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A B S T R A C T

For unsteady aerodynamics, the Arbitrary Lagrangian-Eulerian Variational Multi-Scale (ALE-VMS) formulation for
incompressible flows has proven an accurate and powerful method. In this paper we present an overview of some
of its applications to wind engineering of long-span bridges, including flutter and buffeting analysis and vortex-
induced vibrations. In general the numerical results compare well with the companion wind-tunnel experiments.
Further, we use the method to address more special topics of bluff-body aerodynamic; the impact of inlet tur-
bulence on the self-excited forces and the nonconforming span-wise coherence structures of turbulence and
buffeting forces. The present work demonstrates the completeness and accuracy of ALE-VMS, and proves it to be a
viable engineering tool for bridge aerodynamics.
1. Introduction

The Norwegian Public Roads Administration (NPRA) has initiated a
project that aims to construct a continuous connection along the western
coast of Norway. The major challenge and cost driver is the seven fjord
crossings that span from 1.5 to 5 km, with ferries operating today. For
several crossings, single-span suspension bridges are considered the
primary option, as the fjords are generally very deep (600–1300m).
Adding the strong winds from the North Sea exposure and turbulence-
prone terrain, these bridges present engineering challenges that ex-
tends far beyond today's technology.

For such long-span bridges, the wind-induced dynamic response is
one of the major concerns, and therefore, accurate prediction of the
behavior is essential for safe design (Simiu and Scanlan, 1996). This
include flutter and buffeting analysis, and vortex-induced vibrations
(VIV).

The infamous collapse of the Tacoma Narrows bridge in 1940 marked
the starting point, and proved the importance of flutter analysis. This
instability phenomenon is driven by the self-excited forces, which may
change the properties of the combined wind-structure system such that it
not able to dissipate energy and exhibits negative damping (Simiu and
Scanlan, 1996; Scanlan, 1978a). The standard method today is to express
the self-excited forces in terms of the so-called aerodynamic derivatives
(Scanlan and Tomko, 1971) and include them in a modal analysis of the
full aeroelastic system (Jain et al., 1996) or directly in a finite-element
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analysis (Øiseth et al., 2012). An important factor in non-flutter design
is having a high torsional to vertical frequency ratio (Diana et al., 2013).
For very long spans, this cannot be achieved without an excessive in-
crease in mass, however, it has been shown that a low frequency ratio can
be acceptable given a careful design of the aerodynamic properties of the
bridge deck (Andersen and Brandt, 2018).

VIV is generated by fluctuating pressure from shedding of vortices in
separated flows, and result in a periodic cross-flow excitation. As these
approach the eigenfrequencies of the bridge, we get one or more fre-
quency windows in which the vortex shedding synchronizes with the
structural vibrations and may result in a relatively significant response
(Wu and Kareem, 2012). Typically, VIV occurs at low wind speeds and
concerns mainly the bridge serviceability. The VIV magnitude is, besides
the structural properties, governed by the aerodynamic damping and
intensity of the vortex shedding (Larsen and Walther, 1997). An effective
measure to reduce the latter is installation of devices as guide vanes and
fairings, and is utilized on several long-span bridges, e.g., the Hardanger,
Storebælt and Osterøy bridge. It is important to consider VIV alongside
the flutter analysis due to their interdependence.

Buffeting analysis concerns the turbulence-induced part of the wind
actions and may render significant response for an otherwise stable
bridge (Fenerci and Øiseth, 2017), and therefore plays an important role
in serviceability and fatigue limit states. Calculation of buffeting response
relies on stochastic theory, that was first applied to bridges in (Daven-
port, 1962) and has been further developed into a wide range of methods
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Fig. 1. Aerodynamic forces on a moving bridge deck segment subjected to a
turbulent wind field and its rigid body kinematics.
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employed in the frequency domain (Jain et al., 1996; Fenerci and Øiseth,
2017; Scanlan, 1978b; Chen et al., 2000a) and time domain (Chen et al.,
2000b; Chen and Kareem, 2001; Caracoglia and Jones, 2003; Costa et al.,
2007).

Wind-structure interactions have traditionally been subject to wind
tunnel experiments. However, as the extremely long bridges will require
an extensive aerodynamic analysis, numerical methods based on
Computational Fluid Dynamics (CFD) and Fluid-Structure Interaction
(FSI) emerge as promising alternatives to reduce the bottleneck of wind
tunnel testing. Other advantages of numerical methods are the flexibility
of data acquisition, reproducibility and also the possibility to perform
full-scale tests and other interaction problems where wind tunnel ex-
periments come short.

Because of the unsteady and dissipative nature of turbulent flows,
accurate simulation is extremely difficult and resource intensive. How-
ever, with the major development in computational power and tech-
nology of the last decades, numerical simulation of turbulent flows have
started to find its way into applied bridge engineering, and numerous
successful works on flutter analysis, VIV and buffeting are reported in
literature.

In the present paper we show applications of CFD and FSI to various
aspects of wind-resistant design of bridges using the family of Arbitrary
Largrangian-Eulerian Variational Multiscale (ALE-VMS) methods. The
ALE-VMS formulation refers to the Residual-Based Variational Multiscale
formulation (RBVMS) of the Navier-Stokes equations for incompressible
flows (Bazilevs et al., 2007a) extended to moving-domains. Also
including the space-time version of RBVMS, referred to as ST-VMS
(Takizawa and Tezduyar, 2012), VMS formulations have proven their
accuracy and efficiency through numerous high-Reynold-number flow
computations, such as parachute FSI (Takizawa et al., 2015), wind tur-
bines (Bazilevs et al., 2012), flapping wings (Takizawa et al., 2014),
turbo-machinery (Otoguro et al., 2017), tire aerodynamics (Kuraishi
et al., 2019), channel flow (Bazilevs et al., 2010), and also bridge aero-
dynamics (Helgedagsrud et al., 2019a, 2019b, 2019c, 2019d). Other key
ingredients of the computational framework utilized in this work are the
Multi-Domain Modeling (MDM) extension (Osawa and Tezduyar, 1999;
Bazilevs et al., 2014) for simulation of incident turbulence, the
weakly-enforced boundary conditions (Bazilevs et al., 2007b) for relax-
ing the no-slip boundary condition at solid surfaces, and Jacobian-based
stiffening mesh-moving algorithms (Stein et al., 2003).

To demonstrate the accuracy and applicability of these methods to-
wards practical wind engineering of bridge structures, we undertake
well-known and thoroughly studied bridge sections and present an
overview of the major tasks of flutter and buffeting analysis, also studied
in our previous works (Helgedagsrud et al., 2019a, 2019b, 2019c,
2019d). We also present new results and applications on multi-mode
flutter, the impact of incident turbulence on the aerodynamic de-
rivatives, admittance functions, span-wise coherence of turbulence and
VIV, some of which related to issues raised in earlier literature.

The paper is outlined as follows. In Sec. 2 we briefly present the
general relations of unsteady aerodynamics, to form the point of depar-
ture for the numerical applications. A summary of the numerical method
is presented in Sec. 3. In Sec. 4, we present the flow computations and
numerical results, including comparison with wind-tunnel experiments
where applicable. A brief outlook to future opportunities is given in Sec.
5, before the concluding remarks in Sec. 6.

2. Unsteady aerodynamics

With reference to strip theory and the definitions and conventions in
Fig. 1, the instantaneous aerodynamic forces on a bridge deck segment
subjected to a mean wind component U and zero-mean turbulent fluc-
tuations uðx; tÞ ¼ ½u;w�T in the along-wind and vertical directions,
respectively, can be represented by the drag, lift and pitching moment:

qðx; tÞ ¼ ½D; L;M�T . Compliant with the in-plane motions, the
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corresponding displacements are denoted sway, heave and pitching;
dðx; tÞ ¼ ½p; h; θ�T . In the above, x and t denotes dependency in the span-
wise direction and time, respectively.

The drag, lift and pitching moment coefficients per unit length are
defined as:

CD ¼ D
1=2ρU2H

; CL ¼ L
1=2ρU2B

; CM ¼ M
1=2ρU2B2

; (1)

where ρ is the air density and H and B are the characteristic height and
width of the bridge deck, respectively.

For strong winds, we neglect vortex shedding and decompose the
aerodynamic forces into mean, self-excited and buffeting components
respectively as:

qðx; tÞ¼ qþ qSEðx; tÞ þ qBðx; tÞ; (2)

Using classical multimode theory (see, e.g., (Jain et al., 1996)) we
express the dynamic equilibrium of the bridge in the frequency domain
as:

M0G€ηþC0G _ηþK0Gη¼GqSEþGqB ;
(3)

where M0, C0 and K0 are the still-air modal mass, damping and stiffness
matrices, respectively, G denotes the Fourier transform of its attributes η
and q, that represent the generalized-coordinate parts of d and q,
respectively.

The unsteady self-excited forces may we written in terms of the
structural motions as:

GqSE ¼CaeG _η þKaeGη; (4)

where Cae and Kae are interpreted as the aerodynamic damping and
stiffness, respectively, given as:

Cae ¼ 1
2
ρUK

2
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775; (5)

and

Kae ¼ 1
2
ρU2K2

2
664
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775: (6)

Here, K ¼ Bω=U is the reduced (angular) frequency and P�
i , H

�
i and A�

i

are the so-called aerodynamic derivatives (Scanlan and Tomko, 1971).
Which in general are frequency-dependent functions given by the shape
of the bridge.

The critical wind speed for flutter, Ucr , is determined by solving the
eigenvalue problem of Eq. (3):
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λ2nM0 þ λnðC0 � CaeÞþ ðK0 �KaeÞ Φn ¼ 0: (7)

� �

The eigenvalues λn ¼ μn � iωd appear as complex conjugates where
the real part corresponds to the decay of mode n and the imaginary part is
the damped eigenfrequency. Coupled flutter occurs for the lowest wind
speed at which the real part for one of the modes becomes negative. This
requires interaction, and shape-wise affinity, between vertical and
torsional modes, and are today commonly analyzed in a multimode
environment (Agar, 1989; Jain et al., 1996).

For the buffeting forces we let Gv ¼ ½Gu;Gw�T denote the Fourier
transform of the velocity fluctuations. The buffeting can then be given on
the following form (Simiu and Scanlan, 1996):

GqB ¼ 1
2
ρUBχGv; (8)

where

χ ¼

2
664 2ðH=BÞCDχDu ððH=BÞCD '� CLÞχDw

2CLχLu ðCL 'þ ðH=BÞCDÞχLw
2BCMχMu BCM 'χMw

3
775; (9)

is the matrix of aerodynamic admittances. The bars and primes on the
force coefficients denote their mean value and inclination with respect to
the pitching angle, respectively. Analogue to the aerodynamic de-
rivatives, the admittance functions, χij, are frequency-dependent func-
tions governed by the shape of the bridge deck.

The spectral form of Eq. (8) reads:

SqB ¼
�
1
2
ρUB

�2

χSvχ �T ; (10)

where SqB and Sv are cross-spectral density matrices of the buffeting
forces and wind velocities, respectively. �T denotes the Hermittean
transpose of its attribute. Since turbulence is often described in a sto-
chastic sense, Eq. (10) is convenient for response calculations (Chen
et al., 2000a) and identification of the admittance functions (Larose,
1999; Zhu et al., 2018).

In this work, we assume that the cross-spectra of the velocity com-
ponents, i.e. Suw , Swu are zero, and that C'D, CL and CM can be neglected.
The components of Eq. (10) then reduce to:

SDD ¼
�
1
2
ρUB

�2�
2
H
B
CD

�2
�����χDuj2Suu; (11a)

SLL ¼
�
1
2
ρUB

�2�
CL 'þ H

B
CD

�2
�����χLwj2Sww; (11b)

SMM ¼
�
1
2
ρUB

�2

ðCM 'Þ2
�����χMwj2Sww; (11c)

which is recognized as the widely used auto-spectral density method
(Larose, 1999).

Vortex-induced vibration typically occurs at lower wind velocities,
and is driven by periodic vortex shedding. The vortices create a fluctu-
ating pressure, characterized by a dominant shedding frequency fs ¼
St U=H, where St is the Strouhal number. VIV ”lock-in” then occurs for
ranges of wind speeds where fs coincides with one of the structural
modes, and creates a stable limit-cycle oscillation, often with consider-
able amplitudes with respect to fatigue and serviceability. VIV is highly
dependent on the mass ratio and damping, effectively represented by the
Scruton number. For a detailed overview of VIV, the reader is referred to
(Wu and Kareem, 2012).
145
3. Computational method

3.1. Governing equations

The fluid mechanics is governed by the Navier-Stokes equations of
incompressible flows. We take the weak formulation as the starting point,
making them suitable for finite element-type discretization. The ALE
description makes use of a referential and current fluid mechanics
domain, defined by coordinates bx 2 Ω0 and x 2 Ωt , respectively. For the
variational formulation, we define the trial and test functional spaces S
and V , respectively, and the problem is stated as follows. Find a
velocity-pressure pair fv;pg 2 S , such that 8 fδv;δpg 2 V :

Bðfδv; δpg; fv; pg; bvÞ�Fðfδv; δpgÞ ¼ 0; (12)

where

Bðfδv; δpg; fv; pg; bvÞ ¼Z
Ωt

δv � ρ
�
∂v
∂t

���bx þ ðv� bvÞ �▽v
�
dΩ

þ
Z
Ωt

εðδvÞ : σðv; pÞ dΩþ
Z
Ωt

δp▽ � v dΩ;

(13)

and

Fðfδv; δpgÞ¼
Z
Ωt

δv � ρf dΩþ
Z
ðΓt Þh

δv �h dΓ: (14)

Here, ρ is the fluid density, f is the body forces and h is the tractions
acting on the ðΓtÞh part of the boundary Γt . The fluid accelerations is
evaluated on Ω0, denoted by subscript bx, and bv ¼ ∂bx=∂t is the fluid
domain velocity. σ is the Cauchy stress, given as:

σðv; pÞ¼ � pIþ 2μ εðvÞ: (15)

As stated in Eq. (15), the fluid stresses are defined by an isotropic
pressure p, and a viscous part driven by the dynamic viscosity μ and the
symmetric strain rate gradient of u, defined as:

εðvÞ ¼ 1
2
ð▽vþ▽vTÞ: (16)

It should be remarked that with the ALE-formulation we still have an
Eulerian description of the fluid equations, but at the same time allowing
deformation of the fluid mechanics domain without any interaction with
the fluid itself.

3.2. Discretization and turbulence modeling

At the discrete level we use standard linear finite elements as well as
higher-order accurate isogeometric analysis (Cottrell et al., 2009). The
explicit expressions and a comprehensive overview of the methods are
given in (Bazilevs et al., 2013).

For turbulence modeling we use RBVMS (Bazilevs et al., 2007a),
which may be regarded as an LES-type model in the sense that it uses the
scale separation of resolved and unresolved scales. It differs, however,
from classical LES models in that it instead of filtering functions uses a
direct-sum decomposition according to the VMS methodology (Hughes
et al., 2017) that preserves numerical consistency of the resolved scales in
all flow regimes. This was also the motivation for its development in
(Hughes et al., 2000; Bazilevs et al., 2007a). The term “residual-based”
refers to the fact that the discrete point-wise residuals of the strong-form
Navier–Stokes equations are used to model the unresolved scales.

The RBVMS is an extension of stabilized methods for fluid mechanics
(Brooks and Hughes, 1982), which, through numerous works (see ref-
erences in (Bazilevs et al., 2013)) have been developed to render optimal
convergence and stability across a wide range of Reynolds numbers.
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3.3. Weakly-enforced boundary conditions (BCs)

An important part of the computational framework is the so-called
weakly-enforced boundary conditions (Bazilevs et al., 2007b). Instead
of satisfying the Dirichlet boundary conditions exactly, we do so
approximately through the variationally consistent penalty terms
developed in the framework of Nitsche's method (Nitsche, 1971).
Although based on numerical considerations, weakly-enforced boundary
conditions were shown in (Bazilevs and Hughes, 2007) to have similar-
ities with near-wall modeling by means of wall functions.

In practice, when the wall boundary layer is under-resolved, the flow
is allowed to slip on the solid surface. This avoids formation of artificially
thick boundary layers, which often lead to premature flow separation and
inaccurate pressure distribution. Weakly-enforced boundary conditions
have shown to significantly improve the accuracy and performance, and
extended the range of applicability, of RBVMS and ALE-VMSmethods, as
demonstrated in, e.g., (Bazilevs et al., 2010; Hsu et al., 2012).

3.4. Modeling of incident turbulence

Incident turbulence is generated using the MDM-method of (Helge-
dagsrud et al., 2019d). MDMwas first proposed in (Osawa and Tezduyar,
1999) and can be viewed as a generalization of auxiliary recycling
methods of which early formulations for turbulence modeling are re-
ported in (Lund and Moin, 1996; Chung and Sung, 1997). As illustrated
in Fig. 2, we generate the turbulence separately in a pressure-driven,
wall-bounded channel simulation (ΩA) with periodic boundary condi-
tions. Its outflow is then imposed as inflow boundary conditions to the
main computing domain (ΩB) that includes a bridge deck. To handle the
non-matching discretizations and processor partitioning between the
subdomains, we again make use of weakly-enforced boundary condi-
tions, which only require quadrature-point inflow-velocity data. The wall
boundary conditions of the floor and ceiling is retained in the main
computing domain in order to preserve the turbulent structures.

The resulting turbulence proved to render a realistic and high-
frequency dissipative velocity spectrum at the position of the bridge
deck (Helgedagsrud et al., 2019d).

3.5. Structural mechanics and FSI

Approaching the bridge deck segment as a rigid object with its initial
configuration denoted byΩb

0, the dynamic equilibrium state of the object,
Ωb

t , is governed by the global balance of linear and angular momentum
stated as:

d
dt
ðmv0ÞþClinv0 þKlind0 ¼ F; (17)

and

d
dt
ðJtω0ÞþCangω0 þKangθ0 ¼ M: (18)

In accordance with Fig. 1, d0 and v0 are the center-of-mass displace-
ment and velocity, respectively. Similarly, θ0 and ω0 are the Euler angle
and angular velocity, respectively, RðθÞ is the rotation matrix, and m and
Fig. 2. MDM modeling of incident turbulence.
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Jt are the mass and inertia matrix, respectively. Lastly, C andK represent
the augmented structural damping and stiffness matrices. On the right-
hand-side we have the external forces and moments acting on the
bridge deck surface, Γb

t , given by:

F¼mgþ
Z
Γbt

hdΓ; (19)

and

M ¼
Z
Γbt

ðx� x0Þ � hdΓ; (20)

where g is the gravitational vector and h are the fluid tractions from Eq.
(14). For planar motion, the structural problem reduces to three equa-
tions. A detailed view of the discrete formulation is given in (Helge-
dagsrud et al., 2019b).

In the case of forced-vibrations, expressions for d0 and θ0 are simply
given directly.

To conform the fluid mechanics domain to the motion of the bridge,
we make use of the fluid mechanics displacement variableby : ⇔dby =dt ¼ bv to solve the linear-elastic equation for the fluid interior.
The problem is solved using the interface Γb

t as Dirichlet-type boundary
conditions, where the elastic constants are given by Jacobian-based
stiffening for minimal mesh distortion and wrapping. The method can
be viewed in detail in (Stein et al., 2003).

The resulting FSI equations are solved using a block-iterative coupling
and a predictor-multicorrector algorithm based on the Generalized-α
time integration method (Jansen et al., 2000). The discrete FSI equations
can be viewed in (Bazilevs et al., 2013).

3.6. Simulation strategy

Fig. 3 shows the representative 3D CFD finite-element and iso-
geometric meshes used in this work. Typically, the inflow surface, with
prescribed velocity, is placed 3B upwind, and the pressure outlet 8B
downwind. The floor and ceiling is set to the same dimensions as the
wind tunnel, with imposed no-penetration and no-slip BCs. The span-
wise dimension is set to 0.5 – 2B with no-penetration BCs. The bridge
segment is extruded through the domain, on which weakly-enforced no-
slip is enforced. To better approximate the boundary-layer solution and
wake turbulence, prismatic boundary layer elements near the bridge-
deck surface, and local wake refinement, are employed.

The air density and dynamic viscosity are set to ρ ¼ 1:225 kg=m3 and
μ ¼ 1:7894� 10�5 kg=ms, respectively. The time stepping is chosen such
that the maximum Courant number is less than 2.5, typically Δt ¼
0:001B=U.

The number of nodes varies from approximately 300� 103 for
higher-order IGA and 500�1000� 103 for standard finite-elements. A
parallel environment is adopted from (Hsu et al., 2011) and the simu-
lations are performed on 256–1024 computational cores.

4. Numerical simulations

In the following we present the numerical simulations performed and
results obtained. The section is divided into flutter, buffeting and VIV
analyses presented in Secs. 4.1, 4.2 and 4.3, respectively.

4.1. Flutter analysis

4.1.1. Aerodynamic derivatives and forced-vibrations
The forced-vibration test is an efficient and accurate method to

determine the aerodynamic derivatives (Siedziako and Øiseth, 2018),
and from an FSI perspective, also the easiest.

Following the test procedure of (Helgedagsrud et al., 2019a), the
bridge deck is excited in a prescribed harmonic heaving and pitching



Fig. 3. Finite-element (top) and isogeometric (bottom) CFD meshes of the Hardanger bridge.

Fig. 5. Time series of flutter simulation and companion wind-
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motion sequentially. From the corresponding measured aerodynamic
forces, the aerodynamic derivatives are then estimated by least-squares
fitting of Eq. (4). To determine the frequency-dependence of the aero-
dynamic derivatives, several wind velocities and vibration frequencies
are tested.

Fig. 4 shows the resulting aerodynamic derivatives of the Hardanger
bridge deck, clean of guide vanes and railings with finite-element and
isogeometric discretizations, as reported in (Helgedagsrud et al., 2019a,
2019c), respectively. For comparison, results from forced-vibration
wind-tunnel experiments (Siedziako and Øiseth, 2018), are included.

We see that the numerically determined aerodynamic derivatives
match the wind-tunnel experiments well, particularly for low values of
Ured ¼ 1=K. In general, the numerical simulations overestimate the force
magnitudes. We address this issue in Sec. 4.1.4.

The large deviations in A�
4 arise from a small phase shift in the

heaving-induced pitching moment. Note, however, its small amplitude.
The impact of the present aerodynamic derivatives on the flutter char-
acteristics is discussed in Sec. 4.1.3.

The difference between FEA and IGA is only minor and although we
see a slight improvement of the heaving phase, the discrepancies do not
seem due to the discretization method. It should be remarked, however,
that the IGA results were computed with approximately half the number
of nodes.

4.1.2. Flutter analysis using free vibrations
For a direct comparison of the flutter characteristics, free-vibration

wind-tunnel experiments of the clean Hardanger bridge deck were per-
formed in (Helgedagsrud et al., 2019b). Inserting the same still-wind
properties into Eqs. (17) and (18), finite-element simulation of flutter
is performed for the wind tunnel setup. The results are reported in terms
Fig. 4. Aerodynamic derivatives of the Hardanger bridge deck obtained by forced-v
experiments (WT). Regr. denotes their 3rd order polynomial fitting.
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of displacement time series in Fig. 5 and critical velocity and frequency in
Table 1. The simulation renders a different mean heave, however, in
terms of flutter velocity, frequency and mode shape, we capture the
experimental results very well.

Remark 1. The flutter simulation in (Helgedagsrud et al., 2019b) were
performed at U ¼ 8:16 m/s and showed a rapidly diverging response.
The present simulation at U ¼ 8:10 m/s shows a much more steady
response, suggesting that Ucr is very close to 8.1m/s.

4.1.3. Multimode flutter analysis
To assess the accuracy and impact of the different methods on the
ibration finite-element (FEA) and isogeometric (IGA) analyses and wind-tunnel

tunnel experiment.



Table 1
Flutter characteristics of the full-scale Hardanger bridge and a model-scale
segment with aerodynamic derivatives determined by experiments and
simulations.

Type of test Full-scale, multi-mode Model-scale segment

Ucr [m/
s]

ωcr

[rad/s]
Ucr

red Ucr

[m/s]
ωcr

[rad/s]
Ucr

red

Wind Tunnel free-
vibration

– – – 8.16 9.80 2.28

Wind Tunnel
forced-vibration

61.41 1.83 1.83 7.80 9.99 2.13

FEA free-vibration – – – 8.10 9.53 2.32
FEA forced-
vibration

66.03 1.67 2.16 8.12 9.09 2.44

IGA forced-
vibration

65.66 1.67 2.14 8.20 9.15 2.45
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flutter characteristics, a multimode flutter computation of the Hardanger
bridge is performed using the various aerodynamic derivatives reported
in Sec. 4.1.1. We use the same analysis framework and modal quantities
as reported in (Øiseth et al., 2010), considering the first four symmetrical
heaving modes and the first two symmetrical pitching modes and a
modal damping of 0.5%. The aerodynamic derivatives are taken as the
deck modes of the sectional model, fitted with zero-bounded 3rd order
polynomials. For comparison with the free-vibration tests in Sec. 4.1.2,
the same computation is also performed for the model scale
free-vibration setup, i.e. for bi-modal flutter with mode shapes of unity.
The latter offers a good opportunity for a direct comparison between free-
and forced-vibration tests by simulation and wind tunnel experiments.

The results are summarized in Tab. 1. For both the full- and model
scale computation, we see that the simulations produce a higher flutter
velocity than the corresponding forced-vibration wind tunnel experi-
ment. Compared to the free-vibration results, however, the simulations
predict the flutter behavior with excellent accuracy. Both in terms of the
critical velocity and frequency, theymatch the wind tunnel free-vibration
results equally good or better than the companion forced-vibration wind-
tunnel experiment, even though the two experiments are preformed in
the same wind tunnel, on the same sectional model.

As expected from the similar aerodynamic derivatives, finite-
elements and IGA behave more or less equal. Continuing the discussion
from Sec. 4.1.1, the results suggest that the deviations from the experi-
mental results is not dominated by the discretization method.

Lastly, we note that the numerical simulations produce more consis-
tent predictions than those of the wind tunnel, the latter well-known to
depend strongly on e.g., the test type (Siedziako and Øiseth, 2017).

Remark 2. The calculated flutter limit of 61.4 m/s for the Hardanger
bridge is far below the design specification. It must be remarked, how-
ever, that the present calculations do not include guide vanes, which
increases the flutter limit significantly. We also note that the present
results correspond well to the flutter calculations in (Siedziako and
Øiseth, 2017).

4.1.4. The role of incident turbulence on aerodynamic derivatives
Consistent for all numerical simulations of self-excited forces on

bridges reported in literature known to the authors, is that they over-
estimate the magnitude of the aerodynamic forces. This is particularly
prominent for square cylinders, recognized by their high bluffness and
large flow separations, see e.g., (Helgedagsrud et al., 2019a; de Miranda
et al., 2014; Scotta et al., 2016; Brusiani et al., 2013).

It is well-known that incident turbulence reduces the reattachment
length of bluff bodies (see e.g., (Nakamura et al., 1988; Mills et al.,
2002)). This was also observed numerically in (Helgedagsrud et al.,
2019d), where early reattachment was found to be more dependent on
the existence of incoming turbulence, rather than its intensity. Early
reattachment reduces the separation bubble and thus the base suction,
which is the governing mechanism for lift and pitching moment. From
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this observation, the hypothesis of that uniform inflows in numerical
simulations contribute to their tendency of overestimating the experi-
ments was proposed, since uniform flows are in practice non-existent,
that being in the wind tunnel or in atmospheric flows.

To test this hypothesis, we recalculate the aerodynamic derivatives of
the square cylinder of aspect ratio 1:10 (BD10) from (Helgedagsrud et al.,
2019a) with a turbulence intensity of 1% in the incoming wind, generally
classified as a low intensity. The results are shown in Fig. 6, and
compared to the uniform inflow we see a general improvement in terms
of the magnitude and particularly the phase of the self-excited forces. The
latter is defined from Eq. (4), and given by the ratio between e.g., H�

4 and
H�

1 for heaving-induced lift, and has an important impact on the flutter
characteristics. Discrepancies are still seen for the pitching moment
related terms, in particular A�

1 and A�
3, however, the overall improvement

indicates that inclusion of some perturbations in the incoming wind may
have brought the simulation closer to physical flows such as in the wind
tunnel through enhanced mixing.

Instant velocity contours at the upper position of the heaving motion
for turbulent and uniform inflow are shown in Fig. 7. As seen from the
curvature of the shear layer, it is evident that the reattachment length is
reduced in the case of turbulent inflow.

Remark 3. The free-stream turbulence intensity of the wind tunnel is
approximately 0.1%. This would commonly be referred to as a non-
turbulent flow in an experimental context.
4.2. Buffeting analysis

4.2.1. Aerdynamic admittance functions
In the study of buffeting, we subject a non-moving bridge section to

incident turbulence and use the measured power spectra of the wind
velocity and aerodynamic forces to establish the aerodynamic admit-
tance functions (Eq. (11)). A detailed description of the method is given
in (Helgedagsrud et al., 2019d), where also admittance functions of the
BD10 section was reported. In this work we extend the study to include
the Hardanger bridge section and the NACA0012 airfoil, the latter for
comparison with the analytical solution for lifting admittance; The Sears
function (Sears, 1941). To examine the similarity between vertical gust
and motions, the aerodynamic admittances based on the experimental
aerodynamic derivatives are also computed through the following re-
lations (Scanlan, 2000):

����χ�Lwj2 ¼ K2
�
H�2

1 þ H�2
4

�
CL '2

(21)

����χ�Mwj2 ¼
K2

�
A�2
1 þ A�2

4

�
CM '2

(22)

Figs. 8 and 9 show the aerodynamic admittance functions for lift and
pitching moment, respectively. First, we observe that the airfoil follows
the Sears function very well, and that the absence of separated flows
prevents the high-frequency disturbances. The airfoil solution also ap-
pears to be a good approximation for the lifting admittance of the other
sections. The increase at high frequencies is induced from shedding of
vortices, i.e., the signature turbulence, and is, in that sense, not a part of
the buffeting forces. We further notice that the admittances based on
aerodynamic derivatives correspond well with the simulations and
represent a fair approximation for lift, however, they show a consistently
higher admittance.

For the pitching moment, the admittances show a very distinct in-
crease with the bluffness. Although less visible, they also seem to exhibit
the same asymptotic behavior of the Sears function, until the signature
turbulence becomes dominant. Those based on aerodynamic derivatives
indicate a much higher admittance than the simulations, particularly for
BD10, exceeding far above unity. This suggests high unsteadiness of the
self-excited pitching moment, which makes the conditions that relates



Fig. 6. Aerodynamic derivatives for the BD10 section with and without ambient turbulence. The wind tunnel and uniform inflow results are reported in (Helge-
dagsrud et al., 2019a).

Fig. 7. Instant velocity contours of the heaving motion for Ured ¼ 2:7 at the
upper position for uniform (top) and turbulent (bottom) inflow.

Fig. 8. Aerodynamic admittance function for lifting force. The points are ad-
mittances computed from experimentally determined aerodynamic derivatives
(Eq. (21)).

Fig. 9. Aerodynamic admittance function for pitching moment.
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aerodynamic derivatives to the admittance function fail. The present
observations corresponds very well with those reported in (Costa, 2007).

Remark 4. It should be remarked that the forces are sampled on strips
positioned in the middle 1/3 of the domain in order to eliminate any
boundary effects near the symmetry planes.

Remark 5. The Sears function is shown with the pitching moment
admittances only for visualization. The moments of the airfoil is evalu-
ated about 1/4 of the unit span, with the intention of minimizing the
pitching moment, confirmed by its low admittance.

Remark 6. In (Helgedagsrud et al., 2019d) the signature turbulence
was filtered out by subtracting the uniform inflow force spectrum. This
step is omitted in the present work, and results in increasing admittances
for high frequencies.

4.2.2. Span-wise coherence for isotropic turbulence
In modal analysis of the buffeting response, the span-wise coherence

of the buffeting forces must be taken into account. Because such force
measurements are lacking, this coherence is modeled using the so-called
joint-acceptance function, which is commonly taken as the normalized
co-spectrum of the wind field. This assumption is, however, problematic,
as it has been suggested that the coherence of the aerodynamic forces is
higher than that of the incoming velocity field (Larose and Mann, 1998;
Bogunovic Jacobsen, 1995; Ito et al., 2014).

The normalized co-spectra of the lift and vertical-velocity fluctuations
for a span-wise separation Δx are defined, respectively, as:

bCLðK;ΔxÞ ¼ Re½SL1L2 ðK;ΔxÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SL1L1 ðKÞ � SL2L2 ðKÞ

p ; (23)
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bCwðK;ΔxÞ ¼ Re½Sw1w2 ðK;ΔxÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S ðKÞ � S ðKÞp : (24)
Fig. 10. Normalized co-spectra and fitted curves for BD10 lifting force and
vertical velocity fluctuations with span-wise separation nB =50.
w1w1 w2w2

Using the simulation of the BD10 section in Sec. 4.2.1 and measure-
ment strips with separations of nB =50, n ¼ f1;2;4;8; 16; 32g, we
compute the normalized co-spectra for the forces and wind fluctuations.
For curve fitting we use the extended form of the classical exponential
form (Krenk et al., 1996), as used in, e.g., the Hardanger bridge design
basis:

cCiðK;ΔxÞ ¼
�
1� 1

2
κΔx

�
expð�κΔxÞ; (25)

where

κ ¼ ai
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
biK2 þ ci

p
: (26)

Fig. 10 shows the normalized lift and velocity co-spectra for separa-
tions of Δx ¼ fB=50; 8B=50; 32B=50g and their fitted curves. Despite the
scattered results, partially due to short time series, but also due to the ill-
conditioned nature of Eqs. (23) and (24), the trends are clearly visible
and well captured by the fitted curves.

Figs. 11 and 12 show contours of bCLðK;ΔxÞ and bCwðK;ΔxÞ for the
fitted curves of all separations. From these figures it is clearly seen that,
for small separations, the wind has a much stronger correlation structure
than the forces. A likely explanation is the high vortex intensity,
increasing the denominator of Eq. (23) for high reduced frequencies. For
separations above Δx =B � 0:3, where the wind correlation drops
rapidly, the correlation of the forces remains intact. The latter confirms
the observations of (Ito et al., 2014), and is believed to emerge from
constraining the free-stream turbulence. However, the exact mechanism
of the dissimilar correlation structures are left for further investigations.
Fig. 11. Contours of fitted normalized co-spectra for lifting force, bCLðK;ΔxÞ, of
the BD10 section.

Fig. 12. Contours of fitted normalized co-spectra for vertical velocity fluctua-

tion, bCwðK;ΔxÞ.
4.3. Vortex-induced vibrations

From a design perspective, VIV of the heaving modes are the main
concern, as it occurs for the lowest wind speeds.

To study VIV we use the free-vibration technique from Sec. 3.5. For
experimental validation, new wind-tunnel experiments were performed
using the same test setup as in (Helgedagsrud et al., 2019b), except the
section was pretensioned vertically in order to increase the stiffness and
thus VIV velocity. The identified system properties were m ¼ 2:91 kg=
m, Jθθ ¼ 0:0283kgm2=m, ωh ¼ 22:92 rad=s, ωθ ¼ 66:09 rad= s, with
damping ratios of ζh ¼ 0:225 % and ζθ ¼ 0:1 %. The same structural
properties were used as input in the simulations, and subjected to a set of
uniform inflow velocities. To trigger the vortices, a small initial
displacement of the bridge deck was set. The VIV magnitude was then
taken as the peak displacement of the steady-state, non-decaying,
vibration.

Fig. 13 shows the dimensionless displacement as a function of the
reduced velocity for the experiments and simulations. Lock-in of the
primary peak occurs at reduced velocities (1 =St) of approximately 5.6
and 6.0 for the simulation and experiment, respectively. The simulations
underestimate the magnitude severely, by almost 50%. A possible
explanation arise from the high sensitivity with respect to the domain
width of the simulations (B in the present study), indicating that the no-
penetration boundary conditions interrupt the formation of fully corre-
lated flows. Another considerable source of error is the system pertur-
bation identification procedure of the still-air properties, due to the ill-
conditioned determination of the mass and Scrouton number. Never-
theless, the qualitative trend is well captured, and simulations offer a
good opportunity to study the mechanisms of VIV and determine the best
countermeasures.

The secondary peak appears at approximately 1 =1:5St and here, the
simulations are in excellent agreement with the experiments.

Remark 7. Due to the multifaceted shape of the Hardanger bridge, its
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VIV behavior is correspondingly complex. Investigation of the discrep-
ancies seen in this section encourages further investigations, however,
preferably on a simpler geometry, e.g., BD10, where the VIV mechanisms
can be easier recognized.



Fig. 13. Numerically and experimentally determined VIV in terms of dimen-
sionless displacement and reduced velocity.

Fig. 15. Evolution of lifting force on bridge deck for a bypassing solitary wave.

Fig. 16. Evolution of pitching moment on bridge deck for a bypassing soli-
tary wave.

Fig. 17. Instant velocity contours and isovolumes of Q-criterion for different
positions of the solitary wave.
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5. Outlook

To give the reader an outlook to future applications of ALE-VMS to
bridge aerodynamics, we present a full-scale simulation of a low-
elevation bridge deck subjected to a “100-year” wind and a bypassing
solitary wave. This is an actual load case raised for the Bjørnafjorden
crossing, a 4600m floating bridge and a member of the fjord crossing
project.

The load case and dimensions are depicted in Fig. 14. The wave
profile is based on the potential flow theory, and is employed by moving
the domain floor. The boundary conditions at the floor are imposed
weakly and consistently with the air-water interface velocity. The initial
position of the wave crest is set to �150m. A logarithmic wind profile is
used at the inlet, with U ¼ 29:5 at the reference height of 10m.

Figs. 15 and 16 show the evolution of lift and pitching moment as a
function of the position of the wave crest with respect to the bridge
centroid. The same plots also show the average coefficients for still-
water, or the hydrostatic condition (MWL), and the same bridge sec-
tion without the blockage from its low elevation (Free). The simulation
reveals a large variation in the forces with respect to the position of the
wave and suggests that the sea-state should be considered in the aero-
dynamic analysis. We also notice that there is a significant increase in the
average force coefficients when the blockage is introduced. The plots
should be seen in the context of Fig. 17, which shows velocity contours
and turbulent structures in terms of the Q-criterion isosurfaces for two
positions of the wave. Note how the wind velocity below the bridge deck
reduces when the wave is approaching, and increases when the wave is
right below the deck.

It should be remarked that the solitary wave may not be the most
realistic sea state. Nevertheless, the present simulation shows the ALE-
VMS offers to handle a wide range of wind engineering problems.
Fig. 14. Load case for a low-elevation bridge deck subjected to wind and a
bypassing solitary wave.
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6. Conclusions

In this work we apply the ALE-VMS formulation to a wide range of
engineering problems within long-span bridge aerodynamics. The
formulation combines the advantages of RBVMS turbulence modeling,
weakly-enforced boundary conditions, MDM extension for generating
inlet turbulence, Jabobian-based stiffening for mesh-motion and an
effective FSI coupling, resulting in a highly developed method for
simulation of turbulent flows.

For the flutter analysis we first determined the aerodynamic de-
rivatives for the Hardanger bridge sectional model through forced-
vibrations using finite-element and isogeometric distretizations. Both
corresponded well with companion wind-tunnel experiments. We also
performed numerical and experimental testing of the same section by
free-vibrations in order to study the flutter characteristics directly in the
time-domain. Numerical simulations of forced- and free-vibrations
proved highly consistent and corresponded well to the experiments in
terms of the flutter characteristics. The sectional properties were also
used as input in a multi-mode flutter analysis of the full-scale bridge for
further comparison between simulations and experiments. The last part
of the flutter analysis exploited the hypothesis of that the discrepancies
between simulations and experiments may arise from the perfectly
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uniform inflow conditions commonly used for numerical simulations.
Here, we compared the aerodynamic derivatives for the BD10 square
cylinder using uniform inflow and inlet turbulence with intensity of 1%.
The results confirmed the importance of incident turbulence on the flow
patterns and rendered a general improvement in the phase of the self-
excited loads, particularly for the heaving branch.

In the study of buffeting, we computed the aerodynamic admittance
function for the BD10, Hardanger bridge and NACA0012 sections. It was
found that all sections behaved very similarly to the airfoil for lift, for
which also the relation between admittance functions and aerodynamic
derivatives was proven to be a fair approximation. The pitching moment
admittance showed a strong dependency to the bluffness, but otherwise
the same asymptotic behavior. These observations were not captured by
the aerodynamic derivative approximation. From the same time series,
we further computed the normalized co-spectra of the turbulence and the
corresponding buffeting forces. The simulations clearly captured the
different correlation structures. The observation is fairly well-known
from earlier experiments, however, to the author's knowledge, not
captured numerically before.

Lastly, VIV was considered. Free-vibration simulations of the Har-
danger bridge sectional model were performed and compared to com-
panion wind-tunnel experiments. The simulations captured the lock-in
ranges of the primary and secondary peak with good accuracy, however,
the magnitude of the primary peak was severely underestimated. This
may have arisen from insufficient width of the computational domain
and proximity to the symmetry boundary conditions. For further VIV
simulations we therefore recommend a domain width > B.

Through the wide range of bridge aerodynamics problems presented
in this work, the ALE-VMSmethod proves to be an accurate and complete
framework for aerodynamic analysis of bridge sections and numerical
wind tunnel testing. It also possesses qualities which, in our opinion,
makes it viable in the diversity of CFD and FSI methods.
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