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Abstract. Deep neural networks (DNNs) typically have enough capacity to fit random data by brute force
even when conventional data-dependent regularizations focusing on the geometry of the features
are imposed. We find out that the reason for this is the inconsistency between the enforced geom-
etry and the standard softmax cross entropy loss. To resolve this, we propose a new framework
for data-dependent DNN regularization, the Geometrically-Regularized-Self-Validating neural Net-
works (GRSVNet). During training, the geometry enforced on one batch of features is simultaneously
validated on a separate batch using a validation loss consistent with the geometry. We study a par-
ticular case of GRSVNet, the Orthogonal-Low-rank Embedding (OLE)-GRSVNet, which is capable
of producing highly discriminative features residing in orthogonal low-rank subspaces. Numerical
experiments show that OLE-GRSVNet outperforms DNNs with conventional regularization when
trained on real data, especially when the training samples are scarce. More importantly, unlike
conventional DNNs, OLE-GRSVNet refuses to memorize random data or random labels, suggesting
that it only learns intrinsic patterns by reducing the memorizing capacity of the baseline DNN.
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1. Introduction. It remains an open question why deep neural networks (DNNs), typically
with far more model parameters than training samples, can achieve such small generalization
error. Previous work used various complexity measures from statistical learning theory, such
as VC dimension [24], Radamacher complexity [2], and uniform stability [3, 18], to provide
an upper bound for the generalization error, suggesting that the effective capacity of DNNs,
possibly with some regularization techniques, is usually limited.

However, the experiments by Zhang et al. [28] showed that, even with data-independent
regularization, DNNs can perfectly fit the training data when the true labels are replaced by
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random labels or when the training data are replaced by Gaussian noise. This suggests that
DNNs with data-independent regularization have enough capacity to “memorize” the training
data. This poses an interesting question for network regularization design: Is there a way
for DNNs to refuse to (over)fit training samples with random labels, while exhibiting better
generalization power than conventional DNNs when trained with true labels? Such networks
are very important because they will extract only intrinsic patterns from the training data
instead of memorizing miscellaneous details.

One would expect that data-dependent regularizations should be a better choice for re-
ducing the memorizing capacity of DNNs. Such regularizations are typically enforced by
penalizing the standard softmax cross entropy loss with an extra geometric loss which reg-
ularizes the feature geometry [15, 26, 27, 29]. However, regularizing DNNs with an extra
geometric loss has two disadvantages: First, the output of the softmax layer, usually viewed
as a probability distribution, is typically not derived based on the feature geometry enforced
by the geometric loss. Thus minimizing the geometric loss would not necessarily benefit the
validation, and these two losses are therefore inconsistent. As a result, the geometric loss
typically has a small weight to avoid jeopardizing the minimization of the softmax loss. Sec-
ond, we find that DNNs with such regularization can still perfectly (over)fit random training
samples or random labels. The reason is that the geometric loss (because of its small weight)
is ignored and only the softmax loss is minimized.

This suggests that simply penalizing the softmax loss with a geometric loss is not sufficient
to regularize DNNs. Instead, the softmax loss should be replaced by a walidation loss that
is consistent with the enforced geometry. More specifically, every training batch B is split
into two sub-batches, the geometry batch BY and the validation batch BY. The geometric
loss 1, is imposed on the features of BY for them to exhibit a desired geometric structure. A
semisupervised learning algorithm based on the proposed feature geometry is then used to
generate a predicted label distribution for the validation batch, which combined with the true
labels defines a validation loss on BY. The total loss on the training batch B is then defined as
the weighted sum [ = [, + Al,. Because the predicted label distribution on B is based on the
enforced geometry, the geometric loss [, can no longer be neglected. Therefore, [, and [, will
be minimized simultaneously; i.e., the geometry is correctly enforced (small ;) and it can be
used to predict validation samples (small ;). We call such DNNs Geometrically-Regularized-
Self-Validating neural Networks (GRSVNets). See Figure la for a visual illustration of the
network architecture.

GRSVNet is a general architecture because every consistent geometry /validation pair can
fit into this framework as long as the loss functions are differentiable. In this paper, we focus
on a particular type of GRSVNet, the Orthogonal-Low-rank-Embedding-GRSVNet (OLE-
GRSVNet). More specifically, we impose the OLE loss [19] on the geometry batch to produce
features residing in orthogonal subspaces, and we use the distances between the validation
features and those subspaces to define a predicted label distribution on the validation batch.
We prove that the loss function obtains its minimum if and only if the subspaces of different
classes spanned by the features in the geometry batch are orthogonal, and the features in the
validation batch reside perfectly in the subspaces corresponding to their labels (see Figure 1f).
We show in our experiments that OLE-GRSVNet has better generalization performance when
trained on real data, but it refuses to memorize the training samples when given random
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training data or random labels, which suggests that OLE-GRSVNet effectively learns intrinsic
patterns.
Our contributions can be summarized as follows:

e We proposed a potential framework, GRSVNet, to effectively impose data-dependent
DNN regularization. The core idea is the self-validation of the enforced geometry with
a consistent validation loss on a separate batch of features.

e We study a particular case of GRSVNet, OLE-GRSVNet, that can produce highly
discriminative features: Samples from the same class belong to a low-dimensional
subspace, and the subspaces for different classes are orthogonal.

e OLE-GRSVNet achieves better generalization performance when compared to DNNs
with conventional regularizers. This is especially the case when the training data are
scarce. More importantly, unlike conventional DNNs, OLE-GRSVNet refuses to fit
the training data (i.e., with a training error close to random guess) when the training
data or the training labels are randomly generated. This implies that OLE-GRSVNet
tends not to memorize the training samples and instead learns intrinsic patterns.

2. Related work. Many data-dependent regularizations focusing on feature geometry have
been proposed for deep learning [15, 26, 27, 29]. The center loss [26] produces compact clusters
by minimizing the Euclidean distance between features and their class centers. Weston et al.
proposed to recover a low-dimensional feature structure via semisupervised manifold embed-
ding [27]. LDMNet [29] extracts features sampling a collection of low-dimensional manifolds
by explicitly minimizing the manifold dimension. The OLE loss [15, 19] increases interclass
separation and intraclass similarity by embedding inputs into orthogonal low-dimensional
subspaces. However, as mentioned in section 1, these regularizations are imposed by adding
the geometric loss to the softmax loss, which, when viewed as a probability distribution, is
typically not consistent with the desired geometry. Our proposed GRSVNet instead uses a
validation loss based on the regularized geometry so that the predicted label distribution has
a meaningful geometric interpretation.

The way in which GRSVNets impose geometric loss and validation loss on two separate
batches of features extracted with two identical baseline DNNs bears a certain resemblance
to the siamese network architecture [5] used extensively in metric learning [4, 9, 11, 21, 23].
The difference is, unlike contrastive loss [9] and triplet loss [21] in metric learning, the feature
geometry is explicitly regularized in GRSV Nets, and a representation of the geometry, e.g.,
basis of the low-dimensional subspace, can be later used directly for the classification of test
data.

Our work is also related to two recent papers [1, 28] addressing the memorization of DNNs.
Zhang et al. [28] empirically showed that conventional DNNs, even with data-independent
regularization, are fully capable of memorizing random labels or random data. Arpit et
al. [1] argued that DNNs trained with stochastic gradient descent (SGD) tend to fit patterns
first before memorizing miscellaneous details, suggesting that memorization of DNNs depends
also on the data itself, and SGD with early stopping is a valid strategy in conventional DNN
training. We empirically demonstrate in our paper that when data-dependent regularization is
imposed in accordance with the validation, GRSVNets have the potential to refuse memorizing
random labels or random data, and only extract intrinsic patterns. A conjecture to explain
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Figure 1. GRSVNet architecture and the results of different networks with the same VGG-11 baseline
architecture on the SVHN dataset with real data and real labels. (a) GRSVNet architecture (better understood
in its special case OLE-GRSVNet detailed in section 3). (b) Training/testing accuracy. (c)—(f) Features of the
test data learned by different networks visualized in three dimensions using PCA. Note that for OLE-GRSV Net,
only four classes (out of 10) have nonzero 3D embedding (Theorem 3.2).

this phenomenon is provided in section 4.

3. GRSVNet and its special case: OLE-GRSVNet. As pointed out in section 1, the
core idea of GRSVNet is to self-validate the geometry using a consistent validation loss. To
contextualize this idea, we study a particular case, the OLE-GRSVNet, where the regularized
feature geometry is orthogonal low-dimensional subspaces, and the validation loss is defined
by the distances between the validation features and the subspaces.

3.1. OLE loss. The OLE loss was originally proposed by Qiu and Sapiro in [19]. Consider
a K-way classification problem. Let X = [x1,...,zN] € RN be a collection of data points
{x;}¥, c RY. Let X, denote the submatrix of X formed by inputs of the cth class. The
authors in [19] proposed to learn a linear transformation T : R? — R? that maps data from
the same class X, into a low-dimensional subspace, while mapping the entire data X into a
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high-dimensional linear space. This is achieved by solving

K
(31) P DD ITX = [TXs st [T =1,
where || - ||« is the matrix nuclear norm, which is a convex lower bound of the rank function

on the unit ball in the operator norm [20]. The norm constraint ||T||2 = 1 is imposed to avoid
the trivial solution T = 0. It is proved in [19] that the OLE loss (3.1) is always nonnegative,
and the global optimum value 0 is obtained if TX, 1L TX. Ve # .

Lezama et al. [15] later used OLE loss as a data-dependent regularization for deep learning.
Let ®(;0) : x € RY — 2 = &(x,0) € R” be a baseline DNN feature extractor, where D is
the dimension of the ambient feature space, which is typically chosen to be larger than the
number of classes. Given a batch of labeled inputs (X,Y) and their corresponding features
Z = (X;0), the OLE loss on Z is

K K
(3.2) (Z) =Y N1 Zelle = 1Zlx = D 19(Xe; 0)]l — [[D(X5 )]s
c=1

c=1

The OLE loss is later combined with the standard softmax loss for training. More specifically,
let W € RPXK be the weights of the last fully connected layer; then the total loss on the
input batch is defined as

(3.3) I(X,Y) = 1,(Z) + Nsoftmax(WTZ,Y),

where lgoftmax 1S the standard softmax cross entropy loss. We will henceforth call such a net-
work “softmax+OLE.” Softmax+OLE significantly improves the generalization performance,
but it suffers from two problems because of the inconsistency between the softmax loss and
the OLE loss: First, the learned features no longer exhibit the desired geometry of orthogo-
nal low-dimensional subspaces. Second, as will be shown in section 4, softmax+OLE is still
capable of memorizing random data or random labels; i.e., it does not reduce the memorizing
capacity of DNNs.

3.2. OLE-GRSVNet. We will now explain how to incorporate OLE loss into the proposed
GRSVNet framework. First, let us better understand the geometry enforced by the OLE loss
by stating the following theorem.

Theorem 3.1. Let Z = [Z1,...,Z.] be a horizontal concatenation of matrices {Z.}X ;.
The OLE loss l4(Z) defined in (3.2) is always nonnegative. Moreover, l4(Z) = 0 if and only
if Z:Zy = 0Vc # [, i.e., the column spaces of Z. and Zy are orthogonal.

The proofs of Theorem 3.1 and those of the remaining theorems are detailed in the appen-
dices. Note that Theorem 3.1 is stronger than the one in [19], which only showed one direction
of the result. We then need to define a validation loss [, that is consistent with the geometry
enforced by l;. A natural choice would be the distances between the validation features and
the subspaces spanned by {Z.}X ;.

Now we detail the architecture for OLE-GRSVNet. Given a baseline DNN, we split every
training batch X € R¥IBl into two sub-batches, the geometry batch X9 € R8sl and the
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validation batch XV € R¥IBvl both of which are mapped by the same baseline DNN into
features Z9 = ®(X9;0) and Z’ = ®(X";6). Assume for now that both X9 and X" contain
samples from all K classes (more details will be explained in Remark 3.5). The OLE loss
l4(Z9) is imposed on the geometry batch to ensure span(Z{) are orthogonal low-dimensional
subspaces, where span(Z?) is the column space of ZZ. Let Z7 = U.X.V?* be the (compact)
singular value decomposition (SVD) of ZZ; then the columns of U, form an orthonormal basis
of span(Z?). For any feature z = ®(x;6) € Z" in the validation batch, its projection onto
the subspace span(Z?) is proj.(z) = U.U%z. The cosine similarity between z and proj.(z) is
then defined as the (unnormalized) probability of & belonging to class ¢, i.e.,

Jc(x) =P(x € ¢)

proj,( proj.(z) > :
z, if [|z]| > e,
< e E > Z< max ([proig (e, A2
1/K if ||z]] <,

—~
b
=~

N~—

(1>

where a small € is chosen for numerical stability. The validation loss for @ is then defined as
the cross entropy between the predicted distribution § = (J1,...,9x)7 € RE and the true
label y € {1,..., K}. More specifically, let Y € RVIBl and Y¥ € RE*IB+] be the collection
of true labels and predicted label distributions on the validation batch; then the validation
loss is defined as

(3.5) 1,(YY,Y") =

Z Oy(a), (@) = |B| Zlogy

”| xeXv xeXv

where 0, is the Dirac distribution at label y, and H(:,-) is the cross entropy between two
distributions. The empirical loss [ on the training batch X is then defined as

(3.6) I(X,Y) = 1([X9,X"], [Y9,Y"]) = 1,(Z9) + M, (Y®, Y"Y).

See Figure la for a visual illustration of the OLE-GRSVNet architecture. Because of the
consistency between [, and [,,, we have the following theorem.

Theorem 3.2. For any A > 0, and any geometry/validation splitting of X = [X9,X"]
satisfying X containing at least one sample for each class, the empirical loss function defined
n (3.6) is always nonnegative. Moreover, [(X,Y) = 0 if and only if both of the following
conditions hold:

o The features of the geometry batch belonging to different classes are orthogonal, i.e.,
span(ZZ) L span(Z9) Ve # ¢
o For every datum x € XY, i.e., x belongs to class c in the validation batch, its feature
z = ®(x;0) belongs to span(Zg).
Moreover, if | < oo, then rank(span(Z?)) > 1Ve; i.e., ®(-;0) does not trivially map data to 0.

Remark 3.3. The requirement that A > 0 is crucial in Theorem 3.2 because otherwise
the network can map every input into 0 and achieve the minimum. This is validated in our
numerical experiments.
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Remark 3.4. Since the low-dimensional subspaces spanned by features of different classes
are orthogonal, the dimension of the ambient feature space has to be at least larger than
the number of classes K. Empirically, we find out that the dimension of each subspace is
typically less than three after convergence. Thus the minimally required feature dimension
scales linearly with respect to K.

Remark 3.5. When the number of classes K is large, requiring X9 and X" to contain
samples from all K classes will result in a large batch size. If this is the case, a training
batch X is sampled in the following way: We first randomly choose L out of K classes, where
L <« K. The training batch X is then sampled from these L classes, satisfying that both X9
and X" contain at least one sample from each of the L classes.

After the training process has finished, we can then map the entire training data X!l =
(Xall ..., X3l (or a random portion of X®!) into their features Z*!! = ®(X?!; %), where 6* is
the learned parameter. The low-dimensional subspace span(Z2!) for class ¢ can be obtained
via the SVD of Z2!. The label of a test datum x is then determined by the distances between
z = ®(x;0%) and {span(Z2")}E,.

4. Two toy experiments. Before stating the implementation details of OLE-GRSVNet,
we first present two toy experiments to illustrate our proposed framework. We use VGG-11
[22] as the baseline architecture and compare the performance of the following four DNNs:
(a) the baseline network with a softmax classifier (softmax), (b) VGG-11 with weight decay
(softmax+wd), (¢) VGG-11 regularized by penalizing the softmax loss with the OLE loss
(softmax+OLE), and (d) OLE-GRSVNet.

We first train these four DNNs on the Street View House Numbers (SVHN) dataset [16]
with the original data and labels without data augmentation. The test accuracy and the PCA
embedding of the learned test features are shown in Figure 1. OLE-GRSVNet has the highest
test accuracy among the comparing DNNs. Moreover, because of the consistency between the
geometric loss and the validation loss, the test features produced by OLE-GRSVNet are even
more discriminative than softmax-+OLE: Features of the same class reside in a low-dimensional
subspace, and different subspaces are (almost) orthogonal. Note that in Figure 1f, features of
only four classes out of 10 have nonzero 3D embedding, although ideally it should be at most
three because features of at least seven classes are orthogonal to the three leading principal
components due to Theorem 3.2.

Next, we train the same networks, without changing hyperparameters, on the SVHN
dataset with either (a) randomly generated labels or (b) random training data (Gaussian
noise). We train the DNNs for 800 epochs to ensure their convergence, and the learning
curves of training/testing accuracy are shown in Figure 2. Note that the baseline DNN, with
either data-independent or conventional data-dependent regularization, can perfectly (over)fit
the training data, while OLE-GRSVNet refuses to memorize the training data when there are
no intrinsically learnable patterns.

In another experiment, we generate three classes of one-dimensional data in R!?: The
data points in the ith class are i.i.d. samples from the Gaussian distribution with the standard
deviation in the ith coordinate 50 times larger than other coordinates. Each class has 500
data points, and we randomly shuffle the class labels after generation. We then train a

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/02/20 to 99.69.19.248. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

STOP MEMORIZING 483

e v 100 -
] 90 f
q 80 ff —Training: Softmax

—Training: Softmax — ling
- - Testing: Softmax 1 701 Testing: Softmax

ko v > —Training: Softmax+wd

g —Trammg.SoftmaX+wd g 60 - - Testing: Softmax+wd

8 --$es_t|r_19._SSt)f:cmaX+vadLE : 8 50 Training: Softmax+OLE |-

< Tralp'ng's?tmaXJ’OLE 1 < 40 Testing: Softmax+OLE | |
esting: Softmax+ —Training: OLE-GRSVNet

—Training: OLE-GRSVNet| 4 30
- -Testing: OLE-GRSVNet | |

& a PER LT NI " 1OFI n & et oy W bk o f o pg ey =

- -Testing: OLE-GRSVNet | ]

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

Epoch Epoch
(a) Training/testing accuracy with random la-  (b) Training/testing accuracy with random data

bels

Figure 2. Training and testing accuracy of different networks on the SVHN dataset with random labels or
random data (Gaussian noise). Note that softmaz, sotmaz+wd, and softmax+OLE can all perfectly (over)fit
the random training data or training data with random labels. Only the proposed OLE-GRSVNet refuses to fit
the training data when there are no intrinsically learnable patterns.

multilayer perceptron (MLP) with 128 neurons in each layer for 2000 epochs to classify these
low-dimensional data with random labels. We found out that only three layers are needed
to perfectly classify these data when using a softmax classifier. However, after incrementally
adding more layers to the baseline MLP, we found out that OLE-GRSVNet still refuses to
memorize the random labels even for a 100-layer MLP. This further suggests that OLE-
GRSVNet refuses to memorize training data by brute force when there are no intrinsic patterns
in the data. A visual illustration of this experiment is shown in Figure 3.

We provide an intuitive explanation for why OLE-GRSVNet can generalize significantly
better than conventional DNNs when given true labeled data but refuses to memorize random
data or random labels. For conventional DNNs with softmax activations, the class distribution
of a single input datum is determined solely by itself, even if a minibatch |B| of input data
is used during training. On the other hand, in OLE-GRSVNets, the class distribution of an
input datum is determined instead by the geometry of the entire training batch. Thus the
training object in OLE-GRSVNets is no longer a single datum but the entire random batch
of size |B|. Hence we conjecture that OLE-GRSVNets are implicitly conducting O(N!5l)-
fold data augmentation, where N is the number of training data, while conventional data
augmentation by the manipulation of the inputs, e.g., random cropping, flipping, etc., is
typically O(N). This poses a very interesting question: Does it mean that OLE-GRSVNets can
also memorize random data if the baseline DNN has exponentially many model parameters?
Or is it because of the learning algorithm (SGD) that prevents OLE-GRSVNets from learning
a decision boundary too complicated for classifying random data? Answering this question
will be the focus of our future research.

5. Implementation details of OLE-GRSVNet. Most of the operations in the computa-
tional graph of OLE-GRSVNet (Figure 1a) explained in section 3 are basic matrix operations.
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Figure 3. Visual illustration of the second toy experiment in section 4. (a) Three classes of one-dimensional
data in R'. (b) Labels randomly shuffled. (c)—(i) Features extracted by the baseline MLP with a softmaz
classifier or OLE-GRSVNet. Only three layers of MLP are needed for conventional DNNs to perfectly memorize
random labels. But even with 100 layers of MLP, OLE-GRSVNet still refuses to memorize the random labels
because there are no intrinsically learnable patterns.

The only two exceptions are the OLE loss (Z, — 19((Z9))) and the SVD (Z9 — (Uy,...,Uk)).
We hereby specify their forward and backward propagations.

5.1. Backward propagation of the OLE loss. According to the definition of the OLE
loss in (3.2), we only need to find a (sub)gradient of the nuclear norm to back-propagate the
OLE loss. The characterization of the subdifferential of the nuclear norm is explained in [25].
More specifically, assuming m > n for simplicity, let U € R™*™ ¥ € R™*" 'V € R™" be
the SVD of a rank-s matrix A. Let U = [UD, U®], V = [V(), V)] be the partition of U,
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V, respectively, where U € R"*5 and V(1) € R"*5; then the subdifferential of the nuclear
norm at A is

5.1)  9|Al. = {U<1)V<1>* FUROWVO* YW e R-9X(09) with [[W]|, < 1},

where || - ||2 is the spectral norm. Note that to use (5.1), one needs to identify the rank-s
column space of A, i.e., span(U(l)) to find a subgradient, which is not necessarily easy because
of the existence of numerical error. The authors in [15] intuitively truncated the numerical
SVD with a small parameter chosen a priori to ensure the numerical stability. We show in the
following theorem using the backward stability of SVD [6, 8] that such concern is, in theory,
not necessary.

Theorem 5.1. Let U®, X%, V€ be the numerically computed reduced SVD of A € R™*" j.e.,
Ue € R™*" Ve € R™" (U 4 §U)X(VE 4+ 6VE)* = A +0A = A%, and ||dU]|J2, ||6V]|2,
|0A]l2 are all O(g), where ¢ is the machine error. If rank(A) = s < n, and the smallest
singular value o4(A) of A satisfies os(A) >n > 0, we have

(5-2) AUV, 0[[A]l) = O(e/n).

However, in practice we did observe that using a small threshold (1076 in this work) to
truncate the numerical SVD can speed up the convergence, especially in the first few epochs
of training. With the help of Theorem 5.1, we can easily find a stable subgradient of the OLE
loss in (3.2).

5.2. Forward and backward propagation of Z9 — (Uy,...,Uk). Unlike the compu-
tation of the subgradient in Theorem 5.1, we have to threshold the singular vectors of ZI
because the desired output U, should be an orthonormal basis of the low-dimensional sub-
space span(Z?). In the forward propagation, we threshold the singular vectors U, such that
the smallest singular value is at least 1/10 of the largest singular value.

As for the backward propagation, one needs to know the Jacobian of the SVD, which has
been explained in [17]. Typically, for a matrix A € R™*"  computing the Jacobian of the SVD
of A involves solving a total of O(n*) 2 x 2 linear systems. We have not implemented the
backward propagation of the SVD in this work because this involves technical implementation
with CUDA API. In our current implementation, the node (Uy, ..., Ug) is detached from the
computational graph during back propagation; i.e., the validation loss [, is only propagated
back through the path [, — Y? — Z? — 6. Our rational is this: The validation loss [, can be
propagated back through two paths: I, — Y? — Z¥ — 6 and I, — Y? — (Uy,...,Ug) —
Z9 — 0. The first path will modify € so that Z? moves closer to U., while the second
path will move U, closer to Z. Cutting off the second path when computing the gradient
might decrease the speed of convergence, but numerical experiments suggest that the training
process is still well behaved under such simplification. With such simplification, the only extra
computation is the SVD of a minibatch of features, which is negligible (<5%) when compared
to the time of training the baseline network.

6. Experimental results. In this section, we show the superiority of OLE-GRSVNet when
compared to conventional DNNs in two aspects: (a) It has greater generalization power when
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trained on true data with real labels, and the improvement of the test accuracy is especially
significant when the number of training examples is small. (b) Unlike conventionally regu-
larized DNNs, OLE-GRSVNet refuses to memorize the training samples when given random
training data or random labels. This gives OLE-GRSVNets a significant advantage when
dealing with training data with corrupted labels.

The following benchmark datasets are chosen to evaluate the effectiveness of the different
regularizations:

e MINIST. The MNIST dataset contains 28 x 28 grayscale images of digits from 0 to 9.
There are 60,000 training samples and 10,000 testing samples. No data augmentation
was used.

e SVHN. The Street View House Numbers (SVHN) dataset contains 32 x 32 RGB
images of digits from 0 to 9. The training and testing set contain 73,257 and 26,032
images, respectively. No data augmentation was used.

e CIFAR. The CIFAR dataset [13] contains 32 x 32 RGB images of 10 classes, with
50,000 images for training and 10,000 images for testing. We use “CIFARA4” to
denote experiments on CIFAR with data augmentation: 4 pixel padding, 32 x 32
random cropping and horizontal flipping.

e Tiny ImageNet. The Tiny ImageNet (tImageNet) dataset.!

We use an experimental setup similar to that in section 4; i.e., the same four modifications
to the baseline DNNs are considered: (a) Softmax, (b) Softmax+wd, (c) Softmax+OLE,
and (d) OLE-GRSVNet. The performance of the different regularizations is evaluated on
the following baseline architectures:?

6.1. Training details. All networks are trained from scratch with the “Xavier” initial-
ization [7]. SGD with Nesterov momentum 0.9 is used for the optimization, and the batch
size is set to 200 (a 100/100 split for geometry/validation batch is used in OLE-GRSVNet).
Without explicitly mentioning it, we set the initial learning rate to 0.01, and decrease it ten-
fold at 50% and 75% of the total training epochs. The numbers of training epochs for the
experiments with true labels are reported in Table 2. In order to ensure the convergence of

!The dataset is available at https://tiny-imagenet.herokuapp.com, contains 64 x 64 RGB images from 200
classes. Each class has 500 training and 50 test data.
2The code is available at https://services.math.duke.edu/~zhu/software.html:

e VGG [22]. The VGG-11, 16, 19 architectures are composed of five blocks of convolutional layers
with ReLLU activations and Batch Normalization (BN). Five Max-Pooling layers are used to gradually
decrease the spatial dimension of the input images.

e LeNet [14]. This is a simple 5-layer network consisting of two convolutional layers, two Max-Pooling
layers, and a final fully connected layer. We use this architecture mainly for the MNIST dataset.

e ResNet [10]. The basic building block, i.e., the residual block, of the ResNet consists of a concate-
nation of seven operations: conv.-BN-conv.-BN-conv.-BN-ReLU. The input of each residual block is
added to the output through a short connection. The ResNet architecture with 27 residual blocks is
used for the experiments.

e DenseNet [12]. DenseNets are composed of three DenseNet blocks, each of which contains multiple
densely connected convolutional blocks with a small number of output channels. The DenseNet with
40 layers of operations and a growth rate of 12 is used for the experiments.

e CNN-5. This is a plain convolutional neural network consisting of five convolution and Max-Pooling
layers. This network is mainly used for the experiments in subsection 6.4.

The detailed network architectures are summarized in Table 1.
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Table 1
Summary of the network architectures. The last fully connected layer, the size of which depends on the
number of classes, is omitted from the table. CX: Convolutional block with the kernel size set to 3 x 3. MP:
Maz Pooling with kernel size 2 X 2 and stride 2. FCX: Fully connected layer. RX/Y: Residual block. AP:
Global Average Pooling. DX/G: DenseNet block. For all the modules, X is the number of output channels, Y
is the number of inner channels for R, and G is the growth rate for D blocks. See the text for detailed block
definitions.

VGG-11 C64-MP-C128-MP-C256( % 2)-MP-C512(x 2)-MP-C512(x 2)-MP-FC512
VGG-16  C64(x2)-MP-C128(x2)-MP-C256( x 3)-MP-C512( x3)-MP-C512(x3)-MP-FC512
VGG-19  C64(x2)-MP-C128(x2)-MP-C256( x4)-MP-C512(x4)-MP-C512(x4)-MP-FC512

LeNet C6-MP-C16-MP-FC120

ResNet C16-R64/16(x9)-R128/32(x9)-R256/64(x9)-BN-ReLU-AP

DenseNet C32-MP-C64-MP-C128-MP-C256-C256-MP

CNN-5 C64-MP-C128-MP-C256-MP-C512-MP-C512-MP-FC512
Table 2

Hyperparameters and numbers of the training epochs used for the experiments with true labels on the entire
data. For every entry v/A/N, v is the weight for the OLE loss in “softmaz+OLE,” X is the weight of the
validation loss in OLE-GRSVNets (3.6), and N is the number of training epochs.

Dataset LeNet VGG-11 VGG-16 VGG-19 ResNet DenseNet CNN-5
MNIST  0.1/5/100 0.5/10/100 - - - - 0.1/5/100
SVHN - 0.5/5/160 - ] - 0.5/10/300  0.25/5/100
CIFAR § 0.5/5/200  0.5/5/300 0.25/1/400 0.25/10/300 ; 0.1/5/100
CIFAR+ - 0.5/5/200  0.5/5/300  0.25/1/400 - - -
tImageNet - - - 0.1/1/400 - - -

SGD, all networks are trained for 800 epochs for the experiments with random labels. The
mean accuracy after five independent trials is reported.

As for the hyperparameters, the weight decay parameter, if used, is always set to u = 1074,
The weight for the OLE loss in “softmax+OLE” and the parameter A in (3.6) are determined
by cross-validation and reported in Table 2.

6.2. Testing/training performance when trained on the entire datasets with real or
random labels. Table 3 reports the performance of the networks trained on the entire datasets
with real or randomly generated labels. The numbers in the upper block are the percentage
accuracies on the testing data when networks are trained with real labels. The numbers in the
lower block are the accuracies on the training data when networks are trained with random
labels. Accuracies on the training data with real labels (always 100%) and accuracies on the
test data with random labels (always close to random guess) are omitted from the table.
As we can see, similar to the experiment in section 4, when trained with real labels, OLE-
GRSVNet exhibits better generalization performance than the competing networks. This is
because the feature geometry is better enforced through consistent self-validation in each step
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learning rates 0.01 and 0.1.

Table 3

Testing or training accuracies when trained on the entire datasets with real or random labels. The numbers

in the upper block are the percentage accuracies on the testing data when networks are trained with real labels.
The numbers in the lower block are the accuracies on the training data when networks are trained with random
labels. The means and standard deviations after five independent trials are reported. ResNet-0.01 and ResNet-
0.1, respectively, denote the results of the DNNs with the ResNet baseline architecture trained with the initial
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Testing accuracy (%) when trained with real label

Dataset Architecture Softmax Softmax+wd  Softmax+OLE OLE-GRSVNet
MNIST LeNet 99.25 £0.09 99.31 £0.07 99.37 £0.11 99.41 + 0.08
MNIST VGG-11 99.40 £ 0.03 99.47 £ 0.03 99.49 £ 0.02 99.57 £+ 0.02
SVHN VGG-11 93.10 £0.04 93.73£0.05 94.04 £ 0.08 94.75 4 0.06
SVHN DenseNet 93.24 £0.26 93.89 £0.11 93.35£0.16 95.08 4 0.26
CIFAR VGG-11 81.81 £0.12 81.87 £0.10 82.04 £0.14 85.29 +£0.10
CIFAR VGG-16 83.37£0.13 83.97£0.13 84.35+0.14 87.44+0.11
CIFAR VGG-19 83.56 £0.19 84.21 £0.17 84.71 £0.19 86.69 £+ 0.20
CIFAR ResNet-0.01  75.79 +0.18 77.90 £0.19 78.53 £0.23 84.40 £ 0.16
CIFAR ResNet-0.1 81.93+0.29 85.38+0.27 82.60 £0.77 85.16 £0.21
CIFAR+ VGG-11 89.52 £0.15 89.68 £0.16 90.04 £ 0.20 90.58 +0.17
CIFAR+ VGG-16 91.21 £0.16 91.29 £0.19 91.40 £0.11 92.15 £+ 0.12
CIFAR+ VGG-19 91.19 £0.22 91.53 £0.19 91.67 £ 0.24 91.65 £ 0.21
tImageNet VGG-19 45.28 £0.21 45.89 £0.18 46.36 = 0.50 47.51 £ 0.47
Training accuracy (%) when trained with random label

Dataset VGG Softmax Softmax+wd  Softmax+OLE OLE-GRSVNet
MNIST LeNet 99.99 £0.01  100.00 £ 0.00 99.97 £0.01 9.83 +0.51
MNIST VGG-11 100.00 £0.00  100.00 +£0.00  100.00 % 0.00 9.93 1+ 0.23
SVHN VGG-11 99.99 £0.01  100.00 £ 0.00 99.99 £ 0.01 9.75 4+ 0.47
SVHN DenseNet 100.00 £0.00  99.99 +0.01 99.96 £ 0.02 10.26 4= 0.43
CIFAR VGG-11 100.00 +0.00  100.00 £ 0.00 99.95 £ 0.02 9.971+0.21
CIFAR VGG-16 100.00 £0.00  99.99 £ 0.01 99.96 £ 0.02 10.13 4+ 0.33
CIFAR VGG-19 99.99 £ 0.00 99.97 £0.01 99.96 £ 0.02 9.86 + 0.45
CIFAR ResNet-0.01  99.96 + 0.02 99.97 £ 0.01 99.96 £ 0.02 9.67 + 0.51
CIFAR+ VGG-11 99.98 £ 0.01 99.98 £ 0.01 99.93 £0.03 10.05 + 0.39
CIFAR+ VGG-16 99.96 £ 0.02 99.96 £ 0.02 99.92 +0.04 9.94 4+ 0.45
CIFAR+ VGG-19 99.96 £ 0.02 99.95 £0.03 99.91 £0.04 10.07 + 0.32
tImageNet VGG-19 99.97 £ 0.02 99.96 £ 0.02 99.95 £ 0.02 0.48 £+ 0.04
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Table 4
The effect of the training batch size |B| on the test accuracy of the OLE-GRSVNet. The mean accuracies
after three independent trials are reported.

Testing accuracy (%) of the OLE-GRSVNet with different |B]|
Dataset  Architecture |B|=60 |B|=80 |B|=140 |B|=200 |B|=300 |B|=400

MNIST LeNet 99.27 99.36 99.35 99.41 99.42 99.39
SVHN VGG-11 93.96 94.48 94.65 94.75 94.94 94.87
CIFAR VGG-11 84.01 84.57 85.16 85.29 85.21 85.27

of the training (see Figure 1 and Theorem 3.2.) However, when trained with random labels,
OLE-GRSVNet refuses to memorize the training samples like the other networks because there
are no intrinsically learnable patterns. This is still the case even if we increase the number
of training epochs to 2000. We did not report the results of “softmax-+centerloss” [26] and
“softmax+LDMNet” [29] because they have entirely different geometric constraint, but the
story is the same: they are both capable of perfectly (over)fitting random labels. As mentioned
in section 5, the extra computational time during the training of the OLE-GRSVNet, i.e., the
SVD of the features of a random batch, is negligible (<5%) when compared to that of training
the VGG-11 baseline, and even more so for more complicated baseline DNNs.

It is worth mentioning that the performance of the proposed OLE-GRSVNet seems to
be more stable with respect to the choice of the initial learning rate. As can be seen from
Table 3, when ResNets are trained on the CIFAR dataset with the initial learning rate set to
0.1, the proposed OLE-GRSVNet (test accuracy = 85.16%) slightly underperforms the data-
independent weight decay regularization (test accuracy = 85.38%.) However, if we change the
initial learning rate to 0.01, all networks except for the OLE-GRSVNet experience a significant
decrease in the test accuracy. This might suggest that the OLE-GRSVNet is less susceptible
to converging to a “nongeneralizable” minimum when a small initial learning rate is chosen.
Later in subsection 6.3, we will show that when ResNets are trained on a small fraction
(10%, 20%, and 40%) of the CIFAR training data, the OLE-GRSVNet always significantly
outperforms other competing networks, no matter which initial learning rate is chosen.

The effect of the training batch size |B| on the performance of the OLE-GRSVNet is shown
in Table 4. As we can see, the test accuracy generally increases before reaching a plateau as
|B| gets larger. This is because more training data are used to resolve the low-dimensional
subspaces in each training batch as the batch size increases. This empirical finding also
corroborates our claim in section 4 that OLE-GRSVNets are implicitly conducting O(N!B)-
fold data augmentation.

6.3. Testing performance with limited training data. We next examine the efficacy of
different regularizations when the training data are scarce. Table 5 displays the test accuracies
of the different networks when trained on a small fraction (10%, 20%, and 40%) of the entire
training data. We use the same hyperparameters as those in subsection 6.2. It is clear from
Table 5 that OLE-GRSVNet significantly outperforms other competing networks when trained
with very limited samples. We note that, unlike in subsection 6.2, when the networks with the
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Table 5
Testing accuracies when the networks are trained on a small fraction of the entire datasets. The means
and standard deviations after three independent trials are reported. ResNet-0.01 and ResNet-0.1, respectively,
denote the results of the DNNs with the ResNet baseline architecture trained with the initial learning rates 0.01

and 0.1.

Testing accuracy (%) when trained on 10% of the entire data

Dataset  Architecture Softmax Softmax+wd  Softmax+OLE  OLE-GRSVNet
MNIST LeNet 98.00 £0.06  98.10 £ 0.09 98.39 £ 0.09 98.44 £+ 0.10
SVHN VGG-11 85.75£0.26  85.99+0.25 86.72 £0.29 88.16 £+ 0.27
CIFAR VGG-11 61.67 £0.24 62.54 £0.20 62.45 £ 0.17 66.66 + 0.22
CIFAR ResNet-0.01 44.44£0.23 47.73+0.26 46.55 £ 0.32 57.23 +0.21
CIFAR ResNet-0.1 49.21 £0.24  50.39 £0.29 49.31 £0.32 60.50 + 0.33
Testing accuracy (%) when trained on 20% of the entire data
Dataset  Architecture Softmax Softmax+wd  Softmax+OLE  OLE-GRSVNet
MNIST LeNet 98.48 £0.02  98.56 +0.07 98.81 £0.12 98.84 4+ 0.04
SVHN VGG-11 88.72+£0.20 88.83+0.19 89.84 £0.21 90.78 +0.23
CIFAR VGG-11 68.70 £0.14  68.99 £ 0.16 68.84 + 0.21 74.50 £0.17
CIFAR ResNet-0.01 55.20£0.24  55.87 +£0.26 55.73 £0.27 66.28 + 0.24
CIFAR ResNet-0.1  59.50+0.31  63.30 £0.29 60.67 £0.38 67.62 1+ 0.26
Testing accuracy (%) when trained on 40% of the entire data
Dataset  Architecture Softmax Softmax+wd  Softmax+OLE  OLE-GRSVNet
MNIST LeNet 98.93£0.10 98.99 £ 0.02 99.14 + 0.06 99.17 + 0.02
SVHN VGG-11 90.84 £0.16 91.14 +£0.21 91.99 £0.18 92.83 +£0.25
CIFAR VGG-11 74.37+0.22  74.79+0.17 75.21 +0.24 79.92 +0.14
CIFAR ResNet-0.01 63.80£0.14 64.234+0.19 64.55 £0.19 74.29 + 0.21
CIFAR ResNet-0.1 73.20+0.22 74.55+0.31 73.57 £ 0.41 77.88 & 0.38

ResNet baseline architecture are trained on a fraction of the CIFAR dataset, OLE-GRSVNet
achieves substantially better test performance compared to other regularizations no matter
which initial learning rate is chosen.

6.4. Testing performance with corrupted labels. Finally, we demonstrate the practical
usage of the proposed OLE-GRSVNet in a realistic setting where part of the training samples
are wrongly labeled. To achieve this, we randomly choose 40% of the training data and replace
their real labels with random labels. All networks with the same CNN-5 baseline architecture
are first trained on the corrupted dataset for 100 epochs, after which each network produces
its own list of predicted “bad” training samples, i.e., the ones that the network refuses to
fit. Each network is then trained again on the “purified” training data after discarding its
predicted “bad” training samples.
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Table 6
Testing accuracies when the networks are trained with 40% corrupted labels. The means and standard
deviations after three independent trials are reported. See subsection 6.4 for the detailed experimental setup.

Testing accuracy (%) when trained with 40% corrupted labels
Dataset  Architecture Softmax Softmax+wd  Softmax+OLE  OLE-GRSVNet
MNIST CNN-5 76.26 £0.31 77.69£0.33 79.23 + 0.29 85.13 + 0.41
SVHN CNN-5 68.21 £0.28 67.70 = 0.33 68.79 £ 0.39 85.24 4+ 0.52
CIFAR CNN-5 54.39 £042 54.08£0.28 55.64 £0.33 61.14 £+ 0.23

Table 6 reports the performance of the networks in the aforementioned setting. It is clear
that the OLE-GRSVNet achieves much better test performance, the reason for which is that
it correctly detects part of the corrupted training data by refusing to memorize them through
the first round of training. On the contrary, all other networks suffer from low test accuracy
by (over)fitting the “bad” training samples.

We do want to mention that the OLE-GRSVNet is not able to perfectly detect all corrupted
labels in the training data, i.e., it still can “memorize” some “bad” training samples. This is
especially the case when baseline architectures with huge capacities are trained on complicated
datasets, e.g., CIFAR. We believe this is unavoidable because of the rich information intrinsic
in such datasets.

7. Conclusion and future work. We proposed a potential framework, GRSV Net, for data-
dependent DNN regularization. The core idea is the self-validation of the enforced geometry
on a separate batch using a validation loss consistent with the geometric loss, so that the
predicted label distribution has a meaningful geometric interpretation. In particular, we
study a special case of GRSVNet, the OLE-GRSVNet, which is capable of producing highly
discriminative features: Samples from the same class belong to a low-dimensional subspace,
and the subspaces for different classes are orthogonal. When trained on benchmark datasets
with real labels, OLE-GRSVNet achieves better test accuracy when compared to DNNs with
different regularizations sharing the same baseline architecture. More importantly, unlike
conventional DNNs, OLE-GRSVNet refuses to memorize and overfit the training data when
trained on random labels or random data. This suggests that OLE-GRSVNet effectively
reduces the memorizing capacity of DNNs, and it only extracts intrinsically learnable patterns
from the data.

Although we have mainly focused on the special case of the GRSVNet framework where
the geometric constraint is orthogonal low-dimensional subspaces, any consistent geome-
try /validation pair can fit into this potential framework. For example, we can enforce the
features to sample low-dimensional manifolds as in [29] and choose a smooth manifold inter-
polation function for label propagation as the consistent validation loss. Moreover, the similar
idea of imposing geometry consistent validation can be extended to other vision tasks, such
as motion analysis and depth estimation.

We provided some intuitive explanation as to why GRSV Net generalizes well on real data
and refuses overfitting random data, but there are still open questions to be answered. For

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/02/20 to 99.69.19.248. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

492 W. ZHU, Q. QIU, B. WANG, J. LU, G. SAPIRO, AND I. DAUBECHIES

example, what is the minimum representational capacity of the baseline DNN (i.e., number
of layers and number of units) to make even GRSVNets trainable on random data? Or is it
because of the learning algorithm (SGD) that prevents GRSVNets from learning a decision
boundary that is too complicated for random samples? Moreover, we still have not answered
why conventional DNNs, while fully capable of memorizing random data by brute force,
typically find generalizable solutions on real data. These questions will be the focus of our
future work.

Appendix A. Proof of Theorem 3.1. It suffices to prove the case when K = 2, as the
case for larger K can be proved by induction. In order to simplify the notation, we restate
the original theorem for K = 2.

Theorem A.1. Suppose A € RVNX™ and B € RVN*™ are two matrices of the same row
dimension, and [A,B] € RNX(m+1) s the concatenation of A and B. Let || - ||« be the nuclear
norm of a matriz defined as

(A.1) JA]l. = Tr(JA]), where |A| = (A*A)z.
Then we have
(A.2) I[A,B]|l« < [|A[lx + Bl

Moreover, the equality holds if and only if A*B = 0, i.e., the column spaces of A and B are
orthogonal:

Proof. Let [& €] = [£:4 %ig}% = |[A, B]| be a symmetric positive semidefinite matrix.
We have
|A]> = A*A = E? + GG*,
(A.3) B> =B*B=F?+G*G,
A'B = EG + GF.

Suppose {a;};", {b;};_, are the orthonormal eigenvectors of |A[,|B|, respectively; then

(A.4) lIAlai|? = (|Ala;, a;) = ((E* + GG")aj, a;) = [|Ea;i + |G ail,

(A.5) I1B[b:[|* = (|B[*b;, bi) = ((F? + G*G)b;, bi) = ||[Fbil|* + || Gby|*.

We thus have the following inequality chain that proves (A.2):

(A.6) Al + Bl = Tr(|A]) + Tr(IB]) = > (|Alas, ai) + Y ([Blbi, by)
=1 =1

[
NE

I|Alai]l + Z 1B]bi]

s
Il
—

1 & 1
(IEaill® + G ail*)? + > (IFbil* + | Gbi|*)?
1 =1

IEalll+leFb I >Z Ea;, a;) +Z Fb;, b;)
1

_I(E) 4 TH(F) — (AL B) — (A, B

Il
(s 10
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We next show that the equality holds if and only if A*B = 0:
e If A*B =0, then

(A7) mA,Bm*—TdHA’B”)—“GA;A BSBm‘Tr(%' 5))

= Tr(JA]) + Te(IB|) = [|A[l« + Bl

o If ||[A,B]|l« = ||A|« + ||B]|«, then both of the inequalities in the chain (A.6) must be
equalities. Note that the first inequality is an equality only if G = 0. This combined
with the last equation in (A.3) implies

(A.8) A*B = EG + GF = 0. n

Appendix B. Proof of Theorem 3.2.
Proof. First, [ is defined in (3.6) as

(B.1) (X, Y) = 1([X9, X, [Y9,Y"]) = 1,(Z9) + AL (Y, Y").

The nonnegativity of l,(Z9) is guaranteed by Theorem 3.1. The validation loss I,(Y?, Y?) is
also nonnegative since it is the average (over the validation batch) of the cross entropy losses:

(B.2) LY, Y") = U‘ > H(by,9) = ’B| > logiy.

zeX? zeX?

Therefore, | = I, + Al, is also nonnegative.
Next, for a given A > 0, [(X,Y) obtains its minimum value zero if and only if both [,(Z9)
and 1,(Y?,Y"?) are zeros:
e By Theorem 3.1, 14(Z9) = 0 if and only if span(ZZ) L span(Z,) Ve # ¢
e According to (B.2), 1,(Y?,Y?) = 0 if and only if g(x) = 0y vV € XY, ie., for every
x € XY, its feature z = ®(x;0) belongs to span(ZZ).
Last, we want to prove that if A > 0, and X" contains at least one sample for each class,
then rank(span(Z?)) > 1 for any ¢ € {1,..., K }.
If not, then there exists ¢ € {1,..., K} such that rank(span(Z?)) = 0. Let x € X" be a
validation datum belonging to class y = ¢. The predicted probability of & belonging to class
c is defined as in (3.4):

B9 Ge=Plwed & (s et Z< o) =°

Thus we have

(B.4) 1> N, =

A
Z log g > |logy( x). = +o0. [ ]

v’ reX?
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Appendix C. Proof of Theorem 5.1. As mentioned in subsection 5.1, we assume for
simplicity that m > n. We first need the following lemma.

Lemma C.1. Let A € R™ ™ be a rank-s matriz, and let A = UDSOVD* pe the compact
SVD of A, i.e., UL e Rmxs 55(1) ¢ Rsxs V() € R™¥5: then the subdifferential of the nuclear

norm at A is

(C.1) A = {U(UV(U* " ﬁ(Q)WV(Q)*} ’

where U@ e rmx(n=s) y(2) g gnx(n=s) W € RM=9)x(n=3) sqtisfy that the columns of U®
and V@ are orthonormal, span(U(l))J_ span(U(Q)), span(V(l))J_ span(V(2)), and |W|lz < 1.

Remark C.2. Note that U@ e R™*(m=5) and V) ¢ R (=5) are used in Lemma C.1
instead of U® e R™** and V(®) € R™** in (5.1). The reason is that U® and V® corre-
spond to the reduced SVD of the matrix A, and they are thus more suitable for numerical
implementation.

Proof. Based on (5.1), we only need to show that the following two sets are identical:
(C2) D= {U(l)V(l)* FUOWVE . YW e R(9X(=9) with | Wy < 1} ,
(C.3) Dy = {U(I)V(l)* +UOWVE* . U® v W specified in the lemma} .

On one hand, let d = UDVD*  UDWVE* ¢ D, and let UPW = UZV* be the
reduced SVD of UPW € R™*("=5) je U e R™*(=35) 3 ¢ R(v=s)x(n=s) v ¢ R(n—s)x(n=s)

Then we can set U® = U, W = SV*, and V@ =v@, Itis easy to check that 6(2),\7(2), W
satisfy the conditions in the lemma, and

(C.4) d=UMvh L TAOWVE* ¢ p,.

On the other hand, let d = U(~1)V(1)* + fJ(Z)VV\z@)* € Dy, where U® V@ W satisfy
the conditions in the lemma. Let U® = U®P and V@ = v2)Q, where P € R(m—s)x(n—s)
and Q € R("=9)%("=$) haye orthonormal columns. After setting W = PWQ*, we have

(C.5) AWV = u@pwqQ V@ = uGwv @,
where ||[W/||2 < 1. Therefore,
(C.6) d=ubvL L gOWVE* = gOv L g@wv®* ¢ ;. |

Now we go on to prove Theorem 5.1.

Proof. Let rank(A) = s, and split the computed singular vectors into two parts, U® =
[U(l)E,U(Q)EL Ve = [V(l)E,V(Q)E], where U(l)s c Rmxs’ U(2)5 c Rmx(nfs)’v(l)s c Rnxs’ and
Ve ¢ R™*("=9) By the backward stability of SVD [6, 8], we have [|[UM) —U®Me||, = O(e/n),
VD — ve|ly = O(e/n), and there exist U, V() gatisfying the condition in the lemma
and [[U®) —URE|, = O(e/n), [[VE = V=|, = O(e/n).
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Because of the lemma, we have (UMVM* £ URVE)*) € 9||A||,, and

A(USVE 9|A L) < ’ UTvVE - (Uu)v(l)* . 6(2)\7(2)*) H2

_ ’ (Uu)eV(l)e* I U(2>€V<2>E*) _ (Umv(l)* I ﬁ@)v(z)*) H

< ’ (Ums _ U<1>) v, 4 Tu® (Vme* _ V(l)*) H2 2
4 ’ (U@)s _ f;(2>) V@, 4 [T (V@)s* _ {,—(2)*) H2
(C.7) = O(e/n). [ ]
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