

Effect of solvent for tailoring the nanomorphology of multinary CuCo₂S₄ for overall water splitting and energy storage

Camila Zequine ^a, Sanket Bhoyate ^a, Fangzhou Wang ^b, Xianglin Li ^b, Khamis Siam ^a, P.K. Kahol ^c, Ram K. Gupta ^{a, d, *}

^a Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA

^b Department of Mechanical Engineering, University of Kansas, Lawrence, KS 66046, USA

^c Department of Physics, Pittsburg State University, Pittsburg, KS 66762, USA

^d Kansas Polymer Research Center, Pittsburg State University, Pittsburg, KS 66762, USA

ARTICLE INFO

Article history:

Received 6 October 2018

Received in revised form

31 December 2018

Accepted 2 January 2019

Available online 3 January 2019

Keywords:

Copper-cobalt oxide

Copper-cobalt sulfide

Mesoporous 3D flower-like nanostructures

Supercapacitor

Oxygen evolution

Hydrogen evolution

ABSTRACT

Tailoring the nanomorphology of electrochemically active materials could significantly affect their resultant catalytic and charge storage performance. In this study, the nanostructured morphology of multinary CuCo₂O₄ and CuCo₂S₄ was tuned using a different volume concentration of water and ethanol resulting in different nano-shapes maintaining similar crystal structure. The electrocatalytic performance was analyzed for all the synthesized samples as the hydrogen (HER) and oxygen evolution catalyst (OER). The HER and OER study for CuCo₂S₄ sample synthesized using ethanol required a low overpotential of 158 mV to reach 10 mA/cm² and 290 mV to achieve 20 mA/cm², respectively. Furthermore, the electrolyzer cell using symmetrical electrodes required a low overall cell potential of 1.66 V to achieve a current density of 10 mA/cm² and maintained stable performance for over 24 h, suggesting a promising bifunctional catalytic behavior. Furthermore, the synthesized samples were studied as electrodes for high-performance energy storage systems. The CuCo₂S₄ electrode showed an areal capacitance of 6.3 F/cm² (3190.8 F/g) at a current density of 2 mA/cm². The Ragone plot for the areal energy versus power density resulted to be 265 mWh/cm² (132 Wh/kg) and 11.9 W/cm² (5973 W/kg), respectively. Thus, from the overall study, it can be confirmed that tailoring morphology of nanostructured material such as CuCo₂S₄ could be a promising way for the advancement of energy generation and storage devices.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Today's clean energy scenario focus on sustainable energy conversion and storage devices. Hydrogen and oxygen production through overall water splitting using electrocatalysis have shown a promising margin of research. Compared to conventional gasoline engines which convert chemical energy into heat and then to mechanical work (considering most of the energy is drained while conversion), hydrogen fuel cells provide direct conversion of chemical energy to electricity avoiding the thermal bottleneck. Moreover, they release water and little heat as byproduct contributing to environmental friendliness. Thus, producing hydrogen in an environment-friendly manner using water electrolysis with

minimal thermodynamic overpotential loss is essential for their wide range applicability [1–5].

To meet current technological growth, multifunctional and smart material systems are required to be developed resulting in an efficient low-cost alternate for energy generation and storage. Copper-based multinary sulfides are an important class of inorganic metal sulfides due to following key aspects: (i) abundant availability, reduced cost and toxicity; (ii) excellent intrinsic functional properties such as notable charge carrier mobility with higher carrier concentration; and (iii) their morphological, compositional and stoichiometric tailoring ability [6]. This could allow its applicability in fields of photonics, biomedical, sensing, catalysis, and energy storage [7–9].

Tailoring the nano-morphology could result in the enhanced electrochemical performance of the electroactive materials. Bulk metal oxides and sulfides show inferior electrochemical performance due to limited conductivity and electroactive surface area [3,10]. Therefore, a thin film of nanostructured materials with the

* Corresponding author. Department of Chemistry, Pittsburg State University, Pittsburg, KS 66762, USA.

E-mail address: rgupta@pittstate.edu (R.K. Gupta).

higher electrocatalytic surface area is preferred. Various morphologies for copper-based multinary metal oxides/sulfides such as rod-shaped, quasi-spherical, spherical, nanosheets, flower-like, nano-grass and nano-belts have been synthesized using solution route to obtain enhanced performance [10–15]. Solvent-based synthesis could result in the facile tuning of nano-morphology. For example, Tang et al. studied the effect of solvents such as water, glycol, and glycerol, during synthesis of CuCo_2S_4 to obtain tuned porosity within the structure and observed the enhancement in charge storage capacity [16]. Similarly, significant effect over nano-morphology could be observed by using a different concentration of ethanol during synthesis.

Wei et al. have synthesized hierarchical CuCo_2O_4 for water splitting and supercapacitor applications [17]. The electrocatalytic activities of CuCo_2O_4 was improved by decorating carbon quantum dots over CuCo_2O_4 . The effect of reaction temperature on the electrochemical properties of copper cobalt sulfide for supercapacitors was studied [18]. It was observed that the hydrothermal temperature is a crucial factor for the crystallinity, morphology and electrochemical performance of CuCo_2S_4 . Chauhan et al. have used X-ray photoelectron spectroscopy and electron paramagnetic resonance to study the mechanics of enhanced performance of CuCo_2S_4 [19]. It was revealed that introduction of Cu into the Co_3S_4 lattice plays an active role in enhancing oxygen evolution and kinetics. Hierarchically structured CuCo_2S_4 nanowire was used as cost effective and efficient material for overall water splitting [20]. The fabricated electrolyzer required a low potential of 1.65 V to generate 100 mA/cm² 3D mesoporous flower-like CuCo_2S_4 / CuCo_2O_4 heterostructure as a cathode and graphene aerogel as anode was used for fabrication of an asymmetric supercapacitor [21]. The device delivered high energy density (33.2 Wh/kg) and power density (13.3 kW/kg).

In this study, we have synthesized copper-cobalt based multinary sulfide as an electrocatalyst for overall water splitting and energy storage supercapacitor. Nanocrystals of copper-cobalt oxide (CuCo_2O_4) and copper-cobalt sulfide (CuCo_2S_4) were synthesized using different volume concentration of water and ethanol as solvents. The varied concentration of solvents tailored the nano-morphology of CuCo_2S_4 , resulting in superior electrocatalytic and charge storage performance. The CuCo_2S_4 electrode synthesized using ethanol showed a lower OER overpotential of 290 mV to achieve a current density of 20 mA/cm² and a lower HER overpotential of 158 mV to achieve a current density of 10 mA/cm². Further analysis of CuCo_2S_4 electrode as a supercapacitor electrode, showed high energy and power densities of 265 mWh/cm² and 11.9 W/cm², respectively. Thereby, an overall study on CuCo_2S_4 electrode proved that it could serve as a promising electrode

material for multifunctional energy generation and storage devices.

2. Experimental details

The overall reaction scheme is summarized in Fig. 1. In the first step, copper cobalt oxide was synthesized using one pot hydrothermal method. This was carried out by dissolving 528 mg of $\text{Co}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$, 93.8 mg of $\text{Cu}(\text{NO}_3)_2 \cdot 3\text{H}_2\text{O}$ and 721 mg of urea in three solvent compositions. The compositions consist of 100 vol% water, 50/50 vol% water/ethanol, and 100 vol% ethanol, in a total of 34 ml. The dissolved mixtures were transferred to a Teflon autoclave reactor consisting pre-cleaned nickel foam. The reaction was carried out at 120 °C for 8 h. After completion of the reaction, the reactor was allowed to cool naturally. The resultant precipitate was washed several times with ethanol and dried overnight under vacuum at 80 °C before use. Similarly, the coated Ni-foams were washed several times with ethanol and dried under overnight vacuum at 80 °C. The CuCo_2O_4 electrodes were obtained after annealing the as-prepared electrode at 350 °C for 2 h (ramp rate of 5 °C/min) in the air. The electrodes were termed as CuCo_2O_4 -1, CuCo_2O_4 -2, and CuCo_2O_4 -3 based on the solvent composition of 100 vol% water, 50/50 vol% water/ethanol, and 100 vol% ethanol, respectively.

Secondly, copper cobalt sulfide was prepared by dissolving 50 mg of thioacetamide in 20 ml of ethanol to form a homogeneous solution. The solution was then transferred to a Teflon autoclave reactor containing precursor Ni-foams from the previous step. The reaction was carried out at 160 °C for 6 h. As similar to an aforementioned procedure, the precipitates and electrodes were washed several times with ethanol and dried under vacuum at 80 °C overnight. The final electrodes are termed as CuCo_2S_4 -1, CuCo_2S_4 -2, and CuCo_2S_4 -3, corresponding to the solvents used such as 100 vol% water, 50/50 vol% water/ethanol, and 100 vol% ethanol, respectively for their synthesis. The weight of material over the electrode was ~2 mg/cm².

The structural identity, phase purity and physical morphology of all the fabricated electrodes were analyzed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). $\text{CuK}\alpha_1$ ($\lambda = 1.5406 \text{ \AA}$) radiation was used to record the X-ray diffraction patterns in 20–0 mode. The sample morphology was characterized by scanning electron microscopy (SEM, JEOL JSM-840A).

Electrochemical measurements for energy generation and storage were performed using Versastat 4–500 electrochemical workstation (Princeton Applied Research, USA). The study was carried out using three-electrode and two-electrode system. The synthesized CoCu_2O_4 and CoCu_2S_4 electrodes were directly used as a working electrode. A platinum wire and saturated calomel

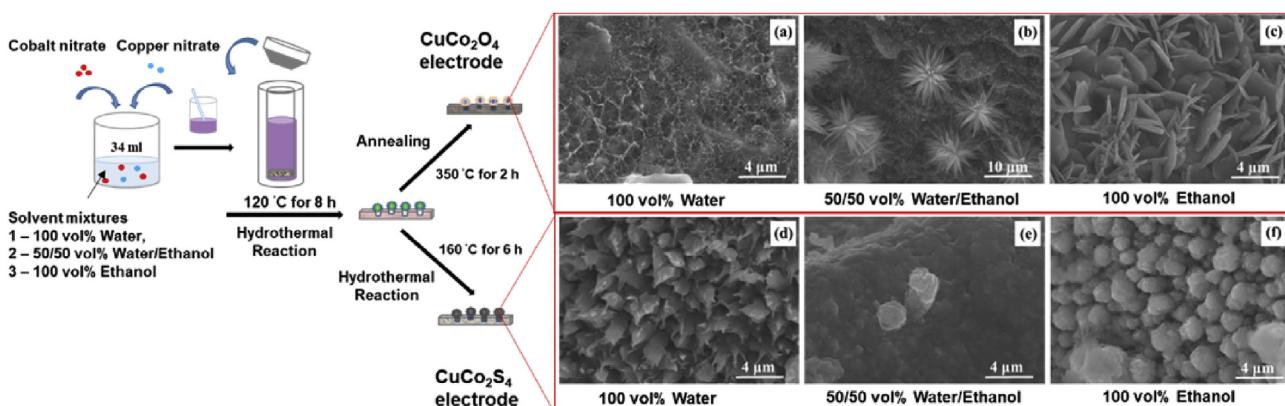


Fig. 1. Scheme for the synthesis and application of CuCo_2S_4 electrodes.

electrode (SCE) were used as counter and reference electrodes, respectively. All the experiments for electrocatalysis and energy storage were performed using 1M and 3M KOH electrolyte, respectively. Electrocatalytic properties of the synthesized electrodes were studied using linear sweep voltammetry (LSV), cyclic voltammetry (CV) and chronoamperometry (CA). While the charge storage performance was measured using cyclic voltammetry and galvanostatic charge-discharge (CD). LSV was performed at a scan rate of 2 mV/s for both OER and HER measurements. The potential was converted to RHE using the Nernst equation [19]. Electrochemical impedance spectroscopic (EIS) was performed during all the tests in the frequency range of 0.05 Hz–10 kHz with an applied AC amplitude of 10 mV.

3. Results and discussion

In this study, the nanostructured morphology of CuCo_2O_4 and CuCo_2S_4 were tailored using different solvent mixtures. The synthesis of CuCo_2O_4 using 100 vol% water, 50/50 vol% water/ethanol and 100 vol% ethanol resulted in the porous film, nanoneedle flower and porous petal type of morphology as observed from the SEM images in Fig. 1(a–c). Similar behavior of change in nano-morphology was observed for CuCo_2S_4 and summarized in Fig. 1(d–f). Although nano-morphology of multinary Cu-Co system resulted in different structures, their phase purity and crystalline nature showed identical behavior. The dependence of the morphology on the solvent could be due to the difference in the polarity of the solvent. The polarity of ethanol is lower than water. The solvent with high ethanol/water ratio has a lower polarity than pure water. The effect of solvent polarity on the morphology of the synthesized materials was also observed in different materials [22–24]. The powder XRD patterns for CuCo_2O_4 in Fig. 2(a) corresponds to pure cubic spinel phase of CuCo_2O_4 (JCPDS card no. 78-2177) [25]. In addition, no other impurity peaks were observed, suggesting the high purity of the material. The diffraction peaks of CuCo_2S_4 samples in Fig. 2(b) can be indexed to polycrystalline CuCo_2S_4 that match very well with the JCPDS card no. 42-1450, with no oxide impurity phase indicating total conversion of CuCo_2O_4 to CuCo_2S_4 [19,26]. The CuCo_2S_4 samples show lower peaks intensities compared to CuCo_2O_4 samples with an amorphous background.

The average crystallite size (t) was calculated using the Debye–Scherrer's equation, $t = 0.9\lambda/\beta\cos\theta$, where λ is the X-ray wavelength, β is the full width at half maximum of the diffraction line, and θ is the diffraction angle of the XRD spectra [27]. The average crystallite size was calculated to be 14.4, 13.8, 16.7, 17.1, 14.4 and 18.4 nm for CuCo_2O_4 -1, CuCo_2O_4 -2, CuCo_2O_4 -3, CuCo_2S_4 -1,

CuCo_2S_4 -2, and CuCo_2S_4 -3, respectively. The Williamson–Hall relationship was used to estimate percentage strain in the synthesized samples [28,29]. The percentage strain in the particles was estimated to be 0.74, 0.77, 0.89, 0.31, 0.37 and 0.30 for CuCo_2O_4 -1, CuCo_2O_4 -2, CuCo_2O_4 -3, CuCo_2S_4 -1, CuCo_2S_4 -2, and CuCo_2S_4 -3, respectively.

The electrocatalytic performance of CuCo_2O_4 and CuCo_2S_4 as an oxygen evolution catalyst was investigated using the LSV test. The polarization curves for the synthesized samples are shown in Fig. 3(a and b). The CuCo_2O_4 -3 showed the lowest overpotential of 325 mV at 10 mA/cm² compared to CuCo_2O_4 -1 (371 mV) and CuCo_2O_4 -2 (371 mV). Increased concentration of ethanol during the synthesis greatly enhances the electrochemical performance of the metal oxides [30]. These results were further improved after sulfurization of the samples. The oxidation peak around 1.4 V can be ascribed to Ni(II) to Ni(III) [31,32]. The electrocatalytic performance of the CuCo_2S_4 -3 sample showed the lowest overpotential of 290 mV at a current density of 20 mA/cm². This could be attributed to the nanoporous morphology of CuCo_2S_4 -3 obtained using ethanol during the synthesis which provides enhanced electrocatalytic performance. The electrochemical surface area of CuCo_2O_4 and CuCo_2S_4 was estimated using CV in the non-Faradic region. A linear relationship between current density and scan rate of the synthesized samples was observed. The slope of the curve provides the value of double layer capacitance which is directly related to the surface area of these materials [33]. Double layer capacitance of 0.28 and 9.5 mF/cm² was calculated for CuCo_2O_4 and CuCo_2S_4 , respectively (Fig. S1). Among the CuCo_2S_4 samples, the electrochemical surface area was observed to be 5.7, 8.1 and 9.5 mF/cm² for CuCo_2S_4 -1, CuCo_2S_4 -2, and CuCo_2S_4 -3, respectively (Fig. S1). Although among the oxides and sulfides samples, oxides showed higher electrochemical surface area, their high impedance and larger charge transfer resistance counterbalance their catalytic effects (Fig. S2).

The observed results were comparable to previously reported multinary catalyst systems in alkaline media and summarized in Table S1. Reaction kinetics was studied using Tafel slopes (Fig. S3). The long-term durability of CuCo_2S_4 -3 electrode was performed using cyclic stability test and chronoamperometry test. The electrochemical stability of the electrode was also studied under various bending test. The polarization curves for CuCo_2S_4 -3 during stability test after 2,000th cycles and bending test from 0° to 60° showed stable behavior (Fig. 3(c and d)). Moreover, the chronoamperometry test showed stable values for the resulting current under constant applied potential for 17 h, suggesting the stable longterm performance of the electrode (Fig. S4).

The electrochemical performance of CuCo_2S_4 was further

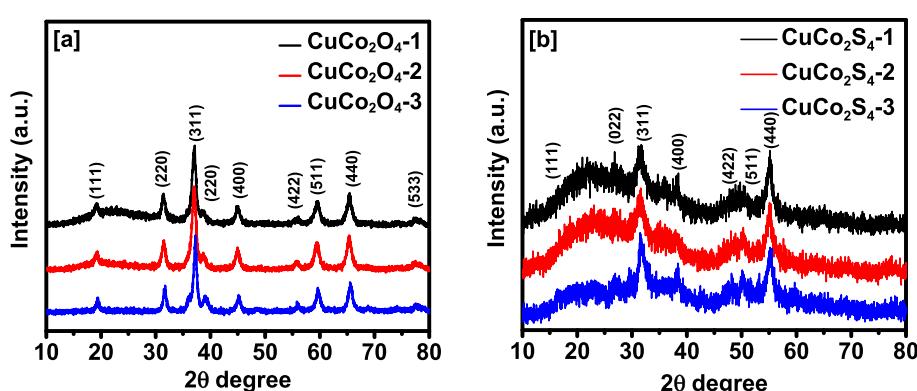
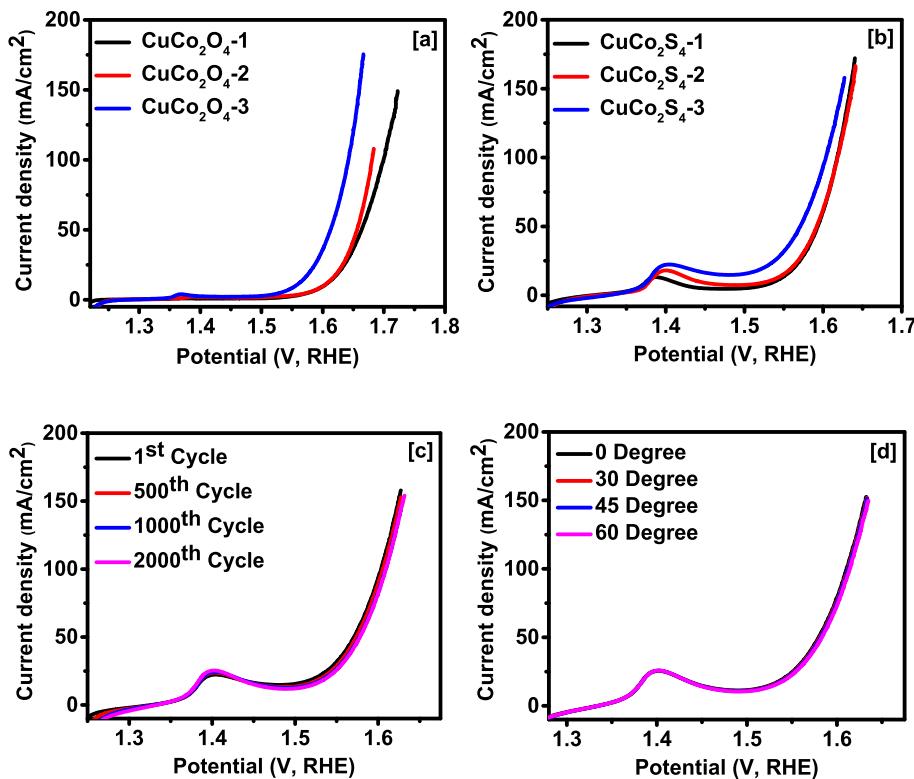
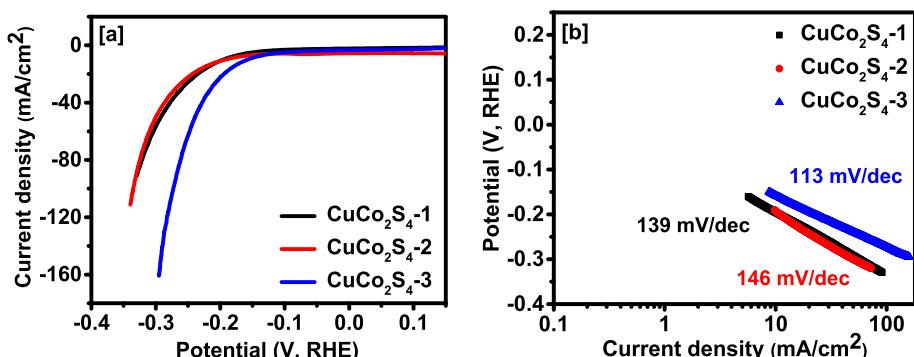



Fig. 2. XRD pattern of the synthesized (a) CuCo_2O_4 and (b) CuCo_2S_4 samples.


Fig. 3. Results for catalytic performance in OER test. Polarization curves for (a) CuCo₂O₄ and (b) CuCo₂S₄; (c) LSV stability test for CuCo₂S₄-3, and (d) Bending test for CuCo₂S₄-3.

investigated as an electrocatalyst for HER. The electrocatalytic performance of CuCo₂S₄ as HER catalyst followed the similar trend for overpotential results as observed in the OER test. The CuCo₂S₄-3 sample showed the lowest overpotential of 158 mV at 10 mA/cm² and Tafel slope of 113 mV/dec suggesting higher electrocatalytic performance for HER process (Fig. 4(b)). Lower Tafel slope suggest faster reaction kinetics for producing hydrogen gas. The observed overpotential and Tafel slope of CuCo₂S₄-3 for HER reaction were comparable to previous reports for HER electrocatalysts and can be observed from Table S2. Furthermore, the durability performance using cyclic stability for 2000 cycles and chronoamperometry test for 20 h showed stable catalytic performance (Fig. S5). This suggests that CuCo₂S₄ could serve as a promising material for HER catalysis.

The bifunctional electrocatalytic performance of CuCo₂S₄ was analyzed using a two-electrode system. The electrolyzer cell was fabricated using two symmetrical electrodes of CuCo₂O₄ and CuCo₂S₄ to study overall water splitting. The polarization curves in Fig. 5(a) shows higher electrocatalytic performance for the

symmetrical CuCo₂S₄-3 cell as compared to the symmetrical CuCo₂O₄-3 cell. The symmetrical CuCo₂S₄-3 cell and CuCo₂O₄-3 cell required the potential of 1.66 and 1.77 V to obtain the current density of 10 mA/cm², respectively. The chronoamperometry test showed stable electrolysis for more than 24 h suggesting superior stability of the synthesized electrodes (Fig. 5(b)).

The effect of solvent over the charge storage performance of the synthesized material was analyzed using cyclic voltammetry and galvanostatic charge-discharge test. The CV test showed obvious improvement in total area under the CV curve for synthesized CuCo₂O₄-3 and CuCo₂S₄-3 samples compared to the other two samples (Fig. S6(a and c)). This improvement was consistent with longer discharge time observed in galvanostatic charge-discharge curves in Fig. S6(b and d). Significant improvement was observed in specific capacitance values of CuCo₂S₄ electrodes, after sulfurization of the CuCo₂O₄ electrodes (Fig. 6(a and b)). The CuCo₂S₄-3 electrode showed improved specific capacitance values to 6.3 F/cm² (3190.8 F/g) as compared to CuCo₂O₄ (0.57 F/cm² or 285.5 F/g) at

Fig. 4. Results for the catalytic performance of CuCo₂S₄ in HER test. (a) Polarization curves, and (b) Tafel slope.

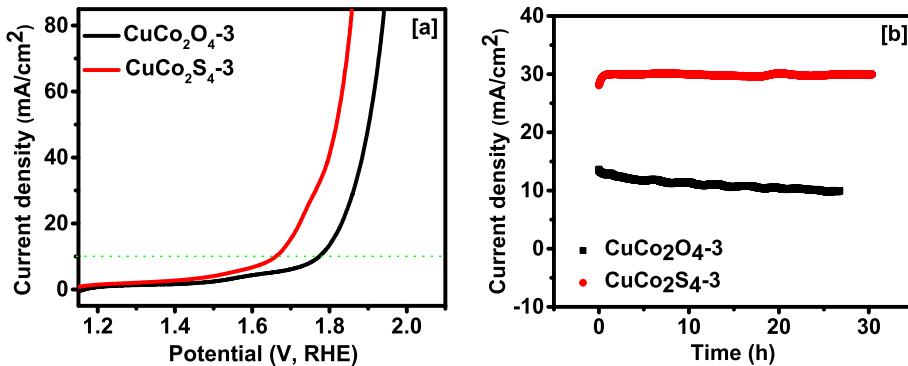


Fig. 5. (a) Polarization and (b) Chronoamperometry plots for overall water splitting of a two-electrode electrolyzer.

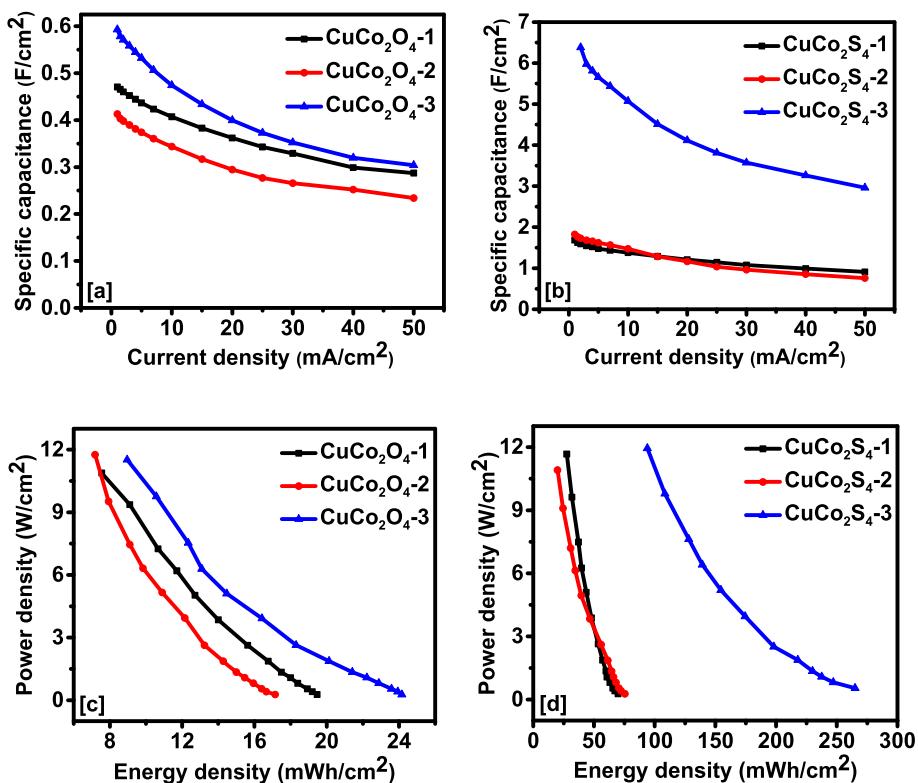


Fig. 6. Specific capacitance vs current density of (a) CuCo₂O₄ and, (b) CuCo₂S₄; Ragone plot for (c) CuCo₂O₄ and, (d) CuCo₂S₄.

current density of 2 mA/cm². The obtained results were higher compared to previously reported supercapacitor electrodes (Table S3). The areal energy and power densities of the synthesized electrodes can be outlined using Ragone plot (Fig. 6(b and c)). The energy and power densities for CuCo₂S₄-3 were observed to be 265 mWh/cm² (132 Wh/kg) and 11.9 W/cm² (5973 W/kg), respectively. The observed values were higher compared to all previously reported multinary CuCo₂S₄ system and summarized in Table S4. Wei et al. have synthesized CuCo₂O₄@carbon quantum dots (CQDs) for overall water splitting and supercapacitor applications [17,34]. The asymmetrical supercapacitors made of 3D porous hierarchical CuCo₂O₄@carbon quantum dots (CQDs) and Fe₂O₃@CQDs showed an energy density of 39.5 Wh/kg at 1203.7 W/kg [34]. Higher energy density and power density of CuCo₂S₄ could enable its potential applicability in advanced energy storage systems such as batteries for efficient and safer operations [35,36]. For example, Ji et al. fabricated novel dual ion battery and observed energy density

of 155 Wh/kg at a power density of 116 W/kg [37]. Although batteries provide higher energy density, they lack to provide higher power density and thereby, lack to serve the purpose of high power in the electric motor vehicle when used alone [38,39]. Hence, utilizing CuCo₂S₄ described in this work could serve as an efficient alternative high power energy storage system. Moreover, cyclic stability test for 5000 cycles using CuCo₂O₄ and CuCo₂S₄ electrodes showed capacitance retention of 100% (Fig. S7(a and b)). Both the electrodes maintained the Coulombic efficiency of about 100% suggesting efficient charge storage behavior. The overall study suggests that CuCo₂S₄-3 sample could be used as an efficient electrode for high-performance supercapacitors.

4. Conclusions

Tailoring the nanomorphology of electrochemically active materials such as CuCo₂O₄ and CuCo₂S₄, by using different vol%

water and ethanol could result in different nano-shapes and affect the final energy generation and storage properties. The electrocatalytic performance of CuCo_2S_4 for HER and OER process resulted in a low overpotential requirement of 158 mV to reach 10 mA/cm² and 290 mV at 20 mA/cm², respectively with high cyclic stability. The overall water-splitting using an electrolyzer cell with symmetrical electrodes of CuCo_2S_4 showed a low cell potential of 1.66 V at 10 mA/cm² with long cycling lifespan. The CuCo_2S_4 electrode displayed ultra-high areal capacitance of 6.3 F/cm² (3190.8 F/g) at 2 mA/cm² with areal energy and power densities of 265 mWh/cm² (132 Wh/kg) and 11.9 W/cm² (5973 W/kg), respectively. The results were comparable to advanced battery systems and suggest great potential of CuCo_2S_4 for green energy production and storage.

Author contributions

RKG conceived the project, designed the experiments, interpreted the data, and finalized the manuscript. The first draft of the manuscript was written by CZ and SB. CZ performed all the electrochemical measurements. FW and XL provided SEM images. All authors reviewed and commented on the manuscript.

Acknowledgments

Dr. Ram K. Gupta expresses his sincere acknowledgment to the Polymer Chemistry Program and the Kansas Polymer Research Center, Pittsburg State University for providing financial and research support to complete this project. XL wants to thank the financial support from General Research Fund provided by the University of Kansas and funding support from NSF (1833048).

Appendix A. Supplementary data

Supplementary data to this article can be found online at <https://doi.org/10.1016/j.jallcom.2019.01.012>.

References

- C. Zequine, S. Bhoyate, K. Siam, P.K. Kahol, N. Kostoglou, C. Mitterer, S.J. Hinder, M.A. Baker, G. Constantinides, C. Rebholz, G. Gupta, X. Li, R.K. Gupta, Needle grass array of nanostructured nickel cobalt sulfide electrode for clean energy generation, *Surf. Coating. Technol.* 354 (2018) 306–312.
- C. Zhang, S. Bhoyate, M. Hyatt, B.L. Neria, K. Siam, P.K. Kahol, M. Ghimire, S.R. Mishra, F. Perez, R.K. Gupta, Nitrogen-doped flexible carbon cloth for durable metal free electrocatalyst for overall water splitting, *Surf. Coating. Technol.* 347 (2018) 407–413.
- C. Zhang, Z. Wang, S. Bhoyate, T. Morey, B. Neria, V. Vasiraju, G. Gupta, S. Palchoudhury, P. Kahol, S. Mishra, F. Perez, R. Gupta, MoS₂ decorated carbon nanofibers as efficient and durable electrocatalyst for hydrogen evolution reaction *C* 3 (2017), 33(1)-33(12).
- C.K. Ranawera, C. Zhang, S. Bhoyate, P.K. Kahol, M. Ghimire, S.R. Mishra, F. Perez, B.K. Gupta, R.K. Gupta, Flower-shaped cobalt oxide nano-structures as an efficient, flexible and stable electrocatalyst for the oxygen evolution reaction, *Mater. Chem. Front.* 1 (2017) 1580–1584.
- H. Adhikari, M. Ghimire, C.K. Ranawera, S. Bhoyate, R.K. Gupta, J. Alam, S.R. Mishra, Synthesis and electrochemical performance of hydrothermally synthesized Co₃O₄ nanostructured particles in presence of urea, *J. Alloys Compd.* 708 (2017) 628–638.
- C. Coughlan, M. Ibáñez, O. Dobrozhan, A. Singh, A. Cabot, K.M. Ryan, Compound copper chalcogenide nanocrystals, *Chem. Rev.* 117 (2017) 5865–6109.
- M.D. Regulacio, Y. Wang, Z.W. Seh, M.-Y. Han, Tailoring porosity in copper-based multinary sulfide nanostructures for energy, biomedical, catalytic, and sensing applications, *ACS Appl. Nano Mater.* 1 (2018) 3042–3062.
- K. Ramasamy, H. Sims, S. Palchoudhury, S. Ivanov, A. Gupta, Layered ternary sulfide CuSbS₂ nanoplates for flexible solid-state supercapacitors, *J. Mater. Chem. A* 3 (2015) 13263–13274.
- K. Ramasamy, R.K. Gupta, S. Palchoudhury, S. Ivanov, A. Gupta, Layer-structured copper antimony chalcogenides (CuSb₂Se_{2-x}): stable electrode materials for supercapacitors, *Chem. Mater.* 27 (2015) 379–386.
- Y. Li, J. Yin, L. An, M. Lu, K. Sun, Y.Q. Zhao, F. Cheng, P. Xi, Metallic CuCo₂S₄ nanosheets of atomic thickness as efficient bifunctional electrocatalysts for portable, flexible Zn-air batteries, *Nanoscale* 10 (2018) 6581–6588.
- S. Zhao, Y. Wang, Q. Zhang, Y. Li, L. Gu, Z. Dai, S. Liu, Y.Q. Lan, M. Han, J. Bao, Two-dimensional nanostructures of non-layered ternary thiospinels and their bifunctional electrocatalytic properties for oxygen reduction and evolution: the case of CuCo₂S₄ nanosheets, *Inorg. Chem. Front.* 3 (2016) 1501–1509.
- W. Xu, J. Lu, W. Huo, J. Li, X. Wang, C. Zhang, X. Gu, C. Hu, Direct growth of CuCo₂S₄ nanosheets on carbon fiber textile with enhanced electrochemical pseudocapacitive properties and electrocatalytic properties towards glucose oxidation, *Nanoscale* 10 (2018) 14304–14313.
- J. Tang, Y. Ge, J. Shen, M. Ye, Facile synthesis of CuCo₂S₄ as a novel electrode material for ultrahigh supercapacitor performance, *Chem. Commun.* 52 (2016) 1509–1512.
- A. Pendashteh, S.E. Moosavifard, M.S. Rahmanifar, Y. Wang, M.F. El-Kady, R.B. Kaner, M.F. Mousavi, Highly ordered mesoporous CuCo₂O₄ nanowires, a promising solution for high-performance supercapacitors, *Chem. Mater.* 27 (2015) 3919–3926.
- K. Chen, J. Zhou, W. Chen, Q. Zhong, T. Yang, X. Yang, C. Deng, Y. Liu, Growth kinetics and mechanisms of multinary copper-based metal sulfide nanocrystals, *Nanoscale* 9 (2017) 12470–12478.
- J. Huang, Y. Sun, Y. Zhang, G. Zou, C. Yan, S. Cong, T. Lei, X. Dai, J. Guo, R. Lu, Y. Li, J. Xiong, A new member of electrocatalysts based on nickel metaphosphate nanocrystals for efficient water oxidation, *Adv. Mater.* 30 (2018), 1705045(1)-1705045(7).
- G. Wei, J. He, W. Zhang, X. Zhao, S. Qiu, C. An, Rational design of Co(II) dominant and oxygen vacancy defective CuCo₂O₄@CQDs hollow spheres for enhanced overall water splitting and supercapacitor performance, *Inorg. Chem.* 57 (2018) 7380–7389.
- S.H. Guo, W.Q. Chen, M. Li, J. Wang, F. Liu, J.P. Cheng, Effect of reaction temperature on the amorphous-crystalline transition of copper cobalt sulfide for supercapacitors, *Electrochim. Acta* 271 (2018) 498–506.
- M. Chauhan, K.P. Reddy, C.S. Gopinath, S. Deka, Copper cobalt sulfide nanosheets realizing a promising electrocatalytic oxygen evolution reaction, *ACS Catal.* 7 (2017) 5871–5879.
- S. Czioska, J. Wang, X. Teng, Z. Chen, Hierarchically structured CuCo₂S₄ nanowire arrays as efficient bifunctional electrocatalyst for overall water splitting, *ACS Sustain. Chem. Eng.* 6 (2018) 11877–11883.
- X. Xu, Y. Liu, P. Dong, P.M. Ajayan, J. Shen, M. Ye, Mesostructured CuCo₂S₄/CuCo₂O₄ nanoflowers as advanced electrodes for asymmetric supercapacitors, *J. Power Sources* 400 (2018) 96–103.
- Y. Dong, K. He, L. Yin, A. Zhang, A facile route to controlled synthesis of Co₃O₄ nanoparticles and their environmental catalytic properties, *Nanotechnology* 18 (2007), 435602(1)-435602(8).
- Y. Anil Kumar, S. Srinivasa Rao, D. Punnoose, C. Venkata Tulasivarma, C.V.V.M. Gopi, K. Prabakar, H.-J. Kim, Influence of solvents in the preparation of cobalt sulfide for supercapacitors, *R. Soc. Open Sci.* 4 (2017), 170427(1)-170427(11).
- S.J. Folkman, M. Zhou, M. Nicki, R.G. Finke, Alcohol solvent effects in the synthesis of Co₃O₄ metal-oxide nanoparticles: disproof of a surface-ligand thermodynamic effect en route to alternative kinetic and thermodynamic explanations, *Inorg. Chem.* 57 (2018) 1517–1526.
- H.S. Jadhav, S.M. Pawar, A.H. Jadhav, G.M. Thorat, J.G. Seo, Hierarchical mesoporous 3D flower-like CuCo₂O₄/NF for high-performance electrochemical energy storage, *Sci. Rep.* 6 (2016), 31120(1)-31120(12).
- T. Wang, M. Liu, H. Ma, Facile synthesis of flower-like copper-cobalt sulfide as binder-free faradaic electrodes for supercapacitors with improved electrochemical properties, *Nanomaterials* 7 (2017), 140(1)-140(11).
- R.K. Gupta, K. Ghosh, L. Dong, P.K. Kahol, Green synthesis of hematite (α -Fe₂O₃) submicron particles, *Mater. Lett.* 64 (2010) 2132–2134.
- A. Bhattacharya, R.K. Gupta, P.K. Kahol, K. Ghosh, Electrical properties of rectifying contacts on selectively carrier controlled grown ZnO thin films, *J. Appl. Phys.* 108 (2010), 34514(1)-34514(5).
- R.K. Gupta, K. Ghosh, P.K. Kahol, Structural and magnetic properties of epitaxial SnFe₂O₄ thin films, *Mater. Lett.* 65 (2011) 2149–2151.
- L. Zhang, H. Gong, A cheap and non-destructive approach to increase coverage/loading of hydrophilic hydroxide on hydrophobic carbon for lightweight and high-performance supercapacitors, *Sci. Rep.* 5 (2015), 18108(1)-18108(11).
- Z. Pu, Y. Luo, A.M. Asiri, X. Sun, Efficient electrochemical water splitting catalyzed by electrodeposited nickel diselenide nanoparticles based film, *ACS Appl. Mater. Interfaces* 8 (2016) 4718–4723.
- J. Zhang, Y. Wang, C. Zhang, H. Gao, L. Lv, L. Han, Z. Zhang, Self-supported porous NiSe₂ nanowrinkles as efficient bifunctional electrocatalysts for overall water splitting, *ACS Sustain. Chem. Eng.* 6 (2018) 2231–2239.
- C.C.L. McCrory, S. Jung, J.C. Peters, T.F. Jaramillo, Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction, *J. Am. Chem. Soc.* 135 (2013) 16977–16987.
- G. Wei, X. Zhao, K. Du, Y. Huang, C. An, S. Qiu, M. Liu, S. Yao, Y. Wu, Flexible asymmetric supercapacitors made of 3D porous hierarchical CuCo₂O₄@CQDs and Fe₂O₃@CQDs with enhanced performance, *Electrochim. Acta* 283 (2018) 248–259.
- H. Zhu, F. Zhang, J. Li, Y. Tang, Penne-Like MoS₂/carbon nanocomposite as anode for sodium-ion-based dual-ion battery, *Small* 14 (2018), 1703951(1)-1703951(7).
- R. Schmuck, R. Wagner, G. Höpfl, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries, *Nat. Energy* 3 (2018) 267–278.

[37] B. Ji, F. Zhang, X. Song, Y. Tang, A novel potassium-ion-based dual-ion battery, *Adv. Mater.* 29 (2017), 1700519(1)–1700519(7).

[38] H. Budde-Meiwes, J. Drillkens, B. Lunz, J. Muennix, S. Rothgang, J. Kowal, D.U. Sauer, A review of current automotive battery technology and future prospects, *Proc. Inst. Mech. Eng. - Part D J. Automob. Eng.* 227 (2013) 761–776.

[39] A. Burke, H. Zhao, Present and future applications of supercapacitors in electric and hybrid vehicles, in: 2015 IEEE 82nd Veh. Technol. Conf., IEEE, 2015, p. 5.