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Abstract

Rotational invariant circles of area-preserving maps are an important and well-studied exam-
ple of KAM tori. John Greene conjectured that the locally most robust rotational circles have
rotation numbers that are noble, i.e., have continued fractions with a tail of ones, and that,
of these circles, the most robust has golden mean rotation number. The accurate numerical
confirmation of these conjectures relies on the map having a time-reversal symmetry, and such
high accuracy has not been obtained in more general maps. In this paper, we develop a method
based on a weighted Birkhoff average for identifying chaotic orbits, island chains, and rotational
invariant circles that does not rely on these symmetries. We use Chirikov’s standard map as
our test case, and also demonstrate that our methods apply to three other, well-studied cases.

1 Introduction

The dynamics of an integrable Hamiltonian or volume-preserving system is organized by peri-
odic and quasi-periodic motion on invariant tori. When such a system is smoothly perturbed,
Kolmogorov-Arnold-Moser (KAM) theory [dIL01] implies that some of these tori persist and some
are replaced by isolated periodic orbits, islands, or chaotic regions. On each KAM torus, the dynam-
ics is conjugate to a rigid rotation with some fixed frequency vector. Typically, as the perturbation
grows the proportion of chaotic orbits increases and more of the tori are destroyed. Invariant tori
can be found numerically by taking limits of periodic orbits [Gre79] and by iterative methods based
on the conjugacy to rotation [HAIL06, HAILS12, HCF*16]. In these methods, one fixes a frequency
vector and attempts to find invariant sets on which the dynamics has this frequency. In this paper
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we explore an alternative technique, based on windowed Birkhoff averages [DSSY16], to distinguish
between chaotic, resonant, and quasiperiodic dynamics. Since we do not fix the rotation vector in
advance, this method permits us to accurately compute the rotation vector for each initial condi-
tion that lies on a regular orbit. As such the method is analogous to Laskar’s frequency analysis
[LFC92, BBGT96], which uses a windowed Fourier transform to compute rotation numbers. No-
tably there have been improvements to this technique using collocation [GMS10a] or Richardson
extrapolation [LV14].

As an illustrative example, we will primarily study Chirikov’s standard map [Chi79], though in
the last section we will consider several generalizations. Two-dimensional, area-preserving maps are
simplest, nontrivial case of Hamiltonian dynamics (for a review, see [Mei92]). Letting f : M — M,
where M = T x R, the cylinder, the standard map can be written as (141, yi+1) = f(z, y) =
fi(zo0,yo) with

Try1 = Tt + Qye+1) mod 1,

Yt+1 = Yt + F(z4).

(1)
For Chirikov’s case, the “frequency map” and “force” are given by

k.
Q(y) =Y, F(JZ’) = _27 SID(27T.%'),
T
respectively. When the parameter £ = 0, the action y is constant, and every orbit lies on a rotational
invariant circle with rotation number w = Q(y). When w is irrational the orbit is dense on the
circle, and the dynamics is conjugate to the quasiperiodic, rigid rotation

0 —-0+w modl (2)

for # € T, under the trivial conjugacy (z,y) = C(6) = (0, w).

As k increases, some of these rotational invariant circles persist, as predicted by KAM theory,
but those with rational or “near” rational rotation numbers are destroyed. On each KAM circle,
the dynamics is still conjugate to (2), for some irrational w, under a smooth map C : T — T x R.
As an example, Fig. 1 depicts the dynamics for the Chirikov map for k£ = 0.7. In the top row,
we distinguish between non-chaotic and chaotic dynamics, and in the bottom row we distinguish
between two types of non-chaotic behavior, namely island chains and rotational invariant circles.
The methods for doing this will be discussed in §2-3.

An orbit {(x¢,y:) : t € Z} has a rotation number w if the limit

=
W= Th_r)lgo T tz:; Qy) (3)

exists. Of course, if £k = 0, w is simply the value of {2 on the conserved action. If an orbit is
periodic, say (zn,yn) = (z0,y0) + (m,0) for some integers m,n, then w = ™ is rational. Indeed,

(1) implies that if we lift « to R, then

T
T — Lo = Z Qyr)
t=1



so for the periodic case w = (z, — zp)/n. Note that w, as a rotation number, is measured with
respect to rotation in x. For an invariant circle within an island chain, the effect of the rotation of
the orbit about the island center will average out, and w will equal m/n, the value for the periodic
orbit it encloses. This can be seen in the lower left portion of Fig. 1, where each elliptic island
has a single solid color due to having the same value of w. In particular, the rotational invariant
circles are the only non-chaotic orbits with the property that w is irrational. In §3, we develop a
numerical method to determine whether a floating point number is (with high probability) rational
or irrational. With this method, we are able to use the rotation number computed with the weighted
Birkhoff average to distinguish between rotational and non-rotational invariant circles.

The invariant circles that persist by KAM theory have Diophantine rotation numbers, i.e., there
isa7T>1and a ¢ > 0 such that

]nw—m|>i, VneN, m e Z. (4)
n|”

Such rotation numbers are hard to approximate by rationals (see §3). An invariant circle is said to
be locally robust if it has a neighborhood in M in which it is the last invariant circle; i.e., it exists
for 0 < k < ke (w) and ke is a local maximum. It is known from careful numerical studies that
invariant circles with “noble” rotation numbers (their continued fractions have an infinite tail of
ones) are robust [Gre79, Mac93|. Since these continued fractions are asymptotically periodic, these
rotation numbers are quadratic irrationals and satisfy (4) with 7 = 1.

John Greene discovered that the last rotational circle of (1) has rotation number given by the
golden mean 7,! and that it is destroyed at k = ke-(7) ~ 0.971635 [Gre79]. It has been proven
that the golden circle persists up to & = .9716 [FHL17] and that there are no invariant circles
for & > 63/64 [MP85] and when k£ = 0.9718 [Jun91]. Greene used limits of periodic orbits to
find invariant circles, and his method depends on accurate computations of these orbits. Such
high accuracy can be obtained because Chirikov’s map has a time-reversal symmetry, and every
rotational circle is symmetric. Moreover, there are fixed lines of the symmetry (e.g., z = 0) that
contain symmetric periodic orbits of all rotation numbers [Mac93]. This allows the computation of
orbits of high periods, and implies that they alone can be used to approximate the invariant circles.
For example, using symmetric orbits up to periods of order 10°, Haro improved Greene’s estimate
in his 1998 PhD thesis to obtain k. &~ 0.97163540324 [HCF*16]. Interestingly, conjugacy-based
methods can be used to confirm the first 7 digits of k., using a Fourier series with 524,288 terms
[HCF16].

The average (3) need not exist for orbits that are neither periodic nor quasiperiodic. For example
if an orbit is heteroclinic between two periodic orbits with different rotation numbers, the forward
and backward time averages of Q(y) will be different. Moreover, when k is large enough, y can be
unbounded,? and the limit (3) need not even converge. However, if an orbit ergodically covers a
bounded region, then Birkhoff’s ergodic theorem implies that the time average of €2 does exist.

More generally a finite-time Birkhoff average on a orbit of a map f beginning at a point z € M

1Or any integer shift of this value by a discrete symmetry of (1).
2Qften one thinks of y as diffusing in this case, but it can also grow linearly in time due to “accelerator modes”
[ChiT9]).
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Figure 1: The dynamics of the standard map for k = 0.7. Using the weighted Birkhoff method we are able to
distinguish chaotic orbits (upper right), islands (lower left), and rotational circles (lower right). The rotation number
of each nonchaotic orbit is color-coded (color bar at right). The computations were performed for an evenly spaced
grid of 1000% points in [0, 1]* with T'= 10*, using the distinguishing criteria in (24).

for any function h : M — R is given by

1 T-1
=3 he S, )

Br(h)(2) =

This average need not converge rapidly. Even if the orbit lies on a smooth invariant circle with
irrational rotation number, the convergence rate of (5) is O(T1), due to edge effects at the two
ends of the finite orbit segment. By contrast, for the chaotic case, the convergence rate of (5) is
observed to be O(T~1/?), in essence as implied by the central limit theorem [LM10].

We can significantly improve the convergence of a Birkhoff sum on a quasiperiodic set by using
the method of weighted Birkhoff averages developed in [DSSY16, DDS*16, DSSY17], see §2.1. If
the map f, the function h, and z belongs to a C°° quasiperiodic set, and the rotation number
is Diophantine, this method is superconvergent, meaning that the error decreases faster than any
power of T' [DSSY17, DY18]. Notice that the weighted Birkhoff method does not speed up the



convergence rate on chaotic sets since these lack smoothness. Therefore weighted Birkhoff averages
have two distinct uses: (a) to distinguish chaotic from regular dynamics, and (b) to give a high
precision computation of the rotation number.

We comment here on the relationship between the current paper and the previous papers [DSSY 16,
DDS*16, DSSY17, DY18] on the weighted Birkhoff average mentioned above. Only [DDS'16]
and [DSSY17] use (1) as an example; the others focused on other examples and details of the
numerical method. In particular, in [DDS*16] the weighted Birkhoff average is first shown to
distinguish between regular and chaotic orbits for (1) for one fixed parameter value. Both pa-
pers [DDST16, DSSY17] calculate the rotation number for a single, non-rotational invariant circle
inside an island. The papers also present high precision computations of the Fourier series expan-
sion of the conjugacy map for the invariant circle. We do not make use of the conjugacy map in
the current paper. None of the previous papers contain a comparison to other methods for dis-
tinguishing between chaos and regularity, nor do they contain any calculations for more than one
parameter value, and none contain a method distinguishing between rotational orbits and islands.

Other methods for accurate computations of rotation numbers include frequency analysis, which
is based on finding the Fourier amplitudes of a quasiperiodic signal using a Hanning window
[LFC92]; this has an error that decreases as a power of T'. Frequency analysis can be improved
by collocation techniques to more accurately find the peaks of the discrete Fourier transform
[GMS10a, GMS10b]. Another technique uses a recurrence method based on continued fraction
expansions [EVO01]. Slater’s criterion [Sla50, Sla67, May88, ACP06, ZTRKO07] can be used to com-
pute whether an orbit satisfies the same ordering as an irrational rotation; this method can be
used to estimate k., = 0.9716394, slightly above Greene’s value [AC15]. A conjugacy-based Fourier
method for finding Diophantine rotation numbers was applied to circle [SV06] and planar maps
[LV09]. This method can also be extended to accurately compute frequency vectors for orbits on
higher-dimensional tori in Hamiltonian flows [LV14].

Computations of rotation number, or more generally of frequency vectors have many appli-
cations. For example, a finite-time computation of the rotation number has been used to define
coherent structures by considering ridges in the finite time sum (3) [SSC*13] . This method also can
distinguish between trapped and escaping orbits [SMS*19] by monitoring the gradient of (3) with
respect to initial condition, and to determine the break-up of circles in nontwist maps [SMS™18].

Our paper proceeds as follows: We start in §2 with a description of the weighted Birkhoff
method in §2.1. In §2.2, we review the two standard methods for distinguishing between regular
and chaotic orbits, namely Lyapunov exponents and the 0—1 test of Gottwald-Melbourne. In §2.3 we
compare the three methods for distinguishing chaos from regularity for the Chirikov standard map.
In §3 we describe how to use the weighted Birkhoff average for non-chaotic orbits to distinguish
between rotational circles and island chains. In §4, after removing chaotic orbits and island chains,
we are left with the rotational circles. We are able to create the critical function diagram, and
describe the number theoretic properties of the rotation numbers for rotational circles, showing
that their behavior does not match that of randomly chosen irrational numbers. In §5, we apply
our methods to three generalizations of the standard map, namely a symmetric two-harmonic
generalized standard map, a standard non-twist map, and an asymmetric two-harmonic map. We
conclude in §6 with comments on how these methods can be applied to other maps.



2 Distinguishing chaos and regularity

In this section, we introduce the weighted Birkhoff method, and we compare it to two different
methods for distinguishing chaos from regular dynamics, namely Lyapunov exponents and the 0-1
test of Gottwald and Melbourne [GMO09].

2.1 The weighted Birkhoff average

We now describe in more detail the method of weighted Birkhoff averages [DSSY16, DDS™16,
DSSY17]. Since the source of error in the calculation of a time average for a quasiperiodic set
occurs due to the lack of smoothness at the ends of the orbit, we use a windowing method similar
to the methods used in signal processing. Let

ey e (0, 1)
g(t):{o t<Oort>1 "~

be an exponential bump function that converges to zero with infinite smoothness at 0 and 1, i.e.,
g™ (0) = g®)(1) = 0 for all k € N. To estimate the Birkhoff average of a function h : M — R
efficiently and accurately for a length 7" segment of an orbit, we modify (5) to compute

T-1
WBr(h)(z) = Y wyrho f'(2), (6)
t=0

where
1

wr=g0(8), 5= a(h) - 7
t=0
That is, the weights w are chosen to be normalized and evenly spaced values along the curve g(t).
For a quasiperiodic orbit, the infinitely smooth convergence of g to the zero function at the edges
of the definition interval preserves the smoothness of the original orbit. Indeed it was shown in
[DY18] that given a C* map f, a quasiperiodic orbit {f!(z)} with Diophantine rotation number,
and a C'*° function h, it follows that (6) is super-convergent: there are constants c¢,, such that for
alln e N
WBr(h)(z) — lim By(h)(2)| < ¢, T (8)
N—o00

Several papers [GMS10a, LFC92, LV14] include a similar method to compute frequencies with
a sin?(ms) function instead of a bump function, but this function is fourth order smooth rather
than infinitely smooth at the two ends, implying that the method converges as O(T~%), see e.g.,
[DSSY17, Fig. 7]. In addition to converging more rapidly, the weighted Birkhoff average is relatively
straightforward to implement. By contrast to the case of regular orbits, when an orbit is chaotic
(i.e., has positive Lyapunov exponents), then (6) typically converges much more slowly; in general
it converges no more rapidly than the unweighted average of a random signal, i.e., with an error
O(T~'/2) [LM10, DSSY17].

A graph of the error in WByp for h = cos(2rz) as a function of the number of iterates 7' is
shown on the left panel of Fig. 2. Here we have chosen 50 orbits of (1) for the parameter £ = 0.7



with initial condition z = 0.45, and y evenly spaced between 0 and 0.5. For orbits that are
independently identified as chaotic (red), W By essentially does not decrease with T'; however, for
orbits that lie on rotational (blue) or island (green) invariant circles, the error for all but three has
decreased to machine precision, 10715, when T reaches 10*. Further, right panel of Fig. 2 shows
the convergence rate as a function of y, this time for 1000 orbits. Note that there is no evidence of
superconvergence in Fig. 2: the convergence rate for (8) has n = 2 —5.5. Indeed, superconvergence
was only observed in [DSSY17] when extended precision computations were done. Nevertheless,
there is a clear distinction between chaotic and regular orbits even for 7" as small as 103. Note
that the Richardson extrapolation method used in [LV14] can also compute frequencies to 12-digit
accuracy using 26 iterates of a Poincaré map.
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Figure 2: Convergence of the weighted Birkhoff average (6) for orbits of the standard map at k = 0.7 for the
function h = cos(27z). On left, the error of the computation is shown as a function of the number of iterates T" for
50 initial conditions at z = 0.45 with y on a grid in [0,0.5]. On the right, the convergence rate is shown for 1000
initial conditions at the same = and k values, where convergence rate was calculated using the errors before the values
flattened out due to floating point errors, measured by where they have dropped below 1073, In each case, the
values are compared with W Br(Q) at 7' = 10°. Using the distinguishing criteria in (24), the red curves are identified

as chaotic, the green curves as islands, and the remaining blue curves are thus the rotational invariant circles.

To distinguish chaotic from regular dynamics, we compute (6) for two segments of an orbit,
using iterates {1,...,7} and {T'+ 1,...,27T}. In the limit 7" — oo, these values should be the
same. Therefore we can measure convergence rate by comparing them. In order to distinguish
chaotic sets, we compute the number of consistent digits beyond the decimal point in our two
approximations of WB(h), which is given by

digr = —log,o | WBr(h)(2) — WBr(h)(f*(2))] - (9)

If digr is relatively large, then the convergence is fast, meaning the orbit is regular. If digr is small,
then the convergence is slow, meaning the orbit is chaotic. We will call 27", the “total orbit length”
as it is the total number of iterates needed to compute (9).



Three examples are shown in Fig. 3(a) for a set of 1000 initial points on a vertical line segment at
x = 0.321 for three different values of k. For the smallest parameter, k = 1.0, a substantial fraction
of the orbits are regular, and these have a distribution of dig;qs centered around 14, nearing the
maximum possible for a double precision computation. By contrast, when k = 2.0 there are only
chaotic orbits in the sample, and these have a distribution of dig;pa centered around 2. Note that
when k& = 1.0 there are also orbits with digr € [6,13], and which seem to represent orbits trapped
in islands that are either oscillatory invariant circles or weakly chaotic orbits between a pair of such
invariant circles.

In order to determine the cutoff in digr between regular and chaotic orbits, we computed
a histogram (not shown) of dig;ga for the Chirikov standard map for 500,000 different starting
points: a grid of 500 k-values between 0.1 and 2.5, with 1000 distinct initial conditions for each.
This histogram has two large peaks, one at around 2 and the second around 15 (corresponding to
the machine epsilon value). As is consistent with the case k = 1.0 shown in Fig. 3(a), the lowest
probability occurs around digr = 5. In our calculations of chaos, we wish to err on the side of false
positives of chaos, and thus we use a value of 5.5 as our cutoff value to distinguish whether orbits
exhibit regular or chaotic behavior.
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Figure 3: Histograms of (a) Weighted Birkhoff accuracy, digr, and (b) finite-time Lyapunov exponent, Ar, for
orbits of the standard map with k£ = 1.0, 1.5 and 2.0. The initial conditions are (0.321,y) with 1000 values of y on
a uniform grid in [0, 1]. (a) Histograms of digr (9), for h(z,y) = cos(27x) and T = 10*. (b) Histograms of Az (10),
for T = 2(10)*, and v = (0,1)T.

Using this cutoff, the putative set of regular orbits with initial conditions along three vertical
line segments, = 0.0, 0.321 and 0.5 are shown in Fig. 4 for k ranging from 0.1 to 2.5. When
x = 0.0, the figure is dominated by the regular region around the fixed point islands surrounding
(0,0) and (0, 1)-these points are elliptic up to k = 4.0. Other islands can also be seen; for example
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for = 0.0 and for z = 0.5, we can see the period two orbit (0,%) + (3, ), which is elliptic until

k = 2.0, where it period doubles. By contrast the line x = 0.321 intersects fewer islands, and there
appear to be no regular orbits when k£ > 1.915 with initial conditions on this line.

Figure 4: Using the weighted Birkhoff method, this figure shows the number of digits (9) for orbits of the standard
map (1) with (a) g = 0 and (b) zo = 0.321 and (c) zo = 0.5 for yo € [0,1] and k € [0.1,2.5]. Here digr is computed
by computing the average (6) for the function h(zx,y) = cos(2rz) for T = 2(10)* steps. Initial conditions with

digr < 5.5 are colored black. The value of digr for the regular orbits is indicated in the color bar.

2.2 Lyapunov Exponent and the 0—1 Test

In this section we recall two other standard tests for chaos: positive Lyapunov exponents and the
0-1 test. The finite-time Lyapunov exponent is defined by

N (v) = o log (IDF7 (zo, yo)ol) (10)

where Df is the Jacobian matrix, and v is a generic deviation vector with |v| = 1. Histograms of
Ar for three values of k are shown in Fig. 3(b) using 7' = 2(10)*, which is the total orbit length
used for the weighted Birkhoff method. As noted by [SLV05], when there are regular and chaotic
orbits, these histograms are typically bimodal. For example, we observe that when & = 1.5 there
is a lower peak centered near A = 0 with width of order 0.02. This peak is well separated from
the broader peak centered near A = 0.3. The peaks are less well separated for smaller values of k;
for example when k = 1.0 about 40% of the orbits have Ay < 0.01, and there is a broader peak of
presumably chaotic trajectories with A € [0.08,0.2]. However, these two distributions have some
overlap near A =~ 0.05. As k grows, the mean value of A increases and the lower peak of regular
orbits disappears.

14




Figure 5: Lyapunov exponent A using v = (0,1)T for orbits of the standard map (1) with (a) zo = 0 and (b)

zo = 0.321 and (c) zo = 0.5 for yo € [0,1] and k € [0.1,2.5]. To improve convergence, the exponent (10) is computed
for T = 2% = 65, 536. Black corresponds to A < 0.0022, the lowest of the 256 colors. The value of X for the chaotic

orbits is indicated in the color bar.

To visualize the dependence of the exponents on k, we chose the same three lines of initial
conditions shown in Fig. 4 for the weighted Birkhoff average. The resulting exponent, as a function
of yo and the parameter k of (1) is shown in Fig. 5. In this figure, orbits with A\ < 2.2(10)~3 are
colored black: these correspond to the regular orbits. As k grows, the distribution in the chaotic
region is peaked around a growing value that reaches a maximum of A = 0.588 when k = 2.5. Note
that each of the panes of this figure is essentially the negative of the corresponding pane in Fig. 4.

The fraction of chaotic orbits can be estimated by removing orbits with Ay in the range of the
lower peak of Fig. 3(b). Fig. 6 shows the variation of Lyapunov A7 and its error as a function of T'
for 30 orbits, where blue depicts regular orbits and red depicts chaotic orbits as determined at the
maximum time 7" = 2'6. We can see that for the regular orbits, the convergence Ay — 0 is as T,
which is significantly slower than the convergence of the weighted Birkhoff average. Furthermore,
many of the chaotic orbits take on Ar values very close to zero for large values of T'. For example,
we calculate that 0.45% of the cases have min(Ar) < 0.01 and max(Ar) > 0.02 for T between 24
and 2'6. By careful visual inspection of individual orbits, we find that we must choose our cutoff
quite small to avoid the misidentification of chaotic orbits (more detail is given below in §2.3).
Based on these considerations, we use the value

Ac = 0.0005 (11)

as the cutoff between chaos and regularity.
The resulting fraction of “chaotic” orbits as a function of k is shown in Fig. 7. This fraction is
strongly dependent on choice of line for the initial conditions. For the lines of symmetry (e.g. x =0
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Figure 6: (a) Lyapunov exponents (10) computed for k& = 0.55 for 30 orbits on the line 2o = 0.45 for T € [100, 2'°].
If Ay16 < A = 0.0005, the orbit is determined using this method to be regular and the curve is colored in blue. The
other orbits are determined to be chaotic; they are colored in red. (b) For the same orbits and color scheme, we plot

the error at each T value, defined as |Ar — Ap16|. Note that for “regular orbits” Ar appears to converge to 0 as 77!,

or 0.5) of the standard map [Mac93], the fraction of orbits trapped in regular islands is larger.

Another test for chaos is the 0-1 test of Gottwald and Melbourne [GMO09]. This test involves
computing a time series (here we use {sin(27x;) : t € [0,7]}) from which a supplemental time series
(called (p¢, q¢) in [GMO9]) is constructed and tested for diffusive behavior. This ultimately gives a
parameter, K, ,cdian, that is ideally either 0, when the orbit is quasiperiodic, or 1 when it is chaotic,
and we use the cutoff K,,cgian > 0.5 for chaos. Implementation of this test requires random samples
of a frequency parameter. Using 7" = 1000 and 100 random samples gives an algorithm that is
about 200 times slower than computing Lyapunov exponents. The resulting dichotomy between
regular and chaotic orbits for this test is shown in Fig. 8 for initial conditions at x = 0.0. This
figure agrees well with those in Fig. 4(a) and Fig. 5(a), though it appears to identify slightly fewer
orbits as chaotic than the Lyapunov test: some orbits designated chaotic by Lyapunov exponent
do not have K,,eqian > 0.5.

2.3 Comparing the Methods

In this section we systematically compare the detection of chaos for the Chirikov standard map
using the three different methods: Lyapunov exponents, 01 test, and the weighted Birkhoff method.
We show that—weighing questions of speed, accuracy, and ease of implementation—the weighted
Birkhoff average is better than either of the other two methods.

Figure 9 shows the fraction of orbits identified as chaotic by the three methods for initial
conditions on the line zy = 0.0 with a uniform grid of yg € [0,1]. Note that the Lyapunov and
weighted Birkhoff methods are difficult to distinguish on this scale. However, the chaotic fraction
from the 0-1 test is uniformly below both that for other two methods. The difference is largest
near k£ = 1, 1.5 and 2.3; these values correspond to major bifurcations in which regular islands and

11
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Figure 7: Using the Lyapunov method, this figure shows the fraction of orbits that have A > 0.0005 for three values
of o, a uniform grid of 1000 values of yo, and T = 2'®. When k < 4 there is an island around the elliptic fixed point
at (0,0) that decreases the number of chaotic orbits found for xg = 0 (red curve), and when k < 2 the island around
the elliptic period-two orbit through (0.5,0.5) has a smaller, but similar effect for zo = 0.5 (blue curve). When
2o = 0.321 (green curve), the regular regions around both of these elliptic orbits are not sampled when k > 1.4, and
when k > 1.914, at most one of the 1000 yo values are deemed to not be chaotic. These variations can be observed
in Fig. 4 and Fig. 5.

circles are destroyed. Nevertheless, the mean absolute deviation between the weighted Birkhoff and
0-1 test results is 2.6%.

For a further comparison, we computed the Lyapunov exponent and weighted Birkhoff average
using ten different total orbit lengths of 27,28, ...,2'6 = 65,536 iterates, for k € [0.1,2.5] on an
evenly spaced grid of 50 values. We used the same grid of initial conditions for the 0—1 method, but
due to its computational burden, we only used 1000 iterates. At each parameter value, we chose
initial conditions on the line z¢p = 0.321 with yo € [0,1] on an evenly spaced grid of 500 points:
thus there are 25,000 trials.

Designating one of the methods as the “ground truth,” one way to compare another method is
by the True Skill Statistic, also known as the Hanssen-Kuiper skill score [Woo78]:

TP FP

7SS = - .
S = TP+ FN FPLTN

Here TP (“true positive”) is the fraction of initial conditions that are classified correctly as chaotic
by the test method according to the reference standard, F'P is the fraction classified incorrectly
as chaotic, TN is the fraction that are correctly as non-chaotic, and F'NV is the fraction classified
incorrectly as non-chaotic. The TSS ranges from —1 for a classification that always disagrees with
the reference, to 1 for one that always agrees. An advantage of T'SS is that it does not depend upon
the number of trials, just on the relative accuracy. However, if we are comparing two predictions,

12



Figure 8: Chaotic region of the standard map with zo = 0 for y € [0,1] and k € [0.1,2.5] using a time series
{sin(27z; : 0 < ¢ < 1000} and the 0-1 method of [GMO09]. An orbit is deemed to be chaotic (colored white) if the
0-1 parameter Kpedian > 0.5.

the skill statistic does depend upon which prediction is designated as the “ground truth”: changing
this designation is equivalent to exchanging F'P <> F'N.

As “ground truth,” we declare an orbit to be “chaotic” when A > A, = 0.0005 for an orbit
length of 2'6. We then find that the weighted Birkhoff method with the same total orbit length,
i.e., 2T = 216 gives T'SS = 0.997. Furthermore, whenever 27 > 210, the weighted Birkhoff method
gives T'SS > 0.9, and even for the small value 27T = 256, it gives TS5 = 0.80. These results confirm
Fig. 9, which showed the near overlap of the Birkhoff average curve for 27" = 2(10)* with the
“ground truth” Lyapunov curve (in that case for ¢ = 0.0). In contrast, the Lyapunov method for
215 jterates yields T'SS = 0.77 as compared to the ground truth, confirming again the convergence
of this method is indeed slow.

An alternative comparison measure is to simply count the percentage of correctly classified

initial conditions,
TP+TN

TP+ FP+TN+ FN’

the “ratio” of [WooT78]. Using the same definition of ground truth, the weighted Birkhoff method
gives R > 0.98 whenever 27" > 2'2. In contrast, the Lyapunov method has R = 0.8 for 7' = 24,

Finally, the 0—1 method for 1000 iterates gave 7SS = 0.91 and R = 0.96 when comparing to
the ground truth Lyapunov method. The same values are obtained if we compare the 0—1 method
to the weighted Birkhoff method for total orbit length 2'6.

R:
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Figure 9: (b) The fraction of chaotic orbits as a function of k for initial conditions on the line zo = 0.0. The
red curve shows the fraction of chaotic orbits computed using Lyapunov exponents with A > 0.0005, the blue curve
shows the fraction with the 0—1 parameter K,edian > 0.5, and the yellow curve shows the fraction of chaotic orbits
computed using the weighted Birkhoff average with dig < 5.5. For each k value, 1000 initial conditions were used
for the Lyapunov and weighted Birkhoff methods. For the Lyapunov method 7' = 2%, and for the weighted Birkhoff
method 7' = 10* (which involves 2(10)* calculations). For the 0-1 test, 500 initial conditions were used for each
k-value and T' = 1000.

We now comment on the choice of chaos cutoff values digr (9) and A. (11). The agreement
between the weighted Birkhoff and Lyapunov methods changes only slightly if we vary cutoff for
digr, and the best agreement occurs when digr = 4. However, R is not very sensitive to variations
3.5 < digr < 6.

In contrast, varying the cutoff value A. for the Lyapunov exponent calculation causes significant
changes. Indeed, if \. is increased, an orbit can be identified as “regular” with a smaller number
of iterates. This is explained by the data in Fig. 6: the computed value of A for regular orbits is
seen to decrease as %, so if A, is increased, an orbit can be identified as “regular” sooner. However,
choosing a larger cutoff value has the disadvantage of introducing a systematic error in the sense
that orbits that are “weakly chaotic” will never be so identified. Moreover, in Fig. 6 one can see that
a number of orbits identified as “chaotic” at T' = 26 have earlier episodes in which Ay decreases
with time. Such orbits can be trapped in a narrow chaotic layer or can be very close to a boundary
of a chaotic layer for a long time. We found by careful examination of the phase space behavior of
for over 100 different orbits in which the weighted Birkhoff and Lyapunov methods disagreed, that
if we chose A\, > 0.0005, the Lyapunov method would systematically misidentify chaotic orbits as
compared to the weighted Birkhoff method. The choice A, = 0.0005 minimized these errors when
T = 2'6. Note that because we choose A, quite small, this method very rarely misidentifies an
orbit as regular when it is chaotic: the number of false positives and false negatives are not equal
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between the three methods.

For a given total orbit length, the computation time for the Lyapunov exponent was approxi-
mately 1.5 times slower than and weighted Birkhoff average. For example computing the Lyapunov
exponent for 25,000 initial conditions and total orbit length 2 took around 10.6 seconds using
Matlab on an iMac Pro, whereas the weighted Birkhoff method took around 7 seconds. The 0-1
method was significantly slower; on the same machine with the same initial conditions, and smaller
total orbit length 1000, the computation took 45 minutes. In our case, the Jacobian of the map (1)
is quite simple, thus we expect that if the derivative were computationally more expensive, then the
weighted Birkhoff method would have an even more significant speed advantage over the Lyapunov
method.

We note that the comparisons in this section do not include a variety of other efficient methods
that use hyperbolic growth to distinguish between chaos and regular behavior including the Fast
Lyapunov Indicator (FLI), OFLI, Mean Exponential Growth factor of Nearby Orbits (MEGNO),
and the alignment indices SALI and GALI; see [CS00, FLG97, Sko01, SGL16] for discussions of
these methods.

The weighted Birkhoff method has another advantage, as we will illustrate in the next section:
it gives an accurate calculation of the rotation number w that we can use to distinguish between
rotational invariant circles and island chains.

3 Island chains

The regular orbits of the Chirikov standard map are of two distinct topological types: rotational
invariant circles and orbits within the island chains. We are primarily interested in studying the
rotational invariant circles, and thus must look for a way to distinguish and remove orbits within
island chains.

For a twist map Birkhoff’s theorem implies that the rotational invariant circles are graphs,
x — (x,c(z)). Generically the dynamics on each such circle is conjugate to an incommensurate
rotation, implying that w in (3) is irrational.

By contrast, around each elliptic period-n orbit there is generically a family of trapped orbits
forming a chain of n islands. The regular orbits in these island chains are further partitioned into
orbits that are quasiperiodic and those that are periodic relative to the n'* power of the map.
The latter, if elliptic, can again be the center of chains of islands. This gives rise to the familiar
island-around-island structure. Each regular orbit within a period-n island chain that is not itself
periodic is generically dense on a family of topological circles: these are oscillational invariant
circles. Nevertheless, the rotation number w, (3) will average out the internal dynamics, resulting
in a rational value that is the rotation number of the central period-n orbit. Of course if one were to
measure the rotation number of an oscillational circle relative to the periodic orbit that it encloses,
one would generically find it to be irrational as well.

In §2.1 we developed a highly-accurate method for removing chaotic orbits and for computing
w for regular orbits. In §3.1, we establish a numerical method to remove regular orbits in island
chains by determining which of the computed w values are “rational,”and which are “irrational.”
In §3.2 we use this method to identify orbits within island chains.
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3.1 Numerical identification of rational numbers

We are interested in establishing a numerical method to determine whether a numerically computed
number determined using floating point arithmetic is representative of a rational or an irrational.
At the outset, this is not a well-posed question, since floating point representations of numbers
are rational. The question becomes whether a numerical value is—with high probability—the
approximation of a rational or an irrational number. In this section, we concentrate on a closely
related question, and in the next section we show how the answer can be applied to establish
rationality. Our question is: given a number x, and an interval

Ii(z) = (z — 6,2 + ), (12)

with some tolerance §, what is the rational number p/q with the smallest denominator in I5(x)?

If, for a small §, there is a rational p/q € Is(x) with a sufficiently small denominator ¢, we would
expect that  is—to a good approximation—given by this rational. Whereas if all such rationals
have large denominators, we would expect that x is an approximation of an irrational number.
Actually, we will argue that if g is too large, x is more likely an approximation of a rational number
that just missed being in the interval. We will return to the question of what constitutes small,
large, and too large for values of ¢, but first we discuss the question of how to actually find the
value p/q in a prescribed interval.

We denote the smallest denominator for a rational in an interval I by

Gmin(I) = min{g € N : g €l,peZ}. (13)

The question of finding ¢, has been considered previously in [BBdA98, For07, CP16], and a
closely related question is considered in [CB09].

Given an interval I in R, one would imagine that there are standard algorithms for finding the
rational number p/q in I with ¢ = @i (I). Indeed packages such as Mathematica and Matlab both
have commands that appear to do this. However these algorithms use truncations of the continued
fraction expansion [HW79], and neither of them work correctly in the sense of finding the smallest
denominator [For07]. Recall that the continued fraction expansion for z € R* is

1
r=ap+ ————— = [ao;a1,0a2,...], a; €N, agecNU{0}. (14)
a + T
0«2+j
Truncation of this path after a finite number of terms gives a rational “convergent” of x:
Pk
- = [ao;a17a27"'>ak§]' (15)
di
Convergents are best approximants in the sense that if
P 1
- —z| < 16
'q ‘ 2¢% (16)

then p/q is a convergent to x [HW79, Theorem 184]. Moreover, at least one of any two successive
convergents satisfies (16).
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However, the convergents are not necessarily the rationals with the smallest denominators in a
given interval. As a simple example, the rational with the smallest denominator within § = 1073
of mis 2. i.e., gmin(I1o-3(m)) = 64. However, this rational is not a convergent of the continued
fraction m = [3;7,15,1,292,1, 1, ...]; indeed, the first convergent in the interval is % = %.

A correct algorithm (e.g., that proposed by Forisek [For(07]), is easiest to explain based on the
Stern-Brocot or Farey tree. Every number in RT has a unique representation as a path on this

binary tree:

r=s152..., s;€{L,R}. (17)

The tree, whose first levels are sketched in Fig. 10, is constructed beginning with the root values %
and %. Subsequent levels are obtained by taking the mediants of each neighboring pair:

@:Q@&:PZ‘FM (18)

@ @& a+a

1

Level zero of the tree is the mediant of the roots, 7; it is defined to have the null path. If x < %,

then its first symbol is L, and if = > %, then its first symbol is R. At level ¢ of the tree, 2¢

new rationals are added, the mediants of each consecutive pair. The left and right parents are
neighboring rationals that have level less than ¢. Every consecutive pair of rationals at level ¢ are

neighbors in the sense that
prar — pigr = 1. (19)

A consequence is that p,, and ¢,, are coprime.

For ¢/ = 1, the new mediants % = % &) % and % = % @ % are added to give the level-two Farey

sequence %, %, %, %, %. Then the 22 mediants of each neighboring pair are added to give 23 level-three

intervals, see Fig. 10. Since the level-three rational % > %, to the right of its level-two parent, then

% = LR. Similarly % is to the left of its level-two parent % =R, so % = RL.

0 1
1 1 0
0:11= 1 <[]

L R
A Lo N2
[0:21= 5 €103 1,1] (1157 2]
/ R / x
[0;3]:%:[021] [013]:%:[0 1,2] [1;2]:%:[1;1,1] [2;1]:%:[3]

Figure 10: The continued fraction expansion and some entries on the Stern-Brocot or Farey tree. Each rational
has two possible finite continued fractions but a unique Farey path. See the appendix for the relationship between
the two.

The Farey path (17) for any x € RT is the unique path of left and right transitions that lead
to x starting at % Every rational has a finite path and every irrational number has an infinite
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path [HW79]. Algorithm 1 in the appendix computes the Farey path, up to issues of floating point
accuracy and a stopping criterion.
The Farey expansion allows one to find the rational with smallest denominator in any interval:

Lemma 1 (Smallest Rational). The smallest denominator rational in an interval I C Rt is the
first rational on the Stern-Brocot tree that falls in I.

The proof of this lemma, from [For07], is given in Appendix A. An alternative version of this
result using continued fractions can be found in [BBdA98].
An algorithm for finding ¢yin(I5(z)), based on Lem. 1 is given in the appendix in Algorithm 2.
3

For example, for z = 0.12 = 5z = L8R? = [0;8, 3], the sequence of Farey approximants is

111111111 2 3

Given § = 0.005 for example, the Farey interval (%,é) D I5, and the mediant % € Is since

0.12 — 1% ~ 0.0024 < 4. Thus from the algorithm we obtain
SmallDenom(0.12,0.005) = [2,17] = gmin(L0.005(0.12)) = 17.

As noted in [For(07], the built-in routines of standard mathematical software do not always compute
the smallest rational approximation correctly. For example, the built-in Matlab command “rat”
gives rat(0.12,0.005) = [3, 25], giving x itself, since the second convergent % = 0.12+40.005, is not in
I. The point is that the intermediate convergents of the Farey path can satisfy the approximation
criterion before the principal convergent of the continued fraction, and this can happen whenever
the Farey path is not alternating ... LR... or equivalently the continued fraction elements are not
all 1’s.

To determine the “typical” size of a denominator in an interval I, we show in Fig. 11 a histogram
of the minimal denominator computed using Algorithm 2 in the appendix for randomly chosen
floating point numbers in (0,1) with a uniform distribution. For this case, when § = 10712, the
mean minimal denominator appears to be close to 10% = §71/2. The distribution is not log-normal:
the data is significantly more concentrated around the mean than a normal distribution with the
same standard deviation. Over the range 6 = [107%,107!4], the mean log-denominator obeys the
relation

(log1 Gmin) = —3 logyo & — 0.05 & 0.001, (20)

and in this same range of § values, the standard deviation is nearly constant,
o = 0.2935 £ 0.0006. (21)

Further support for this statement is found in Fig. 12, which shows that for § = 107, the
probability that g, is in the range 10%1/2£s does not depend on the choice of tol. Indeed, the
curves in this graph were obtained from only 10* random trials: if more values were randomly
chosen, it would be impossible to distinguish between these distribution plots.

The mean of our observations (20) is consistent with the expectation from (16). Indeed, for any
§, then there is a convergent with |z —p/q| < d, with a denominator that must satisfy ¢ > (26)~/2.
Since the minimum denominator is no more than this, we expect that g, ~ (25)*1/ 2 and thus

log1g @min ~ —% log;p0 — 0.15,
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Figure 11: Probability density of log,,(gmin) computed by appendix Algorithm 2 with § = 1072 for 10® randomly
chosen numbers in (0,1) (black). This distribution has mean 5.9497, mode 5.9662, standard deviation o = 0.29333,
and kurtosis 6.3073. The red curve shows the normal distribution with the same mean and standard deviation. Also

shown is the histogram for 10® randomly chosen numbers of constant type with A = 10 (green).
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Figure 12: A graph of the probability that gmin € 10t°l/2[1075,105], for 6 = 107 for 10* randomly chosen
xz € [0,1]. The blue curve is for tol = 4 and the red for tol = 14 (These curves are nearly indistinguishable).
The yellow curve shows the probability for numbers of constant type with A = 10. The probability for a normal

distribution with standard deviation (21) is the dashed curve.

which is not far from the observation (20). ' '
A related result was obtained by [Stel3]: for intervals of the form Jy = (&, %], the mean
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smallest denominator in grows asymptotically as
(Gmin(JN)) ~ ON'/2,
with a coeflicient 1.35 < C' < 2.04. Since these intervals are of size % = 20, this gives
10g10(qmin) ~ —1log1g6 + K, K € [—0.020,0.159].

Note that since the minus logarithm is convex, Jensen’s inequality implies that (20) is no larger
than this result. We are not aware, however, of any results in the literature that imply the validity
of (20) or (21).

As a second numerical experiment, we consider numbers of constant type; that is numbers that
have bounded continued fraction elements: sup,{ar} = A < co. Such numbers can be thought
of as “highly irrational” in the sense that they are Diophantine (4), with 7 = 1, and ¢ > A%ﬂ'
Conversely, if x is Diophantine with constant ¢ then A < % [Sha92]. This class of numbers is
especially important in the context of area-preserving maps: it was conjectured that invariant
circles with constant type rotation numbers are locally robust and that every circle that is isolated
from at least one side has constant type [MS92].

For the numerical experiment shown in Fig. 11, we chose rational numbers with continued
fractions of length 40, with a; < 10,7 = 1,...40 chosen as iid random integers. Note that this
means that every trial z is rational; however, the denominator of these rationals is at least as large
as the case a; = 1, which gives the Fibonacci Fyg ~ 1.08(10)8. The resulting smallest denominator
distribution is the green histogram in Fig. 11. The cumulative distribution of these numbers is also
shown in Fig. 12, which shows that the probability that Prob(|log;o(¢min) — tol/2] > 0.728) = 1%.

As mentioned previously, rational numbers nearby a given a value of x can result in both
extremely small and extremely large values of gmin(I5(z)). To demonstrate this, Fig. 13 shows a
plot of gmin(l19-5(x)) for evenly spaced x values between 0.095 and 0.105. The dots below the
r-axis are centered at each rational with a denominator g < 80; the size of each dot is inversely
proportional to g. Note that in the vicinity of each dot, there is a small region where ¢,,;, drops
to the corresponding small value of ¢, but additionally, there is a larger interval in which ¢
becomes much larger than average, with a larger jump near smaller denominators. Dynamically
these rationals correspond to orbits that are limiting on the separatrices of islands, and hence are
chaotic.

The main takeaway message from the “typical size” experiments in this section is that numbers
outside the main peak of the distribution in Fig. 11 correspond to those “close” to rationals. In the
next section, we will discard such rotation numbers to filter for candidates for rotational invariant
circles.

3.2 Identification of island chains using the weighted Birkhoff average

In this section, we use the weighted Birkhoff method to obtain an accurate computation of the
rotation number w defined for the Chirikov standard map in (3). Namely,

w(z) = WB(Q)(z). (22)

Using this, we can distinguish rotational invariant circles from orbits in island chains by determining
whether the computed value of w is an approximation of a rational or irrational number as follows.
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Figure 13: A plot of the smallest denominator, gmin(Is(z)), in an interval (12) for § = 107° and 10* values of
x € [0.095,0.105]. The dots below the z-axis indicate the size of the denominator of each rational number in the
interval with a denominator up to 80; larger dots correspond to smaller denominators. There is a spike in denominator
size immediately outside the interval around small denominator rationals. The mean log-denominator, (20), is shown
by the dashed (red) line.

Fix tol and let 6 = 107%!. For a rotation number w, we find i (I5(w)) in (13), the smallest
denominator of a rational number within distance § of w. In most of our numerics, we have chosen
tol = 8. To distinguish between rationals and irrationals, for each rotation number w define the
absolute deviation

deve, = |logyo(gmin(Is(w))) — tol/2|. (23)

For a fixed cutoff value s, we remove the orbits within island chains as follows. Let z be an initial
condition of a regular orbit with associated rotation number w. If dev, > s, then we discard z as
a member of an island chain. Note that this is equivalent to saying that ¢, is outside the range
10tol/2:|:5‘

It remains to choose a cutoff value s. In our numerics, when we wish to be conservative about
identifying rotational circles, we have used the cutoff value s = 0.3375, which implies that we have
kept slightly above 81% of randomly chosen values, as can be seen in Fig. 12. This corresponds
to choosing only irrational numbers that are very badly approximated by rationals with small
denominators.

Now that we have established all of our criteria for distinguishing rotation numbers, we sum-
marize the particular values we have used in most of our numerical calculations as two criteria:

Chaos criterion: digr < 5.5 for WBr(cos(2mz)),

Irrationality criterion: dev,, < 0.3375 for tol = 8. (24)

In each case, for each initial condition (z,yp), we compute an orbit and determine whether the
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orbit is chaotic using the above chaos criterion. We also compute the rotation number w using
WB7 () and determine whether the orbit is a rotational invariant circle using the irrationality
criterion.

4 Rotational invariant circles

Using the strategy of §3.2 for eliminating rationals, we can now remove orbits that are contained
in island chains. We show in Fig. 14 the rotation number w for initial conditions (xg,yo) that are
identified to lie on rotational invariant circles using distinguishing criteria (24).

L
02

L L L L L
04 k 06 08

Figure 14: The rotation number computed for rotational invariant circles orbits of the standard map (1) with (a)
zo = 0 and (b) zo = 0.321 and (c¢) xo = 0.5 for yo € [0,1] and k& € [0.1,1.0]. The computations are done using
T = 2(10)*, using the distinguishing criteria in (24).

The panels in Fig. 14 strongly resemble the critical function computed using Greene’s method
for the standard map [MS91, MS92]. In this method, one typically chooses a set of noble irrational
numbers, and finds the threshold of instability for a long periodic orbit that is close to each of these
nobles. The periodic orbits used in these computations are those that are symmetric under the
reversor for (1); for example, every elliptic, symmetric rotational orbit is observed to have a point
on the line x = 0. An advantage of our current method is that symmetry is not required.

Recall from §1 that it is believed that there are no rotational invariant circles for the standard
map above k. = 0.97163540324 and that the last circle has the golden mean rotation number
[Gre79, Mac93, HCF'16]. In Fig. 15, we show how the fraction of initial conditions that are
identified as rotational circles in Fig. 14 varies with k. By k = 0.9685, 99.9% of the circles are
destroyed and the fraction drops to zero at k = 0.9712, though there is one orbit misidentified as
a circle at k = 0.9766. The accuracy of these computations is limited by the fact that the initial
conditions are fixed to a grid in yp.

As a more precise test of the efficacy of the weighted Birkhoff average to determine k.., we used
continuation to find an orbit on the line (0.321, yo) with the fixed rotation number v~ ! = 1(v/5—1)
when T = 2(10)%. A computation of digr, (9) can then be used to determine if the orbit is
not chaotic. For the computation shown in Fig. 16, digr = 12 at £ = 0.9706, and it drops to
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Figure 15: Fraction of orbits of (1) from Fig. 14 that are on invariant circles for 1000 initial conditions with
yo € [0,1] on three vertical lines as shown. The largest fraction occurs when z = 0.5, as this line tends to avoid many

of the larger islands.

6 at K = 0.9731, with a precipitous drop just as the curve crosses k... As an example, when
k = 9697/9980 =~ 0.971643, the initial condition with w = 7! has yo = 0.676535782378533.
Though this orbit no longer lies on an invariant circle since k > k.., iteration shows that it remains
localized to what appears to be a circle for hundreds of millions of iterations.

We now focus on the number theoretic properties of rotation numbers for robust circles. It
is thought that the rotation numbers of the more robust invariant circles should have continued
fraction elements with more elements a; = 1 [Gre79, MS92]. To test this, we plot the distribution
of continued fraction elements, a,, for the rotation number of invariant circles in Fig. 17. The
expected distribution for randomly chosen irrationals is the Gauss-Kuzmin distribution [Sha92],
P(a; = k) =logy(1+1/(k(k +2))). When k is relatively small, the observed distribution follows
the Gauss-Kuzmin distribution closely, at least for a, < 10; but for £ = 0.95, when most circles
have been destroyed, the probability of a, = 1 or 2 is larger than would be predicted for random
irrational numbers, and the probability that a, > 8 is at least four times smaller than the Gauss-
Kuzmin value.

5 Generalizations of the Standard Map

The method we have developed to find rotational invariant circles works equally well for other
area-preserving maps. As a first example, we consider two-harmonic generalized standard map (1)

with the force L
F(z) = ~5- (sin(¢)) sin(27mx) + cos(v)) sin(4wx)) , (25)
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Figure 16: Computation of digr for the golden mean circle for T = 2(10)* for 500 values of k € [0.95,1.00].
Continuation is used to find the initial condition (0.321,yo) that has w = 7. The drop of digr from 12 to 6
indicates that the circle is destroyed for a parameter value in (0.9706,0.9731).

that was first studied in [GJSS87] (see [Sim18] for later references). phase portrait of this map,
analogous to that shown for the standard map in Fig. 1, is shown in Fig. 18 for the value ¢ = 0.7776.
Note that at these parameters there are invariant circles in four narrow bands. The set of circles as
a function of k is shown in Fig. 19. This figure is similar to [FM14, Figure 12(b)], where the critical
parameters were computed for a set of 256 noble rotation numbers. In that case the last invariant
circle, with w = 0.247, was destroyed at k =~ 0.613. The numerical experiment here shows that at
least 99.9% of the invariant circles are destroyed when k& > 0.61850. The last invariant circle in our
sample appears to have

w = 0.239184971708802 = [0;4,5,1,1,8,8,5,8,8,1,.. ],

with gmin(l10-s) = 13153.
A similar, well-studied map is the standard nontwist map (see [FM14, SMS*18] for references).
This map is of the form (1) with the standard force, but with the frequency map

Qy) =y - 4. (26)

Note that Q : R — [—d,00), and that the rotation number (3) will also take values in this interval.
The phase space of the dynamics for k¥ = 1.5 is shown in Fig. 20 for é = 0.3. At these parameter
values, there are large chaotic regions around islands with rotation number 0 (colored green) and a
band of rotational circles near the minimum of € (colored blue). The most robust circles tend to be
the shearless circles; they cross the line y = 0 where Q/(y) = 0. The fraction of chaotic orbits and
rotational circles as k varies is shown in Fig. 21. For the 1000 initial y values in our experiment,
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Figure 17: Probability distribution for the occurrence of continued fraction elements of the rotation number for
rotational invariant circles of the standard map for two values of k. These were computed using 7' = 10" iterates,
and a grid of 5(10)* initial conditions at 2 = 0.321, using the distinguishing criteria in (24). When & = 0.3 (blue),
we found 30, 176 invariant circles, and when k = 0.95 (red), we found 682. The black curve shows the Gauss-Kuzmin

distribution, which is the distribution of elements for a random irrational chosen with uniform probability in [0, 1].

the last detected rotational circle is at k = 2.7725 for (x,y0) = (0.35, —0.2620) with the rotation
number

w = —0.255234160728417 = [—1;1,2,1,11,5,4,7,19,.. |,

with @min(I1p-s) = 7260. We verified that there are no rotational circles in the interval —2 < y < 2
for k = 2.7841 by direct iteration: finding an initial condition whose orbit crossed this region. For
example, the initial condition (xg,yo) = (0.0,2.088767893349248) has yr < —2 for T' = 129,072,
though this T" value is uncertain due to floating point errors.

Finally, we consider an asymmetric two-harmonic map (1) with the force

k
F(z)= ~o- (sin(t) sin(27wz) + cos(¢) cos(4mx)) , (27)
i
studied in [FM14]. This map does not have the usual x — —z reversor of the standard map (1),
and therefore its periodic orbits are not aligned by a symmetry. Phase portraits for £ = 0.2 and
1 = 0.7776 are shown in Fig. 22, and the fraction of circles as a function of &k in Fig. 23.

6 Conclusions and future work

The weighted Birkhoff average (6) and the distinguishing criteria (24) have been shown to efficiently
categorize orbits as chaotic, trapped in islands, or quasiperiodic on rotational circles. Using only
T = 10* iterations, the rotation number of regular orbits is typically known to machine precision,
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Figure 18: The dynamics of the two-harmonic map, with force (25) for k¥ = 0.5 and ¥ = 0.7776. The weighted
Birkhoff method distinguishes chaotic orbits (upper right), islands (lower left), and rotational circles (lower right).
The rotation number of each nonchaotic orbit is color-coded (color bar at right). The computations were performed
for a grid of 10007 initial conditions in [0,1] x [<0.75,0.75] with T' = 10*, using the distinguishing criteria in (24).

as shown in Fig. 2. By contrast the weighted Birkhoff average for chaotic orbits converges much
more slowly, and this allowed us to identify chaotic trajectories. Note that it requires at least thirty
times more iterates to obtain a comparable distinction using Lyapunov exponents. Orbits trapped
in islands have rational rotation numbers, and we are able to identify these using the distribution,
shown in Fig. 11, of the minimal denominator in an interval of size § defined by ¢nin(Is) in (13).

The weighted Birkhoff method has the advantages of being extremely simple to compute and
that it does not rely on the symmetry used in Greene’s residue method. Using a total orbit length of
2(10)*, we estimated the break-up parameter for the golden mean invariant circle to 0.3% accuracy,
as seen in Fig. 16. While this accuracy does not compete with that of Greene’s method nor of
conjugacy based methods, it requires much less computation.

Additionally the Birkhoff method does not require fixing the rotation number in advance, nor
computing the lengthy Fourier series of conjugacy-based methods. This adds flexibility since,
whereas the golden mean is established as the most robust rotation number for the standard map,
the rotation number of the most robust invariant circle in a general map is not generally known.
For example, the relationship between robustness of invariant circles and noble rotation numbers
is less well established for asymmetric maps [FM14], and we have demonstrated in §5 that the
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Figure 19: (a) Fraction of orbits of the map (1), with two-harmonic force (25) for 1 = 0.7776, that are chaotic and
are rotational circles for initial conditions along the line o = 0.35. (b) The rotation number of the rotational circles

as a function of initial y and the parameter k. As in Fig. 18, T = 10* with distinguishing criteria in (24).

weighted Birkhoff method can compute robustness of invariant circles for such asymmetric maps.

Another potential application of the weighted Birkhoff average is that it can be applied to higher-
dimensional maps, with, say, d-dimensional invariant tori. There have been a number of attempts
to accurately compute parameters for the break-up of two-dimensional tori by generalizing Greene’s
criterion [Tom96b, CFL04, FM13]|. Though it is known that the residues of a sequence of periodic
orbits that limit on a smooth torus do limit to zero [Tom96a, CFL04], this has not led to accurate
computations of the parameters at which a torus is destroyed (the best achieved accuracy, about 1%,
is for a three-dimensional, volume-preserving map [FM13]). One of the difficulties in any attempt to
extend Greene’s method is that there is no completely satisfactory continued fraction algorithm for
multi-dimensional frequency vectors. To generalize our method will require computing the minimal
denominator g, for resonance relations, e.g., finding a minimal (p, q) € 791 such that |qw — p| is
small. One possible approach is to use generalized Farey path methods [KO86] that may provide a
version of Lem. 1 for this case.

Appendices

A Farey Paths and the Smallest Denominator

The Farey path (17) for any number x can be computed by the simple method given in Algorithm 1.
In a practical calculation, a stopping criterion based on precision must be included. This gives, for
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Figure 20: The dynamics of the standard nontwist map, with frequency (26) for k = 1.5 and § = 0.3. The weighted
Birkhoff method distinguishes chaotic orbits (upper right), islands (lower left), and rotational circles (lower right).
The rotation number of each nonchaotic orbit is color-coded (color bar at right). The computations were performed

for a grid of 1000? initial conditions in [0, 1] x [—0.75,0.75] with T = 10*, using the distinguishing criteria in (24).

example

2 = RRLRRRR = [2;1,4,1],

L =LRRLL = [0;1,2,2,1],
e=RRLR?’LRL*RLRSLRL®...=1[2;1,2,1,1,2,1,1,4,1,1,6,1,1,8,.. ],
7 =RL'RPLR*LRLR’LR?L ... =[3;7,15,1,292,1,1,1,2,1,3,1,.. .

Note that each element of the continued fraction records the number of repeated Farey symbols.
The value of ag is nonzero if the Farey path begins with R, otherwise ag = 0, and a; counts the
number of leading L’s in the path. For the rational case there is an additional last element, which
is fixed to be 1.

The Stern-Brocot tree gives a method for finding the rational with the smallest denominator

gmin(I) (13) in an interval I. Here we prove Lem. 1 to show that ¢, is the denominator of the
first rational on the tree that falls in I:

Proof of Lem. 1. Suppose that for all levels up to £ on the Stern-Brocot tree no Farey rational is

in I. Since the Farey intervals partition (0,00), there must be a Farey interval J = (%, f}’—:) o1
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Figure 21: (a) Proportion of orbits of the standard nontwist map with frequency map (26) when § = 0.3 that are
chaotic and are rotational circles. (b) The rotation number of the rotational circles as a function of initial y and the

parameter k for orbits with zo = 0.35. As in Fig. 20, T = 10* with distinguishing criteria in (24).

for neighbors % and Z—:. Note that every number in J and thus every number in I must then be a
descendent of these parents. Denote the mediant (18) by p,/qm. Without loss of generality, we can
assume that p,,/gm € I. Every rational in the level £+ 1 daughter interval (%, Z—:) is a descendent
of % and since all of these are formed by the mediant operation all of these denominators are larger
than g,,. The same is true for the upper interval (22, 22). Since I C (&, 22)u {2}y (B2 Br)

qm’ qr a’ qm’ qr
all remaining rationals in I have denominator greater than ¢,,. Consequently ¢min(I) = ¢m, and,
moreover, the rational with minimal denominator is unique. O

This result is encapsulated in Algorithm 2 to give a computation of the smallest denominator
rational in I5(x) (12). For example, this algorithm gives

Pm

Gmin(I1o-s (7)) = 32085, =™ =[3;7,15,1,283],
Im
Gmin(Ig-10(€)) = 154257, 2™ = 1(2:1,2,1,1,2,1,1,4,1,1,6,1,1,8,1,1,8].
Im

Neither of these are convergents of the continued fraction expansions. Algorithm 2 ignores issues
of finite precision arithmetic, and is not efficient if the Farey path has a long string of repeated
symbols. An algorithm that does not have this deficit is given in [CP16].

We can obtain some additional understanding of the smallest denominator for the specific case
when the bounds of the interval I are arbitrary rationals [Siv16],

— (PL Pr
I=(G ) (28)

To find the smallest denominator rational we expand each of the boundary points in their Farey
paths:

7pl7 7]?7«
a==—=apa1a3...0y,, b=—
qi qr

= bobibs . .. by,
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Algorithm 1 Compute the Farey path for € RT assuming exact arithmetic

procedure FAREYPATH(x)
11
while x # 1 do
if £ <1 then
S; — L
T 7
else
S; = R
r+—x—1
end if
14— 1+1
end while
end procedure

Algorithm 2 Find the smallest rational in the interval I5(x)

procedure SMALLDENOM(z, §)
(n>d) = (pl7QI) = (07 1)
(pT7 QT’) = (17 O)
while |z — 5| > 0 do
(n,d) = (pi + proat + ar)
if x <n/d then
(pryar) = (n,d)
else
(p1; @) = (n,d)
end if
end while
return (n,d)
end procedure

> Find the mediant

>ax e (B 7)

>z € [, %)

> The smallest rational is %
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Figure 22: The dynamics of the asymmetric two harmonic map (27) for k = 0.2 and ¥ = 0.7776. The weighted
Birkhoff method distinguishes chaotic orbits (upper right), islands (lower left), and rotational circles (lower right).
The rotation number of each nonchaotic orbit is color-coded (color bar at right). The computations were performed
for a grid of 1000? initial conditions in [0, 1]? with 7' = 10* with distinguishing criteria in (24).

with a;,b; € {L, R}. Then, as shown by [Siv16, Thm. 1], there are three cases:

1. When the boundary points of (28) are Farey neighbors, the smallest rational in I is the
mediant, SO Gmin = q + Gr-

2. If one Farey path is a subsequence of the other but they are not neighbors, then the smallest
rational is a daughter of the shorter path and an ancestor of the longer. For example, if
a=bibs...bpant10n12 ... Ay = bapi1 ... an, then the smallest rational has the path

= ban+1 . A,

ISl k]

for some k < m. This is the appropriate daughter of b and ancestor of a. Note that when a < b,
then it must be the case that a,+1 = L. If, for example a = bLRL ..., then bL < a < bLR < b,
so then we set k = n + 2, and obtain % = bLR.

3. If neither path is a subsequence of the other, then the smallest rational is the unique rational
that is a common ancestor of both on the tree: the longest Farey path for which they agree.
For example, if a; = b; for i = 0,...k < min(m,n), and axy1 # bg11 then g = agay,...,a is
the smallest rational in I.
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Figure 23: (a) Proportion of orbits of the asymmetric standard map with force (27) and ¢ = 0.7776 that are
chaotic, and rotational circles. (b) The rotation number of the rotational circles as a function of initial y and the

parameter k for orbits with zo = 0.35. As in Fig. 22, T = 10* with distinguishing criteria in (24).

Finally, for an interval bounded by irrationals we can prove the following lemma.

Lemma 2 (Smallest Rational in an Irrational Interval). If I = (a,b), 0 < a <b, a,b € R\ Q, then
Gmin(I) is the denominator of the common Farey ancestor of a and b, if there is one; otherwise

Proof. Denote the infinite Farey paths of the irrationals by a = ajas... and b = b1bs ..., where
a;,b; € {L, R}, and let £ € N be chosen so that the common ancestor of a and b is

% =a1a2...ag=blb2...bg, ap41 %bg+1.

If ¢ does not exist, then since a < b, a; = L and b; = R, which means that % € I, so that ¢pn = 1.

Now suppose that there is a common ancestor of length ¢ > 1. Then since a < b, we must
have agy; = L and by = R and a < % < b. Denote a “left truncation” of a path as a rational
ar, = ajaz...aj < a and a “right truncation” as a rational ar = aia2...ay > a, see Fig. 24. For
example if aj;1 = R, and ay41 = L then we know that ajaz...a; < a < ajaz...a;. Note that
such truncations always exist for any irrational and any choice of minimal length since the infinite
paths with tails ... L% and ... R*™ are rationals. Now, by item (3) above [Siv16, Thm. 1], for the
interval Ioyier = (ar,bgr), the smallest denominator is that of the common Farey ancestor of ay,
and br: ¢min(Iouter) = qe- Thus, whenever these rational truncations are both longer than ¢, then
I uter contains the common Farey ancestor 2£ and this has the smallest denominator. Note that
since ay, < a and br > b, then I C Iyter. Thus gmin(I) is no less than go. Moreover since % el,
then gmin(I) is no more than g;. Thus ¢min(I) = qo. d
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