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Abstract: The problem of determining which nucleotides of an RNA sequence are paired or unpaired in the
secondary structure of an RNA, whichwe call RNA state inference, can be studied by di�erentmachine learn-
ing techniques. Successful state inference of RNA sequences can be used to generate auxiliary information for
data-directed RNA secondary structure prediction. Typical tools for state inference, such as hidden Markov
models, exhibit poor performance in RNA state inference, owing in part to their inability to recognize non-
local dependencies. Bidirectional long short-term memory (LSTM) neural networks have emerged as a pow-
erful tool that can model global nonlinear sequence dependencies and have achieved state-of-the-art perfor-
mances on many di�erent classi�cation problems.
This paper presents a practical approach to RNA secondary structure inference centered around a deep learn-
ing method for state inference. State predictions from a deep bidirectional LSTM are used to generate syn-
thetic SHAPE data that can be incorporated into RNA secondary structure prediction via the Nearest Neigh-
bor Thermodynamic Model (NNTM). This method produces predicted secondary structures for a diverse test
set of 16S ribosomal RNA that are, on average, 25 percentage points more accurate than undirected MFE
structures. Accuracy is highly dependent on the success of our state inference method, and investigating
the global features of our state predictions reveals that accuracy of both our state inference and structure
inference methods are highly dependent on the similarity of pairing patterns of the sequence to the training
dataset. Availability of a large training dataset is critical to the success of this approach. Code available at
https://github.com/dwillmott/rna-state-inf.

Keywords: RNA secondary structure inference, RNA state inference, NNTM, SHAPE-directed NNTM, Deep
learning, Recurrent neural networks
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1 Introduction
The secondary structure of an RNA sequence plays an important role in determining its function [10, 24, 16],
but directly observing RNA secondary structure is costly and di�cult [3, 9]. Therefore, researchers have used
computational tools to predict the secondary structure of RNAs. One of themost popularmethods is the Near-
est Neighbor Thermodynamic Model (NNTM) [35]. Alternatively, comparative sequence analysis methods [13]
use a set of homologous sequences to infer a secondary structure [2]. This method remains the gold standard
for secondary structure prediction [30].
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NNTM is based on thermodynamic optimization to �nd the secondary structure with the minimum free
energy (MFE). There are several implementations of NNTM; some of the popular ones include RNAStruc-
ture [25], GTfold [31], UNAfold [23], and ViennaRNA package [22]. However, NNTM has been shown to be
ill-conditioned [17, 18, 26]. That is, for a given sequence, signi�cantly di�erent secondary structures might
exhibit very similar energies. Additionally, the range of accuracies of the predictions of NNTM shows signi�-
cant variance [31].

More recently, high-throughput data that correlates with the state of a nucleotide being paired or un-
paired has been developed. This data, called SHAPE [37] for ‘selective 2’-hydroxyl acylation analyzed by
primer extension’, has been incorporated as auxiliary information into the objective function of NNTM with
the goal of improving the accuracy of the predictions. This type of prediction is referred to as SHAPE-directed
RNA secondary structure modeling [5, 36]. The addition of auxiliary information usually improves the ac-
curacy of the predictions of NNTM [5] but it has been shown that the improvements are correlated with the
MFE accuracy [30]. The latter result has been obtained by statistical modeling of SHAPE. The model in [30]
gives distributions for the values of SHAPE if the state of the nucleotide (as paired or unpaired or helix-end)
is known. Thus the model in [30] can be used to generate SHAPE data for an RNA sequence in silico, given
the state of each of the sequence’s nucleotides.

In this paper, we present a method for improving the RNA secondary structure prediction based on state
inference results. To do so, we �rst study the problem of determining the state of each nucleotide of an RNA
sequence, which we refer to as state inference. State inference is a binary classi�cation task on each nu-
cleotide, which we note is in contrast to full secondary structure inference, which seeks to identify sets of
base pairs. We have developed, trained, and tested a deep recurrent neural network that performs this task:
given an RNA sequence, the machine outputs a probability that each nucleotide is paired. We can threshold
this probability to obtain binary predictions for the state of each nucleotide.

Additionally, we use the probabilities from the state inferencemethod to generate synthetic SHAPE. Then
we use this SHAPE data for directed predictions via NNTM, leading to signi�cant improvements in secondary
structure accuracy on sequences where the state inference performed well. We note that our approach for
generating SHAPE is di�erent from the statistical models in [30], which generate synthetic SHAPE data by
sampling from the distribution models.

We note that other deep learning methods for the problem of RNA secondary structure inference have
been explored [38]. Althoughwe are primarily interested in using state inference to direct secondary structure
predictions, there exist other motivations for state inference. For example, such a method could be used to
identify binding sites in RNA-RNA interactions [32, 6].

2 Methods

2.1 SHAPE-Directed NNTM

Under the nearest neighbor thermodynamic model (NNTM), stacks and loops are each assigned a free energy
based on base pair type (Watson-Crick or wobble), with pairs contributing negative energy, and loops con-
tributing positive energy. The energy of a secondary structure is the sumof the energies of these local features.
Dynamic programming methods can be used to e�ciently �nd the secondary structure with the smallest en-
ergy, called the minimum free energy (MFE) structure, which is usually taken as the predicted structure by
the NNTM method.

The SHAPE data comes from high-throughput chemical probing experiments and associate a reactivity
value to each nucleotide of an RNA sequence. It has been found experimentally that high SHAPE values are
correlatedwith unpaired positions, and small valueswith paired position. SHAPE has been incorporated into
NNTM by adding a pseudo-free energy term to themodel [5]. This term is generated by the following relation:

∆GSHAPE(i) = 2.6 · ln(SHAPE(i) + 1) − 0.8 (1)
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Figure 1: Bidirectional RNN. Diagram of a bidirectional RNN with two hidden layers for state inference at three di�erent
timesteps. Here x denotes the input, h1 the �rst layer hidden variable, h2 the second layer hidden variable, and y the output,
with superscripts representing timesteps and arrows showing the propagation of information through the network. Each hid-
den layer combines information from the previous layer, earlier and later timesteps, and an internal memory state to compute
its output.

This energy is added to base pair stacks involving nucleotide i. In e�ect, the term ∆GSHAPE(i) penalizes
base pairs involving nucleotideswith high SHAPE values, and encourages base pairs among nucleotideswith
low SHAPE values. Incorporating SHAPE data consistently leads to signi�cant increases in the accuracy of
the MFE structure [5, 36, 30].

2.2 Directing NNTMWith State Information

We are interested in using deep learning tools in tandem with SHAPE direction to improve secondary struc-
ture inference. However, deep learning methods require extraordinary large datasets; the relative dearth of
available experimental SHAPE data prohibits us from directly learning synthetic SHAPE data with a neural
network. Instead, our proposed method for secondary structure inference uses a viable method for state in-
ferencewith the ability to in�uence the NNTMenergy function on a per-nucleotide basis via SHAPE direction.
Note that the same limitation applies to the secondary structure data for which a large dataset is available for
16S sequences only but not for other RNA types; see Section 4.4 for more details.

Our method is a three-step process:

1. A machine learning method for predicting the state of each nucleotide in a sequence;
2. A function converting these state predictions into arti�cial SHAPE data;
3. The SHAPE-directed NNTM function that takes both the original RNA sequence and the generated

SHAPE data and outputs a predicted secondary structure.

Note that Step 3 is a well establishedmethod and the novelty here is in deriving the arti�cial SHAPE data
in Steps 1 and 2. For the task of state inference, we trained a deep neural network using a set of known RNA
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sequences and structures that generates a sequence of state predictions, detailed in Section 2.3. The output
of this neural network is a sequence p of the same length as the original RNA sequence, where p(i) is the
predicted probability that the nucleotide in position i is paired.

With these predictions in hand, we convert each predicted probability p(i) to a SHAPE value to be asso-
ciated with nucleotide i. To construct a function for this purpose, we note that a SHAPE value of ≈ 0.3603
will not contribute any positive or negative energy to the NNTM energy function; this can be seen by setting
∆GSHAPE(i) to 0 in Equation 1 and solving for SHAPE(i) [8].Wewould therefore like to assign predictions of 0.5
to a SHAPE value of 0.3603, as these predictions give no information as to the state of the nucleotide. With
this in mind, we use the following piecewise linear function to generate SHAPE, where a and b are constants
to be speci�ed.

f (i) =
{
2(0.3603 − b)p(i) + b, if 0 < p(i) ≤ 0.5
2(a − 0.3603)(p(i) − 1) + a, if 0.5 < p(i) ≤ 1

(2)

This function has range [a, b], with f (i) = a if p(i) = 1, f (i) = b if p(i) = 0, and f (i) = 0.3603 if p(i) =
0.5. To determine values of a and b, we considered experimentally collected SHAPE data from two E. coli
sequences, one 16S sequence and one 23S sequence [30]. Together, these two sequences contain a a total of
4187 nucleotides, and represent a wide variety of structural motifs. We took the mean SHAPE value among
both paired nucleotides and unpaired nucleotides; these values are 0.214 and 0.6624, respectively.

All of our experimental results in Section 3 will use a = 0.214 and b = 0.6624 in our SHAPE generation
function. These choices are motivated by real SHAPE values, and thus are sensible estimations of the best
values. However, theymay not be the optimal values for our purposes. In Section 4.2, we explore how varying
these values may a�ect the accuracy of our predicted secondary structures. These experiments indicate that
the a and b values used in our experimental results are nearly optimal.

With set values of a and b, we can generate a sequence of arti�cial SHAPE data. We then use SHAPE-
directed NNTM as described in the previous section to obtain our secondary structure prediction.

2.3 State Inference with Deep Neural Networks

Neural networks are tools from the realm of machine learning for solving classi�cation and regression prob-
lems. In a neural network, model parameters are trained using a dataset of known input-output pairs: we
de�ne a loss function based on the di�erence betweenmachine predictions and target outputs, retrieve gradi-
ent directions for parameters with respect to this loss using the backpropagation algorithm [27], and optimize
parameters using iterative �rst order methods, such as gradient descent.

Recent advances inmachine learning come primarily from deep neural networks [11], which are stacks of
multiple neural networks: the output of one neural network in the stack acts as the input for the next. Each of
these constituent neural networks is referred to as a layer of the deep neural network. These multiple layers
allow the deep neural network to learn and represent complex nonlinear relationships among inputs.

For the task of state inference, we use a deep recurrent neural network (deep RNN). RNNs work specif-
ically with sequential data by combining the learning methods of neural networks with the architecture of
a discrete-time dynamical system. A single layer RNN has a state h(i) that is a function of the state at previ-
ous time step h(i−1) and the input x(i) at time i. The function is a composition of an elementwise nonlinear
activation function with a linear map. Sequence elements are fed to the machine as inputs one at a time; at
time i, themachine receives the nucleotide in position i, given as a one-hot encoding x(i). From this input and
the previous state h(i−1), machine parameters generate a state h(i) that encodes the pairing information up to
step i, from which another function produces the output y(i), the machine prediction of the probability that
nucleotide i is paired.

We make a number of modi�cations to our deep RNN to increase state inference accuracy. Most notably,
we use a popular variant of RNN called the Long Short-Term Memory (LSTM) architecture [14], which incor-
porates a gating mechanism and a memory cell to increase accuracy beyond that of traditional RNNs on a
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variety of sequential learning tasks. Speci�cally, the LSTM gating architecture allows a certain component of
the state to directly pass into future steps, maintaining the �ow of state information or memory over the long
term. This signi�cantly increases machine capability to model long term dependence and hence capture po-
tential long-range base pairs [21].We alsomake this network bidirectional [28, 12]; this is aminormodi�cation
that allows information to �ow both forward and backward through the sequence. A two-layer bidirectional
RNN is shown in Figure 1.

2.4 Dataset, Implementation, and Metrics

Our experiments will focus on a test set of sixteen 16S ribosomal RNA sequences used in SHAPE direction
experiments in [30]. Sequences in this set have a wide range of NNTM accuracies.

Our deep neural network requires a large dataset of RNA sequences with known states from which to
learn. For this task, we used secondary structure data from the Comparative RNAWeb site, run by the Gutell
Lab at the University of Texas [1]. This site hosts a collection of known RNA sequences and secondary struc-
tures obtained using comparative sequence analysis. Compiling all of the available 16S rRNA results in a set
of 17032 sequences and a total of over 21 million nucleotides. We refer to this as the CRW dataset.

To ensure that our model does not simply memorize large portions of sequences in the test set, we com-
pared each CRW dataset sequence with each test set sequence and removed CRW sequences with signi�cant
similarities prior to training. In this �ltering process, if the two sequences have a commonblock of nucleotides
of more than 10% of the length of the test sequence, or if the two sequences can be aligned such that they
have common nucleotides accounting for more than 80% of nucleotides of the shorter sequence, we remove
it from the training set. See available code for additional details. This process leaves us with 13118 sequences
and a total of approximately 16.5 million nucleotides, with a mean and median sequence length of 1264 and
1431, respectively. We then split this set into two random halves to produce a training and validation set.

For the sake of comparison, we also trained and tested a number of higher-order hidden Markov models
(HMM) using the same training, validation, and test sets used by the neural network. In a k order HMM, hid-
den state transitions depend on the previous k states in the sequences, rather than only the previous state;
this improves their representational capacity, but at the cost of amodel size that increases exponentially with
k. We trained our HMMs with maximum likelihood estimation over the training set, and performed inference
with the Viterbi algorithm [7], a backtracking algorithm that exploits the Markovian nature of HMMs to e�-
ciently produce the likeliest state sequence under the model’s transition probabilities. HMMs are fundamen-
tally incapable of recognizing dependencies across many timesteps, and we therefore expect the deep neural
network to outperform the HMM. However, they provide a baseline against which to measure neural network
output. We note that the HMM formalism has been used before for state inference of RNA but for a di�erent
purpose [29, 20, 15]. Code of theHMM implementation is available at https://github.com/dwillmott/rna-state-
inf.

We implemented a variety of deep recurrent networks in Keras [4], a Python deep learning API, with
Theano [33] as a backend; code is available at https://github.com/dwillmott/rna-state-inf. We found a four-
layer network to be the optimal balance of representational capacity and training speed. The largest layers
are the middle two, which are both bidirectional LSTMs. The �rst and last layers are small one-dimensional
convolutional layers [19, 11]. These layers act as learnable pre- and post-processing convolutions; they take
in and process local information in small regions of the sequence, and allow the two recurrent layers to fo-
cus on long-range dependencies across many timesteps. The output dimension of each of the machine’s four
layers at each timestep are 100, 400, 100, and 2, respectively, giving a machine with a total of 595,552 train-
able parameters, which we trained using binary cross entropy loss and RMSprop [34], a gradient-descent like
training algorithm. See available code material for hyperparameters and training modi�cations.

Our code works quite e�ciently for the kind of sequences tested in this paper. On a 2080 GeForce RTX
2080 Ti GPU, training takes about 4 hours, and once trained, state inference takes about 0.005 seconds for a
5S sequence (≈ 150 nucleotides), 0.05s for a 16S sequence (≈ 1500 nucleotides), and 0.1s for a 23S sequence
(≈ 3000 nucleotides), which are roughly linear with the size of the sequence.

https://github.com/dwillmott/rna-state-inf
https://github.com/dwillmott/rna-state-inf
https://github.com/dwillmott/rna-state-inf
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With the sequence of state prediction probabilities p, we generated arti�cial SHAPE data using Equa-
tion 2. Finally, we used both the original sequence and the generated SHAPE data as input for GTfold [31], an
e�cient NNTM implementation, to compute a SHAPE-directed MFE structure. GTFold is used in this work for
all NNTM experiments and results.

When evaluating predicted secondary structures, we compare its set of base pairs with those of the native
structure. A predicted base pair is counted as true positive (TP) if it exists in both the predicted and native
structure, a false positive (FP) if it appears in the predicted structure but not in the native structure, and a
false negative (FN) if it appears in the native structure and not in the predicted structure. We report on three
measures of performance: PPV, the proportion of true positives in the predicted structure ( TP

TP+FP ); sensitivity,
the fraction of true positives in the native structure ( TP

TP+FN ); and accuracy, the arithmetic mean of PPV and
sensitivity: 1

2 (
TP

TP+FP +
TP

TP+FN ) [10].
In later sections, we will also consider the performance of our deep learning methods for state inference.

Unlike secondary structure inference, which classi�es base pairs, state inference is a binary classi�cation of
each nucleotide. When discussing the accuracy of state predictions, we will de�ne accuracy to be the pro-
portion of true predictions among all predictions in the sequence. This is distinct from notions of secondary
structure inference accuracy, and so the metrics on state inference and structure inference cannot be directly
compared.

3 Results

3.1 Native State Directed NNTM

Before analyzing the results of the entire pipeline of our method, we �rst examined our SHAPE generation
function in detail. To do so, we used the native state of each sequence in our test set to generate SHAPE. This
was done by setting p(i) to 1 if the nucleotide in position i is paired, and p(i) to 0 if it is unpaired.We then use
Equation 2 to generate arti�cial SHAPE. This will result in a generated SHAPE value of 0.6624 for all paired
nucleotides and 0.214 for unpaired nucleotides, which we then use to direct NNTM.We refer to the resulting
predicted structures as native state directed MFE.

This experiment is similar to those run in [30], and uses the same set of data to choose appropriate SHAPE
values. The di�erence is in the method of SHAPE generation: whereas that paper constructs SHAPE distri-
butions from the data and stochastically samples from these distributions, we use the mean of paired and
unpaired nucleotides’ SHAPE values.

The results of this experiment reinforcemany of the �ndings in [30]. A comparison of accuracy of all three
methods (undirected MFE, stochastically directed MFE from [30], and native state directed MFE) is available
in Table 1. Overall, native state directed MFE structures are highly accurate, with twelve of the sixteen test
sequences enjoying accuracy above 80%. Both directionmethods are an improvement on the accuracy of the
undirected MFE structure for every test set sequence, and native state directed accuracy represents a further
improvement from the stochastic model in [30]. In the case of native state direction, accuracy improvements
over undirected MFE range between 15 percentage points (H. volcanii) and 57 percentage points (Cryptono-
mas.sp). Consistent with observations in [30], greatest increases are concentrated in sequences with mid-
dling undirected MFE accuracy; for sequences with undirected accuracy between 25% and 45%, native state
directed MFE accuracy is an improvement by more than 40 percentage points.

This experiment is equivalent to assuming that our deep learning state inferencemethod has perfect per-
formance, and as such we can interpret the accuracy of native state directed MFE structures to be an upper
bound on the performance of our method. On average, the high accuracy exhibited in this experiment gives
strong evidence that there are large potential gains in MFE accuracy to be made with our method. However,
several sequences with low undirected MFE accuracy sequences like E. cuniculi and C. elegans are known to
be particularly resistant to SHAPE direction [30], and this is re�ected in relatively poor native state directed
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Table 1: Structure Inference Results on the test set

Sequence Name Undirected Directed MFE
MFE Predicted Sükösd Native

E. cuniculi 0.171 0.183 0.273 0.336
V. necatrix 0.181 0.314 0.503 0.705
C. elegans 0.203 0.248 0.308 0.519
E. nidulans 0.272 0.325 0.601 0.832
N. tabacum 0.323 0.692 0.593 0.859
Cryptomonas.sp 0.339 0.838 0.739 0.898
Synechococcus.sp 0.361 0.848 0.697 0.885
M. musculus 0.375 0.397 0.509 0.782
M. gallisepticum 0.385 0.849 0.721 0.889
E. coli 0.411 0.852 0.744 0.880
B. subtilis 0.512 0.848 0.753 0.881
D. desulfuricans 0.533 0.875 0.724 0.898
C. reinhardtii 0.537 0.845 0.702 0.868
T. maritima 0.562 0.881 0.733 0.896
T. tenax 0.619 0.766 0.754 0.861
H. volcanii 0.752 0.864 0.809 0.907
Mean 0.408 0.664 0.635 0.806
Median 0.380 0.841 0.712 0.874

Table of accuracy of MFE structures using NNTM with a variety of SHAPE directions. First column:
undirected MFE. Second column: predicted state directed MFE (see Section 3.2). Third column: mean
performance of sampled SHAPE directed NNTM in [30]. Fourth column: native state directed NNTM (see
section 3.1).

MFE accuracy. We thus cannot expect our method to exhibit large improvements over undirected MFE struc-
tures in these cases.

3.2 Predicted State Directed NNTM

We now use the predictions from our deep neural network to generate SHAPE data that will in turn direct
NNTM; we refer to these predictions as predicted state directed MFE structures. We emphasize that, unlike
the native state direction explored in the previous section, this method does not assume prior knowledge of
the state of the sequence, and thus represents a practical method of secondary structure inference.

The results of applying ourmethod to the sequences in the test set are available in Table 1,which indicates
that the extraordinary gains from native state directed NNTM are not always preserved in practice. Predicted
state directed structures fall into two clear categories: �ve are quite inaccurate, with accuracy below 40%,
while among remaining eleven structures are all near or above 70%, and nine of these are above 80%. Even
with the high variance of accuracies among these structures, predicted state directed MFE structures are 25
percentage points more accurate than undirected MFE structures on average, and every sequence in the test
set experiences some increase in accuracy. However, these improvements vary greatly, with several sequence
stayingwithin 5%of undirectedMFE accuracy, while for four other sequenceswe improve bymore than 40%,
with the highest improvement (Cryptonomas.sp) at 50%.

To some extent, poor accuracy is explained by our experiment with native state directed NNTM. Indeed,
the �ve sequences with poor accuracy from our method are the �ve worst-performing with native state di-
rected using native states to direct NNTM, and only one of these exceeds 80% with native states. At worst,
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native state directed NNTM gives only 34% accuracy for E. cuniculi and 52.6% for C. elegans, and this ceil-
ing is much lower than accuracy achieved in many of our other predicted structures. Thus, the di�culties of
our method with these sequences may be attributed to the RNA sequences themselves that are particularly
challenging for structure inference as discussed in the directability of NNTM section in [30, p.2812]. However,
in these cases and some others (E. nidulans, M. musculus), predicted state directed MFE accuracy does not
come close to native state directed MFE accuracy. This is in contrast to our highest performing sequences (D.
desulfuricans, T. maritima), where predicted state directed MFE is within several percentage points of native
state directed MFE accuracy.

4 Discussion

4.1 State Inference Accuracy

The foundation of our method is our deep neural network for state inference: this network provides proba-
bilities that are converted into a pseudo-free energy term in the NNTM energy function. To understand the
sources of high and low performance of our structure inference method, we can directly evaluate the output
of our deep neural network for state inference, using higher order HMMs as a baseline.

To calculate the accuracy of the neural network’s output, we thresholded each prediction p(i) above and
below0.5, taking p(i) > 0.5 tobeapositivepredictionand p(i) < 0.5 tobeanegativeprediction. Theaccuracy,
PPV, and sensitivity of both neural network and HMM predictions are shown in Table 2. Though the table
exhibits an upward trend in accuracy as the order of the HMM increases, we found that accuracy plateaued
and eventually decreased beyond order 5. As expected, the LSTM clearly outperforms HMMs of all orders on
the validation set. More importantly, this is the case for our test set as well, where the LSTM outperforms the
best HMM in accuracy by nearly 13%.

The order 4 HMM exhibits the highest accuracy on the validation set. We further compared state infer-
ence accuracy on each test set sequence using both the order 4 HMM and the neural network. The accuracy,
PPV, and sensitivity of these predictions are shown in Table 3. The accuracy of neural network state predic-
tions were, on average, 15 percentage points higher than that of the HMM, and was higher for every sequence
but one (C. elegans). Table 3 orders sequences in ascending order of undirected MFE accuracy; however,
this ordering reveals no straightforward relationships among neural network state inference accuracy, HMM
state inference accuracy, and MFE structure accuracy. Neural network accuracy varies much more among
sequences: the di�erence between the sequences with lowest and highest accuracy (C. elegans and B. sub-
tilis, respectively) is more than 40 percentage points. Sequences can be grouped according to accuracy: poor

Table 2: State inference accuracy of neural network vs. HMM on validation and test sets

Validation Set Test Set
Machine Acc PPV Sen Acc PPV Sen

Order 1 HMM 0.623 0.632 0.852 0.612 0.646 0.767
Order 2 HMM 0.662 0.671 0.826 0.651 0.686 0.759
Order 3 HMM 0.674 0.693 0.794 0.672 0.713 0.750
Order 4 HMM 0.685 0.714 0.771 0.684 0.729 0.742
Order 5 HMM 0.684 0.711 0.776 0.683 0.730 0.742
Neural Network 0.954 0.950 0.972 0.839 0.858 0.873

A comparison of accuracy, PPV, and sensitivity of output from our LSTM-based neural network for state
inference compared with those of HMMs of various orders. The composition of validation and test sets is
described in Section 2.4.
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Table 3: State inference results on the test set from LSTM vs. HMM

Accuracy PPV Sensitivity
Sequence Name LSTM HMM LSTM HMM LSTM HMM
E. cuniculi 0.680 0.661 0.713 0.693 0.774 0.773
Vairimorpha necatrix 0.661 0.600 0.721 0.689 0.683 0.576
C. elegans 0.558 0.584 0.570 0.613 0.624 0.552
Emericella nidulans 0.657 0.584 0.692 0.681 0.741 0.539
Nicotiana tabacum 0.913 0.705 0.917 0.734 0.938 0.787
Cryptomonas.sp 0.926 0.676 0.935 0.730 0.941 0.728
Synechococcus.sp 0.938 0.700 0.943 0.740 0.953 0.769
M. musculus 0.608 0.603 0.626 0.655 0.637 0.520
Mycoplasma gallisepticum 0.919 0.639 0.933 0.713 0.932 0.668
E. coli 0.924 0.699 0.937 0.742 0.938 0.774
Bacillus subtilis 0.973 0.698 0.979 0.731 0.976 0.788
Desulfovibrio desulfuricans 0.926 0.712 0.940 0.741 0.938 0.803
Chlamydomonas reinhardtii 0.906 0.687 0.915 0.725 0.928 0.761
Thermotoga maritima 0.931 0.752 0.944 0.760 0.943 0.864
Thermoproteus tenax 0.818 0.782 0.845 0.785 0.866 0.894
H. volcanii 0.782 0.739 0.809 0.769 0.841 0.820
Average 0.820 0.676 0.839 0.719 0.853 0.726
Total 0.839 0.684 0.858 0.729 0.873 0.742

Table of accuracy, PPV, and sensitivity for our LSTM-based state inference model vs. an order 4 HMM.
Sequences are arranged in ascending order of MFE accuracy as an indication of the di�culty of secondary
structure inference for each sequence. Average indicates the average metric for each sequence, while Total
gives the total metrics for all nucleotides in the test set.

(below 70%) for �ve sequences, medium (near 80%) for two more, and high (above 90%) for the remaining
nine.

As expected, state inference accuracy exhibits a strong e�ect on predicted state directed MFE accuracy.
State inference accuracy above 90% means that our predicted states are quite close to native states; conse-
quently, predicted state direction and native state direction (equivalent to 100% accuracy) should produce
similar predicted structures in these cases, as evidenced by their di�erence of only a few percentage points in
Table 1. Meanwhile, the �ve sequences with poor state inference accuracy are exactly those where predicted
state directed MFE accuracy is below 40%.

The e�ect of state inference accuracy is particularly evident when considering the improvement over
undirected MFE accuracy: for four of the �ve sequences with poor accuracy (all but V. necatrix), predicted
state directed MFE accuracy is within 6 percentage points of undirected MFE accuracy. For V. necatrix and
both sequences with medium state inference accuracy, predicted state direction improves structure accuracy
by 10-15 percentage points. The remaining nine sequences all have high state inference accuracy, and their
directed structures are 30 percentage points more accurate than undirected MFE.

We note an interesting relationship between native state directedMFE accuracy and our neural network’s
state inference accuracy. The �ve sequences with state inference accuracy below 70% are the �ve worst per-
forming sequence when predicting structure with native state directed NNTM. This suggests that there may
be fundamental di�culties in understanding pairing structures of these sequences.
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Figure 2: Test Set KL Divergence. Plot comparing each test set sequence’s LSTM (neural network) and HMM state inference ac-
curacy vs its Kullback-Leibler divergence from training set paired region distribution. KL divergence was calculated as KL(P‖Q),
where P is the test sequence distribution and Q is the training set distribution.

4.2 Paired Regions & Global Structure

Our metrics in Table 3 give us an idea of the proportion of correct machine predictions on individual nu-
cleotides’ states, but they do not indicate whether predictions produce state sequences that preserve global
properties, such as patterns of paired and unpaired states. In particular, we want the number and sizes of
paired and unpaired regions of the state sequence prediction to match those in the original. A paired region
in the state roughly corresponds to one half of a helix in the secondary structure, so we theorize that recog-
nizing this information is vital for producing state predictions that successfully aid structure inference.

We considered the distribution of sizes of paired regions in each test set state sequence, and compared
them to the distributions of neural network and HMM state predictions. Despite larger variance in state in-
ference accuracy, we found evidence that the neural network was, on average, much more capable than the
HMM of capturing this global structure. The median size of paired region in neural network predicted state
di�ered from the median in the native state by at most one for every test set sequence, while the HMM’s me-
dian paired region size was routinely several nucleotides larger. The neural network also performs better in
predicting the total number of paired regions in the state, producing predictions that, on average, had 6more
paired regions than the native state, while HMM predictions had an average of 57 fewer regions.

We note that this discrepancy is to be expected in the context of nonlocal interactions. Paired region size
is exactly the sort of nonlocal feature that HMMs cannot predict: at a given time, the HMM does not know
how long it has been outputting positive predictions, and is thus limited in its capacity to detect large paired
regions.

Considering the non-locality of paired regions can help to explain the poor performance of the neural
network on certain test set sequences. High neural network accuracy is nearly always accompanied by a
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Figure 3: SHAPE Direction Heat Maps. Accuracy of native state directed MFE (left plot) and predicted state directed MFE (right
plot) for various ranges [a, b] of output from our SHAPE generation function. In each, the lower right corner corresponds to
a = b = 0.3603, which is equivalent to no SHAPE direction.

particular type of distribution of large paired regions: one of length 17, one of length 13, and several more of

length 12 and 11. In contrast, this pattern does not hold for thosewith low ormedium state inference accuracy

of the remaining seven, all have either paired regions of length larger than 20 or very few paired regions of

length larger than 10.

We can compare the distribution of the lengths of paired regions in each of our test sequences to the

distribution in the training set. We find that the training set overwhelmingly contains sequences with paired

regiondistributions similar to the test set sequences onwhich theneural networkperformswell. In particular,

we note that the training set has relatively few large paired regions: in the entire training set, there are 5

regions of length 18, 2 regions of size 19, 4 regions of size 20, and none larger than 20. Thus, during training

the machine is penalized for outputting more than 20 contiguous positive predictions. Consequently, neural

network predictions do not create sufficiently large regions for many test set sequences.

To quantify this difference, we considered the Kullback-Leibler (KL) divergence of the distribution of the

paired region lengths between the entire training set and the distribution for each test set sequence. The KL

divergence measures the similarity of each test set sequence’s paired region distribution as compared with

the distribution of the entire training set. Figure 2 plots state inference accuracy for each machine and test

set sequence against its KL divergence.
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Two clusters of sequences emerge in this plot: one with KL divergence near 0.01, and another with KL
divergence near 0.5. All nine sequences with high state inference accuracy are in the former cluster, while
the seven low and medium accuracy sequences are in the latter. The disparity in neural network accuracy
and HMM accuracy on sequences with more similarity to the training set suggests that the increase in neural
network performance comes from its ability to recognize global structure in these sequences. On the other
hand, neural network accuracy is only a modest improvement from HMM accuracy in the low to medium
accuracy cluster, where global structure diverges signi�cantly from that of the training set.

4.3 Modifying Synthetic SHAPE Values

Our method uses SHAPE-directed NNTM as a means of assigning pseudo-free energies to individual nu-
cleotides. All of our results in Section 3 assign nucleotides a SHAPE value in the range [0.214, 0.6624]. These
endpoints are based on the mean SHAPE value of paired and unpaired nucleotides from 16S and 23S E. coli
sequences. However, our method converts to SHAPE primarily as a means of assigning pseudo-free energies
to individual nucleotides with NNTM, and not as a genuine attempt to generate plausible SHAPE data. Thus,
the endpoints used may not be optimal for our purposes of converting from state inference predictions.

To evaluate potential output ranges for our SHAPE generation function, we reproduced experimentswith
native state directed NNTM (Section 3.1) and predicted state directed NNTM (Section 3.2) while varying the
endpoints a and b of our SHAPE generation function, given in Equation 2. As noted previously, a SHAPE
value of 0.3603 contributes no energy to the model; thus, it is only sensible to choose paired SHAPE values
below 0.3603, and unpaired SHAPE values above 0.3603. NNTM software such as GTFold ignores negative
SHAPE values, so paired nucleotides’ generated SHAPE must lie between 0 and 0.3603. The results of this
experiment are shown in Figure 3.

In native state directedNNTM, increasing negative state SHAPEabove 0.3603 and anddecreasing positive
state SHAPE below 0.3603 consistently increased performance. This is consistent with our expectations, as
in this case we are increasing the energy of all base pairs involving nucleotides that remain unpaired in the
native structure. Experiments with very large unpaired SHAPE values, such as b = 20, were similar to the
largest values shown in Figure 3, indicating that there is a ceiling of approximately 90% test set accuracy for
any method centered around SHAPE-directed NNTM such as ours.

The plot for predicted state directed NNTM shows a di�erent picture, with increasing unpaired SHAPE
values eventually leading to decreasing structure inference accuracy. That this pattern appears in the pre-
dicted state experiments but not native state experiments suggests that incorrectly assigning large SHAPE
values to even a small number of natively paired nucleotides can be signi�cantly harmful to NNTM perfor-
mance. There is a large region of highest accuracy, with a between 0 and 0.22 and b between 0.7 and 1.5 giving
accuracies near 68%. The values of a = 0.214 and b = 0.6624 used in our results are near the boundary of
this region. But we note that even optimal values of a and b give an accuracy of 69%, only 2.5 percentage
points above the experimentally motivated choices of a and b used in our results.

4.4 Other RNA Types

The dependence on large amounts of data inhibited our ability to extend this work to inference on other
types of RNA, such as 5S and 23S ribosomal RNA, as we were unable to amass enough secondary structure
data in these other contexts to successfully train a neural network. Instead, we explored applying our trained
network to other RNA sequences, but found that a neural network trained on 16S RNA sequences produces
much weaker results on 5S and 23S rRNA sequences than on 16S sequences, see Tables 4-5. We suspect this
is primarily due to di�erences in sequence length. Tables 4-5 also compare neural network state predictions
with those from an HMM, and shows that the HMM is more capable of generalizing to these RNA families.
However, we note that in all cases, HMM performance is poor relative to neural network performance on 16S
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sequences. This is consistent with our hypothesis that our neural network is recognizing long-range depen-
dencies speci�c to the family of 16S sequences that HMMs are inherently unable to capture.

Table 4: State inference results on 5S sequences

Accuracy PPV Sensitivity
Sequence Name LSTM HMM LSTM HMM LSTM HMM
d.5.e.S.pombe.1.no 0.647 0.605 0.735 0.685 0.676 0.676
d.5.e.P.waltl.no 0.500 0.717 0.635 0.756 0.446 0.797
d.5.e.O.sativa.1.no 0.487 0.756 0.589 0.808 0.581 0.797
d.5.e.M.glyptostroboides.no 0.467 0.700 0.586 0.757 0.460 0.757
d.5.e.M.fossilis.no 0.442 0.675 0.571 0.733 0.378 0.743
d.5.b.M.luteus 0.516 0.650 0.700 0.709 0.449 0.782
d.5.b.M.genitalium 0.466 0.636 0.622 0.754 0.319 0.597
d.5.e.L.edodes 0.583 0.658 0.682 0.709 0.608 0.757
Average 0.514 0.675 0.640 0.739 0.490 0.738

Table of accuracy, PPV, and sensitivity for our LSTM-based state inference model and an order 4 HMM for 5S
sequences. Average indicates the average metric for each sequence.

Table 5: State inference results on 23S sequences

Accuracy PPV Sensitivity
Sequence Name LSTM HMM LSTM HMM LSTM HMM
d.233.a.H.marismortui.1 0.640 0.682 0.647 0.709 0.840 0.771
d.233.a.T.celer 0.666 0.745 0.666 0.729 0.854 0.892
d.233.m.S.sinuspaulianus 0.541 0.632 0.407 0.478 0.678 0.543
PDB_00784 0.652 0.669 0.714 0.764 0.803 0.732
PDB_00616 0.602 0.655 0.595 0.655 0.829 0.767
PDB_00953 0.595 0.663 0.567 0.622 0.868 0.856
PDB_00503 0.612 0.658 0.610 0.668 0.830 0.760
PDB_00846 0.642 0.664 0.709 0.763 0.793 0.725
PDB_00776 0.552 0.602 0.487 0.524 0.860 0.770
Average 0.611 0.663 0.600 0.657 0.817 0.757

Table of accuracy, PPV, and sensitivity for our LSTM-based state inference model and an order 4 HMM for
23S sequences. Average indicates the average metric for each sequence.

5 Conclusion
We introduced a method for secondary structure inference by connecting a deep learning method for state
inference with previous work that leverages SHAPE-directed NNTM for structure inference. We tested this
method on a set of 16S rRNA sequences with a wide range of MFE accuracies, and found large improvements
over undirectedMFE structures inmost cases. These gainswere not uniform throughout the test set, as several
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sequences with low undirected MFE accuracy experienced very little increase from predicted state direction.
However, median increase in accuracy was more than 30 percentage points, and in the best case our method
improved undirected NNTM accuracy by nearly 50 percentage points.

Experiments using sequences’ native states to predict structure showed that a data-directed NNTM ap-
proach has the potential to improveMFE accuracy throughout the test set. However, it also uncovered signi�-
cant limitations; regardless of the accuracy of the state inferencemethod used to supply predictions, directed
NNTMwill not be able to produce high accuracyMFE structures for some sequences. These �ndings reinforce
results from [30] regarding the varying directability of sequences in the test set.

The performance of our state inference method was highly variable among test set sequences, with sev-
eral clusters of high and low accuracy. We found that high performance of our state inference method (and,
in turn, the accuracy of secondary structures generated from these state predictions) was strongly linked to
the similarity between a sequence’s paired region distribution and that of the training set.

This �nding highlights the connection between performance of our method and available secondary
structure data. As with any application of machine learning, the state inference method presented here is
only as good as the dataset used to train the model. The task of 16S rRNA state inference explored here is
feasible primarily due to the particularly large number of known 16S rRNA secondary structures. We are
hopeful that future increases in available data are able to increase the e�cacy of this method, both on 16S
rRNA sequences as well as on 5S and 23S rRNA.

Availability of data and materials: The sequence and secondary structure data used to train
the neural network and HMMs is available from the Comparative RNA Web (CRW) site repository,
https://doi.org/10.1186/1471-2105-3-2. This data, along with the native secondary structure data for the
test set, is available at http://ms.uky.edu/~dwi239/rnastateinf-data.zip.
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