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Abstract

Several variants of recurrent neural networks (RNNs) with or-
thogonal or unitary recurrent matrices have recently been de-
veloped to mitigate the vanishing/exploding gradient problem
and to model long-term dependencies of sequences. However,
with the eigenvalues of the recurrent matrix on the unit cir-
cle, the recurrent state retains all input information which
may unnecessarily consume model capacity. In this paper,
we address this issue by proposing an architecture that ex-
pands upon an orthogonal/unitary RNN with a state that is
generated by a recurrent matrix with eigenvalues in the unit
disc. Any input to this state dissipates in time and is replaced
with new inputs, simulating short-term memory. A gradient
descent algorithm is derived for learning such a recurrent ma-
trix. The resulting method, called the Eigenvalue Normalized
RNN (ENRNN), is shown to be highly competitive in several
experiments.

1 Introduction

Recurrent neural networks (RNNs) are a type of deep neu-
ral network that are designed to handle sequential data. The
underlying dynamical system carries temporal information
from one time step to another and captures potential depen-
dencies among the terms of a sequence. Like other deep neu-
ral networks, the weights of an RNN are learned by gradient
descent. For the input at a time step to affect the output at
a later time step, the gradients must back-propagate through
each step. Since a sequence can be quite long, RNNs are
prone to suffer from vanishing or exploding gradients as de-
scribed in (Bengio, Frasconi, and Simard 1993) and (Pas-
canu, Mikolov, and Bengio 2013). One consequence of this
well-known problem is the difficulty of the network to model
input-output dependency over a large number of time steps.

There have been many different architectures that are de-
signed to mitigate this problem. The most popular RNN
architectures such as LSTMs (Hochreiter and Schmidhu-
ber 1997) and GRUs (Cho et al. 2014), incorporate a gat-
ing mechanism to explicitly retain or discard information.
More recently, several different RNNs have been devel-
oped to maintain either a unitary or orthogonal recurrent
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weight matrix such as the unitary evolution RNN (uRNN)
(Arjovsky, Shah, and Bengio 2016), Full-Capacity uRNN
(Wisdom et al. 2016), EUNN (Jing et al. 2016), oRNN
(Mhammedi et al. 2017), scoRNN (Helfrich, Willmott, and
Ye 2018; Maduranga, Helfrich, and Ye 2019), Spectral
RNN (Zhang, Lei, and Dhillon 2018), nnRNN (Kerg et
al. 2019), and EXPRNN (Lezcano-Casado 2019; Lezcano-
Casado and Martinez-Rubio 2019). There is also work us-
ing unitary matrices in GRUs such as the GORU (Jing et al.
2017). For other work addressing the vanishing/exploding
gradient problem, see (Henaff, Szlam, and LeCun 2016;
Le, Jaitly, and Hinton 2015; Wolter and Yao 2018).

In spite of the promises shown in recent work, orthogo-
nal/unitary RNNs still have some shortcomings. While an
orthogonal RNN allows propagation of information over
many time steps, it has an undesirable effect that all in-
put information may be retained in all future states. Unlike
gated architectures, orthogonal RNNs lack “forget” mech-
anisms (Jing et al. 2017) to discard unwanted information.
This consumes model capacity, making it difficult to effi-
ciently model sequences with both long and short-term de-
pendency.

In this paper, we expand upon the orthogonal/unitary
RNN architecture by incorporating a dissipative state to
model short-term dependencies. We call this model the
Eigenvalue Normalized RNN (ENRNN). Inspired by the
work on the Spectral Normalized Generative Adversarial
Network (SN-GAN) (Miyato et al. 2018), we construct a re-
current matrix with its spectral radius (i.e. the largest abso-
lute value of the eigenvalues) less than 1 through normaliz-
ing another parametric matrix by its spectral radius. A gra-
dient descent algorithm is also derived that maintains this
spectral radius property. Any input to this state will dissipate
in time with repeat multiplication by the recurrent matrix
and will be replaced with new input information, emulating
a short-term memory state. This state can be concatenated
with another state with an orthogonal/unitary recurrent ma-
trix to form an RNN that has a long and short-term memory
component to efficiently model long sequences. The result-
ing architecture falls within the existing framework of the
basic RNN and is shown to be highly competitive in several
experiments.



2 Background and Related Work

An RNN takes an input sequence of length 7, denoted by
X; = (x1,22,...,2,), and produces an output sequence
Y, (y1,Y2, -, yr) Where z; € R™ and y; € RP.
The basic architecture consists of an input weight matrix
U € R™ "™ recurrent weight matrix W € R™*", bias vec-
tor b € R™, output weight matrix V' € RP*"_ and output
bias vector ¢ € RP. If ¢(-) is an activation function that is
applied pointwise, then the hidden state 7, € R™ and output
Y at time ¢ is given by

hy :J(Ul't+Wht71+b);yt =Vhi+c

A problem with RNNs is that the gradient of y, with re-
spect to h; involves repeat multiplication by the recurrent
matrix W. If the spectral radius of W is less than one,
gradients vanish but if the spectral radius is greater than
one, gradients explode (Bengio, Frasconi, and Simard 1993;
Pascanu, Mikolov, and Bengio 2013). One way to mitigate
this issue is to use an orthogonal/unitary recurrent weight
matrix which will preserve vector norms. Early work has
shown simply initializing the recurrent matrix as identity or
orthogonal may improve performance (Henaff, Szlam, and
LeCun 2016; Le, Jaitly, and Hinton 2015). Several meth-
ods have also been developed that maintain an orthogo-
nal/unitary recurrent matrix through different parameteriza-
tions. The uRNN (Arjovsky, Shah, and Bengio 2016) param-
eterizes W by a product of some special unitary matrices.
The Full-Capacity uRNN (Wisdom et al. 2016) optimizes
W along the manifold of unitary matrices. The EUNN (Jing
et al. 2016) parameterizes W as a product of Givens ro-
tation matrices, while the oORNN (Mhammedi et al. 2017)
uses a product of Householder reflections. The scoRNN
(Helfrich, Willmott, and Ye 2018; Maduranga, Helfrich, and
Ye 2019) parameterizes W by using a skew-symmetric or
skew-Hermitian matrix through a scaled Cayley transform.
The EXPRNN (Lezcano-Casado and Martinez-Rubio 2019;
Lezcano-Casado 2019) uses an exponential map. There has
also been work in using recurrent matrices that are near
orthogonal by constraining singular values within a small
distance of 1; see (Vorontsov et al. 2017; Zhang, Lei, and
Dhillon 2018). These models have demonstrated that orthog-
onal/unitary RNNs can mitigate the vanishing/exploding
gradient problem and successfully model long sequences.

Gated networks, such as LSTM and GRU, are popular
RNN architectures that use a gating mechanism to control
passing of long or short-term memory. Although quite suc-
cessful, the LSTM is still prone to exploding gradients and
may still require gradient clipping. (Jing et al. 2017) consid-
ers GRU with an orthogonal recurrent matrix. However, us-
ing an orthogonal matrix with a gated network may not have
the same benefits of passing long-term information as in
an orthogonal RNN. Multiscale RNNs (Schmidhuber 1992;
Hihi and Bengio 1995; Koutnik et al. 2014) stack multiple
layers of RNNs whose states are updated in different time
scales at different layers to process short and long-term in-
formation, but the difficulty is their need to determine the
boundary structures defining different layers. Hierarchical
multiscale RNN (Chung, Ahn, and Bengio 2017) introduces
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a binary boundary state similar to a gate to dynamically de-
termine the boundary structures. FS-RNN (Mujika, Meier,
and Steger 2017) uses a similar approach but allows the time
scale at the lower level to be finer than the native scale of the
input sequences. The nnRNN (Kerg et al. 2019) uses a gen-
eral non-normal matrix by constraining the modulus of all
eigenvalues near 1. Compared with these methods, ENRNN
uses two interacting states with different recurrent matrices
to model long and short-term memory. The ENRNN only
uses a non-normal matrix for the short-term memory com-
ponent and constrains the spectral radius less than 1. With
the eigenvalues of the ENRNN recurrent matrix distributed
within the unit disk, the corresponding state can learn short-
term dependencies at any unspecified time scale with the
added simplicity of a basic RNN.

The learning algorithm of ENRNN is motivated by SN-
GAN (Miyato et al. 2018). The SN-GAN normalizes the dis-
criminator weight matrix by its spectral norm, i.e. its largest
singular value. Here, we normalize the spectral radius of the
recurrent matrix. Noting that the spectral radius is bounded
by any matrix norm including the spectral norm, normaliza-
tion by the spectral norm is expected to make the spectral
radius of the matrix much less than 1. We emphasize the im-
portance in our approach to constrain the eigenvalues of the
recurrent matrix rather than its singular values because the
eigenvalues affect the dynamical behavior of RNN but the
singular values do not. See also (Bengio, Simard, and Fras-
coni 1994). For example, all orthogonal matrices have sin-
gular values equal to 1, but may define very different RNNs.

Additional work that supports the idea of modeling short-
term dependencies by constraining the eigenvalues is (Kerg
et al. 2019; Orhan and Pitkow 2019). Their analyses use a
Fisher memory matrix to show non-normal networks may
carry more memory than normal networks due to transient
amplification. Even though input information is eventually
diminished with spectral radius < 1, in the short-term it
may increase. This theory shows that non-normal matrices
may emulate short-term memory. This can be explained by
the pseudo spectrum theory where the spectrum of a matrix
is within the unit disk but the pseudo spectrum may extend
outside it. In this case, the dynamics exhibit transient ampli-
fication (short-term increase) as determined by the pseudo
spectrum but asymptotic (long-term) decay as determined
by the spectrum.

3 Eigenvalue Normalized Recurrent Neural
Network

Although an orthogonal/unitary recurrent weight matrix can
help mitigate the vanishing/exploding gradient problem and
hence allow an input to affect an output over long sequences,
it does not have any mechanism to discard information that
is no longer needed. In sequences where certain input in-
formation is only used for the states or outputs locally, the
state may be consumed with such information, reducing its
capacity for carrying other information.

In order to improve the capacity of orthogonal/unitary
RNNSs to capture short-term dependencies, we introduce a
dissipative state. Let h; € R™ be the hidden state consist-



)

ing of two components: h%L € R? that captures long-term

dependencies and h,ES) € R™71 that captures short-term de-
pendencies. In this scheme, q is considered a hyperparame-
ter. Now let W (F) € R9*4 be an orthogonal matrix used as
the recurrent matrix for th) that is designed to propagate in-
formation over many time steps, and (%) ¢ R(=a)*(n—q)
which has a spectral radius less than one by normalizing
with the spectral radius, see Section 3.1 for details. If we
consider a recurrent weight matrix W € R"*" of the form
W = diag (W), W), then a forward pass of the RNN
will be:

WY = o (U2, + WERE, +50)
hgs) =0 (U®z, + W<S>hf§)1 + b(s))
g = VERE L yORS) 4o

ey

Since W (%) has a spectral radius less than 1, the effect of any
input on A%) will decay quickly from repeat multiplication
by W) with the rate of decay controlled by the magni-
tude of the eigenvalues of TW(%). Different eigenvalues with
different magnitudes will then decay at different rates, emu-
lating different lengths of memory.

In this model, the output y; is determined from a combi-
nation of th) and hES) where his) contains information of
recent input data, see equation (1). In this way, short-term

memory that is needed to determine y; is stored in hES), but
once y; is computed, hES) will be gradually replaced by in-

formation from new inputs. This allows hEL) to store and
carry only long-term memory information needed for the
output.

In this architecture (1), the hidden states (%) and h(S)
are separate. They carry the long and short-term memory in
parallel and the short-term state is directly used to determine
output. If the task is to determine a single output from a se-
quence at the end of the entire sequence, then 2(%) does not
affect the output until near the end of the sequence. In this
case, it may still be beneficial to have h(%) accumulate short-
term memory but to feed it into A(X) to indirectly affect the
final output. This can be done by adding a coupling block to
the recurrent matrix,

W =

(L)
{ w @)

w ()
W S

where W (©) € R2*("=9) is called a coupling matrix. Ap-
plying the recurrent matrix in (2) to a forward pass of the
RNN, we obtain:

i = o (U + WORD, + wORS), 1 p0)

W = (U + WO, )

ye =VORE L Rl 4o

3)
In this case, k(%) is generated by the same recurrence as be-
fore and stores short-term information of the inputs. How-

ever, with the coupling block, h(X) is determined from the
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current input, the short-term hidden state A5 and (&), This
interaction is similar to the update of the internal state of an
LSTM. In particular, 4(%) can be regarded as a preprocessing
of several consecutive inputs designed to extract information
to be used to update the long-term memory state h("). As an
example, one can think of character inputs in a language pro-
cessing problem. The short-term memory state may process
the character inputs to produce word or phrase information
to be used in the long-term state (™) so that A(%) can be
devoted to processing the information at a higher level. We
believe this separation of the processing of characters from
the processing at a higher level of sentences or concepts will
be more effective and efficient.

We note that since W is an upper triangular matrix, the
eigenvalues of TV consist of the eigenvalues of both TV (%)
and W) and so has a spectral radius of at most one and
this coupling does not alter the spectral properties of the re-
current matrix. For this reason, we do not allow a coupling
from h(%) to h(%) because the fully dense recurrent matrix
would not preserve the desired spectral properties.

To illustrate how (%) can simulate a short-term memory
state, we note that since p (W(S )) < 1, there exists some
norm || - || such that ||| < 1. If we assume that this

holds for the 2-norm, i.e. |[IW ()|, < 1, we formulate the
following theorem.

Theorem 3.1 For an RNN as defined in Equations 2 and 3
with a ReLU nonlinearity, if ||WS) ||y < 1 then

oy,
ont®)

oniZ),

837,5

-
and

<

<o

17

where ||-|| is the 2-norm.

We remark that as 7 increases, the derivative bounds in The-
orem 3.1 go to zero, indicating the dependence of hii)T on
h§5> and x; goes to zero.

3.1 ENRNN Gradient Descent

The training of W (%) by gradient descent can easily lead
to a matrix with spectral radius greater than 1. To maintain
W (S) with spectral radius less than 1, we parameterize it by
another matrix 7' € R("~9>(=9) through the normaliza-
tion
T

p(T)+e

for some small ¢ > 0, where p(T') € R is the spectral ra-
dius of 7. In this way, W (%) has eigenvalues with modulus
less than one and the training of W (%) is carried out in 7.
Namely, for an RNN loss function L = L(W (%)) in terms
of W), we regard it as a function L = L(W)(T)) of
T. Instead of optimizing with respect to W (%), we optimize

L = L(W®)(T)) with respect to T The gradients of such
a parameterization are given below.

Proposition 3.2 Let L = L(W) : R™*™ — R be some dif-
ferentiable loss function for an RNN with a recurrent weight

W) = w(T) .=



oL
oW, ;

rameterized by another matrix T' € R™*™ as W =

matrix W and let é%, = [ } € R™*™. Let W be pa-

T
p(T)+e
where p(T) € R is the spectral radius of T and ¢ > 0 is a
small positive number. If A\ = o + i3 (with o, 3 € R) is a
simple eigenvalue of T with |\| = p(T') and if u € C™ and
v € C" are corresponding right and left eigenvectors, i.e.

Tu = Au and v*T = \v*, then the gradient of L = L(T)
as a function of T is given by:

oL 1 oL 1 (0L

— = |- — oW |1,C
oT ~ 5(T) {aw ) <8W ” > }
where C' = aRe (S) + fIm (S) with S = % e ¢mxm
1y € R™ is a vector consisting of all ones, p(T) =

p(T) + € * is the conjugate transpose operator, and © is
the Hadamard product.

Note that even though complex eigenvalues come in con-
jugate pairs, selecting either \ or \ in Proposition 3.2 will
result in an identical derivative due to conjugation of u and
v. In addition, when A is a multiple eigenvalue, the com-
putation of .S involves a division by 0 or a number nearly 0.
This is a rare situation and can be remedied in practice. First,
it is unlikely to occur as the set of matrices with multiple
eigenvalues lie on a low dimensional manifold in the space
of n X n matrices and has a Lebesgue measure 0. Thus the
probability of a random matrix having multiple eigenvalue
is zero. Second, if a multiple or nearly multiple eigenvalue
occurs, we may train using usual gradient descent without
eigenvalue normalization for a few steps and return to %
when the eigenvalues are separated. This situation never oc-
curred in our experiments.

Using Proposition 3.2, an optimizer with learning rate ¢
is used to first update 7" which is then used to update W (5):

oL ) Ty
0Ty’ p(Tk) +e€

A naive approach may be to simply apply gradient descent
on W) and then re-normalize W (%) by its spectral radius.
The problem is that the computed gradients % do not
take into account the effects of the normalization. Thus a
steepest descent step on W (%) will reduce the loss function,
but it may not be the case after W () is re-normalized by
the spectral radius. In contrast, our approach takes a gradient
descent step on 7', which decreases the loss function with the
new W . Namely, the steepest descent direction 2% has taken
the eigenvalue normalization into account.

Ty Tpq —C WS

“

oT

3.2 Complexity

The short-term memory matrix, W) g Rin—a)x(n=a) re.
quires the computation of the spectral radius and the associ-
ated right/left eigenvectors as outlined in Section 3.1. This
is done by using the Schur decomposition of the parameter
matrix 7' € R~ 9*(n=9) which requires a complexity of
O((n — ¢)?) (Demmel 1997) per mini-batch training itera-
tion. This is comparable in complexity to models that require
O(n)? complexity to maintain an orthogonal/unitary recur-
rent matrix such as scoRNN. Note that implementation of
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a standard RNN requires a complexity of O (BLn?) where
B is the batch size and L is the sequence length. This addi-
tional complexity of using the Schur decomposition will be
comparable to a standard RNN when n — ¢ < BL which is
typically the case. Alternatively, the complexity can be re-
duced to O((n — ¢)?) by using the power-method instead of
Schur decomposition, as discussed in SN-GAN (Miyato et
al. 2018). In practice we found that the power method may
require an uneven number of iterations and may actually be
less efficient than Schur deomposition.

4 Other Architecture Details

We initialize 7" to be a random matrix with eigenvalues uni-
formly distributed on the complex unit disc. This is done in
a way similar to (Helfrich, Willmott, and Ye 2018) as

cost;
sint;

—sint;

T = diag (Bl,--aBLn/QJ)Bj =7 { cost;

] &)
where each t; is sampled from ¢/[0, %) and each ; is sam-
pled from ¢/[—1.0, 1.0). This results in eigenvalues of the
form fyjei”j which are uniformly distributed on the com-

plex unit disc. For the coupling matrix, W () initialization
is Glorot Uniform (Glorot and Bengio 2010) unless indi-
cated otherwise. The initial states of héL) and h(()s) are set
to zero and are non-trainable.

It is unknown before hand if the largest eigenvalue should
have a modulus near one, so we start by setting W (%) =
T without eigenvalue normalization and train until p (7)) >
1, at which point eigenvalue normalization is implemented.
Namely, if p(7') < 1, then a standard gradient descent step
is taken with W(5) = T'. Once an update step results in a
p(T) > 1, equation (4 is used for all subsequent training
steps.

Since the ENRNN is designed to expand upon orthogo-
nal/unitary RNNs and many of these architectures use the
modReLU as defined: oymoareLu(2) = ﬁUReLU (|z] +0). We

also use it on most of our experiments.

5 Experiments

In this section, we present four experiments to compare
ENRNN with LSTM and several orthogonal/unitary RNNS.
Code for the experiments and hyperparameter settings
for ENRNN are available at https://github.com/
KHelfrichl/ENRNN. We compare models using single
layer networks because implementation of multi-layer net-
works in the literature typically involves dropout, learning
rate decay, and other multi-layer hyperparameters that make
comparisons difficult. This is also the setting used in prior
work on orthogonal/unitary RNNs. Each hidden state di-
mension is adjusted to match the number of trainable pa-
rameters, but ENRNN can be stacked in multiple layers. For
ENRNN, the long-term recurrent matrix W) is parame-
terized using scoRNN (Helfrich, Willmott, and Ye 2018).
For the short-term component state, we use € = 0 in Propo-
sition 3.2. Unless noted otherwise, the activation function
used was modReLU. For each method, the hyperparameters
tuned included the optimizer { Adam, RMSProp, Adagrad},



and learning rates {1072,10~4,107°}. For scoRNN, the
number of negative ones used in the parameterization of the
recurrent matrix is tuned in multiplies of 10% of the hid-
den size. For ENRNN, the size of the short-term state W (5)
is tuned in multiplies of 10% of the entire hidden size up
to 60%. For the LSTM, the forget gate bias initialization
and gradient clipping threshold are tuned using integers in
[—4,4] and in [1,10] respectively. These hyperparameters
were selected using a gridsearch method. Experiments were
run using Python3, Tensorflow, and CUDA9.0 on GPUs.

5.1 Adding Problem

The adding problem (Hochreiter and Schmidhuber 1997)
has been widely used in testing RNNs. For this experi-
ment, we implement a variation of the adding problem (Ar-
jovsky, Shah, and Bengio 2016; Mhammedi et al. 2017;
Helfrich, Willmott, and Ye 2018; Maduranga, Helfrich, and
Ye 2019). The problem involves passing two sequences of
length T" concurrently into the RNN. The first sequence con-
sists of entries sampled from /[0, 1) and the second se-
quence consists of all zeros except for two entries that are
marked by the digit one. The first one is located uniformly
in the first half of the sequence, [1, %) and the second one is

located uniformly in the second half of the sequence, [%, 7).
The network outputs the sum of the two entries in the first
sequence that are marked by ones in the second sequence.
The loss function used is the mean squared error (MSE). The
baseline is an MSE of 0.167 which is the expected MSE for
a network that predicts one regardless of the sequence. The
sequence length used in this experiment was 1" = 750 with
training and test sets of size 100, 000 and 10, 000 examples.

The hidden sizes for each model were adjusted so they
each had ~ 15k trainable parameters which results in a to-
tal hidden size of n = 160, 60, 60, 170, 128, and 120 for the
ENRNN, LSTM, Spectral RNN, scoRNN, oRNN, and Full-
Capacity uRNN respectively. The ENRNN was comprised
of an hX) and an h(%) of respective sizes 96 and 64 with a
coupling matrix, see Equation (3). The best hyperparameters
for the oRNN were in accordance with (Mhammedi et al.
2017) with ~ 2.6k trainable parameters. Figure 1 presents
the convergence plots for 6 epochs. ENRNN converges to-
wards 0 MSE before all other models with Spectral RNN
asympototically achieving a slightly lower MSE with learn-
ing rate decay.

5.2 Copying Problem

The copying problem has also been used to test many or-
thogonal/unitary RNNs (Arjovsky, Shah, and Bengio 2016;
Wisdom et al. 2016; Jing et al. 2016; Mhammedi et al. 2017;
Helfrich, Willmott, and Ye 2018). In this experiment, a se-
quence of digits is passed into the RNN with the first 10 dig-
its uniformly sampled from the digits 1 through 8 followed
by the marker digit 9, a sequence of 7' zeros, and another
marker digit 9. The network is to output the first 10 digits
in the sequence once it sees the second marker 9, forcing
the network to remember the original digits over the entire
sequence. The total sequence length is 7" + 20. The cross-
entropy loss function is used. The training and test sets were
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Figure 1: Test set MSE for the adding problem with se-
quence length of 7" = 750.
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Figure 2: Cross-entropy for the copying problem with se-
quence length of 7" = 2000.

20,000 and 1, 000 sequences, respectively. Each model was
trained for 4,000 iterations with batch size 20. The base-

line for this task is the expected cross-entropy of randomly
10log(8)
T+20 °

selecting digits 1-8 after the last marker 9,

The hidden sizes for each model were adjusted so that
they each had ~ 22k trainable parameters. This resulted in
a hidden size of n = 192,68, 190, and 128 for the ENRNN,
LSTM, scoRNN, and Full-Capacity uRNN respectively. The
ENRNN had an A(%) and h(%) of size 172 and 20 with a cou-
pling matrix W (), see Equation (3). Figure 2 plots cross-
entropy values for 4000 iterations. As a reference, the LSTM
was also run with the same hidden size of ENRNN, n = 192,
which has ~ 7 times more trainable parameters than EN-
RNN and is still unable to drop below the baseline. Again,
ENRNN outperforms other methods.



Table 1: TIMIT: Best validation MSE after 300 epochs with
test MSE and perceptual metrics. N - dimension of h. (for
ENRNN, dimensions of h(&)/h(5))

MODEL N #PARAMS VALID. TEST.

MSE MSE
ENRNN  374/94 ~ 200K 0.13 0.13
SCORNN 425 ~ 200K 1.56 1.52
LSTM 158 ~ 200K 8.53 8.27
LSTM 468 ~ 1200K 5.60 5.42
MODEL N SEGSNR (pDB) STOI  PESQ
ENRNN  374/94 4.84 0.83 2.75
SCORNN 425 4.55 0.82 2.72
LSTM 158 4.00 0.79 2.51
LSTM 468 4.82 0.81 2.75

5.3 TIMIT

The TIMIT dataset (Garofolo et al. 1993) consists of spo-
ken sentences from 630 different speakers with eight major
dialects of American English. We used the same setup as
outlined in (Wisdom et al. 2016). The data set consisted of
3,696 training, 192 testing, and a validation set of 400 audio
files. Each audio file was downsampled to 8kHz and a short-
time Fourier transform (STFT) was applied (Wisdom et al.
2016). The sequence of the log magnitude of the STFT val-
ues are fed into RNNs and the output is the same sequence
shifted forward in time by 1 to predict the next log magni-
tude STFT value in the sequence. Each sequence was padded
with zeros to make uniform lengths. The loss function was
the mean squared error (MSE) and was computed by taking
the squared difference between the predicted and actual log
magnitudes and applying a mask to zero out padded entries
before computing the batch mean. The batch size was 28.

Following (Wisdom et al. 2016), the models were also an-
alyzed using time-domain metrics consisting of the Signal-
to-Noise Ratio (SegSNR), Perceptual Evaluation of Speech
Quality (PESQ), and Short-Time Objective Intelligibility
(STOI). For SegSNR, the higher the positive value indi-
cates more signal than noise. The PESQ values range within
[1.0,4.5] with a higher value indicating better signal quality.
The STOI values range within [0, 1] with a higher value in-
dicating better human intelligibility. To compute the scores,
the predicted log-magnitudes on the test set were used to
reconstruct the sound waves and were compared with the
original sound waves, see (Wisdom et al. 2016).

Each model was trained for 300 epochs. The ENRNN did
not have a coupling matrix. Table 1 reports the results of the
best epoch in validation MSE scores and Figure 3 plots con-
vergence of these scores. As a secondary measure, we also
show in Table 1 scores of three perceptual metrics. As a ref-
erence, the LSTM was also run with the same hidden size
of ENRNN, n = 468, which has ~ 6 times more trainable
parameters than ENRNN and achieves worse scores except
for PESQ where it is the same. Again, ENRNN significantly
outperforms scoRNN and LSTM in the validation and test-
ing MSEs and produces the overall best scores in the per-
ceptual metrics.

4120

TIMIT MSE Approx. 200k Trainable Parameters

—— ENRNN 468 Valid. MSE
—— scoRNN 425 Valid MSE
—— LSTM 1568 Valid. MSE

-

107 4

10-1 4

1072 T T T
150 200 250
Epoch

T
100 300

Figure 3: Validation set MSE for the TIMIT problem

5.4 Character PTB

The models were also tested on a character prediction task
using the Penn Treebank Corpus (Marcus, Marcinkiewicz,
and Santorini 1993). The dataset consists of a word vocabu-
lary of 10k with all other words marked as <unk>, resulting
in a total of 50 characters with the training, validation, and
test sets consisting of approximately 5102k, 400k, and 450k
respective characters. The batch size was set to 32. Due to
the length of each sequence, the sequences were unrolled
in length of 50 steps. Each sequence is fed into RNNs and
the output is the same sequence shifted forward by one step
to predict the next character. At the end of training of each
sequence in a batch, the final hidden state is passed onto
the next training sequence as the initial state. We use a lin-
ear embedding layer that maps each input character to RV
(NN being the hidden state dimension). The loss function was
cross-entropy. We report the customary performance metrics
of bits-per-character (bpc) which is the cross-entropy loss
with the natural logarithm replaced by the base 2 logarithm.

ENRNN uses a coupling matrix W(©) with a truncated
orthogonal initialization, a fixed input weight matrix set
to identity, and ReLU nonlinearity. We report the best re-
sults after 20 epochs training in Table 2. As a reference,
the LSTM was also run with the same hidden size of EN-
RNN, n = 1030, which results in a better score but requires
=~ 8.5 times more trainable parameters than ENRNN. We
see that ENRNN slightly outperforms LSTM when match-
ing the number of trainable parameters and all other models.

6 Exploratory Experiments

We present exploratory studies to demonstrate short-term
and long-term dependency of the states (%) and h(%) re-
spectively as intended.

6.1 Gradients

) i )

For each pair of time steps ¢ < 7, we use || agg; [|2 and
()

Hag;t ||2 to measure the dependency of A5 and ") at




Table 2: Character PTB: Best testing MSE in BPC after 20
epochs. NV - dimension of h (for ENRNN, dimensions of
R /h(9)). Entries marked by an asterix (¥), (**), and (¥*%)
are reported from (Jing et al. 2017), (Mhammedi et al. 2017),
and (Kerg et al. 2019), resp.

MODEL N # PARAM  VALID. TEST
BPC BPC
ENRNN 310/720 =~ 1016K 1.475 1.429
LSTM 350 ~ 1016K 1.506 1.461
GRU 415 - - 1.601*
EURNN 2048 - - 1.715%
GORU 512 - - 1.623*
ORNN 512 ~ 183K 1.73%* 1.68%*
NNRNN 1024 ~ 1320K - 1.47%%%*
LSTM 1030 ~ 8600K 1.447 1.408
: =
s .
L]
H i
I:-
"Bz "
ans)

Figure 4: Gradient norms || =5Z—|| The z-axis is ¢ from left
to right and y-axis is 7 from top to bottom. The column at ¢
shows dependence of states h(TS)/h(TL) on xy.

time 7 respectively on the input x; at time ¢t. We consider a
small Adding Problem (Sec. 5.1) of sequence length 7" = 50
using an ENRNN of hidden size n = 40 with h(%) block size
of 24 and h(%) block size of 16. We compute the gradient
norms over the first random mini-batch at the beginning of
the sixth epoch and plot them as a heat map in Figure 4 and
5. Here the x-axis is the input time step (going from left to
right) and the y-axis is the hidden state time step (going from
top to bottom).

As can be seen, the short-term state gradient (left) dimin-
ishes quickly as 7 increases from ¢, demonstrating the short-

term dependency of hgs). On the other hand, the long-term
state gradient (right) may stay large for all 7 showing long-

term dependency of hSS). Of particular note, there appears
to be a few vertical lines that have higher gradient norms rel-
ative to other input steps. It appears that these inputs have a
greater effect on the model than others.

6.2 Hidden State Sizes

In this section, we explore the effect of different short-term
hidden states on model performance on the adding problem
using similar settings as discussed in Section 5.1. In Fig-
ure 6, we keep the total hidden state size fixed at n = 160
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Figure 5: Gradient norms || =5Z— || The z-axis is ¢ from left

to right and y-axis is 7 from top to bottom. The column at ¢

(L)

shows dependence of states h(TS)/hT on x;.

025 Adding Problem, Sequence length = 750

Baseline
= ENRNN hL=160 h5=0
= ENRNN hL=128 h5=32
= ENRNN hL=96 h5=64
—— ENRNN hL=64 h5=96
= ENRNN hL=32 h5=128
—— ENRNN hL=0 h5=160
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Figure 6: Test set MSE for the ENRNN on the adding prob-
lem with sequence length of 7' = 750 with fixed hidden
state size of 160 and various short-term and long-term hid-
den state sizes h%) and h(F).

and adjust the A(%) and h() sizes. In addition, we run the
experiment with no h*) and no h(®). As can be seen, hav-
ing no long-term memory state, h(*) = 0, the ENRNN is
unable to approach zero MSE until the end and having no
short-term memory state, () = 0, the ENRNN is unable
to pass the baseline after 6 epochs. In general, as the size of
h(5) increases, the performance increases with optimal per-
formance occurring around h(®) = 64 and h(X) = 96 or
h(5) = 96 and A1) = 64.

7 Conclusion

We have introduced a new RNN architecture with two com-
ponents to accumulate long and short-term memory infor-
mation. We have developed a gradient descent algorithm for
learning a short-term recurrent matrix with eigenvalues on
the unit disc. Our exploratory study indicates that the long-
term and short-term component states behave as intended.
Experimental results in four widely used examples indi-
cate that the ENRNN is competitive with orthogonal/unitary



RNNs and LSTM. Also important is that our method is en-
tirely based on the basic RNN framework without the need
of highly complex architectures that are more difficult to un-
derstand and implement.
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