  T h e or y S o ci et y J oi nt P a p er  A w ar d, a n d t h e 2 0 1 1 I E E E  C o m-
m u ni c ati o n S o ci et y  A w ar d f or  O utst a n di n g P a p er o n  N e w  C o m m u ni c ati o n
T o pi cs.  H e h as s er v e d as a n  Ass o ci at e  E dit or f or t h e I E E E  T R A N S A C T I O N S

O N C O M M U N I C A T I O N S , t h e I E E E  TR A N S A C T I O N S  O N W I R E L E S S C O M M U -
N I C A T I O N S , t h e I E E E  TR A N S A C T I O N S  O N S I G N A L P R O C E S S I N G , a n d t h e
I E E E  T R A N S A C T I O N S  O N I N F O R M A T I O N T H E O R Y .  H e is a F ell o w of t h e
I E E E a n d list e d as a n I SI  Hi g hl y- cit e d  A ut h or.

Ji n g c h e n  Li u is  Ass o ci at e Pr of ess or i n t h e D e p art m e nt of St atisti cs at
C ol u m bi a  U ni v ersit y.  H e h ol ds a P h. D. i n St atisti cs fr o m  H ar v ar d  U ni v ersit y.
H e is t h e r e ci pi e nt of 2 0 1 3  T w e e di e  N e w  R es e ar c h er  A w ar d gi v e n b y
t h e I nstit ut e of  M at h e m ati c al St atisti cs a n d a r e ci pi e nt of t h e 2 0 0 9  B est
P u bli c ati o n i n  A p pli e d Pr o b a bilit y  A w ar d gi v e n b y t h e I N F O R M S  A p pli e d
Pr o b a bilit y S o ci et y.  H e h as r es e ar c h i nt er ests i n st atisti cs, a p pli e d pr o b a bilit y,
M o nt e  C arl o  m et h o ds, a n d ps y c h o m etri cs.
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