Vision Research 167 (2020) 87-99

Contents lists available at ScienceDirect .F\{,E%EL?CNH
Vision Research
journal homepage: www.elsevier.com/locate/visres 020000

Check for
updates

Can machine learning account for human visual object shape similarity
judgments?*

Joseph Scott German®, Robert A. Jacobs”

& Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, United States
" Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, United States

ABSTRACT

We describe and analyze the performance of metric learning systems, including deep neural networks (DNNs), on a new dataset of human visual object shape
similarity judgments of naturalistic, part-based objects known as “Fribbles”. In contrast to previous studies which asked participants to judge similarity when objects
or scenes were rendered from a single viewpoint, we rendered Fribbles from multiple viewpoints and asked participants to judge shape similarity in a viewpoint-
invariant manner. Metrics trained using pixel-based or DNN-based representations fail to explain our experimental data, but a metric trained with a viewpoint-
invariant, part-based representation produces a good fit. We also find that although neural networks can learn to extract the part-based representation—and therefore
should be capable of learning to model our data—networks trained with a “triplet loss” function based on similarity judgments do not perform well. We analyze this
failure, providing a mathematical description of the relationship between the metric learning objective function and the triplet loss function. The poor performance of
neural networks appears to be due to the nonconvexity of the optimization problem in network weight space. We conclude that viewpoint insensitivity is a critical
aspect of human visual shape perception, and that neural network and other machine learning methods will need to learn viewpoint-insensitive representations in

order to account for people’s visual object shape similarity judgments.

1. Introduction

Judging the similarity of objects is a component of many real-world
visual tasks. A person searching for a friend in a crowd uses visual cues
to judge which face most closely resembles that of the friend. A my-
cologist (i.e., an expert in the study of fungi) deciding whether or not to
eat a particular mushroom uses visual cues to judge whether the
mushroom is more similar to edible or poisonous mushrooms pre-
viously encountered. A radiologist examining a suspicious portion of a
mammogram uses visual cues to judge whether the portion is similar to
previously encountered images of tumors. Clearly, achieving greater
insight into the nature of visual similarity judgments will enhance our
understanding of the mental processes underlying performance on
many important perceptual and cognitive tasks (Edelman, 1998;
Edelman & Shahbazi, 2012).

It is not only biological organisms that make visual similarity
judgments. Indeed, the acquisition and use of visual similarity metrics is
often integral to the processing of computer vision, robotic, and other
artificial intelligence systems. Within the field of machine learning
(ML), there has been a recent surge of interest in statistical and deep
neural network (DNN) approaches to the acquisition of visual similarity
metrics (Bellet, Habrard, & Sebban, 2014; Kulis, 2012), as well as the
use of metrics for learning hidden or latent representations (Chopra,
Hadsell, & LeCun, 2005; Schroff, Kalenichenko, & Philbin, 2015).

This paper reports the results of a behavioral experiment in which
human participants were asked to make shape similarity judgments
about visual objects in a viewpoint-invariant manner. It also reports the
results of our efforts to account for the patterns in participants’ re-
sponses using a variety of approaches from the ML literature. The re-
search has two related goals. One goal is to better understand people’s
visual object shape similarity judgments. The other is to better under-
stand the strengths and shortcomings of current ML approaches to vi-
sual similarity by asking whether these approaches can successfully
account for patterns in our experimental data. Although DNNs and
other machine learning approaches have received much fanfare in re-
cent years, our results demonstrate that they often fail to judge simi-
larity as people do. Specifically, the results suggest that they tend to
learn representations that are overly sensitive to viewpoint-dependent,
2-D image features, even when they could, in principle, learn re-
presentations that are viewpoint-independent and based on 3-D shape
properties. In contrast, people judge visual object shape similarity in a
more viewpoint-insensitive manner based on 3-D shape features
(Erdogan & Jacobs, 2017).

2. Experiment

Previous researchers have conducted behavioral experiments in
which human participants judged the similarity of visual and visual-
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haptic objects on the basis of their shapes. For example, in a set of
studies by Wallraven, Biilthoff, and colleagues (Cooke, Jikel,
Wallraven, & Biilthoff, 2007; GaiRert, Biilthoff, & Wallraven, 2011;
Gaiert & Wallraven, 2012; GaifSert, Wallraven, & Biilthoff, 2010),
participants provided similarity judgments for different sets of objects,
both artificial and natural, in visual, haptic, and visual-haptic condi-
tions. Using multidimensional scaling (Cox & Cox, 1994) to analyze the
experimental data, it was found that participants’ similarity ratings
were similar in all three sensory conditions, suggesting that these rat-
ings were based on shared mental representations.

Erdogan and Jacobs (2017) and Erdogan, Yildirim, and Jacobs
(2015) asked participants to rate object shape similarity in a visual
condition or in visual, haptic, and visual-haptic conditions, respec-
tively. These authors modeled their similarity data using a system
combining a symbolic representation of object parts and their possible
combinations with a Bayesian inference algorithm to infer 3-D, part-
based representations of objects. Erdogan and Jacobs (2017) found that
this system accounted for participants’ judgments better than DNNs and
other methods for representing object shape. The disadvantages of this
system include a requirement to specify a set of possible parts and a set
of rules for how these parts can be combined, and the fact that it is very
computationally expensive.

Conceptually, the procedure of the experiment reported here is si-
milar to that of Erdogan and Jacobs (2017), though the current ex-
periment used different stimuli and collected data from many more
participants. The analyses of the experimental data are also quite dif-
ferent.

2.1. Participants

The experimental study was approved by the Research Subjects
Review Board at the University of Rochester. Ninety-nine participants
took part in the experiment over the world wide web via the Amazon
Mechanical Turk (MTurk) crowd-sourcing marketplace. Interfacing
with MTurk was facilitated through the use of the psiTurk programming
platform (Gureckis et al., 2016). psiTurk was configured so that only
individuals based in the United States could participate in the experi-
ment. Participants stated that they were at least 18 years old. It took
approximately 20 minutes to complete the experiment, and each par-
ticipant received $2.50 for their participation.

2.2, Stimuli

The experiment used novel objects known as “Fribbles” (Barry,
Griffith, Rossi, & Hermans, 2014; Hayward & Williams, 2000; Tarr,
2003; Williams, 1997). These are three-dimensional, multipart, natur-
alistic objects. Novel objects were used so that participants would not
have semantic associations with objects, implying that participants’
similarity judgments should be based on perceptual features, instead of
semantic ones.

All objects used in the experiment came from a single Fribble
“species”, and thus contained a common part known as its main body.
In addition to a main body, each object had four slots or locations, with
one of three possible parts attached at each location. Consequently, the
experiment used 81 objects (4 locations with 3 possible parts per lo-
cation for 3* = 81 objects). Objects were visually rendered from 14
viewpoints (see Fig. 1 for sample images; see Fig. 2 for images of all
possible object parts). Thus, the experiment used 1134 images (81
objects x 14 viewpoints = 1134 images).

2.3. Procedure

On each experimental trial, participants viewed a display con-
taining three Fribble objects: a “target” object and two “probe” ob-
jects. They were asked to select which of the two probes was most
similar to the target. Importantly, participants were instructed to base
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their similarity judgments on 3-D object shape (irrespective of view-
point). Each participant completed 175 trials, 16 of which were
“catch” trials where one of the probes was identical to the target, al-
beit possibly rendered from a different viewpoint. As described below,
these catch trials were used to determine the quality of participants’
responses. Each participant encountered the same catch trials at the
same, randomly-chosen points in the experiment. In total, 17,325 si-
milarity judgments were collected.

3. Machine learning approaches

We analyzed our experimental data using two prominent ML ap-
proaches, metric learning (see also Xu, Zhu, and Rogers (2012)) and
DNNS.

3.1. Metric learning

In the machine learning literature, judging the similarity of objects
is usually considered a problem of metric learning (Bellet et al., 2014;
Kulis, 2012). Metric learning, as its name suggests, attempts to learn a
metric or distance function over objects such that similar objects are
close together and dissimilar objects are farther apart. Which objects
should be considered similar, and thus close, and which ones should be
considered dissimilar, and thus far apart, can be based on supervision
derived from human judgments.

The most common approach to metric learning is for the learned
distance function to take the form of a Mahalanobis distance:

d(x, %) = (0 — %)TAMN — %)

@

where d (x, %) is the (square of) the distance between vectors x; and x,,
and A, the Mahalanobis matrix, is a positive semidefinite matrix (i.e.,
xTAx > 0 for all x € R"). Finding matrix A is framed as an optimization
problem typically taking the form:

min r(A) subjectto Vi, ¢;(XTAX) <O0.
A€eMpsp

@

In this equation, X is a matrix containing the stimuli or data items,
{ci(XTAX)} is a set containing the training constraints on X7AX by
which the supervision is administered, r (A) is a regularizer, and Mpp is
the set of positive semidefinite matrices of appropriate size. The reg-
ularizer r(A) is a function of A used to avoid solutions to the optimi-
zation problem that are overfit to the training constraints, meaning
solutions that are overly based on both the “signal” and the “noise” in
the constraints. It is important to avoid such solutions because they are
unlikely to generalize well to novel data items or constraints. The po-
sitive semidefinite restriction A € Mpgp both makes intuitive sense (as
the distance between two objects should not be negative) and can aid
training by making the optimization problem convex." If this restriction
makes the optimization problem convex, then the problem can more
easily be addressed through semidefinite programming (Vandenberghe
& Boyd, 1996).

In this paper, we implemented the training constraints as follows. If
a participant in our experiment judged the target stimulus x; as more
similar to the probe x than to the other probe x;, then d(x, %) was
constrained to be less than d(x;, x3). A “margin” m (set to 1) was also
used (Hastie, Tibshirani, & Friedman, 2009), yielding the final con-
straint d (0, %) < d(x, X3) — m. Because participants in our experiment
provided 17,325 similarity judgments, our optimization problem con-
tained 17,325 data items or training constraints.

As explained in Appendix A, one rarely attempts to directly solve
the optimization problem in Eq. (2). Instead, the problem is trans-
formed in two ways. First, because it is unlikely that there exists a so-
lution satisfying all constraints, it is common to add “slack variables” to

! Convex problems are attractive because they have one (global) solution and
because they are often relatively easy to solve (Vandenberghe & Boyd, 1996).
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Fig. 1. Examples of Fribble stimuli. Top and bottom rows depict two Fribbles at a variety of viewpoints.

the constraints, and to attempt to minimize those as well (Hastie et al.,
2009). Second, it is also common to re-write this constrained optimi-
zation problem as an unconstrained problem. In our simulations, opti-
mization was performed by finding a solution to the unconstrained
problem using stochastic gradient descent.

In the ML literature, a number of algorithms are often used to solve
the unconstrained optimization problem. Four common algorithms
were used in our simulations, referred to as the freeform, decomposi-
tion, SJ, and LMNN algorithms. The details of these algorithms are
provided in Appendix A. It is not the goal of this paper to compare the
performance of one algorithm with another, and thus the details of the
algorithms are not essential for our purposes. Instead, our goal is to
evaluate whether any state-of-the-art metric learning procedure can
successfully account for human visual object shape similarity judg-
ments.

3.2. Deep neural networks

DNNs are state-of-the-art artificial intelligence systems that have
demonstrated impressive performance in a wide range of domains, in-
cluding visual perception, speech recognition, text-to-text language
translation, and product recommendation. In brief, neural networks
consist of interconnected units (LeCun, Bengio, & Hinton, 2015). Some
of these units are designated as input units, others are “hidden” units,
and still others are output units. A network’s goal is to map patterns of
input unit “activations” to target (i.e., desired) patterns of output unit
activations. For instance, a network might map patterns representing
visual images (e.g., images of vehicles) to patterns representing cate-
gory labels (e.g., a vehicle might be a car, truck, or bus). Typically,
input units connect to one or more layers of hidden units which, in turn,
connect to output units.

The power of neural networks is based on the fact that they are
capable of learning and generalization. Networks learn by adapting the
values of their units’ parameters or weights. Learning is typically su-
pervised, meaning that a “teacher” provides the target output activation
pattern for each input activation pattern. During training, a network’s
weights are modified to minimize its error, or difference between the
target output pattern for each training data item and its actual output
pattern. The hope is that following training, the network is capable of
generalization to unseen data, meaning that in addition to producing
the target output pattern for each input pattern in the training set, it can
also produce approximately correct output patterns for novel input
patterns that are similar to the training set’s input patterns.

Over the past several decades, researchers in the fields of cognitive
science and neuroscience have used neural networks to provide insights
into many aspects of human perception and cognition. Despite this
history of success, the reasons why these networks often provide useful
accounts of mental and neural processing are poorly understood. For
instance, there are many types of networks (differing in terms of types
of units, patterns of connectivity, training procedures, and many other
factors), but researchers do not have a good understanding as to which
types provide better versus worse accounts of human behavior.
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Similarly, many neural networks lack important biological detail, re-
sembling biological neural networks only in seemingly coarse ways.
Despite this, several researchers have recently argued that these net-
works provide useful insights into neural processing, particularly within
the visual system (Kriegeskorte, 2015; Wenliang & Seitz, 2018; Yamins
& DiCarlo, 2016).

The simulations reported in this paper were conducted using the
Keras neural network library for Python (Chollet, 2017). In one set of
simulations, we used a pre-trained network, namely VGG-16 (Simonyan
& Zisserman, 2015), provided in Keras. In other simulations, we trained
and tested our own networks.

4. Direct modeling of human similarity judgments

This section reports the results of our attempts to use metric
learning to directly model our experimental participants’ similarity
judgments. In these attempts, visual stimuli were coded using either a
pixel-based representation, a latent representation acquired by a DNN,
or a viewpoint-invariant, part-based representation.

Below we include results from multiple algorithms. However, the
primary intent of this paper is not to compare the algorithms to assess
which one models our data best. Rather, results from multiple algo-
rithms are reported to confirm that patterns in results are not idiosyn-
cratic properties of a single algorithm. In addition, we evaluated algo-
rithms on multiple subsets of data items, including low-quality,
medium-quality, and high-quality data items. This was done to assess
algorithms’ performances under the best possible conditions, pre-
sumably when trained with high-quality data, and to check that per-
formances are not due to “noise” arising from large individual differ-
ences in participants’ responses.

4.1. Pixel-based representation

We began by using a naive, pixel-based representation of the visual
stimuli. We converted the actual 480 x 480 images used in the experi-
ment to grayscale,” and represented each image as a vector of pixel
values with 230,400 elements. Use of these vectors would entail
learning a Mahalanobis matrix with over 53 billion elements, so for
computational feasibility we mapped each vector to a vector with 100
elements via principle component analysis (PCA). This transformation
preserved over 95% of the variance in the pixel values. Furthermore, we
show later in the paper that all the information required to complete the
task remains present in the low-dimensional representation (Fig. 9).
Thus, metric learning required us to learn a 100 X 100 Mahalanobis
matrix A.

To train and test metric learning models, we divided the data into
training (three-fifths), validation (one-fifth) and test (one-fifth) sets.
Models were trained on the training data using a variety of values for

2 Although the images viewed by the human participants were color, they
were essentially monochromatic, and converting them to grayscale did not
appreciably alter their appearance.
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Fig. 2. Fribble parts used in the experiment (except the body which was the identical in all stimuli), along with their corresponding subvectors used in the part-based
representation. A Fribble is constructed by combining one part from each row (plus the body), and the part-based representation is constructed by concatenating the

associated subvectors, top row to bottom row. Parts are not shown to scale.

the hyperparameter C in Eq. (6) in Appendix A, ranging from 5 to 50 in
increments of 5 (C controls the relative importance of minimizing the
regularizer versus the “slack” variables).

The resulting models were then tested for their performance on the
validation set. The best performing model was then tested on the test
set, and the result reported. The results are shown in Fig. 3. In each
graph, “accuracy” is plotted on the vertical axis where accuracy is the
average proportion of participants’ similarity judgments in a test set
correctly reproduced by a model. The horizontal axis shows five
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different models, a baseline model in which the Mahalanobis matrix A
was set to a random matrix which was then projected onto the positive
semidefinite cone, and four models based on the four metric learning
algorithms mentioned above (and described in Appendix A). The four
graphs in the figure correspond to four subsets of data items. The top-
left graph shows the results using all data items. In addition, we clas-
sified the experimental participants based on the number of catch trials
on which they correctly responded. Data from participants with 11 or
fewer catch trials correct are considered low-quality data (top-right
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Fig. 3. Model accuracies on test items using pixel-based image representations. Metric learning models were evaluated using all data items (top left), as well as
subsets consisting of low quality (top right), medium quality (bottom left), and high quality (bottom right) data items.

graph; 25 participants, 4375 judgments), data from participants with
12-14 catch trials correct are medium-quality data (bottom-left graph;
41 participants, 7175 judgments), and data from participants with
15-16 catch trials correct are high-quality data (bottom-right graph; 33
participants, 5775 judgments). The algorithms iterated over the data at
each quality level such that there were roughly the same effective
number of examples in each.

In brief, none of the models showed good performance. This result is
not surprising considering the naive nature of the pixel-based re-
presentation. The best-performing model was the SJ model, and even
with high-quality data it averaged only around 62% accuracy.’

The models’ poor performances suggest that the pixel-based re-
presentation is inadequate for modeling participants’ similarity judg-
ments. Next, we evaluate a representation derived from a state-of-the-
art DNN.

4.2. DNN-based representation

We next tried using hidden or latent representations acquired from
the final feature layer of a state-of-the-art DNN, VGG-16 (Simonyan &
Zisserman, 2015), which had been pre-trained on the ImageNet clas-
sification task. We used the version of VGG-16 available in the Keras
neural network library (Chollet, 2017). We used VGG because it shows
good performance, having secured the first and second places in the

3 Considering that, as a semidefinite programming problem, the loss function
is convex for most of these algorithms (the loss function is not convex for the
decomposition algorithm, as will be discussed later), one might be surprised
that the algorithms did not converge to the same performance. There are a few
possible reasons for this. First, although the loss functions were all convex, the
algorithms had different loss functions and were each optimizing for different
things (see Appendix A). Second, we used stochastic gradient descent, so the
true loss function was only approximated at each step.
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2014 ImageNet Challenge localization and classification tracks. In ad-
dition, it has been reported that its representations capture important
aspects of people’s image similarity ratings (albeit not their visual ob-
ject shape similarity ratings; see Discussion section), often better than
alternative DNNs (Peterson, Abbott, & Griffiths, 2018).

Although VGG-16 was not trained to model similarity judgments,
we believe that the use of its hidden representations in our application
is reasonable. Using (portions of) DNNs trained on one task for feature
extraction on another task often yields good results (Ciresan, Meier, &
Schmidhuber, 2012; Azizpour, Razavian, Sullivan, Maki, & Carlsson,
2015). Furthermore, we show later in the paper that the VGG-16 re-
presentation contains all the information necessary to complete the task
(Fig. 9).

We resized the Fribble images to the input resolution of VGG-16 and
used them as the network inputs. For each input, the activation values
of the hidden units at the last max pooling layer of the network’s
convolutional base were extracted.” The output shape at this layer is
7 X 7 X 512, meaning that there were 25,008 activation values per
input. Use of feature vectors with 25,008 elements would entail
learning a Mahalanobis matrix with over 600 million elements, so for
computational feasibility we mapped each vector to a vector with 100
elements via PCA. This transformation preserved over 95% of the var-
iance in the feature values. Thus, metric learning required us to learn a
100 x 100 Mahalanobis matrix A.

The results are summarized in Fig. 4. The performance of the
learned metrics is only slightly better than the performance of metrics
trained on the pixel values. It appears that the representations learned
by VGG-16 are also not adequate for modeling participants’ similarity
judgments.

Before concluding that neural networks are incapable of modeling

4We also conducted similar tests using the output of the other max pooling
layers; the results were not substantially different.
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Fig. 4. Model accuracies on test items using DNN-based image representations. Metric learning models were evaluated using all data items (top left), as well as
subsets consisting of low quality (top right), medium quality (bottom left), and high quality (bottom right) data items.

human visual object shape similarity data, there are two caveats worth
noting. The first is that although the VGG-16 representation is not itself
adequate, it may be possible to extract an adequate representation from
it. Second, VGG-16 was not trained on visual stimuli like ours, nor was
it trained to perform a task like ours. These factors have not prevented
other researchers from successfully using VGG-16 and other DNN re-
presentations in seemingly unrelated applications, but we must con-
sider the possibility that a DNN could successfully model our similarity
judgments given proper training. We will return to these issues later in
the paper. For now, we turn our attention to a handcrafted re-
presentation that adds viewpoint-invariance and part-sensitivity.

4.3. Part-based representation

We also represented objects in a part-based manner using binary
feature vectors. There were three features for each location on a Fribble
where a part could appear (ignoring the base part that is common to all
Fribbles). These features indicated which of three possible parts was at
the corresponding location. Because there were three possible parts per
location and there were four locations, a Fribble was represented by a
vector with 12 elements (see Fig. 2). Critically, the part-based re-
presentation makes a strong assumption: images of Fribbles could be
accurately segmented into object parts by our experimental participants
and that these parts could be accurately identified. Due to the part-
based nature of Fribbles and to the simplicity of the images, it seems
very likely that this assumption is valid. If so, a part-based re-
presentation allowed participants to represent Fribbles in a viewpoint-
insensitive manner.

Because the Mahalanobis matrix A was only 12 X 12, optimization
algorithms ran quickly enough that we could use a cross-validation
procedure (Hastie et al., 2009) for tuning hyperparameters (specifi-
cally, C in Eq. (6)) making use of training, validation, and test sets. We
set aside a fifth of the data (the test data) and performed fourfold cross-
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validation® on the remaining data for a variety of values of C. The
models produced with a given value of C that performed best in cross-
validation were then tested on the held-out test data, and the average
accuracy is reported.

Results are summarized in Fig. 5. When trained and tested on all
data items (top-left graph), the freeform, SJ, and LMNN methods per-
formed similarly, achieving results in the range of 71%-72% accuracy.
As expected, performances were better with high-quality data (bottom-
right graph; accuracies about 78%-79%) and worse with low-quality
data (top-right graph; accuracies around 60%). Critically for our pur-
poses, model predictions more closely matched participants’ similarity
judgments when models used this part-based representation (Fig. 5)
than when they used pixel-based or DNN-based representations (Figs. 3
and 4, respectively).

The decomposition method performed worse than other methods.
While semidefinite programming problems are convex in the
Mahalanobis matrix A, the decomposition method does not directly
optimize A, and instead optimizes B where A = B'B. Semidefinite
programming problems are not convex in B, and thus it is not surprising
that the decomposition method performed poorly. The difficulty of
obtaining good performance on nonconvex optimization problems will
be important again later in the paper.

Fig. 6a visualizes a Mahalanobis matrix acquired by a part-based
model using the LMNN optimization method with all data items. LMNN
was chosen because it most clearly demonstrated tendencies present
with all algorithms. We initialized these matrices with the identity
matrix for clarity: although the optimization problem is convex, it is not
strictly convex, so random initializations often produce similar but

5In n-fold cross-validation, data are randomly partitioned into n subsets, and
a model is trained and validated or evaluated n times. Each time, a different
subset serves as the validation set, while the remaining subsets serve as the
training set.
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consisting of low quality (top right), medium quality (bottom left), and high quality (bottom right) data items. Error bars plot the standard errors of the means. The
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Fig. 6. Representative Mahalanobis matrices acquired by part-based models using the LMNN optimization method with all data items (Panel (a)), and with low-
quality (Panel (b)) and high-quality (Panel (c)) data items. Brighter colors represent higher saliences (i.e., greater importance assigned to part differences). Results

are similar using other methods.

noisier matrices. Brighter colors represent higher salience (i.e., greater
importance assigned to a potential difference in part structures). No-
tably, the matrix is close to having a block-diagonal form with four
blocks (recall that Fribbles have four locations at which parts were
attached to the base part) where each block is a3 X 3 sub-matrix (recall
that one of three possible parts was attached at each location on each
Fribble). It appears that the model has learned to predict participants’
similarity judgments by comparing parts at corresponding locations
(and not comparing parts at non-corresponding locations). Interest-
ingly, the model does not regard all differences in parts as equally
important. If a part on a target Fribble and a part at a corresponding
location on a probe Fribble have very different 3-D shapes, then this
part-difference is weighted heavily. However, if the two parts resemble
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each other in shape, then the model does not weight this part-difference
as heavily.

This point can be illustrated by referring to Fig. 7. Suppose Fig. 7a
depicts a target Fribble and Fig. 7b and c depict probe Fribbles. We
focus on the Fribble part connecting the base part to the 3-D triangular
part at the top of each Fribble (see Fig. 2, third row). This part is dif-
ferent on each Fribble, though this part’s shape is more similar on the
target and first probe (Fig. 7a and b) than on the target and second
probe (Fig. 7a and c). The model has learned to weight the difference in
parts less heavily in the former case than the latter. This is true despite
the fact that differences in binary part-representations between the
target and first probe and the target and second probe are identical
(using, for example, Hamming distance). Presumably, this differential



J.S. German and R.A. Jacobs

(a) Target:
[100100010100]

(b) Probe 1:
[100100001100]

Vision Research 167 (2020) 87-99

(c) Probe 2:
[100100100100]

Fig. 7. Target (Panel (a)) and two probe Fribbles (Panels (b) and (c)), along with their part-based representations. Focusing on the Fribble part connecting the base
part to the 3-D triangular part at the top of each Fribble, this part’s shape is more similar on the target and first probe than on the target and second probe.

weighting of part-differences reflects the mental operations underlying
participants’ visual similarity judgments.

Interestingly, a slightly different pattern emerged when we ex-
amined Mahalanobis matrices based on low-quality and high-quality
data. Low-quality data come from participants who performed poorly
on experimental catch-trials, suggesting that these participants were
relatively inattentive during the experiment. As illustrated in Fig. 6b,
fewer part-differences were salient or noticeable for the least attentive
participants, and thus these participants exhibited more extreme dif-
ferential weighting than other participants (e.g., subtle part-differences
were often ignored whereas large part-differences were assigned rela-
tively large weights). These participants seem only to have noticed
differences at certain locations with certain parts.

On the other hand, matrices learned using high-quality data
(coming from participants who performed very well on experimental
catch-trials, suggesting that these participants were especially attentive
during the experiment) showed the opposite tendency. As illustrated in
Fig. 6¢, Mahalanobis matrices acquired on the basis of these partici-
pants’ data more closely resembled the identity matrix than matrices
acquired on the basis of all data or low-quality data. In other words,
more part-differences were more salient or noticeable for the most at-
tentive participants, and thus these participants exhibited less extreme
differential weighting than other participants (e.g., nearly all part-dif-
ferences (subtle or obvious) were noticed and weighted).

4.4. Interim summary

In summary, the results reported in this section indicate that metric
learning with either pixel-based or DNN-based representations fail to
account for the experimental participants’ similarity judgments,
whereas metric learning with a viewpoint-invariant, part-based re-
presentation is relatively successful at accounting for these judgments
(see Fig. 8 for a summary of the results so far). To us, these results are
surprising, particularly the poor performance of the DNN-based re-
presentation. After all, DNNs are state-of-the-art artificial intelligence
systems whose visual object categorization performance rivals (or
sometimes exceeds) that of humans. Moreover, the images used in our
experiment and simulations are simple when compared with the com-
plex images often used to train and test DNNs. Given these factors, why

Pixel representation, all data

Deep representation, all data

does the DNN-based representation perform so poorly? In the re-
mainder of this paper, we explore this question.

5. Learning part-based representations from pixel-based or DNN-
based representations

A good account of participants’ similarity judgments can readily be
provided on the basis of a viewpoint-invariant, part-based representa-
tion but not on the basis of pixel-based or DNN-based representations.
This raises the following questions: Might it be possible to map from
either pixel-based or DNN-based representations (i.e., the relatively
unsuccessful representations) to a part-based representation (i.e., the
successful representation)? If so, can this mapping be learned by DNNs?

We addressed these questions by training eight DNNs defined by the
cross-product of two data sets, two stimulus representations, and two
network architectures. The two data sets are referred to as the Random
(denoted “R”) and Viewpoint-Restricted (denoted “V”) data sets. In the
former, data items were randomly assigned to either training (four-
fifths of data items) or test (one-fifth of data items) sets. Consequently,
the training set contained images depicting every possible Fribble part
from every possible viewpoint (though, of course, it did not contain
images depicting every possible combination of parts (i.e., every object)
from every possible viewpoint). In the latter, the training set was re-
stricted so that images depicted Fribbles from 11 of the possible 14
viewpoints. Images depicting Fribbles at the remaining three view-
points were placed in the test set. Networks trained on the Viewpoint-
Restricted data set would perform well on the test set only if they
learned viewpoint-invariant representations during training.

The two stimulus representations were the pixel-based (denoted
“P”) and DNN-based (denoted “D”) representations. The two network
architectures were a one-layer network (denoted “1”) with 100 input
units directly connected to 12 output units, and a two-layer network
(denoted “2”) with 100 input units connected to 100 hidden units
which, in turn, were connected to 12 output units. All units used rec-
tified linear (ReLu) activation functions. Networks were trained to take
the pixel-based or DNN-based representation of an image as input and
to produce the correct part-based representation as output using a mean
squared error loss function. Network weights were updated using the
Adam algorithm (Kingma et al., 2014) with a batch size of ten data

Part-based representation, all data

Baseline Freeform Decomposition E} LMNN Baseline

Freeform Decomposition 3

LMNN Baseline Freeform Decomposition E] LMNN

Fig. 8. Summary of the results so far showing the performance of models trained on all data using pixel-based, DNN-based, and part-based representations.
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Fig. 9. The horizontal axis labels the eight models. For example, “P1R” denotes
a network whose input was coded using the pixel representation, had one layer
of units, and that was trained and tested using the Random data set. The vertical
axis plots the mean squared error in a network’s estimates of the target part-
based representations.

items.

The results are shown in Fig. 9. The horizontal axis labels the eight
models. For example, “P1R” denotes a network whose input was coded
using the pixel representation, had one layer of units, and that was
trained and tested using the Random data set. The vertical axis plots the
mean squared error in a network’s estimates of the target part-based
representations on the test set. Clearly, test performance was nearly
perfect when networks were trained with the Random data set, but
performance was relatively poor when networks were trained with the
Viewpoint-Restricted data set. This result is not surprising because the
training items of the Random data set depicted every possible object
part from every possible viewpoint, whereas the training items of the
Viewpoint-Restricted data set depicted parts from viewpoints that were
different from the viewpoints used in the test images. In other words,
since the encoding of individual parts of a Fribble does not impact the
encoding of other parts, the training items in the Random data
set allowed a network to “generalize” to test stimuli with novel com-
binations of previously-experienced parts at previously-experienced
viewpoints. However, the test stimuli in the Viewpoint-Restricted data
set contained previously-experienced parts at novel viewpoints, and
thus generalization performance was poor. Lastly, networks using the
DNN-based representation outperformed networks using the pixel-
based representation.

The results reported here establish that even a simple network can
learn to approximate the successful part-based representation as long as
its training items include every possible Fribble part at every possible
viewpoint. In the next section, we examine whether networks like
these, as well as more elaborate ones, are capable of accounting for our
experimental data when trained with a loss function designed for this
purpose.

6. Networks trained with a triplet loss function

So far, our attempts to use neural networks to model our experi-
mental data have consisted of extracting representations learned in the
final convolutional layer of VGG-16, a DNN trained on a task unrelated
to our similarity judgment task, and then using these representations
for the purposes of metric learning. There is a possibility that a network
trained specifically to reproduce our participants’ similarity judgments
would be capable of doing so. To investigate this possibility, we
adapted the techniques used by Schroff et al. (2015) to train their Fa-
ceNet network (Hoffer & Ailon, 2015; Wang et al., 2014). FaceNet, a
deep convolutional network, was trained to map high-dimensional face
images to low-dimensional embeddings (or latent representations) such
that the Euclidean distance between face embeddings corresponded to
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face similarity:

da, %) = IIf 0a) = f Ce)I3 3

where |- is the squared ¢, (or Euclidean) norm (equivalent to the
Mahalanobis distance using the identity matrix for the Mahalanobis
matrix) and f(-) is an embedding produced by the network. The
training set consisted of triplets of labeled images, each of which had a
probe image depicting a person’s face, a target image depicting the
same person’s face as in the probe (possibly at a different viewpoint),
and a nontarget image depicting a different face. The loss function, or
“triplet loss”, was

L= max[0, If () — f&P)B = If () = f I + m]

- @
where m is a margin, and x?, x/, and x/" are the probe, target, and
nontarget images in the i triplet in the training set. Critically, the
triplet loss function implemented constraints that are fundamentally
identical to the constraints implemented in metric learning (see dis-
cussion above and Eq. (6) in Appendix A). FaceNet attempted to
minimize the Euclidean distance between the embeddings of images of
the same face even when this face was rendered from different view-
points (i.e., x' and x?), and to maximize the distance between embed-
dings of different faces (i.e., x' and x"). This can be seen as the inverse
of the metric learning algorithms: instead of learning a Mahalanobis
matrix to satisfy the constraints given a stimulus representation, Fa-
ceNet learned a stimulus representation satisfying the constraints given
a Mahalanobis matrix (in this case, the identity matrix).

For FaceNet, “similar faces” were images of the same person’s face.
Our experimental data is slightly different, in that the probe Fribble
chosen by a participant to be more similar to a target Fribble is usually
not the same Fribble (except on catch trials). Nonetheless, because the
underlying principle remains the same, we trained neural networks on
our data using the triplet loss function.

We trained a two-layer network with 100 input units, 100 hidden
units, and 12 output units, with either the pixel-based or DNN-based
representations coding the input. For each input image, the activations
of the output units were the network’s embedding of the image. We also
trained a deep convolutional network that took the grayscale images,
resized to 100 X 100 pixels, as input to a convolutional layer with 24
channels, each using 7 x 7 filters with a stride of two, followed by a
max pooling layer with 2 X 2 pools in each channel, a convolutional
layer with 12 channels, each using 5 X 5 filters with a stride of two,
another max pooling layer with 2 X 2 pools in each channel, a con-
volutional layer with 12 channels, each using 3 X 3 filters with a stride
of two, and then 200-unit, 100-unit, and 12-unit densely connected
layers. All layers except the final one used rectified linear activation
functions; the final layer used a linear activation function. Network
weights were updated using the Adam algorithm (Kingma et al., 2014)
with a batch size of 32 data items (for the two-layer networks) or 128
data items (for the convolutional network).®

Following training, networks’ embeddings were tested to evaluate
how well they satisfied the constraints derived from our experimental
data. Training and testing were conducted using fivefold cross-valida-
tion (Hastie et al., 2009). Fig. 10 shows the results. The left and middle
graphs of Fig. 10 show the results for the two-layer network using the
pixel-based and DNN-based representations, respectively, and the right
graph shows the results for the convolutional network. The horizontal
axis labels the data set (e.g., “LQ” used the data from participants that

© We chose this convolutional architecture, as opposed to a larger architecture
more representative of modern DNNs from the Al literature, to avoid overfitting
on our small dataset of judgments (a risk with large DNNs (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014; Hardt, Recht, & Singer, 2015;
Lin, Camoriano, & Rosasco, 2016; Goodfellow, Bengio, & Courville, 2016;
Zhang, Vinyals, & Munos, 2018)), and so that the network could be trained fast
enough to make cross-validation practical.
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Fig. 10. Mean fivefold cross validation accuracies of networks trained to produce an embedding in which Euclidean distance corresponds to similarity using the
triplet loss function with constraints derived from the experimental data. Error bars indicates the standard errors of the means. Results are shown for two-layer
networks using pixel-based or DNN-based image representations, as well as for a deep convolutional network trained on grayscale images.

gave low-quality responses, etc.), and the vertical axis shows the mean
accuracy (error bars indicate the standard errors of the means). Dis-
appointingly, the networks’ embeddings provide significantly worse
accounts of our experimental data than metric learning with any of the
representations that we tried. We also tried modifying the networks (by
adding units, adding layers, and/or adding batch normalization), but
this did not have any apparent effect.

Considering our earlier success at training neural networks to learn
a part-based representation, and considering our earlier success at
training a metric learning system with a part-based representation to
provide a good account of our participants’ similarity judgments, our
failure here is surprising. After all, the networks reported here received
training data depicting all Fribble parts from all viewpoints, a condition
that was sufficient for successful training of networks to reproduce the
part-based representation. So how can we can account for their failure?

We can gain some insight from the value of the loss during training.
In general, as networks were trained, the loss oscillated around the
value of the margin; any improvement on a given subset of the data
only led to worse performance on some other subset. Since the loss
function is nonconvex in weight space (as we demonstrate below), there
is little reason to expect local gradients of different subsets to point in
similar directions. Occasionally, a network would converge towards
“collapse”, a state in which every input is mapped to exactly the same
output. The loss thus became exactly equal to the margin, but obviously
this strategy did not lead to good performance at replicating our ex-
perimental data.

This result is unsurprising. The triplet loss is notoriously difficult to
train, and collapse is a well-known issue in networks using it (Hermans,
Beyer, & Leibe, 2017). Triplet selection procedures (i.e., hand-crafted
procedures that carefully select the triplets or data items used during
training), such as that employed in the original FaceNet paper, are es-
sential to the success of networks attempting to minimize triplet loss. In
fact, the triplet selection procedure itself must be delicately crafted so
that the resulting training set is neither too easy nor too difficult.
Hermans et al. (2017) explain this requirement intuitively: “being told
over and over that people with differently colored clothes are different
persons does not teach one anything.” In other words, if objects in a
triplet are similar and dissimilar in trivial ways, the network may
simply learn to base its embedding on those trivial features and never
learn the importance of task-relevant features that would generalize
well. An analogous situation for our dataset would be one in which
many of the similar pairs of Fribbles in our dataset are also in similar
poses. In this case, a network might learn to rely on irrelevant pose
information instead of shape-relevant part-based information. Thus,
although networks were able to learn a part-based representation when
explicitly trained to do so, the triplets in our dataset may not have been
the right ones to force networks to learn shape-relevant features.

In summary, one factor in the difference in performance between
our neural networks and part-based metric learning procedures is that
the part-based representation gave the metric learning procedures an
advantage by isolating the most shape-relevant information “for free”.
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In contrast, neural networks must learn shape-relevant features on their
own. However, the neglect of part-based information cannot completely
explain our results. While metric learning procedures trained on the
pixel-based and DNN-based representations performed significantly
worse than those trained on the part-based representation, they still
performed better than the DNNs given these same representations. The
input was the same, and the metric learning problem and the triplet loss
problem are fundamentally the same, so any triplet difficulty-related
issues should affect them equally. Yet the metric learning procedures
outperformed the triplet loss networks despite being much less pow-
erful. How can we account for this discrepancy?

Our best answer to this question is the following. As noted earlier,
the metric learning problem is convex when the parameter to be opti-
mized is the Mahalanobis matrix A, and convex problems are generally
easy to solve because they contain a single (global) optimum. In addi-
tion, we noted that the constraints embodied in the metric learning
problem and those embodied in the triplet loss function are funda-
mentally identical. Critically, however, the loss function is nonconvex in
network weight space, and thus it is significantly more difficult to op-
timize the weights than it is to find a Mahalanobis matrix A that
(globally) optimizes the metric learning problem.

To see this, we can imagine building a neural network that performs
identically to a metric learning system. Consider a network that maps
from either the pixel-based or DNN-based representation of images to a
part-based representation in its next-to-last layer. As demonstrated
above, we know that this is feasible. The last layer of the network,
consisting of linear units, receives part-based representations as inputs
and needs to learn a weight matrix such that its activation vectors are
image embeddings satisfying the triplet loss function constraints de-
rived from our experimental data. To obtain a network that performs
identically to a metric learning system with a part-based representation,
it is easy to show that this weight matrix, denoted B, is related to the
Mahalanobis matrix A by the following property: A = B'B (see
Appendix B for mathematical details). Crucially, directly finding this
weight matrix B that optimizes the triplet loss function is a nonconvex
problem.” In other words, it is a difficult problem to solve because of
local (non-global) optima. This is the same reason the decomposition
metric learning algorithm underperformed relative to the other
methods (Fig. 5). We conclude that, in principle, the networks reported
in this section could have learned image embeddings satisfying the
constraints derived from our experimental data. However, the networks
failed to do so, presumably due to local (sub-optimal) optima.

Of course, nonconvex loss functions are the norm in the literature on
neural networks and, in general, they are not considered a major pro-
blem. Indeed, the triplet loss function in FaceNet was likely nonconvex,
and yet it achieved good performance. A significant difference between

7 Of course, one could find it indirectly by first solving the metric learning
problem to obtain A, and then performing a Cholesky decomposition of A to
obtain B.
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FaceNet and our networks (in addition to FaceNet’s use of a triplet
selection procedure to create a carefully curated training set) is the
number of training examples. FaceNet was trained on millions of ex-
amples, whereas our networks were trained with only thousands.
Having millions of examples may have led to a loss function landscape
in which even local optima provided good solutions, especially as
FaceNet’s training set was carefully constructed, as mentioned earlier,
using a special triplet selection procedure that maximized the in-
formativeness of the examples. Thus, although FaceNet may have found
only local minima during training, the network performances at these
local minima may have been similar to the network performance cor-
responding to the global minima.

A number of additional factors may have been at play. The first is
that, due to computational constraints and a desire to avoid overfitting
on our small dataset, our network structures were not as deep or
complicated as that used in FaceNet. A more important factor is likely
the nature of the stimuli. In the FaceNet simulations, the stimuli were
images of faces and, while there was some degree of pose variance,
these images did not exhibit the same variety of viewpoints as present
in our experiment. In fact, they cannot exhibit the same variety since it
is impossible to, for example, present a face “from behind” in the way
we did with Fribbles. Thus, it is much less important for FaceNet to be
able to extract information about 3-D structure in order to succeed.
Furthermore, faces have many intrinsically viewpoint-insensitve fea-
tures, such as skin tone and hair color. Fribbles have fewer such fea-
tures, and thus must be distinguished based on an understanding of 3-D
properties and part structure. It is possible that these differences make
learning to judge the similarity of Fribbles much more difficult for
neural networks.

7. Discussion

In summary, we conducted an experiment in which participants
were asked to make shape similarity judgments about complex, part-
based, 3-D objects in a viewpoint-invariant manner. We attempted to
account for participants’ judgments using metric learning (Xu et al.,
2012), and found that metric learning with pixel-based or DNN-based
representations performed poorly whereas metric learning with a
viewpoint-invariant, part-based representation provided a relatively
good account of our experimental data. Our results indicate that par-
ticipants made their similarity judgments by comparing the shapes of
object parts at corresponding locations on target and probe objects.
Notably, this was done in a viewpoint-insensitive manner.

Because we were surprised by the poor performance of metric
learning with a DNN-based representation, we examined more carefully
the performance of neural networks. We found that neural networks
can learn a viewpoint-invariant, part-based representation from pixel-
based or DNN-based representations. However, networks using a triplet
loss function failed to learn object embeddings satisfying constraints
derived from our participants’ judgments. Our analyses suggest that, in
principle, networks can learn successful object embeddings, but that the
presence of poor local minima in the loss function landscape (leading
networks to learn task-irrelevant features which generalize poorly)
prevented them from doing so. It seems that these networks were overly
sensitive to viewpoint-dependent 2-D image features, whereas people
judge visual object shape similarity in a more viewpoint-insensitive
manner based on 3-D shape features (Erdogan & Jacobs, 2017).

At first glance, the results reported here may seem inconsistent with

Appendix A. Metric learning
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results previously reported in the scientific literature. Kubilius, Bracci,
and de Beeck (2016) reported that DNNs explain human shape judg-
ments for several benchmarks and develop acute sensitivity to minute
variations in shape and non-accidental properties. Peterson et al.
(2018) found that DNNs (particularly VGG-16; Simonyan & Zisserman,
2015) accounted for human image similarity judgments using images
from the Imagenet data set (Russakovsky et al., 2015). Crucially,
however, these earlier efforts did not evaluate people’s object similarity
judgments when objects were rendered from multiple viewpoints.
Consequently, they did not evaluate whether DNNs can account for
people’s viewpoint-insensitive shape similarity judgments. To us,
viewpoint insensitivity is a prominent and indispensable property of
human visual perception, one that should not be overlooked when
considering human visual similarity judgments.

Our findings also underscore recent important results by Geirhos,
Rubisch, Michaelis, Bethge, and Wichmann (2018). Analyses by these
authors showed that DNNs typically learn to base their judgments on 2-
D local image features such as texture information, as opposed to 3-D
object shape features. Unlike humans, DNNs do not perform well when
tested on images with absent or misleading texture information. Be-
cause our experimental stimuli contained useful shape information but
lacked useful texture information, it is unsurprising that DNN-based
features were unable to account for subjects’ judgments, even though
simple metric learning systems were able to account for them when
provided with viewpoint-invariant part-based representations. Con-
sistent with this finding, Geirhos et al. (2018) found that DNNs trained
in a way that biased them to rely more on shape instead of texture
information performed almost as well as typical DNNs on standard
image classification data sets, and were significantly more robust to
image deformations and distortions that people handle easily. An in-
teresting avenue for future work would be to examine the capability of
shape-biased networks to explain human similarity judgments like
those collected in our experiment.

These results demonstrate that DNNs’ texture bias, as opposed to a
more human-like shape bias, is not because they lack the expressive
power to implement a shape-based solution, but because they lack the
inductive biases that would predispose them to learning such a solution.
Similarly, as we described earlier and in the appendix, our architectures
are provably capable of modeling the experimental similarity data at
least as well as the linear methods, so like more complex DNNs and
their texture bias, their shortcoming is one of inductive biases, not
expressive power.

DNNs have achieved impressive successes on computer vision tasks,
and have successfully accounted for important behavioral and neural
aspects of biological visual perception. Despite these successes, there is
also an awareness in the scientific community that current DNNs have
important shortcomings that will need to be addressed in future work.
Previous articles have pointed out that people tend to be highly sensi-
tive to 3-D shape features whereas DNNs are more sensitive to 2-D
image features, and have noted that people’s responses to image dis-
tortions or reduced viewing conditions are more robust than those of
DNNs, presumably because people are better at using global informa-
tion such as image context or top-down knowledge (see Jacobs & Bates,
2019, for a review). Here we have highlighted that people tend to
perceive visual objects in viewpoint-insensitive (and often part-based)
ways. Future DNNs (and other machine learning methods) will need to
learn to mimic these properties if they are to provide additional insights
into human and machine perception.

This appendix explains how the constrained optimization problem of Eq. (2) was transformed to an unconstrained problem containing “slack
variables”. It also describes the four algorithms we evaluated for solving the unconstrained problem.
Because it is often unlikely that there exists a matrix A satisfying all training constraints in Eq. (2), one can add slack variables to the constraints

and attempt to minimize those as well:
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where ¢ is the slack variable corresponding to constraint c;, and C is a weight that controls the relative importance of minimizing the regularizer
versus the slack variables. The optimization problem is now also attempting to minimize the amount of “slack” that must be given to each constraint
such that the constraint is satisfied. This new constrained optimization problem can be converted to an unconstrained problem by observing that of
the two sets of constraints on ¢, only one is “active” for any given training constraint ¢; (XTAX). If ¢; (XTAX) > 0, then ¢; (XTAX) < ¢ is active, and
¢; = 0 is redundant; otherwise, ¢; > 0 is active and ¢; (XTAX) < ¢; is redundant. Thus one can substitute for the slack variables using the constraints as
follows:
min r(A) + C Y. max[0, c;(XTAX)].

A&Mpsp i (6)
In the ML literature, a number of algorithms are often used to optimize this equation. Here, we describe the four algorithms used in our simulations.

In the “freeform” algorithm, the regularizer in the objective function in Eq. (6) was the Frobenius norm (i.e., the square root of the sum of the
squares of the elements of a matrix), a matrix generalization of the Euclidean norm. At each iteration of the algorithm, the modified matrix A was
projected onto the cone of positive semidefinite matrices to generate a new estimate.

The “decomposition” algorithm was similar to the freeform algorithm except that G'G (which is automatically positive semidefinite) replaced A
and the algorithm learned matrix G.

In the “SJ” algorithm, a version of the algorithm of Schultz and Joachims (2004), the constraints and regularizer are as above, but A was replaced
by ADA " where 4 is positive semidefinite (we set A to the identity matrix) and D is diagonal and non-negative, and the objective function was
minimized over D.

Lastly, we also implemented the Large Margin-Nearest Neighbors (LMNN) algorithm (Weinberger et al., 2006), in which the regularizer is tr (AC),
where tr(-) denotes the trace operator (i.e., sum of a matrix’s diagonal entries) and C = Z(xm) s (o — %) — % )T, where S is the set of similar
pairs. The positive semidefinite restriction was enforced by projecting onto the cone of positive semidefinite matrices. Inspired by k-nearest
neighbors algorithms, LMNN seeks to minimize the distance between similar pairs subject to the constraints.

In the case of the freeform and LMNN algorithms, matrix A was initialized at the start of the optimization procedure by projecting a random
matrix onto the cone of positive semidefinite matrices. For the decomposition algorithm, matrix G was initialized to a random matrix. For the SJ
algorithm, matrix D was initialized to a random diagonal matrix.

Appendix B. Equivalence of a metric learning system and of a neural network

In the main text, we claimed that it is possible to construct a neural network minimizing the triplet loss function that is equivalent to a metric
learning system with a part-based representation. In brief, the network needs to produce a part-based representation in its next-to-last layer, and
needs to use a weight matrix B on the connections to the linear output layer such that if A is the Mahalanobis matrix learned by the metric learning
system, then B is set such that A = B'B.

Here, we prove this result, though we do so in a general, abstract, and mathematical setting. In the following lemma, x; is an image of an object
(such as a Fribble stimulus), f (x;) and g(x;) are representations of image x; (such as the part-based and deep representations), A corresponds to a
Mahalanobis matrix, B to the (square) weight matrix of the final, densely-connected linear layer of a neural network, and h (-) is the embedding of the
input by the previous layer of that neural network. Note that the use of x; and f () in this appendix should not be confused with their use in the main
body of the paper.

Lemma 1. Suppose
A is a real n X n positive semidefinite matrix
X is a matrix whose i row is x;
There is a surjective mapping f: X — R"
There is a surjective mapping g: X — R™
There is a surjective mapping h: R™ — R" such that V i, (hog)(x;) = f (x;)
Then there exists a real n X n matrixB such that
Vi, j (f () = fFOg)A(f () = f () = IB(hog)(x)) — B(hog)(x)13
Proof. Since V i, (hog)(x;) = f(x;), the consequent of the lemma is equivalent to
Vi, j (f () = fOOTA( () — f () = IBf (xi) — Bf ()13
By definition of the ¢, norm this is equivalent to
Vi, j (G —fOGNTA (F(x) — f(x)) = (Bf (x:) — Bf ()" (Bf (x;) — Bf (x;))
Simple algebraic manipulation gives us
Vi, j (FGa) = FONTAF ) — ) = (F Oa) — fF G))BTB(f (xi) — f (x))
followed by
A=B"B
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Thus, for B to exist, it is sufficient for A to have a Cholesky decomposition A = GTG, and in that case, B = G. Since A is positive semidefinite, a

Cholesky decomposition, and thus B, is guaranteed to exist.
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