The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19)

Complex Unitary Recurrent Neural Networks Using Scaled Cayley Transform

Kehelwala D. G. Maduranga, Kyle E. Helfrich, Qiang Ye
Mathematics Department, University of Kentucky
Lexington, KY, 40508, United States
{kdgmaduranga kyle.helfrich,qye3} @uky.edu

Abstract

Recurrent neural networks (RNNs) have been successfully
used on a wide range of sequential data problems. A well
known difficulty in using RNNss is the vanishing or exploding
gradient problem. Recently, there have been several differ-
ent RNN architectures that try to mitigate this issue by main-
taining an orthogonal or unitary recurrent weight matrix. One
such architecture is the scaled Cayley orthogonal recurrent
neural network (scoRNN) which parameterizes the orthogo-
nal recurrent weight matrix through a scaled Cayley trans-
form. This parametrization contains a diagonal scaling ma-
trix consisting of positive or negative one entries that can not
be optimized by gradient descent. Thus the scaling matrix is
fixed before training and a hyperparameter is introduced to
tune the matrix for each particular task. In this paper, we de-
velop a unitary RNN architecture based on a complex scaled
Cayley transform. Unlike the real orthogonal case, the trans-
formation uses a diagonal scaling matrix consisting of entries
on the complex unit circle which can be optimized using gra-
dient descent and no longer requires the tuning of a hyperpa-
rameter. We also provide an analysis of a potential issue of the
modReLU activiation function which is used in our work and
several other unitary RNNs. In the experiments conducted,
the scaled Cayley unitary recurrent neural network (scuRNN)
achieves comparable or better results than scoRNN and other
unitary RNNs without fixing the scaling matrix.

1 Introduction

Recurrent neural networks (RNNs) have been successfully
used on a wide range of sequential data problems. A main
difficulty when training RNNs using a gradient descent
based optimizer is the vanishing or exploding gradient prob-
lem (Bengio, Simard, and Frasconi 1994). The exploding
gradient problem refers to the large growth of gradients as
they propagate backwards through time and the vanishing
gradient problem occurs when the gradients tend toward
zero. The exploding gradient case will cause the trainable
parameters to vary drastically during training, resulting in
unstable performance. For the vanishing gradient case, train-
ing will progress slowly, if at all.

A range of different architectures have been proposed to
address this problem. Currently, the most common architec-
tures involve gating mechanisms that control when informa-
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tion is retained or discarded such as the Long Short-Term
Memory networks (LSTMs) (Hochreiter and Schmidhuber
1997) and Gated Recurrent Units (GRUs) (Cho et al. 2014).
More recently, several architectures have been proposed that
maintain a unitary recurrent weight matrix. The unitary evo-
Iution RNN (uRNN) architecture proposed by (Arjovsky,
Shah, and Bengio 2016) maintains a unitary matrix by us-
ing a product of simple unitary matrices. The full-capacity
uRNN (Wisdom et al. 2016) maintains a general unitary ma-
trix by optimizing along a gradient descent direction on the
Stiefel manifold. The tunable efficient unitary neural net-
work (EURNN) by (Jing et al. 2016) constructs the unitary
matrix using a product of complex rotation matrices. For ad-
ditional work with unitary RNNs and complex valued net-
works, see (Hyland and Gunnar 2017), (Jing et al. 2017),
(Vorontsov et al. 2017), (Wolter and Yao 2018) and (Tra-
belsi et al. 2018). There have also been several architectures
that maintain an orthogonal recurrent weight matrix. The or-
thogonal RNN (oRNN) by (Mhammedi et al. 2017) uses a
product of Householder reflection matrices while the scaled
Cayley orthogonal RNN (scoRNN) architecture parameter-
izes the recurrent weight matrix by a skew-symmetric matrix
and a diagonal matrix through the Cayley transform (Hel-
frich, Willmott, and Ye 2018). Compared with other uni-
tary/orthogonal RNNs, the scoRNN architecture has a sim-
ple parameterization that has been shown to be advantageous
in (Helfrich, Willmott, and Ye 2018). The exploding or van-
ishing gradient problem has also been examined in (Henaff,
Szlam, and LeCun 2017) and (Le, Jaitly, and Hinton 2015).

In this paper, we address a difficulty of scoRNN.
The scoRNN parameterization of the orthogonal recurrent
weight matrix contains a diagonal matrix consisting of £1
on the diagonal. These discrete parameters are used to define
the scaling matrix, which may critically affect performance,
and can not be optimized by gradient descent. Thus sScoORNN
introduces a tunable hyperparameter that controls the num-
ber of negative ones on the diagonal. This hyperparameter is
tuned for each particular task for optimal results. This causes
the scaling matrix to remain fixed during training. We pro-
pose a method to overcome this difficulty by using a unitary
recurrent weight matrix parameterized by a skew-Hermitian
matrix and a diagonal scaling matrix through the scaled Cay-
ley transform, where the entries of the diagonal matrix lie on
the complex unit circle and have the form e*’. This param-



eterization is differentiable with respect to the continuous 6
variable and can be optimized using gradient descent. This
eliminates the need for tuning a hyperparameter and hav-
ing a fixed scaling matrix during training. We call this new
architecture the scaled Cayley unitary recurrent neural net-
work (scuRNN). We also develop the update scheme to train
the skew-Hermitian and diagonal scaling matrices. The ex-
periments performed show that scuRNN achieves better or
comparable results than other unitary RNNs and scoRNN
without the need for tuning an additional hyperparameter.

For many unitary RNNs, a popular activation function is
the modReLU function (Arjovsky, Shah, and Bengio 2016).
Known architectures that incorporate the modReLLU func-
tion include works by (Arjovsky, Shah, and Bengio 2016),
(Wisdom et al. 2016), (Jing et al. 2016), (Jing et al. 2017),
(Helfrich, Willmott, and Ye 2018), and (Wolter and Yao
2018). We also use the modReLLU activation function in this
work but have noticed a singularity issue that may poten-
tially impact performance. To the best of our knowledge, this
singularity has not been previously discussed in the litera-
ture. In section 4, we provide an analysis of the modReL.U
function and discuss initialization schemes that may mitigate
the singularity.

We note that there has been recent interest in complex
networks outside of uRNN as discussed in the papers by
(Trabelsi et al. 2018) and (Wolter and Yao 2018). Our work
presents an additional case where complex networks can be
advantageous over real networks.

2 Background
2.1 Real RNNs

A single hidden layer recurrent neural network (RNN) is
a dynamical system that uses an input sequence X
(X1, Xa, ..., X;) where each x; € R™, to produce an output
sequencey = (y;,Ys, ..., ¥,) withy, € RP given recursively
by the following:

hy=cUx,+Wh_1+b) ;y,=Vh,+c¢ (1)
where U € R™*™ is the input to hidden weight matrix, W €
R™*" the recurrent weight matrix, b € R™ the hidden bias,
V' € RP*™ the hidden to output weight matrix, and ¢ € RP
the output bias. Here m is the input data size, n is the number
of hidden units, and p is the output data size. The sequence
h = (hy,...,h,_1), is the sequence of hidden layer states
with h; € R™ and o(-) is a pointwise nonlinear activation
function, such as a hyperbolic tangent function or rectified
linear unit (Nair and Hinton 2010).

For long sequence lengths, RNNs are prone to suffer from
the exploding or vanishing gradient problem. As detailed in
(Arjovsky, Shah, and Bengio 2016), the exploding gradient
problem can occur when the spectral radius of the recurrent
weight matrix is greater than one and the vanishing gradient
problem can occur when it is less than one. Maintaining a
strict unitary or orthogonal recurrent weight matrix with a
spectral radius of one can help mitigate this problem.

2.2 Unitary RNNs

Similar to orthogonal matrices, unitary matrices are com-
plex matrices W € C™*™ with spectral radius one and the
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property that W*W = I, where % denotes the conjugate
transpose operator and I is the identity matrix. All unitary
RNNSs are designed to maintain a unitary recurrent weight
matrix. In this section, we examine the unitary evolution
RNN (uRNN), full-capacity uRNN, and the EURNN. For
notational purposes, we follow the convention established in
(Wisdom et al. 2016) and refer to the unitary evolution RNN
as the restricted-capacity uRNN.

The restricted-capacity uRNN maintains a unitary recur-
rent weight matrix by using a parameterization consisting
of diagonal matrices with entries lying on the complex unit
disk, Householder reflection matrices, Fourier and inverse
Fourier transform matrices, and a fixed permutation matrix
(Arjovsky, Shah, and Bengio 2016). As shown by (Wisdom
et al. 2016), this parameterization contains only 7n trainable
parameters and is unable to represent all unitary matrices
when the hidden size n > 7.

The full-capacity uRNN does not parameterize the recur-
rent weight matrix directly, but restricts the descent direc-
tion to the Stiefel manifold {W € C™*"|W*W = I}. This
is done by traveling along a curve of the tangent plane pro-
jected onto the Stiefel manifold using a multiplicative up-
date scheme as outlined in (Wisdom et al. 2016). As shown
in (Helfrich, Willmott, and Ye 2018), this multiplicative up-
date scheme may result in a loss of orthogonality due to nu-
merical rounding issues.

Similar to the restricted-capacity uRNN, the EURNN pa-
rameterizes the unitary recurrent weight matrix by a product
of unitary matrices. Specifically, the product consists of a
unitary diagonal matrix and complex Givens rotation matri-
ces. Unlike the restricted-capacity uRNN, the EURNN pa-
rameterization has the capacity to represent all possible uni-
tary matrices but requires a long product of matrices.

3 Scaled Cayley Unitary RNN (scuRNN)
3.1 Scaled Cayley Transform

Unlike other architectures that use a long product of simple
matrices to parameterize the unitary recurrent weight matrix,
the scuRNN architecture maintains a strictly unitary recur-
rent weight matrix by incorporating the following result.

Theorem 1 (Kahan; O’Dorney). Every unitary matrix W
can be expressed as

W=I+A"I-AD

where A = [a;;] is skew-Hermitian with |a;;| < 1 and D is
a unitary diagonal matrix. For an orthogonal W, the same
result holds with A being skew-symmetric and D a diagonal
matrix with entries consisting of 1.

In scoRNN, the orthogonal matrix is constructed using
the orthogonal parameterization in Theorem 1. The scaling
matrix D is not known a priori and needs to be determined
for each particular task. Since D consists of discrete valued
parameters, it can not be determined by gradient descent.
However, D is essentially defined by the number of negative
ones on the diagonal barring a permutation. Thus the number
of negative ones is considered a hyperparameter that must be
tuned for optimal results with the additional restriction that
the scaling matrix must be fixed during training.



The scuRNN architecture uses the complex version in
Theorem 1. It overcomes the constraints inherent with
scoRNN since D in this case has entries of the form D; ; =
%5 This parameterization is differentiable with respect to
the continuous 6; variables and can be determined by gradi-
ent descent during training with D no longer being fixed.

3.2 Architecture Details

The scuRNN architecture is similar to a standard RNN, see
(1), with the exception that the hidden bias is incorporated in
the modReL.U activation function o areLu (7). S€€ section 4
for definition, and all matrices are complex valued.

h; = omodrey (Uxe + Why—1) 5y, =Vhi+¢ (2)

Since the input to hidden, recurrent, and hidden to output
weight matrices are complex valued, we follow the frame-
work described in (Arjovsky, Shah, and Bengio 2016) to
compute complex matrix vector products by separating all
complex numbers in terms of their real and imaginary parts.

3.3 Training the Skew-Hermitian and Scaling
Matrices

In order to train the skew-Hermitian matrix A and scaling
matrix D that are used to parameterize the unitary recurrent
weight matrix in scuRNN, we have to deal with complex
derivatives. When we consider the loss function as a function
of the complex matrix A or scaling matrix D with a range on
the real-line, the loss function is nonholomorphic and thus
not complex differentiable. To compute the necessary gradi-
ents, Wirtinger calculus is required (Kreutz-Delgado 2009).
In Wirtinger calculus, differentiable complex functions
are viewed as differentiable functions over R?. In particular,
given a nonholomorphic function, f : C — R, the differen-
tial df is given by
f of
df = d + 9z
where z := x+1y € Cand Z := z—iy € Cisthe conjugate.
Here the Wirtinger derivatives are given by

8f_1<3f 3f> g OF _L(0f  Of
0z 2\ 0z By 0z oz By

Results from (Hunger 2007) show that the steepest de-

scent direction using Wirtinger calculus is %(;).

Using the above Wirtinger derivatives and steepest de-
scent direction, we update the unitary recurrent weight ma-
trix W by performing gradient descent on the associated
skew-Hermitian parameterization matrix A and scaling ma-
trix D. In order to compute gradients with respect to A, we
must pass the gradients through the scaled Cayley transform.
The desired gradients for A and diagonal arguments of D are
given in Theorem 2. A proof is given in (Maduranga, Hel-
frich, and Ye 2018).

Theorem 2. Let L = L(W) : C"*™ — R be a differen-
tiable cost function for an RNN with recurrent weight ma-
trix W. Let W = W (A,0) := (I + A)~Y(I — A)D where
A € C™" is skew-Hermitian, @ = (01,0, ...,0,]T € R,

9 gz,
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and D = diag (ei‘gl,ew?, s ew")
agonal matrix. Then the gradient of L = L(
respect to A is

€ C™ ™ is a unitary di-
W (A, 0)) with

oL

oA
(I+A) TG (D +WT), % — |

C"*" and e?TLV = [ } € C"*", Furthermore, the gra-
dient of L = L(W (A, 6)) with respect to 0 is given by

=cT-C

where C =

dA

oL
o4, ,

oL ((or™
where K = (I+ A) ™ (I — A), d = [ei,¢i2, . ei?]"

is the diagonal vector of D and © denotes entry-wise multi-
plication.

We use the above theorem to update the recurrent weight
matrix. First we compute 6W7 using the standard backprop-

agation algorithm. Then using awv we compute %> and
%—3, using Theorem 2. We then update the diagonal matrix
D by first updating the argument vector 6 = [61, ..., 0,]"
using a standard optimizer, such as gradient descent, and re-
forming D

OL(A®), 0W)) iy ig(k+1)
O D = diag <e )
where « is the learning rate and diag(-) forms a diagonal
matrix. We then update the matrix A

ﬂaL(M),e(’f))
0A ’
where [ is the learning rate. We should note that for optimiz-
ers that involve squaring the entries of the gradient element-
wise, such as RMSProp, Adam, and Adagrad, the update
of A is split into updating the real component and imag-
inary component separately to maintain a skew-Hermitian
matrix A. Since % is skew-Hermitian and skew-Hermitian

gk+1) — g(k) _

AR+ — g (k)

matrices are closed under addition, A+ will be skew-
Hermitian. Finally, we construct the recurrent weight matrix
using the scaled Cayley transform

W(k+1) — (I+A(k+1))71(1_A(k+1))D(k+1).

4 ModReLU activation Function

The right selection of a nonlinear activation function plays
a major role in avoiding the vanishing and exploding gra-
dient problem. We use the modReLU activation function
for a complex variable which is a modification of the
ReLU activation function. The modReLU activation func-
tion was first proposed by (Arjovsky, Shah, and Bengio
2016) and also used in architectures by (Wisdom et al. 2016;
Jing et al. 2016; 2017; Wolter and Yao 2018) to handle com-
plex valued functions and weights and studied in (Trabelsi
et al. 2018). The modReLU activation function is defined as

(=l +b) g if|z|+b>0

modRe - z . 3

Tmodkelu(2) {0 it +b<0 O
= = opeLu(|2] + b), )

||



where b denotes a trainable bias. If b > 0, the modReLU
activation function as defined above has a discontinuity at
z = 0 no matter how oyoqreLu(0) is defined. As a result,
the derivative of modReLU has a singularity at z = 0 when
b > 0 as follows: (see (Maduranga, Helfrich, and Ye 2018)
for a proof)

Theorem 3. For the modified rectified linear activation
Sunction oeqrerv(2), the Wirtinger derivatives are given by

O0moareLv(2) _ |1+ 3t iflzl+b=0
0z 0 if |z +b <0,
Oomarerv(z) _ (4[5 ] i1+ 20
0z 0 if|z| +b<0.

In particular; if b > 0, then ao’””‘g:‘”(z) and 8”’””‘5;"’](1) tend
to infinity as z — 0.

Remark. If b is positive and |z| < b, then |a‘f$§w(z)\ is
extremely large and will result in floating point exceptions
such as NAN during training. On the other hand, if b < 0
then the derivatives are well defined and bounded for all z.

In the implementations of the uRNNs by (Arjovsky, Shah,
and Bengio 2016) and (Wisdom et al. 2016), the following
approximate modReL U activation function is used:

O'C(Z) = 2_7_ UReLU(é + b) (5)

€
where € = 107° and 2 := /22 + 32 + €. The idea behind
this is to avoid division by zero during the forward pass and
backward pass of the network. This version of the modReL.U
function is also implemented in the scuRNN model. Unfor-
tunately, a large derivative can still occur if Z + ¢ < b as
shown in the following theorem and Figure 1.

Theorem 4. The Wirtinger derivatives of the approximate
modReLU activation function can be given as:

24h |22 (e=b) .4
9oc(2) _ éie + gz YE+H620
0z 0 if2+b<0,
do(z) _ [ ifa+b>0
oz 0 if2+b<0.

In particular, we found that the unitary RNNs are sensi-
tive to the initialization of the bias, b, and the initial state,
hy. For example, in the MNIST experiment, see section 5.1,
when the initial state hg is set to hg = 0 and non-trainable
and b is initialized by sampling from the uniform distribu-
tion U[—0.01,0.01], the gradient values of the loss func-
tion would become NAN before the end of the first train-
ing epoch. With a random initialization of b, many entries
are positive and are much larger in magnitude then the cor-
responding entries of Z which results in large derivatives.
These large derivatives over many time steps can lead to the
exploding gradient problem. The cause for small Z in this ex-
periment is due to the fact that the first several pixels of any
given MNIST image will most likely have zero pixel value
which combined with the zero initial state hg will result in
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ModRelLU + eps, b=0.5

- Re(z)

Gradeint ModRelLU + eps, b=0.5
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||

7 Re(z)

Figure 1: Surface plots of the modulus of the approximate
modReLU activation function o, (top) and the modulus of
the gradient of o, with respect to z (bottom). Both plots use
a bias of b=0.5.

small values of Z compared to the corresponding entries in
b.

To avoid small values of z, it is useful to initialize hy away
from zero. This will mitigate the effects when the first sev-
eral sequence entries are zero. Based on experimentation, it
is also advantageous to allow hg to be trainable. If singular-
ity is still encountered with initializing and/or training hy,
constraining b to be nonpositive may be used, since the sin-
gularity only occurs when b > 0. For example, initializing
b = 0 will avoid the singularity at least initially so that train-
ing can proceed, regardless of the magnitude of z. However,
subsequent training would typically turn some entries of b
into positive numbers. On the other hand, we have experi-
mented with schemes that maintain nonpositive b, which in-
deed eliminate the singularity but tend to hinder performace.

5 Experiments

In this section, we compare the performances between the
restricted-capacity uRNN, full-capacity uRNN, EURNN,
LSTM, scoRNN, oRNN and scuRNN architectures on a va-
riety of tasks. Code for these experiments is available at
https://github.com/Gayan225/scuRNN. For each model, the
hidden size was adjusted to match the number of trainable
parameters. For scuRNN, the real component of the skew-
Hermitian matrix was initialized as a skew-symmetric ma-



trix using the initialization used in (Helfrich, Willmott, and
Ye 2018) while the imaginary component was initialized to
zero. The initial hidden state was initialized using the distri-
bution 2/[—0.01, 0.01] and was trainable. The input to hid-
den matrix U and hidden to output matrix V' were initialized
using Glorot (Glorot and Bengio 2010). The 8 values are
sampled from U [0, 27], which results in the diagonal en-
tries D; ; = €'’ being uniformly distributed on the complex
unit circle. The biases are initialized from the distribution
U [-0.01,0.01].

The parameterization used in scuRNN allows the use of
different optimizers and different learning rates for the input
and output weights, skew-Hermitian matrix, and the scaling
matrix. We used several different combinations of optimiz-
ers and learning rates as noted under each experiment. The
reasoning behind mixing different optimizers and learning
rates is that the A and D matrices are implicit parameters
that are not weights themselves and their entries may have
different scales from those of the weights. An update on A
and D using the same optimizer/learning rates as the non-
recurrent weights may result in an update of W that is in-
compatible with the updates in the non-recurrent weights.
However, scuRNN may be implemented with the same opti-
mizer and learning rate for A and D matrices, which would
involve no additional hyperparameters for tuning compared
to scoRNN. In most cases, they produce competitive results
(see Appendix in (Maduranga, Helfrich, and Ye 2018)).

Experiment settings for scoRNN and LSTM are in accor-
dance with (Helfrich, Willmott, and Ye 2018), (Wisdom et
al. 2016), and their corresponding codes. When not listed in
their papers, we used the following settings with results that
are consistent with the other papers. For LSTM we used an
RMSProp optimizer with learning rate 10~3 on MNIST, per-
muted MNIST, and copying problems with forget gate bias
initialize to 1.0. For the adding problem, we used an Adam
optimizer with learning rate 10~2. For TIMIT, an RMSProp
optimizer with learning rate 10~ with forget gate bias -4
were used. For scoRNN, the copying and adding problems
used an RMSProp optimizer with learning rate 10~* for A
and an Adam optimizer with learning rate 10~ for all other
weights for the adding problem and an RMSProp optimizer
with learning rate 10~ for all other weights for the copying
problem.

5.1 MNIST Classification

This experiment involves the classification of handwritten
digits using the MNIST database (LeCun and Cortes 2010).
The data set consists of 55,000 training images and 10,000
testing images with each image in the dataset consisting of a
28 x 28 pixel gray-scale image of a handwritten digit ranging
from 0 to 9. Using the procedure outlined in (Le, Jaitly, and
Hinton 2015), each image is flattened into a vector of length
784 with a single pixel sequentially fed into the RNN. The
last sequence output is used to classify the digit. We refer
to this experiment as the unpermuted MNIST experiment.
A variation of this experiment is to apply a fixed permu-
tation to both the training and test sequences and we refer
to this version as the permuted MNIST experiment. All the
models were trained for a total of 70 epochs in accordance
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with (Helfrich, Willmott, and Ye 2018). Results of the ex-
periments are given in Table 1, Figure 2, and Figure 3.

Table 1: Results for the MNIST classification problem. The
best epoch test accuracy over the entire 70 epoch run are
recorded. Entries marked by an asterix are reported results
from (Mhammedi et al. 2017) and (Jing et al. 2016).

# Unperm. Perm.
Model n params | Test Acc. | Test Acc.
scuRNN 116 | ~ 16k 0.976 0.949
scuRNN 250 | ~ 69k 0.983 0.962
scoRNN 170 | =~ 16k 0.973 0.943
scoRNN 360 | ~ 69k 0.983 0.962
LSTM 128 | ~ 68k 0.987 0.920
LSTM 256 | ~ 270k 0.989 0.929
Rest. cap. uRNN | 512 | ~ 16k 0.976 0.945
Full. cap. uRNN | 116 | =~ 16k 0.947 0.925
Full. cap. uRNN | 512 | ~ 270k 0.974 0.947
oRNN 256 | ~ 11k 0.972* -
EURNN 512 | =9k - 0.937*
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Figure 2: Pixel-by-Pixel MNIST Results

For the unpermuted MNIST experiment, the scuRNN
models used an RMSProp optimizer to update the skew-
Hermitian matrix and an Adagrad optimizer to update the
scaling matrix with all other parameters updated using the
Adam optimizer. For hidden size n = 116, the learning rates
were 1074, 1073, and 10~3 respectively. For hidden size
n = 250, the learning rates were 1075, 10~%, and 1072 re-
spectively. Although scuRNN was unable to outperform the
LSTM architecture, the n = 116 scuRNN was able to match
the performance of the n = 512 restricted-capacity uRNN
and to outperform all other models. It should be noted that
the scuRNN had a much smaller hidden size with less than 4
times the hidden size of the restricted-capacity uRNN. The
n = 250 scuRNN was able to match the accuracy of the
n = 360 scoRNN with a smaller hidden size.

For the permuted MNIST experiment, the optimizers for
the scuRNN models were the same as the ones used in the
unpermuted MNIST experiment. For hidden size n = 116,
the learning rates for the scuRNN model were 1074, 1073,
and 1073 respectively. For hidden size n = 250, the learning
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Figure 3: Permuted Pixel-by-Pixel MNIST Results

rates were the same except the skew-Hermitian matrix had
a learning rate of 10~°. In this task the n = 250 scuRNN
matches the highest test accuracy of the n = 360 scoRNN
which is higher than all other unitary RNN and LSTM mod-
els. It should be noted that the smaller n = 116 scuRNN
outperforms the n = 170 scoRNN with the same order of
trainable parameters.

5.2 Copying Problem

The experiment follows the setup described in (Arjovsky,
Shah, and Bengio 2016), (Wisdom et al. 2016), and (Hel-
frich, Willmott, and Ye 2018). A sequence is passed into the
RNN using the digits 0-9. The first ten entries are uniformly
sampled from the digits 1-8. This is followed by a sequence
of T zeros and a marker digit 9. At the marker digit, the RNN
is to output the first ten entries of the sequence. This results
in an entire sequence length of T+20. The baseline for this
task is a network that outputs all zeros except for the last 10
digits which are uniformly sampled from the digits 1-8 for
. 10log(8)

an expected categorical cross entropy of “Tr20 -

For our experiment we adjust the number of hidden units
of each network so that they all have approximately 22k
trainable parameters. This results in an LSTM with hidden
size n = 68, a restricted-capacity uRNN with n = 470, a
full-capacity uRNN with n = 128, a EURNN with n = 512
and capacity L 2, a scoRNN with n = 190, and a
scuRNN with n = 130. We also tested the architectures us-
ing a sequence length of 7' = 1000 and 7" = 2000 zeros.

The T=1000 scuRNN used Adagrad optimizer with learn-
ing rate 10~* for the skew-Hermitian matrix and for the
diagonal scaling matrix, and Adam optimizer with learn-
ing rate 1073 for all other weights. For the T=2000 task,
scuRNN used Adam optimizer with learning rate 10~* for
the diagonal scaling matrix and RMSProp optimizer with
learning rate 10~4 and 1072 for the skew-Hermitian matrix
and all other trainable weights respectively.

The results for this experiment are included in Figure
4. For each experiment, the restricted-capacity uRNN and
LSTM converge rapidly to the base line but fail to drop be-
low it. For T =1000, the scuRNN, full-capacity uRNN, and
scoRNN quickly drop towards zero cross entropy while the
EURNN drops below the baseline but does not converge to-
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wards zero. For T=2000, scuRNN drops towards zero cross
entropy before all other networks. In this case, the EURNN
is unable to drop below the baseline.

Copying Problem, T=1000
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Figure 4: Cross entropy of the copying problem with T =
1000 and T=2000.

5.3 Adding Problem

The adding problem was first proposed by (Hochreiter and
Schmidhuber 1997). In this experiment, we implement a
slightly modified version as outlined in (Helfrich, Willmott,
and Ye 2018). In this problem, two sequences of length T" are
simultaneously fed into the RNN. The first sequence con-
sists of entries sampled from &/ [0, 1). The second sequence
consists of all zeros except for two entries that are equal to
one. The first one is uniformly located in the first half of the
sequence, within the interval [1, Z), while the second one is
located uniformly in the other half of the sequence, within
the interval [%, T). The goal of the network is to compute
the sum of the two numbers from the first sequence that are
marked by one in the second sequence. The loss function
used for this task is the Mean Square Error (MSE). The base-
line for this task is an expected MSE of 0.167 which is the
expected MSE for a model that always outputs one.

The sequence lengths used were 7" = 200 and T' = 750
with a training set size of 100,000 and a testing set size of
10,000 as in (Helfrich, Willmott, and Ye 2018). For T=200,
scuRNN used the RMSProp optimizer with learning rate
1073 for the skew-Hermitian matrix and the Adam opti-
mizer with learning rate 103 for the diagonal scaling matrix



and all other weights. For T' = 750, scuRNN used the Adam
optimizer with learning rate 10~2 for the diagonal scaling
matrix and the RMSProp optimizer for the skew-Hermitian
matrix and all other weights with learning rates 10~* and
103 respectively. For each model, the number of trainable
parameters were matched to be approximately 14k. This re-
sults in a hidden size of n = 116 for scuRNN, n = 170 for
scoRNN, n = 60 for LSTM, n = 120 for the full-capacity
uRNN, and n = 950 for the restricted-capacity uRNN. For
the EURNN, the tunable style model with a hidden size of
n = 512 was used for T' = 200 which results in ~ 3k train-
able parameters and the FFT style was used for 7' = 750
which results in ~ 7k trainable parameters as outlined in
(Helfrich, Willmott, and Ye 2018). For oRNN, a hidden size
of n = 128 with 16 reflections which results in ~ 2.6k
trainable parameters was used in accordance with (Helfrich,
Willmott, and Ye 2018) and (Mhammedi et al. 2017). Re-
sults are shown in Figure 5.

For sequence length 7' = 200, all the architectures start
at or near the base line and eventually drop towards zero
MSE with the exception of the EURNN model which ap-
pears to decrease below the baseline and eventually in-
creases back towards it. The oRNN abruptly drops below
the baseline first, followed by scuRNN. Although oRNN
is the first to drop below the baseline, the descent curve
is erratic with the oRNN bouncing back towards the base-
line several training steps later. The LSTM also has a dras-
tic drop towards the zero MSE solution but this occurs af-
ter the scuRNN curve passes below the baseline. Although
the scuRNN and scoRNN architectures have similar perfor-
mance, the scuRNN model descends below the baseline be-
fore the scoRNN model. For sequence length 7' = 750, the
oRNN again drops below the base line first but has an erratic
descent curve with the oRNN staying at the baseline near the
end of training. The LSTM drops below the baseline next
followed by the scoRNN and scuRNN models. It should be
noted that although the scoRNN model curve descends be-
low the scuRNN curve around the third epoch, the scuRNN
model was able to descend towards zero MSE before the
full-capacity uRNN and the restricted-capacity uRNN. The
EURNN model appears to not be able to decrease below the
baseline and the restricted-capacity uRNN model appears to
not descend until around the tenth epoch.

~
~

5.4 TIMIT Speech Dataset

Experiments were conducted using the TIMIT data set
(Garofolo et al. 1993). We use the same setup as described
by (Wisdom et al. 2016) and (Helfrich, Willmott, and Ye
2018). TIMIT input values are the log magnitude of the
modulus of STFT data and are real-valued. The core test set
was used, consisting of a training set of 3,696 audio files,
a testing set of 192 audio files, and a validation set of 400
audio files. Audio files were down sampled as detailed in
(Wisdom et al. 2016). The hidden size of each model tested
were adjusted to match the number of trainable parameters
of approximately 83k and 200k. The best performance for
scuRNN was achieved using the Adam optimizer for all
trainable parameters. For both n = 128 and n = 258 the
learning rates were 10~ for the skew-Hermitian matrix and
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Figure 5: Test set MSE of each machine on the adding
problem with sequence length T=200 (above) and sequence
length T=750 (bottom).

10~3 for all other parameters.

In a minibatch, the sequences may have different lengths
and they are padded with zeros so as to have a uniform
length across the entire minibatch. Then the loss function
for this experiment was the mean square error (MSE) as
computed by taking the squared difference between the pre-
dicted and actual log magnitudes applied with a mask that
zero out the padded entries, and then computing the result-
ing average over the entire batch including the zero entries.
Table 2 includes the MSE for the validation and evaluation
data sets for each model. As can be seen, the sScuRNN model
outperforms all other models.We suspect that scuRNN per-
forms well on this data set because the complex architecture
of scuRNN may be better suited to capture the complex dy-
namics of the underlying STFT sequences.

6 Conclusion

Orthogonal/unitary RNNs have shown promise in mitigat-
ing the well-known exploding or vanishing gradient prob-
lem. We have developed a new RNN architecture, scuRNN,
that is designed to maintain a strict unitary recurrent weight
matrix. A simple update scheme is used to optimize param-
eters using gradient descent or a related optimizer. This al-
lows us to overcome the inherent difficulty of the scoRNN
architecture by removing the need for an extra hyperparam-
eter and allowing the diagonal scaling matrix parameters to



Table 2: Results for TIMIT speech set. Evaluation based on
MSE

Model n | # PARAMS | VALID MSE | EVAL. MSE
scuRNN | 128 ~ 83k 3.94 3.56
scuRNN | 258 ~ 200k 1.84 1.67
scoRNN | 224 ~ 83k 4.76 4.31
scoRNN | 425 ~ 200k 2.64 2.39

LSTM 84 ~ 83k 11.89 10.86

LSTM 158 ~ 200k 9.73 8.86
R.URNN | 158 ~ 83k 15.57 18.51
R.uRNN | 378 =~ 200k 16.00 15.15
FuRNN | 128 ~ 83k 15.07 14.58
FuRNN | 256 =~ 200k 14.96 14.69

be trainable and not fixed during the training process. Our
experiments show that scuRNN can achieve comparable or
better results than scoRNN and other orthogonal and uni-
tary RNN architectures. We have also discussed a potential
singularity in the modReLU activation function, which may
have implications on other complex neural networks involv-
ing the modReL.U function.
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