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We present SphericalNR, a new framework for the publicly available Einstein Toolkit that
numerically solves the Einstein field equations coupled to the equations of general relativistic magneto-
hydrodynamic (GRMHD) in a 3 + 1 split of spacetime in spherical coordinates without symmetry
assumptions. The spacetime evolution is performed using reference-metric versions of either the
Baumgarte-Shapiro-Shibata-Nakamura equations or the fully covariant and conformal Z4 system with
constraint damping. We have developed a reference-metric version of the Valencia formulation of GRMHD
with a vector potential method, guaranteeing the absence of magnetic monopoles during the evolution. In our
framework, every dynamical field (both spacetime and matter) is evolved using its components in an
orthonormal basis with respect to the spherical reference metric. Furthermore, all geometric information
about the spherical coordinate system is encoded in source terms appearing in the evolution equations. This
allows for the straightforward extension of Cartesian high-resolution shock-capturing finite volume codes to
use spherical coordinates with our framework. To this end, we have adapted GRHydro, a Cartesian finite
volume GRMHD code already available in the Einstein Toolkit, to use spherical coordinates. We
present the full evolution equations of the framework, as well as details of its implementation in the
Einstein Toolkit. We validate SphericalNR by demonstrating it passes a variety of challenging

code tests in static and dynamical spacetimes.
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I. INTRODUCTION

The detection of gravitational waves (GW) from binary
black hole (BBH) mergers via the ground-based LIGO and
VIRGO detectors [1-6] and the simultaneous detection of
GW and electromagnetic (EM) radiation from binary
neutron star (BNS) mergers [7-9] has opened a new
window into the Universe. Accurate numerical simula-
tions of compact binary mergers are crucial for estimating
the physical parameters of detected systems [10] and for
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informing physical models about the evolution of matter at
nuclear densities in the postmerger remnant of BNSs and
BHNSs [11,12]. However, the full self-consistent numeri-
cal simulation of a compact object merger through
coalescence and subsequent postmerger evolution at high
resolution is an extremely challenging computational
problem involving vast differences in length and time-
scales, as well as different approximate symmetries
during the stages of the evolution. In particular, during
the inspiral and merger, the absence of approximate
axisymmetry lends itself to the use of Cartesian coordi-
nates, while the postmerger remnant has approximate
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symmetries that are better captured by using spherical
coordinates.

In the field of numerical relativity, it is now possible to
do self-consistent simulations of compact object binary
mergers: the first general relativistic hydrodynamics
(GRHD) BNS merger simulation [13], the breakthrough
simulations of BBH mergers [14—16], the first GRHD black
hole neutron star (BHNS) merger simulation [17], the first
general relativistic magnetohydrodynamics (GRMHD)
BNS merger simulations [18,19], and the first GRMHD
simulation of BHNS mergers [20]. Self-consistent simu-
lations of these multimessenger sources require the accu-
rate modeling of the dynamical spacetime evolution and
magnetohydrodynamic (MHD) flows within and near
compact objects. To this end, many codes have been
written that solve the equations of GRMHD. Generally,
such codes fall into two categories: GRMHD codes
coupled to a 3 + 1 dynamical spacetime solver (see, e.g.,
[21-34]) and GRMHD codes that adopt analytical expres-
sions for the spacetime geometry—which could be either
exact, if the spacetime is stationary, or approximate for
some dynamical spacetimes (see, e.g., [35—45]). In general,
the codes coupled to a 3 4 1 spacetime solver perform the
fluid evolution on Cartesian or multipatch grids, while
many of the fixed background spacetime codes employ
curvilinear coordinates. A notable exception are the codes
of [26,27], which solve the fluid equations in curvilinear
coordinates, coupled to a dynamical spacetime solver in an
approximate, constrained evolution formulation of the
Einstein field equations [46—48], which is a generalization
of the conformal flatness condition [49,50].

Often, numerical error in conservation of momentum is
smallest in the direction of coordinate lines. Accordingly,
codes written in Cartesian coordinates conserve linear
momentum well, while codes using spherical coordinates
conserve angular momentum well. In GRMHD, momenta
are only conserved when spacetime (rather than just
coordinate) symmetries are present, due to the appearance
of source terms in the evolution equations. Many astro-
physical systems of interest to multimessenger astrophysics
possess a natural axisymmetry at first approximation, so
that one expects a better conservation of angular momen-
tum in spherical coordinates, which allow the azimuthal
coordinate to be aligned with the direction of this sym-
metry. Examples include (see references within the cited
review articles): core-collapse supernovae [51,52], compact
binary merger remnants [53-57], pulsars [58], magnetars
[59-61], and self-gravitating accretion disks [62]. While
there are techniques to mitigate the nonconservation
of angular momentum in Cartesian coordinates (see, e.g.,
[63—-65]), it would generally be more desirable to use
numerical grids with spherical sampling, representing all
tensors and vectors in the spherical basis. Evolving
Einstein’s field equations in spherical coordinates intro-
duces both conceptual and computational problems

associated with coordinate singularities, but many of these
issues have been resolved in recent years.

Among the formalisms of Einstein’s field equations most
commonly used in numerical simulations is the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formulation [66,67].
Choices made in the original version of this formulation
are suitable in Cartesian coordinates only, but a generaliza-
tion involving a reference-metric formalism allows for
applications in any coordinate system (see, e.g., [68—72]).
In the absence of spherical symmetry, coordinate singular-
ities can be handled by properly rescaling components of
tensors [73—75], which is equivalent to expressing all tensor
components in a frame that is orthogonal with respect to the
reference metric. In [76], the formalism was extended to the
74 formalism (see, e.g., [77-79]). The SENR/NRPy+ code
[80] provides a flexible computational framework for the
implementation of formalism in a broad class of coordinate
systems. Using this framework, we previously implemented
this approach in the Einstein Toolkit [81].

In this work, we extend the framework presented in [81] to
evolve the GRMHD equations in a reference-metric formal-
ism and add a constraint-damping formulation for the
spacetime evolution to the existing framework. Our new
code applies this strategy by coupling the GRMHD equations
with a fully dynamical spacetime evolution via the BSSN or
fully covariant and conformal Z4 (fCCZ4) system [76] on
three-dimensional spherical coordinate grids (i.e., no sym-
metry assumptions are made). The GRMHD evolution
equations are evolved using a vector potential method. We
also use the moving-puncture gauge conditions [15,16]. To
our knowledge, SphericalNR is the first framework
solving the coupled BSSN/fCCZ4 and GRMHD equations
in three-dimensional spherical coordinate grids without
symmetry assumptions.

The paper is organized as follows: In Sec. II, we describe
the evolution equations for both spacetime and GRMHD in
spherical coordinates. In Sec. III, we describe the imple-
mentation of the GRMHD reference-metric evolution
formalism in the Einstein Toolkit [82]. Code tests
are presented in Sec. IV. Finally, Sec. V contains con-
clusions and discussions. Throughout this paper and in the
code implementation we use geometrized and rationalized
(geometrized Heaviside-Lorentz) units in which ¢ = G =
Mg =€y = pug =1, where ¢, G, My, €y, and p are the
speed of light, gravitational constant, solar mass, vacuum
permittivity, and vacuum permeability, respectively. Latin
indices denote spatial indices, running from 1 to 3; Greek
indices denote spacetime indices, running from 0 to 3 (0 is
the time coordinate); and the Einstein summation conven-
tion is used.

II. BASIC EQUATIONS: DYNAMICAL
SPACETIME AND GRMHD EQUATIONS
IN SPHERICAL COORDINATES

A. Spacetime evolution in spherical coordinates

We dynamically evolve the gravitational fields using a
numerical relativity framework in spherical coordinates
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implemented using the Einstein Toolkit infrastructure
(see [81]). Our framework builds upon a reference-metric
formulation [70-72] of the Baumgarte-Shapiro-Shibata-
Nakamura (BSSN) formalism [66,67,83]. We appropriately
scale out singular factors from components of tensors so that,
for nonsingular spacetimes, all numerically evolved varia-
bles remain regular even at the origin and on the polar axis
(see [73,75]). In this paper, we extend the spacetime
evolution code described in [81] to include the fCCZ4
formalism (see [76]), which applies the same reference-
metric formalism and rescaling approach to the CCZ4
evolution equations [79,84]. This represents a conformal
reformulation of the constraint-damped Z4 system (see
[77,85,86]; see also [78] for an alternative conformal
reformulation of Z4). We have now implemented the
fCCZA4 formalism in the SphericalNR framework, and
therefore provide, as a reference, key equations below.

The constraint-damped Z4 system [77,85,86] replaces
Einstein’s equations by

Ky
R,+V,2,+V,2Z, — o n,2,+n,2,

1
- (1 + KZ)g;wn/lZﬂ =38 (T/w - 59/41/71) s (1)

where R, is the (spacetime) Ricci tensor, g, the spacetime
metric, V, its associated covariant derivative, T, the stress-
energy tensor, T = ¢*T,, its trace, Z, a four-vector of
constraints, and « the lapse function. We will shortly
associate the timelike vector n# with the normal on spatial
slices. Finally, x; (units of inverse length) and x, (dimen-
sionless) are two damping coefficients, and all nonconstant
constraint related modes are damped when x; > 0 and
Ky > —1 [86].

Following the discussion in [84] regarding the stability
of the evolution system in the presence of black holes (BH),
we have redefined x; — k;/a. The Z4 system reduces to
the Einstein equations when the constraint vector Z,
vanishes.

We start with a 3 4 1 split of spacetime (see [87]) and
foliate the four-dimensional spacetime with a set of
nonintersecting spacelike hypersurfaces X. We denote
the future-pointing, timelike normal on X as n,, and refer
to the projection of the spacetime metric g, onto X as the
spatial metric

Yw = Guv + n,n,. (2)

Expressing the normal vector in terms of a lapse function a
and a shift vector ',

S I

or

n, = (-a,0), (4)
we may write the four-dimensional line element as

ds* = g, dx"dx"
= —a?di? +y;;(dx' + pldr)(dx) + pidr)  (5)

and the spacetime metric g, as

—a +pp B >
w . 6
9 < Bi Vij ( )

As in the BSSN formalism, we conformally rescale the
spatial metric according to

7ij = ey, (7)

where 7;; is the conformally related metric and e? the
conformal factor. The latter can be written as

e = (r/7)'?, (8)

where y and 7 are the determinants of the physical and
conformally related metric, respectively. We will assume
that

6t7 = 07 (9)

meaning that ¥ remains equal to its initial value throughout
the evolution. This choice, referred to as the “Lagrangian”
choice in [71], simplifies some expressions in particular in
the context of the GRMHD evolution, as explained below.
We also rescale the trace-free part of the extrinsic curvature
according to

_ 1
Aj=e* <Kij_§7in)s (10)

where K;; is the physical extrinsic curvature and K =
YUK its trace.

The central idea of the reference-metric formalism' is to
express the conformally related metric as the sum of a

background metric 7;; and deviations h;; (which need not to
be small),2

1Splitting the metric into background and departures from the
background (which need not to be small) is also done in bimetric
formalisms [88-94] in general relativity, in which reference
metrics are employed to give physical meaning to pseudotensors
in curvilinear coordinates. We emphasize that we do not consider
extensions of general relativity here; rather, we use the reference
metric only as a convenient approach to express Einstein’s
equations (see also [68,69,95,96]).

Strictly speaking, it is sufficient to introduce a reference
connection only (e.g., [71]), but it is convenient to assume that
this connection is associated with a reference metric.
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Yij = Vij + hij. (11)

For our purposes, it is particularly convenient to choose as
the reference metric the flat metric in spherical coordinates,

1 0 0
=10 r 0 ) (12)
0 0 r%sin%@

Another key ingredient is evolving vector and tensor
components in the orthonormal basis with respect to 7;;
instead of components in the spherical coordinate basis. To

this end, we introduce a set of basis vectors éi{k} that are

orthonormal with respect to the background metric 7;;,
N (k) A {1
7 = Syelell. (13)

Since 7;; is diagonal, the orthonormal vector basis tetrad
and its inverse are given by

él{k} = diag(1, r, rsin@), (14)
&, = diag(1,1/r,1/(rsin0)), (15)

where we have adopted a notation involving plain Latin and
Latin indices surrounded with curly braces: the components
of a tensor T in the standard coordinate basis will be
denoted using the former, while the tensor components in
the background orthonormal basis will be denoted by the
latter, respectively. In this notation, we may write the
deviation tensor h;; as

h..

Ly

=eel gy, (16)
and similarly write 4;; as’
Ay =eMel" A (17)

While we will write most equations in terms of coordinate
components (i.e., indices without curly braces), the code
uses components in the orthogonal basis (i.e., with curly
indices) as dynamical variables.

As in the original BSSN formalism, we introduce
conformal connection functions A’ as independent varia-
bles. In the context of the reference-metric formalism, A’
satisfy the initial constraint

Al — AT =0, (18)

3This is a novel notation since, in standard references, different
symbols are used for rescaled quantities. For instance, in [73],
the pairs {h;;, hyiyy}s {Aij» Ay} are denoted as {e;;, Ay},

{A;j. a;;}, respectively.

where
AT = ;7/"‘Al"j.k (19)
and
Ari, =T -1, (20)
Contrary to the Christoffel symbols themselves, differences

between Christoffel symbols transform as rank-3 tensors.
We compute the AL, from

AT

k= "D+ Diji — Diy )

I

N = N =

I

HDjihy + Dihyy — Dihj), (21)

where @,- is the covariant derivative associated with the
reference metric ;; and where we have used D;7;;, = 0 in
the second equality. Derivatives of coordinate components

of tensors are evaluated by using the chain rule to

analytically take derivatives of the basis vectors él{k}, while

the orthonormal components are finite differenced numeri-
cally in the code, e.g.,

Orhij = éjl}é,{m}akh{z}{m} + h{l}{m}ak(éz{l}éjm}>' (22)

Similar to our treatment of the metric and extrinsic
curvature, we write

Al
Ay (23)
A9}/ (rsin6)

A = é’{j} AU =

and evolve the orthonormal components At} in our code.

One of the attractive features of the reference-metric
formalism is that all quantities, including the conformal
connection functions A’, transform as tensor densities of
weight zero” (see [71]).

We now extend the above formalism to the Z4 formu-
lation, following [76]. We start with a 3 4+ 1 decomposition
of the constraint vector Zﬂ,

Z, =9 2, =72, -nn"Z, (24)

*A tensor density of weight w acquires a power J" in a
coordinate transformation, where J = det |J ;/| is the determinant
of the Jacobian matrix of the coordinate transformation J jf = ‘éix,,
For example, a rank (2, 0) tensor density of weight w transforms
as 777 = JvJi JI T Tensor densities of weight zero therefore
transform as ordinary (or absolute) tensors with familiar coor-
dinate transformations.
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and define
=-n 2" =aZ", (25)
= 7’}13/1- (26)

In Eq. (29) below, we will absorb the spatial parts Z; into
the connection functions A’, but we will evolve © as a new
independent variable.

In order to write the evolution equations of the f{CCZ4
system, we first define a new tensor

RZ =R+ D,Z; + D, Z,. (27)

where D; is the covariant derivative associated with the
spatial metric y,; and R;; is the Ricci tensor associated with
the conformal metric 7;;,

_ 1 o oo
Rij = _Eyleleyij + ]/k(ipj>AFk + AFkAF(ij)k

+7H(2AT7 AT ) + ATHAT, ), (28)

where parentheses around indices indicate the symmetric
part of a tensor 7';; E%(T,»j + T ;). We next define new
conformal connection functions according to

A= A"+ 277, (29)

where we have used a tilde in order to distinguish these
objects from A’. We then have

o1 - ,
VA 3 e (Al — ATY). (30)

With these definitions, we may now write R7;" as

_ 1o {
RY' = — EYkIDkDZYij + 74Dy (A = 2e4ZF)

+ 7H(2AT] AT, + ATJAT, ). (31)

Combining the terms 7,,D; (-2¢*/Z*) and D,Z; + D;Z,,

it can be seen that all partial derivatives 9;Z; in RZ4 cancel
out exactly, meaning that R,-Zj4 reduces to

RZ} = Rij = 8Z;:0¢p + 2r,i(Th, = T5,)Z". (32)
With the above, and defining 9y = 9, — L, where Ly is the
Lie derivative along the shift ', we arrive at the following

set of coordinate basis evolution equations for the fCCZ4
system:

—20A; Ak + aA (K - 20)
—I—e‘4‘7’[—2aD,-D i+ 4aDipD b
+42_)(,a@1>¢ - ,Z_)iﬁja
+a(Rf = 8xS,;)|™

00K = e~ *[a(R* — 8D'D;p — 8D*¢p)
—(2D'aD;¢ + D*a)] + a(K?* — 20K)
=3k (1 + )0 + 4ra(S - 3E),

00® = Sale™* (R* — 8D'¢D;p — 8D*¢p)
—AUA; +3K* - 20K]

—Z'9;a — k(2 + Kk,)®© — 8zakE,

QA = DDy + FADp + DDy
_2Af’<(5§.6ka - 60(5;8,(45 - aAFj.k)
~4a70,K + 27 (00,0 - ©0;a) — 1aK e Z!

—2K'1 €4¢Zi + 2K3€4¢ (% Zif)kﬂk - Zkf)kﬂi>

—~167a7'ls;.

Here []™ denotes the trace-free part of a tensor
Tif =T;; —4y;T}, and k3 is a constant that determines
the covariance of the equations, in particular k3 = 1 (the
choice adopted for all simulations presented in this work),
corresponds to full covariance [79]. Unlike in [76], we have
absorbed all covariant derivatives of Z' in Rle“, meaning
that no derivatives of the constraint vector appear in the
above equations.

During the time evolution, we continuously enforce
0,7 =0, as well as the constraint Af = 0. We have also
implemented the y = ¢* [15] and W = 2% [97] variants of
the conformal factor evolution, resulting in the following
evolution equations:

2 2
Doy = — —ﬂ? B+ 1K, (33)
1 - 1
QW = =3 WD+ 3 WaK. (34)

The choice between these variants can be made at
runtime.

In order to close the evolution system, we need to choose
a gauge. For all dynamical spacetime evolution simulations
presented in this paper, we adopt the “standard gauge,” or
“moving-puncture gauge,” meaning 1 + log slicing,

d,a = =2(K —20) + 0, (35)
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for the lapse (see [98]) and a 1"—driver,5
0.f' = B + p'Dp, (36)

d,B! (0, = pID;AT) + pD;B — B (37)

-lklw

for the shift (see [99]). Here # is a damping parameter with
dimensions of inverse length, and we have adopted the
covariant form of [71]. In the code, the inclusion of shift
advection terms can be turned off by the user at runtime.

As noted above, the actual evolved tensors in the code
are not in the coordinate basis {7;;, A;;, A", p'. B' = '}, but
rather the orthonormal basis {h{,}{J},A{i}{j},A{i},ﬂ{i},
Blit = ﬁ{i}}, respectively. The remaining evolved quan-
tities {a, K, ®, ¢} are scalars and thus do not depend on
choice of basis.

Finally, the matter sources in the spacetime evolution
equations are given by projections of the stress-energy
tensor, namely,

1 ) .
E=n'n"T, =7 (T, =28'T,; +pPT;). (38)
1 1 .
Si=—ryun, " =—=T; +—p'T, (39)
a a
Sij = ViMijT”"’ (40)

While we have only presented the fCCZ4 equations above,
the user can select to evolve the BSSN system at runtime
as well.

B. GRMHD in the reference-metric formalism

In this section, we review the reference-metric formalism
for GRHD presented in [74,75] and extend it to GRMHD,
using a vector potential evolution scheme to guarantee the
absence of magnetic monopoles.

1. Conservation laws in four-dimensional form

The evolution of a magnetized fluid is governed by the
conservation of baryon number

V,(pu") =0, (42)

which results in the continuity equation, and the conserva-
tion of energy-momentum

>The I-driver owes its name to the appearance of the
conformal connection functions IV introduced in [67]. While
we use A’ here, rather than T, we still use the name I'-driver for
this gauge condition.

V.1 =V, (Thaer + Tm) = 0 (43)
which results in the (relativistic) Euler equation and the
conservation of total energy. Assuming a perfect fluid, the
fluid stress-energy tensor Thy, e iS given by

T//rg/atler = phullub + Pg", (44)
where p is the rest-mass density, P the fluid pressure, & =
1 + e+ P/p the specific enthalpy, € the internal energy
density, and u* the fluid four-velocity, respectively.

In terms of the Faraday tensor F*, the EM stress-energy
tensor is’

1
Thn = FUF = L g FF,. (45)

We next decompose the Faraday tensor F* as

P = UMEY,) = UPEfy) + e U;Byu). (46
where
MK = _1_ [/,tl//lK'], (47)
NaT

and where [uvAx] is the totally antisymmetric Levi-Civita
symbol (= + (—)1 for even (odd) permutations of [0123],
and 0 if any two indices are repeated). Here E’(‘U) and B}(tU)

are the electric and magnetic fields measured by an
observer with generic four-velocity U¥,

Eﬂ

U) = FMDUI/’ B,

1
) =3¢ UF . (48)

B;)th E’(lu) and B’(’U> are orthogonal to U*, i.e., E’(‘U)
ByU, = 0.

In the following, we focus on two observers of particular
interest, namely observers comoving with the fluid (i.e.,
with four-velocity U* = u*) and normal observers (with
four-velocity U* = n*). Following convention, we denote
the fields observed by the former with E | and B! ., but the

(u) (u)
latter simply with E¥ = E’(‘ and B* = B!

(n)’
In the ideal MHD limit, we assume that the fluid acts as a
perfect conductor, meaning that the electric field observed

by an observer comoving with the fluid vanishes,

U, =

®The Heaviside-Lorentz (HL) units we adopt in this work are
rationalized, as no explicit factors of 4z appear in the Maxwell
equations in these units. Electric and magnetic fields in HL and
Gauss units are therefore related by a factor of v/4z: E

VATl ) Blgus) = VAT,
units, the EM stress-energy tensor is defined as Thy =
ﬁ(FMF” - lgle FM)[Gauss]

[Gauss| —

Consequently, in Gauss
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B!, = Fru, = 0. (49)

Thus, in this approximation F*¥, which generally depends
on both electric and magnetic fields, can be expressed in
terms of magnetic fields alone,

P = emixy, g (50)

and *F", the dual of the Faraday tensor, as

1
P =S e Fy = u'Bl, — u B, (51)

In the ideal MHD limit, we can also write the magnetic field
B?u) as a projection of B* along the fluid four-velocity u*,

1
B, = PuB". (52)

where P*, = ¢, + u"u, and where we have introduced the
Lorentz factor W between the fluid and normal observers,
= —n,u" = au'. Inserting (52) into (51) yields

1
P = — (u"BY — u’B*). 53
o (B = B (53)
Introducing the abbreviation’

b* = B

(w’ (54)

we can write the electromagnetic stress-energy tensor as

1
T’éll/\/l = <u”u” + 59‘”) b2 - bﬂby, (55)
where b? = b+ b,;, so that the total stress-energy tensor 7#*
becomes
™" = ph*utu* 4+ P*g" — b*b". (56)

Here we have defined h7* = 1+e¢+ (P +b*)/p as the
magnetically modified specific enthalpy and P* =
P + b?/2 as the magnetically modified isotropic pressure.
Finally, the evolution of the magnetic field is governed by
the homogeneous Maxwell equations

V,(*F*) = 0. (57)

7Similarly, to differences in the EM stress-energy tensor,
treatments that adopt Gauss units ([22,29,36,38,41]) rather than
Lorentz-Heaviside units ([21,23-28,30-35,37,39,40,42-45])
often use the definition b* = B{, /v/4x instead of (54). The
resulting fields b, however, are again identical in both treat-
ments, so that expressions for the stress-energy tensor, for
example, take the same from when written in terms of b*;
see (55).

2. The 3+1 GRMHD equations in the
reference-metric formalism

We now recast the above conservation laws using both a
3 + 1 split and a reference-metric approach. The result will
be a set of equations that is suitable for numerical integration
in spherical coordinates and that meshes well with the form
of the field equations as presented in Sec. Il A. The fluid
equations have been previously derived in [74,75], and we
will extend the formalism to the GRMHD equations.

The key idea is to repeatedly use identities for diver-
gences (see, e.g., Problem 7.7 in [100]). For the continuity
equation (42), for example, we use

1
VvV =—=0,(VIg|V") (58)
|l
to arrive at
0=V, (pu) = ——3,(y/=gout)
= v,pu )= v\ —gpu
NS
1 .
= ——(0,(v/=gpu') + 0;(\/—gpu'
= 0,(eV7pW) + 0i(ae® VipWe').  (59)
Here we have defined
N u
= iy 7 " 60
V=gt = n (60)
as the fluid three-velocity and
» ) ﬂi ui
=g 2 7 1
v=v-T =y (61)

as the “advection velocity.” We have also written the square
root of the determinant of the spacetime metric /=g as

V=9 =a\fy = ae®\/7. (62)

Equation (59) is the continuity equation in a form that is
often referred to as the “Valencia” form of the equations
(see [101]). This version of the equations is well suited for
simulations in Cartesian coordinates, but in curvilinear
coordinates the vanishing of the determinant ¥ may cause
numerical problems. Following [74], we apply the identity
(58) again, and convert the partial derivatives 0J; to
covariant derivatives D; associated with the background
(reference) metric 7; j,S

0= 0,(e*\/7/7pW) + Di(ae®\/7/7pWD').  (63)

*We will assume throughout that the reference metric #;; is
independent of time.
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Note that the combination 7/§ remains finite for regular
spacetimes. We now define the conserved density D,

D = e\ /7]7pW (64)
and the conserved density flux fp,

(fp)' = aDv' (65)

to write the continuity equation in the form
9.0 +Di(fp)' =0. (66)
We note that a similar strategy is followed in the CoCoNuT
code, without explicitly mentioning the reference metric
(see, e.g., [102]). For reasons that will become apparent in

Sec. II D below, we will implement the equation numeri-
cally as

D+ 0;(fp)' = _(fD)if{j' (67)

We proceed similarly for the conservation of stress
energy (43), except that we now use the identity

1
Vidl

twice. The spatial projection of (43) then yields the
relativistic Euler equation

ViT;, = 0,(V191Ty) = T5I, (68)

0,8 + f)i(fS)j' = (s3); (69)
or
0,S;+ 0i(fs)s = (ss); = ()Tl + (Fs)il. (70)
where we have defined the conserved momentum
S; = 66‘/’\/77/_}7T; = e6¢\/77/_}7(ph*W21)j —ab’;), (71)
the conserved momentum density fluxes
(fs)i=a(S;0' +e*\/7/7P*8: - e*\/7/7b,BI /W) (72)
and where the source term is given by
(s5); = ae®\/7/7(=T%ada + TD
b3 (T £ 219 + THD ) (73)

(see [74] for a detailed derivation). The terms D 7k can be
evaluated from

Divix = " (470,90 + D7), (74)
where ZA)j;'/ik = ZA)jhik are computed already in (21).
Projecting the conservation of stress energy (43) along
n, and subtracting the continuity equation (42) yields

V,(n,T" — pu*) = T"V,n,,. (75)

We again apply the identity (58) twice to arrive at the
energy equation

Oz +Dy(f.) =5 (76)

or

07+ 0; (fr)i =8 (ff)lf{j’ (77)

where we have defined 7z as the total conserved energy
density subtracting the conserved density D/’

t=e\/7/7(ph*W? — P* — (ab®)?) =D,  (78)

the conserved energy flux

(f) =a(zv +e5\/7 /7P v —ae®\/7/7b°B /W) (79)

and where the source term is given by [74]

se = ae®\[7/P(TO(PPK,; = fOa)
+ TYQ2pIK;; - dia) + TVK ;). (80)

In the above equations, both B’ and b* = B* " make an

appearance. The two fields are related by (52), so that we
can always compute B’(lu) from B*. Specifically, we contract

(52) with n, to obtain

WBiv;
0 = L, 81
’ 1)

while a spatial projection of (52) yields

. B o
b = o+ W(Bv)¥. (82)

We also have

The motivation to subtract the continuity equation from the
projection of the stress energy conservation along n, (75) was to
arrive at an evolution for 7: it correctly recovers the Newtonian
limit and is numerically more accurate than evolving the total
conserved energy density (see, e.g., [23,103,104]).
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BB,

2 _
b—W2

+ (B'v;)%. (83)

We now adopt the same approach to rewrite Maxwell’s
equations (57). Since the Faraday tensor (as well as its dual)
is antisymmetric, we now use the identity

1
Vgl

for antisymmetric tensors A**. Inserting (53) into (57) and
using (84), we obtain

V, AN = 9,(V/1g14") (84)

9,(\/yB*) = 0; <m“{}7(u”8i - u’B”)). (85)

The temporal component of this equation results in the
solenoidal constraint, stating the absence of magnetic
monopoles,

0;(\/7B") = \/7D;(¢*\/7/7B") = 0. (86)
We now define

B =e5\/y/7B', (87)

so that (86) reduces to
DB = 0. (88)

For the spatial part of (85), we use (84) again to obtain the
induction equation in 3 + 1 form

0,8/ = Di(a(v/B' — 1B)). (89)

This form of the solenoidal constraint and continuity
equation is very similar to the one presented in [26,105],
but solved there using a constraint transport approach,
while we evolve the vector potential of the magnetic field in
our framework instead.

3. Vector potential evolution equations

Numerically evolving the induction equation (89)
directly is generally problematic, since accumulating
numerical error will typically result in the magnetic field
having nonvanishing divergence. The resulting growth of
spurious magnetic monopoles has severe consequences of
the evolution, since it will result in nonphysical fluid
acceleration in the direction of the magnetic field (see,
e.g., [106]).

Various approaches have been implemented to avoid this
growth of magnetic monopoles in (GR)MHD simulations

(see [107] for a comprehensive overview). The three most
commonly adopted approaches in GRMHD codes are
(i) hyperbolic divergence cleaning via a generalized
Lagrange multiplier [108]; (ii) constrained transport (CT)
[109] schemes in which the magnetic field is updated in
such a way that the divergence (measured in a finite-
difference stencil that is compatible with the base CT
scheme) remains unchanged to round off during the
evolution; and (iii) evolving not the magnetic field directly
but rather its vector potential and taking the curl of the
vector potential in order to compute the magnetic field
[22,25,34]. As the divergence of the curl of a vector
field is identically zero, the latter approach guarantees a
solenoidal magnetic field to round-off error during the
evolution.

In developing the GRMHD evolution framework in
spherical coordinates, we opted to implement the latter,
namely evolving the vector potential in a cell-centered
fashion. We choose a vector-potential formulation for four
reasons: (1) the resulting equations can be easily incorpo-
rated into our reference-metric formalism; (2) contrary to
the hyperbolic divergence cleaning, the solenoidal con-
straint is automatically fulfilled to machine precision;
(3) there is no need to extend our internal parity boundary
conditions to deal with the staggered magnetic fields used
in CT schemes (though see the CoCoNuT [26,105] and
Aenus [110] codes for implementations of staggered CT
schemes in spherical coordinates); and (4) it has recently
been shown to be strongly hyperbolic [111].

Imposing the ideal MHD limit again, and taking a
projection of Eq. (49) with the spatial metric (2) shows
that the electric and magnetic field as observed by the
normal observer are related by

-1
T 90
W € Uyn; by ( )

Defining the three-dimensional antisymmetric tensor as

— K
6;41//1 =n elqw/lv

or e = p e (91)
so that €;;, = \/7[ijk], and we may rewrite (90) as
Ei = —eiij_JjBk, (92)

where we have used ¢,; = —ﬁkeikj (see Eq. (32) in [112]).
We now introduce a four-vector potential

A, =@n, +A, (93)

where @ is the electromagnetic scalar potential and A, is
purely spatial, A,n* =0, so that A, = f'A; and A, =
—a® + B'A;. Writing the Faraday tensor in terms of A,
yields
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F,=0,A-0,A =nE,+nE,+e,,B" (94)
Contracting this with e yields
e (9,A, — 9,A,) = ¢"¢,, B = 2B, (95)
or
Bi = €ijkajAk. (96)
Inserting the definition (87) then results in
Bl = &iik9,A; = e7FD A, (97)
where &, = \/7[ijk] and &% = §71/2[i jk].

Finally, we may evaluate a mixed time-space component
of (94) to find

0,A; = —aE; + ¢,,;B/ — D;(a® - pIA;).  (98)

Inserting (92) and expressing the result in terms of B
result in

O,A; = aé;; v/ B* — Di(ad — pA)). (99)

In our code, we evolve the spatial components of the vector
potential A;, and compute, at each time step, the conserved
magnetic field from (97).
We evolve the vector potential in a “generalized Lorenz
gauge” [113],
V, Al = —(D, (100)
where { is a damping parameter with dimensions of inverse

length. As before, we use the identity (58) twice to rewrite
this as

0,(e50\/7/7®) + Di(ae®\/7/7A1 — &\ /7 /75D

= —Cae®\/7/7®. (101)
We now define
b= m(b (102)
and
= ae®\/7/7A" - pid (103)
and evolve (101) as
0,0 +0i(fo) = ~Lad — (fo)T].  (104)

In all applications shown in this paper, we followed [29]
and chose ¢ = 1.5/At,'" where At is the global time step of
our numerical evolution.

We note that our algorithm is not staggered, i.e., the
vector potential A; lives at the cell centers as do all other
variables. In order to update the magnetic field, we
calculate the curl of A; (97), where we apply the product
rule and take derivatives of the scale factors analytically, as
with all other fields. Initial data for magnetic fields are
generated in the same way, namely by taking the curl of a
prescribed initial vector potential A;.

4. Summary

In summary, the GRMHD evolution system in the
reference-metric formalism is composed of the following
conserved quantities:

D= e6¢\/;7/_77pW,

S; = e\/7/7(ph*W?v; — ab®b;),

r = e5\/7/7(ph*W? — P* — (ab®)?) - D,
Bi =%\ /7]7BI.

where we note that, unlike the corresponding conserved
variables of the Valencia formulation, these are true scalars
and vectors (tensor densities of weight zero). The GRMHD
evolution equations in coordinate basis are:

105
106

107

(105)
(106)
(107)
(108)

108

9D +0;(fp)' = (fD)lFl]]’
0,8; + 0i(fs)i = (s5); = (fs)il Ol + (fs)il uv
O +0,(f:) = 5. = (f)'T,
9,4, = ,jkva —Dy(ad — piA)),
0, +0i(fo) = ~Lad — (fo)'TY.
B = &0 ,A,.

Before proceeding with the description of the GRMHD
evolution equations expressed in the orthonormal basis
with respect to the spherical background metric, we note
that the geometric source terms introduced by rewriting the
equations in the reference-metric formalism break the

"Like the I'-driving shift parameter #, ¢ has units of 1/¢ (or
equivalently 1/M in G = ¢ = 1 units). Thus, the value of ( is
constrained by the Courant-Friedrichs-Lewy (CFL) condition (in
precisely the same way as described by [114] for 7). However,
unlike #, we prefer the damping provided by ¢ > 0 to be as strong
as possible everywhere. Our choice { = 1.5/At is quite strong,

but should be stable for CFL factors of z% or smaller, consistent

with the required CFL factors of % or smaller when solving the
BSSN/CCZ4 equations. As a corollary, when convergence testing
¢ = 1.5/ At must correspond to the lowest-resolution simulations

At to ensure the CFL condition is not violated.
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round-off level conservation of baryon number when
evolving D in a finite volume scheme. This is due to the
fact that the resulting finite volume scheme is not well-
balanced [115] unless the geometric source terms are
evaluated in such a way as to numerically exactly cancel
the fluxes through the cell surface (see [33] for develop-
ments toward well-balanced schemes in GRMHD; an
extension that is beyond the scope of this work). This
nonconservation is a drawback of the scheme. For the
conserved momenta S; and conserved energy 7z, this
problem is less severe, as those quantities are only strictly
conserved in the presence of spacetime symmetries [116],
due to the appearance of (spacetime)-geometric source
terms. In a sense, both problems are similar: both non-
conservations arise from rewriting covariant derivatives in
terms of partial derivatives which are suitable for the
numerical integration of the resulting evolution equations.

When numerically evolving the Euler equation in spherical
coordinates, there is nonconservation of momentum in the @
coordinate, which is due to the presence of the “naked
pressure term’ e("ﬁ\/ngP*é;? which causes the breaking of

zero-force equilibria. This is due to the 8 dependence of the
spherical background metric introduces a pressure gradient
even in the absence of forces, as the finite volume scheme is
not well balanced. One key advantage of our reference-metric
approach is its automatic conservation of  momentum due to
the absence of the reference-metric determinant. We note that
there are various other strategies to deal with this problem in
spherical coordinates; see, e.g., [63,117,118]. The ¢ coor-
dinate is not affected by this, and angular momentum is
therefore identically conserved in spherical coordinates.

C. Equations in orthonormal basis of spherical
background metric

Before we continue to describe the implementation of the
evolution system in a finite volume method in Sec. II D
below, we first make the following choice for the initial
determinant of the conformally related metric:

y=7 att=0. (109)
Moreover, we adopt the “Lagrangian choice” (9), 0,7 =0
meaning that we have y = 7 at all times (as noted in Sec. IT A,
this is continuously enforced in the spacetime evolution).

Accordingly, the ratio 7/ is unity and our definitions of the
GRMHD variables therefore reduce to

D = e5pW, (110)
S; = e (ph*W?v; — ab®b;), (111)

= % (ph*W? — P* — (ab®)?) — D, (112)
B = 5B, (113)

Using the orthonormal basis with respect to the background
metric defined above (13), we write the continuity equation as

0,0 + 0,8}, (114)

3 (o)) = ~(fp)'TY,
Note that the vector (fp) is expressed in both bases in
Eq. (114). We evaluate the flux divergence by using the
product rule and analytically differentiating the scale factors,

0@, (Fp) ) = (0,80, (fp) ) 481, 0,(fp) . (115)
so that the continuity equation is given by
0D +&,0:(fp)\7 == (fp) T} (8:€],))(fp). (116)

The momentum equation similarly becomes

0,8 sy +eel ai((f5)F)

= —0,&el ) ()l = (£ + (ol + (s9),:
(117)

Before we write out the rest of the GRMHD equations, we
note that the diagonality of the spherical background metric
allows us to simplify the notation in expressions containing
the basis elements. For instance, in expressions such as

0,(€ eli }S{ 1), € { ) = 0if i # j, which leads to element-wise
muluphcatlon of vector and tensor components in the
orthonormal basis and the basis elements. We could therefore
write éj{j }3’{ j1 Where the summation convention does not
apply on repeated coordinate (j) and orthonormal ({i})
indices, but this can lead to significant confusion when
interpreting equations. Instead, we introduce a new notation
defining the following vectors and matrices of rescale factors
TAQ{,-} (corresponding to the scale factors &; of the reference
metric):

1

Ri=| r | (118)
rsind

R =1/Ry. (119)

Ry = Rig Ry (120)

RH = RUR;. (121)

As explained above, the components of the orthonormal
basis form a diagonal matrix, and the rescaling amounts to
element-wise multiplication of vector and tensor components
with the corresponding vectors and matrices of rescaling
factors (essentially computing the Hadamard product). In
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order to write this in a notation that can be used with the

summation convention that we use throughout, we define the

following symbols that will be used to express coordinate

vectors and tensors in the orthonormal basis with respect
to ]71' ]

_ [ =i=k

{’ HKY 0 otherwise.

{HK}

(122)

Note that o{ k) and o; are not tensors and that the

indices in both are not raised and lowered by the metric. In
addition, indices of the two ¢ matrices can be contracted with
both coordinate and orthonormal indices (i.e., indices sur-
rounded by curly braces). As an example of using this
notation for vectors and tensors, the coordinate three-velocity
is written as

i ai iy i {it,{k
V= e{j}v{f} = a{j}{k}R Itk (123)
and the coordinate conformally related metric as
7 = &7 (g0 + hn)
k{m IHn
= ol IR LR By + ). (124)

In this notation, the continuity, momentum, and energy
equations are written as

D + ot o RUND,(f)

ol iy (DR (£) 1,

{ }{k}
_<fD) 'ij - (125)

{k}{z}‘sz 10, ((fs){l} )

_ {m}{n} {&} {1
= [_U{k}{l}aq (fS){m}(aiR{n}>

= (f)iTh + (F)illy + (ss)q]g‘{?j}{p}fg{p}’

aS{]}-f—G

(126)
Oyt + dij}{k}ﬁ{j} 0;(f)
it Pl k
=(f) T = oy 0y QRN (£ + 5.
Noting that \/FRRIZRI?Y = 1, the evolution equa-

tion for the vector potential takes a particularly simple form
in our notation

€ (127)

8,A{,»} = _E{i} — 0 7%{"}8,(0@ —ﬁ{j}A{j}>. (128)

!
{iH{k}

The evolution equation of the EM scalar potential is
given by

RO, (fo)H
(fo)T) - o

8<I>—|—6{ k)

= —é’atb - (8i7%{j})(fd>){k}’ (129)

(HK

and finally, the conserved rescaled magnetic field is
calculated from

B{I} = Gji}{m}’f?/{m}é‘ljkajAk
i s Anj IH{m >
— 6,{1 }{q}R{q}é‘ /kal‘g H }(A{m}ajR{l}

+ R 0iA (my)- (130)
Introducing the following generalized sources:
Qp = —(fD)if'{j _Uij}{k}(aiﬁ"{j})(fD){k}’ (131)
— {k} {1
(Qs){j} =[-0o {k}{z}"q (fs>{m}(8 R{n})
= (fs)ille+ )iy + (s5)glof RIS
(132)
= _(fr>if{j _Gij}{k} (alﬁ{j})(f‘r){k} +ST’ (133)
(Qu)y = —Egiy — 0y 1y R 01 (a® - piA)), (134)
Qo =—Lad—(fo) 17— 0{;) 1y (ORV) (fo) . (135)

we can write the reference-metric GRMHD evolution
system in the following compact form suitable for the
integration in a finite volume scheme:

9D + 0'1{ ‘}{k}fz{j}a‘(fz)){k} =Qp,

I
081y + oy )0 {,} R™ 0, ((fs)}n}}) = (Qy);,
{u
815{1‘} + G{k}{l} ai((fs){j}}) = (QS){]‘},

ot + Gf{j}{k}f?’{j}ai(fr){k} = Q.

DAy = (Q4) gy
0,® + Gij}{k}fz{j}ai(fd)){k} = Qq,

B{l} = Gl{i}{m}’fz{m}é‘ljkajAk.

We note that in Cartesian coordinates these equations
reduce to the equations of the Valencia formulation in a
vector potential evolution. In the following section, we will
turn to the finite volume implementation of the evolution
system above, and in particular how to deal with the
rescaling factors multiplying divergences of fluxes in the
orthonormal basis with respect to the spherical background
metric.

D. Evolution equations in integral form

Systems of nonlinear hyperbolic partial differential
equations (PDEs) such as the GRMHD evolution system
presented above are characterized by the fact that smooth
initial data can develop discontinuities in the variables in
finite time. The reason the evolution system is written in
conservative form is that, in such a form, a numerical
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scheme that converges guarantees the correct Rankine-
Hugoniot conditions across discontinuities, which is called
the shock-capturing property. This property is at the heart
of high-resolution shock-capturing (HRSC) methods that
guarantee that the physics of the flow will be correctly
modeled by the numerical scheme in the presence of
discontinuities in the fluid variables.

Moreover, finite-difference schemes written in conser-
vation form guarantee that the convergence of the solution
(if it exists) will be to one of the weak solutions of the
system of PDEs [119]. Weak solutions are characterized by
being solutions to the integral form of the conservation
system. The set of all weak solutions is too large to be of
practical use, as many (numerically) admissible weak
solutions will not represent physically relevant solutions.
Thus, there is need for an additional (thermodynamic)
condition, the so-called entropy condition (namely that the
entropy of a fluid element must increase when crossing a
discontinuity) to guarantee that the numerical scheme will
converge to the physical solution. The convergence of the
numerical scheme is closely related to its stability, and one
useful measure is the rotal-variation stability (see, e.g.,
[120] for a detailed discussion).

Additionally, numerical schemes written in conservation
form guarantee that the conserved quantities of the system
are numerically conserved in the absence of sources or sinks.
This means that the change of the state vector U 4 in time in a
domain V that does not contain sources or sinks will be given
by the fluxes F', through the boundaries of the domain 9V,
a three-dimensional surface which is defined as the
standard-oriented hyper-parallelepiped consisting of two
spacelike surfaces {X,0, X0, 5,0} and the timelike surfaces
{Z4, Z i Ay} joining the two temporal slices together.

In a finite volume formulation, the evolution equations
are integrated over the cell volumes. For D, and similarly
the other fluid variables, this amounts to the following
integrals that give the update of a conserved quantity in a
given cell (see, e.g., [101,121]):

9,((D)AV) + /AV ol RV 0i(fp) W dPx = (Qp)AV.

(136)
Here d*x = drdfdgp, and we have defined

(D) ! / Dd’ (137)

= — x’

AV Jav

(Qp) = - / Qpd? (138)

D/ = Ay v pa~ X,
AV = ArAGA¢. (139)

Notice the absence of the spherical background metric
determinant +/7 in the above expressions, as all knowledge

about the spherical coordinates has been moved to the
background metric Christoffel symbols in the cell-centered
source term €2, together with our choice of 7 = ;7.” Up
until now, the integration of the evolution equations over
the cell volumes is exact. Approximating the value of D and
the source p inside the cell volumes as piecewise
constant, and being equal to their cell-centered value
(which is a second-order accurate approximation), we
obtain

1 . g
— i {ity. K By
9,(D) +AV/,6{J‘}{’<}RJ Oi(fp) W dPx = (Qp).  (140)

RYVG,(fp) B dx is not a true
divergence due to the appearance of the rescaling vector

The integral [, Uij}{k}

R}, and therefore we cannot use the divergence theorem
to convert the volume integral into a surface integral over
the cell surface to arrive at finite volume scheme. We

therefore make a third-order approximation, setting R to
be piecewise constant and equal to its value at the cell
center, denoted as (RI),, (where the subscript ijk
denotes a cell), so that the volume integral can then be
converted to a surface integral of the fluxes through the cell
faces,

(R,
ijk/al(fz)){n}d%

l]k {n}
{m}{n} AV / /b

where s; is the outward pointing unit normal to the cell
surface and dA the surface element. Therefore, all volume
integrals in a finite volume scheme in the reference-metric
formalism will be “Cartesian” in the sense that we integrate
over Cartesian volumes and surfaces in the spherical grid
using fluxes in the orthonormal basis with respect to 7;;. In
our second-order accurate approximation, the surface
integrals are given by

!
O {m}{n}

<R{r}>l r ijk —
e /5 rsan =t )

R{ . R{e} g
R{w} R{ )
llk {rﬂ} MY ik
f , (143

YA different strategy could have been followed here, namely,
the integration of Eq. (66) in spherical coordinates directly using
the generalized Stokes theorem. This approach is followed in the
CoCoNuT code; see [102,105] for details.
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where the symbols E; are defined as

Er = ((fo)i}h 0 = o)L 0 (144)
B0 = ()} ys = D)0 (145)
By = ((Fp)}7h s = D) )- (146)

We can then write the second-order accurate finite volume
evolution equation for D as

(R i

(RO)y (R
Ar S0+

ijk —
= =(Q
AO Aq) @ < D>

(147)

0,(D) +

B, +

and similar for the Euler and energy equation. The
evolution equations for the vector potential (128) and the
EM scalar potential (129) are treated differently: the cell-
centered electric field is calculated averaging the recon-
structed velocity and magnetic field at the surrounding cell
faces [see Eq. (148) below], and the divergence in the EM
scalar potential evolution equation is evaluated using finite
differences. This means that the time integration of the
conserved variables is given by the interface fluxes of
matter and energy momentum of the fluid, as well as the
(cell-centered) sources. One can therefore approximate
those numerical fluxes (which depend on the solution at
the cell interfaces) as the time-averaged fluxes across cell
interfaces during a time step. In general, the approximation
to the real solution on a grid with finite resolution will be a
piecewise continuous function, which means that the fluxes
can be obtained by solving local Riemann problems at cell
interfaces, an idea first described by Godunov [122].

Riemann problems are initial value problems with
discontinuities in the solution. During the evolution, a
discontinuity in the fluid variables decays into shock
waves, rarefaction waves, and contact discontinuities.
Shock waves move from the higher to lower density
regions, while rarefaction waves move in the opposite
direction. Contact discontinuities are characterized by a
discontinuity in the density, while both pressure and
velocity are constant across them. In order to solve the
Riemann problem, we need to obtain the spectrum (eigen-
values and eigenvectors) of the first-order system. The fluid
data at the cell interfaces needed to obtain the numerical
fluxes via the solution of local Riemann problems need to
be obtained from the cell averages. A wide variety of
higher-order cell-reconstruction methods are available in
the literature (see, e.g., [123]). Regardless of their spatial
order for smooth solutions, these reconstruction techniques
always reduce to first order in the presence of physical
shocks and some reconstruction schemes even reduce to
first order at local extrema of the fluid variables (such as the
central density of an NS, for instance).

While the choice of variables is crucial to obtain the
GRMHD evolution equations in conservative form, it is
usually the primitive variables that are reconstructed at the
cell interfaces. To do this, one needs a conservative-to-
primitive scheme, involving numerical root finding. Once
we have obtained the numerical fluxes via the solution of
local Riemann problems, we update the solution of the
conserved variables by one time step with the numerical
fluxes and the sources. This is usually done employing
high-order Runge-Kutta schemes [124].

From the structure of the equations in integral form, as
noted above, we see that they are Cartesian by virtue of
having written the conservation laws in the reference-metric
formalism. The second-order accuracy is achieved by
encoding all the geometric information about the underlying
coordinate system in the cell-centered geometric source
terms. Specifically, no care has to be taken to distinguish the
coordinate center and centroid of volume of the computa-
tional cells. In general curvilinear coordinates, this is not the
case, as replacing the average value of a cell quantity with a
point value is only second-order accurate if the point is
chosen to be the centroid of volume, not the coordinate
center [125,126]. To this end, the second-order accurate
prescription outlined could be applied to any existing
Cartesian finite volume code by calculating the appropriate
reference-metric source terms and incorporating them in the
time integration of the evolution equations.

In the following section, we describe the necessary
changes we performed to enable the use of spherical
coordinates via the GRMHD reference-metric formalism
presented above in GRHydro [28,127-129], a publicly
available GRMHD code that comes with the Einstein
Toolkit.

III. IMPLEMENTATION IN THE
EINSTEIN TOOLKIT

The Einstein Toolkit [82] is an open source code
suite for relativistic astrophysics simulations. It uses the
modular Cactus framework [130] (consisting of general
modules called “thorns”) and provides adaptive mesh
refinement via the Carpet driver [131-133]. In our
vacuum implementation of the BSSN equations [81], we
have detailed how we enabled the use of spherical
coordinates in the Einstein Toolkit, having supplied
our own spacetime evolution thorn.

Enabling spherical coordinates in GRHydro to arrive at a
GRMHD code in spherical coordinates in the Einstein
Toolkit amounted to supplying a different metric deter-
minant and the appropriate reference-metric source terms, so
the changes to the existing code are minimally invasive and
do not touch core algorithms of GRHydro. Perhaps the most
substantial change involved using the NRPy+ code [134,135]
to replace the Cartesian GRMHD source terms in GRHydro
with the generalized source terms (131)—(135). NRPy+
converts these expressions—written in human-readable,
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Einstein notation—into optimized C-code kernels, automati-
cally constructing finite-difference derivatives at arbitrary
order when needed. NRPy+ was also used to fully construct
the C-code kernels for Einstein’s equations written in both
BSSN (as described in [81]) and f{CCZ4 formalisms.

At the interface between the spacetime and GRMHD
evolution, the (physical) spacetime variables a, ', y; ;> and
K;; of the ADMBase thorn are passed to GRHydro. As
outlined above, rewriting the equations to evolve the
noncoordinate components of vectors and dividing every
/7 by /7 would amount to a great deal of rescaling and
unrescaling (both vector components and determinants) in
GRHydro. Instead, we follow a different route and pass the
noncoordinate basis metric y;y(;; = e44’(5{,-}{j} + i)
and shift g} as the ADMBase variables in substeps of the
method of lines integration. This means that | /dety;(;; =

% and raising and lowering indices of noncoordinate
vectors are achieved with the noncoordinate basis met-
ric vy =yl

As outlined above, given that the evolution equations in
integral form are Cartesian, the different reconstruction
methods that are available in GRHydro may be used
without modification. These include total variation dimin-
ishing (TVD) with minmod, superbee [136] and mono-
tonized central [137] limiters, the piecewise parabolic
method (PPM) [138] and its enhanced version that retains
higher order at smooth extrema [139,140], monotonicity-
preserving fifth order (MP5) reconstruction [141], essen-
tially nonoscillatory reconstruction [142], as well as
weighted  essentially  nonoscillatory  reconstruction
(WENO [143] and its variant WENO-Z [144]). Using
these reconstruction algorithms without modification
would have been impossible had the code been written
in spherical coordinates without the reference-metric for-
malism, as greater care must be taken when using these in
spherical ~coordinates, especially for higher-order
reconstruction methods (see, e.g., [126]). We use the
HLLE (Harten-Lax-van Leer-Einfeldt) approximate
Riemann solver [145,146] present in GRHydro, again
without any changes to its implementation to calculate
the numerical fluxes through cell faces.

In order to achieve magnetic flux conservation, the cell-
centered electric field Ey;) used in the update of the vector
potential is calculated as the average of the nonzero
magnetic fluxes given by the HLLE solver [107],

(E{l})i.j.k = _%(09{2}5{3} - 0‘”{3}8{2})i.j—5,k
_ % (@ BB = aw®IBR),
+ 41; (@B = B,
+ % (@ BE) — @l BOY),

and similarly for £,y and E(3,. As shown in [147,148], the
cell-centered vector potential method we employ is iden-
tical to evolving the induction equation directly with the so-
called flux-CD scheme [107], as the magnetic field is cell
centered and the curl of the gradient D;(a® — /A ;) in the
RHS of A; is zero.

To mitigate high-frequency oscillations in the cell-
centered vector potential evolution, we add Kreiss-Oliger
dissipation [149] to the RHSs of both A; and d [147,150].

One of the most delicate parts of GRMHD codes is the
recovery of the primitive variables, which usually requires
nonlinear inversion. GRHydro uses the conservative to
primitive routines scheme of [40]. Some of the most
problematic regimes for the inversion are in regions of
very high Lorentz factors and in magnetically dominated
plasmas, i.e., where b*/(2P) > 1. In those regions, the
inversion errors may become comparable to the truncation
error and result in larger errors causing the evolution to fail
eventually. The biggest problem is the violation of physical
constraints such as the positivity of p and P during the
recovery, as in this case the hyperbolicity of the evolution
equations breaks down [151]. As is customary in GRMHD
codes, we use a tenuous atmosphere, given that the
GRMHD evolution equations break down in true vacuum.
The atmosphere region is particularly difficult to handle, as
even very small magnetic fields can result in very large
ratios of magnetic to fluid pressure. We use the following
checks prior to primitive recovery:

(1) In cells where D < e%p,,.., reset the cell to atmos-
phere assuming a zero magnetic field (ignoring the
contribution of the magnetic field to 7) and skip the
primitive recovery. The magnetic field is fully
evolved in the atmosphere and always calculated
from the curl of the vector potential.

(2) Following [26], when a BH is present, in regions
where b?/(2P) is greater than a user-specified
threshold, we raise the above criterion to reset to
atmosphere, which avoids primitive inversion in
cells that are just above the atmosphere threshold.
Effectively, this results in a higher-density atmos-
phere, but in regions limited to high magnetic to
fluid pressure ratios, while allowing the use of a low-
density atmosphere in regions of small magnetic
fields. This is important as a denser atmosphere can
begin to affect the evolved physical system of
interest [152].

(3) Following [29], we check, after primitive recovery,
whether p, P, and W exceed user-specified limits,
and, if so, reset the primitives and then recalculate
the conservatives.

(4) Once an apparent horizon (AH) is found, we reset a
small region deep inside the AH to atmosphere. In
all the above steps, the magnetic field is never altered
in any computational cell and always computed from
the vector potential.
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In future versions of the code, problems related to the
primitive recovery could be handled by more modern
algorithms, such as evolving the entropy S and using it
to recover the pressure [42], or using different primitive
recovery schemes; see [153] for an overview. Another
attractive approach could be the use of physical-constraint-
preserving methods [151,154,155].

A well-known problem of evolving hyperbolic PDEs in
spherical coordinates is the severe CFL limitation due to the
nonconstant cell volumes in space, which become smaller
(therefore leading to smaller time steps) as the origin and
axis are approached. There are several approaches to
mitigate this problem (for an introduction, see, e.g.,
[156]), from various multipatch approaches which remove
the polar axis [140,157-167], mesh coarsening in the
azimuthal direction at high latitudes [168], radially depen-
dent mesh coarsening in both polar and azimuthal angles
[169], mesh coarsening as a conservative filter operation
[170-173], focusing resolution of the polar angle at the
equator [174,175], or the use of filters [176-178].

In order to avoid excessively small time steps in full
three-dimensional (3D) simulations, we employ a radial
and latitude dependent azimuthal fast Fourier transform
(FFT) filter (using the FFTW3 library [179]) that will be
described in detail in a companion publication [180]. In
short, we expand all evolved fields in the azimuthal
direction in a Fourier series and retain m modes such that
the time step at the pole is limited by n, =6 points.
Higher-order m modes in the expansion are exponentially
damped, which is sufficient to prevent instability by
violating the CFL condition.

We use the boundary condition thorn described in [81].
In summary, internal boundary ghost zones for the r
boundary at the origin, and the € and ¢ boundaries are
copied in from points in the physical domain, accounting
for appropriate parity factors, which we list for rescaled and
unrescaled vector and tensor components in Table I for
completeness. The ghost zone to physical point mappings
are as follows:

(i) r boundary at the origin,

r— —r, 0—->r—-0, @@+,
(i) @ boundary at 0, = 0,
r—r, 60— —0, @ — @+,
(iii) O boundary at O,,, = x,"
r—r, 0—2r-0, Q=@+

“We note there is a typo in the @ mapping of the 6. =7
boundary in [81], the correct mapping is the one shown here.

TABLE I. Parity factors for rescaled and coordinate vector and
tensor components at the origin and polar axis. The parity factors
for contravariant components are the same as for the covariant
components shown.

Origin Axis
V{r} - +
V{g} + -

=
+ o+
+ o+t

Tinin
Tiry0y
T
T'(0y(0y
T0y (9}
T4} (o}

Trr
Tr0
T,,
Too
Ty,

T(/”/}

I+ +
|

o+
Fl++ 1+ +++

Finally, ghost zones for ¢ are set by imposing periodicity.
We note that our boundary condition requires an even
number of grid points in the ¢ direction in order to ensure
that ghost zones lie at the exact locations of points in the
physical domain.

IV. CODE TESTS

In the following, we show results for a series of code
tests, ranging from special relativistic test problems in a
fixed background Minkowski spacetime to fully dynamical
spacetime evolutions of magnetized stable uniformly rotat-
ing neutron stars and the collapse of a magnetized uni-
formly rotating neutron star to a Kerr BH [181].

A. Tests in Minkowski spacetime

The first set of tests is performed in a fixed background
Minkowski spacetime ({ A, = A{i}{j} =0,K=0=0,
plit = Bl = At = 0,0 = ¢* = 1}), allowing us to
compare the performance of the MHD evolution with
standard Newtonian tests. This enables us to validate our
implementation of the GRMHD evolution equations with
all metric terms set to flat space. To demonstrate the code is
working correctly in this setting, we show two tests
below. First, we solve a strong shock reflection problem
without magnetic fields (evolving pure HD problems by
simply setting the vector potential to zero everywhere
initially). The second, more demanding test is an explosion
test problem. As shown below, these tests are do not
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exploit symmetries of the spherical coordinate system,
demonstrating that the framework can, e.g., handle the
passage of strong shocks through the origin and polar axis.

1. Relativistic spherical shock reflection test

Our first test is the relativistic spherical shock reflection
problem [182—186]. The test consists of an initially cold
(e = 0) fluid of unit density (p = 1) flowing in uniformly
with a velocity of v" = v;;, = —0.9 toward the origin,
where the fluid is compressed and heated up resulting in
a shock that travels upstream through the inflow region.
For numerical reasons, the problem is initialized with a
small pressure of p =2.29 x 107(I" = 1), where we use
I' = 4/3. The analytic solution to this problem is given
by [182]

r > vt

vi|t/7)?
p(r):{(1+| inl?/1) (148)

(1 + |Uin|/vs)26 r <,

where the compression factor ¢ and the shock velocity v,
are given by

r+1 r
= 4+ (W, -1 14
and
r-1
= Winlv; 150
US Win+1 ll’llvlnl ( )

and where W, is the Lorentz factor of the inflowing fluid at
the outer boundary (x2.29 for v;, = —0.9).

Behind the shock wave (r < v,t), the fluid is at rest
(v" = 0), and internal energy is given by ¢ = W;, — 1.

For this test, we used 800 radial points in the interval
[0:1] and two points in the @ and ¢ directions, using the
HLLE Riemann solver, TVD reconstruction with a
Minmod limiter, and CFL factor of 0.4. At the outer radial
boundary, p is set to the analytic solution (148), and »" and
p are kept fixed at their initial values. Figure 1 shows the
radial profiles of p, P, and »" of the numerical and analytic
solution at r = 4.

The global relative error at t =4 is 2.2%, 2.1% and
1.2%, for p, P, and v", respectively. In the density profile, a
significant drop near the origin is present. This numerical
effect is known as wall heating [187] and seems to be
exacerbated in spherical coordinates due to the converging
grid geometry [188].

We also note that we observed significant postshock
oscillations behind the slowly moving shock when using
higher-order reconstruction methods. This appears to be a
known problem for HRSC schemes (see, e.g., [189] and
references therein).
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FIG. 1. Radial density, pressure, and velocity profiles (from top
to bottom) of the relativistic spherical shock reflection problem at
time ¢ = 4. The red circles correspond to the numerical solution,
while the analytic solution is shown as solid black lines.

2. Spherical explosion

Next, we test the relativistic MHD evolution with a
magnetized spherical explosion problem [26]. This test is
the natural extension of the cylindrical explosion test
proposed in [190] to spherical coordinates, setting up
spherically symmetric initial data. Using the same jump
conditions as [190], the initial data consist of an overdense
(p = 1 x 1072, p = 1.0) ball of radius 1.0. From a radius of
0.8 onward, the solution is matched in an exponential decay
to the surrounding medium (p = 1 x 1074, p = 3 x 107).
The initial pressure profile in the y = 0 plane is shown in
the top left panel of Fig. 2. We are using a I" — law equation
of state (EOS) using I' = 4/3. In the magnetized case, the

104007-17



VASSILIOS MEWES et al.

PHYS. REV. D 101, 104007 (2020)

100

10-1

10—2

10-3

— 101

100

107% &

10—6

10~ 1

11111111 |

10—2

10—3

FIG. 2. Snapshots of magnetized spherical explosions in axisymmetry. Top left: initial pressure profile. Top right: pressure at t = 4,
HLLE Riemann solver, and MP5 reconstruction. Bottom left: Lorentz factor at t = 4, HLLE Riemann solver, and MP5 reconstruction.
Bottom right: pressure at ¢t = 4, global Lax-Friedrichs fluxes, and TVD reconstruction, initial B* = 1.0.

entire domain is initially threaded by a constant magnitude
magnetic field parallel to the z axis (B* = 0.1), and the fluid
velocity is set to zero everywhere in the domain initially. As
in the relativistic shock reflection problem, we use fixed
background Minkowski spacetime for this test problem.

We first model a magnetized spherical explosion
in axisymmetry, using (n, = 160, ny = 80, n, = 4) points,
with the outer boundary r,,, = 6.0. We use the HLLE
Riemann solver and different reconstruction methods for
this test. The final distributions at t = 4 for the pressure P
and Lorentz factor W in the y = 0 plane are shown in the
top right and bottom panels of Fig. 2.

In the initially overdense explosion region, the fluid is
only weakly magnetized, while being strongly magnetized
in the ambient medium. This results in a rich flow
morphology in which the fast magnetosonic wave travels
out ahead in spherical symmetry at almost the speed of

light, while the Alfvén wave shows a cos @ dependence in
propagation speed, traveling close to the speed of light
parallel to the initial magnetic field, while being signifi-
cantly slowed down in the direction perpendicular to the
magnetic field, shown in the top right panel of Fig. 2 (see
the discussion in [26]).

During the explosion, the magnetic field is expelled
from the initial explosion region, leaving a spherically
symmetric low-density region behind in which the fluid is
at rest, as evidenced by the plot of the Lorentz factor in the
bottom left panel of Fig. 2. The results seem to be in very
good qualitative agreement with the results presented in
[26] (spherical coordinates and axisymmetry) and [34]
(Cartesian coordinates).

As a final axisymmetric test, we perform the same
explosion, but with an initial magnetic field of much larger
strength B* = 1.0. This is a very demanding test for which
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Snapshots of off-centered spherical explosions. Top left: initial pressure profile. Top right: pressure at t = 4, HLLE Riemann

solver, and TVD reconstruction, B’ = 0. Bottom left: pressure at f = 4, HLLE Riemann solver, and MP5 reconstruction, B’ = 0. Bottom
right: pressure at r = 4, global Lax-Friedrichs fluxes, and TVD reconstruction with initial magnetic field B> = 0.1 rotated by 45° about

the x axis.

we have used global Lax-Friedrichs fluxes and TVD
reconstruction with the Minmod limiter as they are more
diffusive. In the bottom right panel of Fig. 2, we plot the
pressure distribution at # = 4 in the y = 0 plane for this test.
The morphology of the explosion changes completely and
becomes bar shaped, as seen in Cartesian simulations of
magnetized cylindrical and spherical explosions (see, e.g.,
[34,191]). Compared to the more weakly magnetized
explosion, more noise can be seen in the ambient region.
As discussed in [191], this test is most strenuous on the
conservative to primitive solver, so we believe that the noise
is due to inversion failures.

Next, we test the code by modeling an off-center
spherical explosion, both in relativistic HD and relativistic
MHD. As this test does not exploit the symmetries of our
spherical coordinate system, we perform it in full 3D. The
initial data are identical to the axisymmetric test described
above, except the center of the explosion region has been

moved to (x= 1.1,y =0,z =0). The resulting initial
pressure profile in the y = 0 plane is shown in the top
left panel of Fig. 3. In addition, compared to the axisym-
metric explosion, the initial magnetic field B* = 0.1 has
been tilted by 45° about the x axis. This results in initial
data that do not reflect the symmetries of the spherical
coordinate system at all. For this full 3D test, we use (n, =
160, ny = 80, n, = 160) points, and use the azimuthal FFT
filter to increase the time step to what it would have been,
had the simulation been performed with n, = 6 points.
We first perform two tests setting the magnetic field to
zero initially, using TVD and MPS5 reconstructions. The
results for the two different reconstruction schemes are
shown in the top right and bottom left panels of Fig. 3,
respectively. When using TVD, there are no visible artifacts
arising from the (in hydro only) spherically symmetric
shock passing through the origin and axis. The rarefaction
region is seen to be spherically symmetric as well, showing
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FIG. 4. Pressure distribution in spherical off-centered explosion
with a magnetic field initially tilted by 45° about the x axis. The
plane shown is the y-z plane centered at the initial center of the
explosion region (x = 1.1,y = 0,z = 0). Simulation performed
with global Lax-Friedrichs fluxes and TVD reconstruction with
Minmod limiter.

no artifacts. When using MP5, the shock width is clearly
reduced compared to TVD reconstruction, demonstrating a
superior capture of the shock with the higher-order
reconstruction, but small artifacts in those parts of the
shock that have passed the origin and polar axis can be
seen. A similar test in hydro is presented in [169]. The
bottom right panel of Fig. 3 shows the final pressure
distribution for the off-centered, tilted magnetic field
spherical explosion, which was performed using global
Lax-Friedrichs fluxes and TVD reconstruction with a
Minmod limiter. This test displays more pronounced effects
of the magnetized shock passing through origin and polar
axis, showing primitive recovery failures at the polar axis.
The global morphology is captured well nevertheless.

It is worth noting that the numerical artifacts that can be
seen in the bottom panels of Fig. 3 are not concerning at all.
The test setup was deliberately chosen to push the code to
its limits by not exhibiting any (approximate) symmetries
the framework was designed for and is a difficult test to
pass even for Cartesian codes [34].

Finally, in Fig. 4, we plot the final pressure distribution
in the x = 1.1 plane, i.e., the plane vertically cutting
through the initial center of the explosion region. The flow
morphology observed in the axisymmetric case (top right
panel of Fig. 2) is clearly seen to be present and tilted by
45°, which is precisely the symmetry axis picked out by the
tilted magnetic field initially threading the computational
domain.

As explained in Sec. II B 4 above, the conserved rest-
mass density D is not conserved to round off in our
framework due to the appearance of geometric source
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FIG. 5. Convergence order in conservation of D and 7 for the

spherical off-centered explosion with a magnetic field initially
tilted by 45° about the x axis. See main text for details.

terms in the evolution equation for D (67). Furthermore, the
FFT filter we employ to circumvent the severe CFL limit in
full 3D simulations is inherently nonconservative as well.
We therefore check for the convergence of the total rest
mass and total energy conservation (s,, the source term in
the evolution equation for z (76) vanishes in Minkowski
spacetime so that 7 should be exactly conserved as well). To
do so, we calculate €4(¢), the volume integrated error
arising from nonconservation of a quantity A = (D, 7) at
time ¢ as

sA(t):/E(A(t)—A(O))ﬂdrde¢ (151)

and calculate the convergence order g, () as [192]

el
94 = 5 1‘1<||8A<r>||high>’

(152)

where f is the ratio between the different resolutions used
in the convergence test. We calculate g4 (f) in the most
demanding variant of the spherical explosion, the off-
centered explosion with a tilted initial magnetic field, using
two different resolutions of (n,,nq,n,) = (112,56, 112)

and (160, 80, 160), corresponding to f ~ /2 and show the
time evolution of g, (¢) in Fig. 5. In our numerical scheme,
we would expect the convergence order to be between
1 and 2, as our method is second-order accurate while
reducing to first order in the presence of shocks. The
convergence order of the conservation of total rest mass lies
within that region, while for the total energy it drops below
first order at the time the numerical artifacts at the polar axis
seen in the bottom right panel of Fig. 3 start appearing. The
maximum relative errors in the conservation of total rest
mass and total energy in the high-resolution test are 0.0016
and 0.004, respectively.
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FIG. 6. p and b? evolution of tilted model BU2, shown at t = 0 (left) and ¢ = 25 ms (right).

B. Dynamical spacetime tests

Next, we turn to dynamical spacetime evolutions of
uniformly rotating neutron stars, testing the coupled space-
time and GRMHD evolution of the SphericalNR
framework. To test the framework in this regime, we
evolve two uniformly rotating polytropes, models BU2
[193] and D1 [127], adding a weak poloidal magnetic field
initially. We perform tests of two important scenarios: The
long-term evolution of a stable equilibrium model, as well
as the gravitational collapse of a uniformly rotating poly-
trope to a BH. In the long-term evolution of model BU2, we
initially tilt the star’s rotation axis by 90° in order to test the
evolution in full 3D without symmetry assumptions. In this
test, the fluid rotates through the polar axis during the entire

TABLE II. Main properties of the relativistic polytrope models
BU2 [193] and D1 [127]: central rest-mass density p,, rest- and
gravitational masses M, and M, the dimensionless angular
momentum J/ M?, the circumferential stellar radius R, the ratio
of polar and equatorial radii of the star r,/r,, the ratio of kinetic
energy and gravitational binding energy T/|W|, the adiabatic
index I, the polytropic constant K, and the constants prescribing
the initial magnetic field A,, ny, and P, (see main text for
details).

BU2 D1
Pe 1.28 x 1073 3.28 x 1073
M, 1.58 1.83
M 1.47 1.67
J/M? 3.19 x 107! 2.07 x 107!
R 10.11 7.74
rp/Te 0.9 0.95
T/|W| 2.44 % 1072 1.17 x 1072
r 2 2
K 100 100
A, 2 1
ng 0 0
Py 6.55 x 107° 4.25%x10°°

simulation, dragging the magnetic field with it through the
polar axis constantly. In the second test, we perform a
simulation of the gravitational collapse of model DI,
testing all aspects of our framework: the correct coupled
evolution of the f{CCZ4 and GRMHD equations leading to
dynamical BH formation and ringdown to a Kerr BH.

1. Tilted, magnetized, uniformly rotating neutron star

The initial data are generated with the RNS code [194],
which has been incorporated as a thorn named
Hydro RNSID in the Einstein Toolkit. As with
all original Cartesian thorns present in the Einstein
Toolkit, in order to interface with SphericalNR we
need to coordinate transform the Cartesian initial data
generated by the Hydro RNSID code and then rescale the
evolved fields. In order to test the FFT filter applied to both
spacetime and GRMHD fields and nontrivial dynamics in
full 3D, we initially tilt the rotation axis of the neutron star
by 90° about the x axis so that the star’s rotation axis is
initially aligned with the y axis. After generating the
tilted fluid and spacetime data, we add a small initial
magnetic field, following the vector-potential-based pre-
scription of [19]

(153)
(154)

P

Pe

A —Ah(rsin9)2< >Smax(Pcm—P,0), (155)

D=0, (156)
where values of A, p,., n,, and P, are provided in Table II.
With this setup, the tilted, uniformly rotating star will
constantly drag the magnetic field through the polar axis
during the evolution. While the initial data are polytropic,
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we evolve the star with a I'-law EOS. We use a third-
order strong stability-preserving Runge-Kutta (SSPRK3)
method [124,195],13 implemented in the MoL thorn [129],
the HLLE Riemann solver, and WENO-Z reconstruction
for the simulations presented here. We have also tried
ePPM and MP5 reconstruction, but found a large symmetry
breaking at late times when using those. To check for
convergence of our code, we evolve three different reso-
lutions for 29 ms, which is more than 200 dynamical
timescales of the star.

The t = 0 and t = 25 ms distributions of p and b? in the
y = 0 plane are shown in Fig. 6. The star remains very
stable and very contained, and there are no large outflows
from the stellar surface into the atmosphere, demonstrating
the code’s capability to deal with the stellar surface. This is
a difficult test, as the numerical dissipation at the stellar
surface is minimal in spherical coordinates, due to the fact
that the surface and computational cell surfaces are mostly
aligned (in Cartesian coordinates, this effect is seen along
the coordinate axes; see, e.g., Fig. 3 in [197]). During the
evolution, the quantity »> develops a richer morphology
than it has in the beginning, which we believe results from
the fact that the initial poloidal field evolves into having
poloidal and toroidal components (while the initial data are
uniformly rotating, the misalignment between the star’s
rotation axis and the initial magnetic field dipole axis
results in the generation of a toroidal magnetic field.). In
order to quantify the error arising from the FFT filter and to
check for the resolution dependence in the radial and
angular coordinates, we plot the following diagnostics in
Fig. 7: the relative error in central density and total rest
mass in the top two panels, as well as the evolution of the
L? norm of the Hamiltonian constraint in the bottom panel.

Additionally, in Fig. 8, we show a convergence study
with three different resolutions, now increasing the reso-
lution twice by a factor of f = 1.5 in all three coordinate
directions. The top panel shows the evolution of the error in
the central density evolution, where the medium and higher
resolution errors have been multiplied by 1.8 and 3.375,
respectively, assuming a convergence order of 1.5. Our
code is formally second order, while reducing to first order
in the presence of shocks. The surface of the neutron star is
a discontinuity, so we would expect the order of conver-
gence to be between 1 and 2. The bottom panel shows the
convergence factor for the total rest mass M (158), the
ADM mass evaluated as a volume integral, and the L.1 norm
of the Hamiltonian. As in Sec. IVA 2, we calculate the
convergence order for M and M ,py using (152), while the
convergence order of the L1 norm of the Hamiltonian is
calculated as [192]

13Strong stability-preserving time discretization methods have
been called TVD methods historically [196].
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FIG. 7. Evolution of central density p. (top panel), total rest
mass M, (mid panel), and L2-norm of the Hamiltonian constraint
(bottom panel) for magnetized model BU2. Three different
resolutions are shown in each plot.
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). (157)

As the initial magnetic field is small, and the tilted
rotation axis of the star should not affect its dynamics
during evolution, we calculate the frequencies of oscilla-
tions in pp.,(f) as a power spectral density for the two
higher resolution runs in Fig. 9. We overlay the expected
frequencies of the fundamental quasiradial (F) and quad-
rupolar %f modes and their first overtones (H; and %p;)
(taken from Table 5 of [198]). In both resolutions, the
fundamental modes F and ?f are in very good agreement
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FIG. 8. Convergence study for magnetized model BU2. Top

panel: relative error in p,. () at multiple resolutions; medium- and
high-resolution results are multiplied by the appropriate factor
assuming a convergence order of 1.5. Bottom panel: convergence
order for the total rest mass My, ADM mass M spy;, and L1 norm
of the Hamiltonian constraint.

with [198]; however, the first overtones (H; and %p;) of
both fundamental modes are not visible in the simulation
with lower radial but higher angular resolution, while being
slightly shifted in the higher radial resolution simulation.

These tests show that our code is capable of evolving
equilibrium neutron stars with magnetic fields for many
timescales, in a setup (constant fluid motion and magnetic
field dragging through the polar axis) that was chosen to be
particularly challenging for our framework.

2. Collapse of a magnetized uniformly
rotating neutron star

As our last test, we present a very important test
problem for numerical relativity simulations with matter:
the collapse of a neutron star to a black hole (see, e.g.,
[127,140,199-202]). Using the Hydro RNSID code thorn
inthe Einstein Toolkit again, we setup the uniformly
rotating polytrope model D1 [127] with a weak poloidal
magnetic field added initially and evolve its collapse to a
Kerr BH. The initial data specifications of this model are
listed in Table II. The simulation is performed in axisym-
metry, and the collapse is induced by lowering the

PSD Pmax (t)

10—10

10—11

PSD Pmax (t)

10—12
10713

10714

1071

flkHz]

FIG. 9. Power spectral density of p.,(7) evolution for reso-
lutions of (400 x 24 x 48) (top) and (250 x 32 x 64) (bottom)
panel. The vertical lines indicate the fundamental (F) and first
overtone (H;) of the fundamental quasiradial (/ = 0) mode and
the fundamental (2f) and first overtone (>p,) of the fundamental
quadrupolar (/ = 2) mode (see Table 5 of [198]).

polytropic constant K everywhere in the star by 2%
initially. The simulation is performed using (n, =
10000, ny = 32, n, = 2) points, with the outer boundary
placed at r,,; = 500. We evolve the conformal factor W =
e?? [203], use the SSPRK3 method for time integration,
and the fCCZ4 damping parameters are set to x; = 0.06,
Kk =0, k3 =1. We use WENO-Z reconstruction, the
HLLE Riemann solver, and a I"' — law EOS with I" = 2.

The atmosphere value for p is set to be 1078 times the
initial density maximum (p,;, = 3.28 x 107!, This simu-
lation requires the use of the higher atmosphere threshold in
highly magnetized regions (described in Sec. III above), as
the collapsing fluid leaves a highly magnetized atmosphere
region behind. In these regions, we reset a cell to atmos-
phere if e*?pW < 100e%p,.;..

We use the AHFinderDirect thorn [204,205] to find
the AH [206] once it has formed during collapse and
the QuasiLocalMeasures thorn [207,208] to calculate
the angular momentum of the AH during the evolution. The
SphericalNR interface to these Cartesian diagnostic
thorns in the Einstein Toolkit is described in [81].
The BH spin is measured using a surface integral on the AH
[207] or the flat space rotational Killing vector method
[209,210].
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FIG. 10. Temporal evolution of radial profiles of p during
the collapse of model D1, where the color bar indicates
simulation time.
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FIG. 11. Time evolution of various mass measurements during

the collapse of model D1.

Deep inside the horizon, for points with coordinate radii
r < 0.2 min(ray), we set fluid variables to atmosphere
values (the magnetic fields are evolved everywhere).
Figure 10 shows the time evolution of radial profiles
(along O = d@/2) for the density p. The evolution of p
shows our modifications to the conservative to primitive
solve in GRHydro: as the star collapses, p is first capped to
a maximum value and then reset to atmosphere deep inside
the AH once it has been found (AHFinderDirect
reports the first finding of an AH at r = 103.8).

In Fig. 11, we plot different mass measurements for the
duration of the simulation. Specifically, we monitor the
total rest mass,

(158)

MozépWeﬁ‘/’\/?de,

the Komar mass [211] evaluated as a volume integral (see,
e.g., [103]),

Myomr — / (a(E +S) = 25S)ef5dPx (159

and the ADM mass [212] of the spacetime, evaluated as the
sum from contributions inside a finite radius r;,, evaluated
as a surface integral, and those outside r;,, evaluated as a
volume integral [213],

1

Mapm = 1o (A" — 8¢Drp)\/7d0dy

n 1
167 >rin

— ATKAT i + (1 — e?)R] V7drdodg.

- - 2
[65{/)(167[E+AijAl] —ng)
(160)

Comparing with the expressions found in [213] terms
containing AF;T,( are missing in the above expression, this
is due to the fact that

= 1 }/7
7
which, together with our choice of y =7, results in
Aka = 0. Finally, we compute the BH mass calculated
as the Christodoulou mass [214],

AT, = (161)

(162)

where M, is the BH irreducible mass, J the BH angular
momentum, and A the AH area.

The mass measurements agree well with their initial
value of the equilibrium neutron star. As the collapse
proceeds, the total rest mass M, is seen to drop when
the density deep inside the star is capped (see Fig. 10) and
then quickly drops to zero once an AH has been found, as
we exclude points within the horizon from volume inte-
grals. The same drop is observed in the calculation of
Mxomars Which also exhibits a stronger deviation from its
initial value earlier, due to the fact that it is only defined for
stationary spacetimes, and the collapse is an inherently
dynamical process. Toward the end of the simulations, the
calculation of the ADM mass via a surface integral shows
oscillations related to the gravitational radiation leaving the
domain and being partially reflected at the outer boundary.

After collapse, the newly formed BH is expected to
quickly settle down to a Kerr BH via the ringdown of the
BH’s quasinormal modes (for a review, see [215]). To see if
our simulation reproduces this expected behavior, in
Figs. 12 and 13, we plot the [ =2 to 8, m = 0 modes
of the Weyl scalar ¥,, split into even and odd / modes,
respectively. The ringdown of all modes is clearly seen, as
well beatings in the higher-order modes, whose origin (the
equal m-mode mixing of spherical and spheroidal harmon-
ics) we have explained in [81].

The simulation shows that our spherical GRMHD code
is capable of capturing the relevant dynamics of the
collapse of the magnetized uniformly rotating neutron star
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FIG. 12. Even [/ =2 to 8§, m = 0 modes of the Weyl scalar V.
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FIG. 13. Odd [ =3 to 7, m = 0 modes of the Weyl scalar V.

to a Kerr BH, capturing the postcollapse ringdown to Kerr
with very high accuracy, with all modes dropping down to
their initial background amplitudes.

V. CONCLUSIONS AND OUTLOOK

We have extended our vacuum numerical relativity code
in spherical coordinates within the Einstein Toolkit
[81] to a framework that numerically solves the coupled
fCCZ4/BSSN and GRMHD equations in spherical coor-
dinates without symmetry assumptions using a reference-
metric formalism.

Extending the existing spacetime evolution thorn
SphericalBSSN to evolve the fCCZ4 system with
constraint damping as well enables future users of the
framework with two distinct evolution systems for numeri-
cal relativity in spherical coordinates. The spacetime
evolution thorn was written from scratch using NRPy+,
while the implementation of the reference-metric formal-
ism GRMHD equations derived in this work was built as an
extension of the GRHydro thorn, again using NRPy+.

In our approach, the GRMHD equations in spherical
coordinates acquire a Cartesian form, as all information
about the underlying spherical coordinate system is

encoded in source terms of the equations. This has allowed
us to use many of the core Cartesian building blocks of the
HRSC finite volume implementation already present in
GRHydro without modifications (and will enable the
straightforward inclusion of Cartesian finite volume build-
ing blocks such as more sophisticated Riemann solvers in
the future). Without the reference-metric approach, these
building blocks would need to be adapted to spherical
coordinates. Further, instead of evolving the magnetic field
directly, the framework evolves the cell-centered vector
potential in the generalized Lorenz gauge, guaranteeing the
absence of magnetic monopoles to round-off error during
the evolution by calculating the magnetic field as the curl of
the vector potential.

We have tested our framework performing a set of
demanding tests in flat background as well as fully
dynamical spacetimes. We have chosen setups where the
symmetries of the fluid are not aligned with the symmetries
of the coordinate system (counter to our original motivation
for developing the code). These tests include off-centered
magnetized spherical explosions testing the passage of
shocks and rarefaction waves through the coordinate origin
and polar axis, as well as dynamical-spacetime simulations
of a uniformly rotating neutron star with its rotation axis
misaligned with the polar axis of the computational grid.
Finally, we have shown that the code is able to perform
simulations of the collapse of a magnetized uniformly
rotating neutron star to a Kerr BH.

The SphericalNR framework will be made public and
proposed to be included in a future official release of the
Einstein Toolkit.
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