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Abstract—This paper presents a novel algorithm for recovering
missing values of co-evolving time series with partial embedded
network information. The idea is to connect two sources of data
(time series data and embedded network data) through a shared
low dimensional latent space. The proposed algorithm, named
NetDyna, is an Expectation-Maximization (EM) algorithm, and
uses the Kalman filter and matrix factorization approaches to
infer the missing values both in the time series and embedded
network. Our experimental results on real datasets, including
a Motes dataset and a Motion Capture dataset, show that (1)
NetDyna outperforms other state-of-the-art algorithms, especially
with partially observed network information; (2) its computa-
tional complexity scales linearly with the time duration of time
series; and (3) the algorithm recovers the embedded network in
addition to missing time series values.

Index Terms—Co-evolving time series, Missing value recovery,
EM algorithm, Kalman filter

I. INTRODUCTION

Co-evolving time series are common in many real world ap-
plications such as temperature monitoring in smart buildings,
mobile object tracking, and motion capturing for environmen-
tal monitoring. These co-evolving time series are generated
from a collection of system components (such as sensors) over
an extended time period. In many cases, because of reasons
such as sensor duty cycling, packet losses in transmissions,
and hardware malfunctions, we only observe incomplete time
series with many missing values. Recovering missing values is
important but challenging problem for many applications, e.g.
for determining whether certain chemical level in the drinking
water exceeds a threshold.

A novel approach to recover missing values in co-evolving
time series is to explore the correlation of different data
sources (i.e. the co-evolution) instead of treating time series
as independent processes. In particular, an embedded network
may be constructed for co-evolving time series. For a wireless
sensor network, the embedded network is a graph in which
an edge exists between two nearby sensors to indicate the
correlation of their measurements. In epilepsy study, measure-
ments collected from different brain regions of a patient can
be connected via a brain graph that describes the correlation
of brain activities. While exploiting the underlying correlation
of time series is proven to be very effective, learning the
underlying embedded network itself can be a daunting task.
Often, similar to the time series data, we only have partial
information of the embedded network.

To tackle the challenges of missing time series data and
incomplete embedded network information, we propose Net-
Dyna. The main results of this paper are summarized below.

• Modeling: We formulate the missing value problem
as maximum likelihood problem, which can be solved
using the Expectation Maximization (EM) method for
recovering time series and embedded network data.

• Algorithm Design: We propose an effective algorithm
for recovering missing values. Following the idea of
latent factors, our algorithm projects both the time series
data and network data into a shared lower dimensional
latent space. We leverage the Kalman filter and matrix
factorization methods in the expectation step to infer the
distributions of time series data and embedded network
data respectively, and then maximize the parameters
iteratively in the maximization step. We analyze the
complexity of the algorithm.

• Evaluation: We evaluated the performance of NetDyna
using real datasets under different missing settings. The
experimental results showed the effectiveness and effi-
ciency when comparing with the-state-of-the-art algo-
rithms. In particular, NetDyna outperforms other al-
gorithms for recovering missing time series when the
embedded network is partially known.

The rest of the paper is organized as follows: In Section
2, we review the related work. We formulate the problem in
Section 3 and present our proposed algorithm, NetDyna, in
Section 4. Section 5 presents the experimental results, accu-
racy, sensitivity and reconstruction errors of NetDyna, and the
comparisons with existing algorithms. Section 6 concludes the
paper.

II. RELATED WORK

Missing value recovery problem is closely related to the
low-rank matrix factorization [1], which has been extensively
studied for recommendation systems. [2] proposed a proba-
bilistic matrix factorization (PMF) method for user item rating
matrix, which scales linearly with the number of observations.
PMF performs well on large, sparse and imbalanced Netflix
dataset. However, sequential dependence, which is the intrinsic
difference of time series data from other data, is not encoded
in the PMF. [3] proposed MSVD, a SVD based missing value
recovery method, where missing values are initialized using
a linear interpolation first. [4] proposed probabilistic matrix
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factorization with the social network information. SoRec con-
sidered recovering missing values in user item matrix utilizing
a social network, where it’s been shown that social network
information can help improve the recovery result.

[5] proposed an online algorithm, which discovers the
correlation among multiple time series and jointly recover the
missing values. [6], [7] provided general frameworks for data
mining tasks, including missing value recovery. For recovering
missing values in time series, [6] proposed Spirit, a PCA
based learning model. [8] proposed DynaMMo, which learns
the dynamics of latent variables. By filling missing values
using linear interpolation or some other methods, DynaMMo
uses Kalman filtering to estimate system parameters. However,
there’s no network data is used. [9] proposed DCMF, an
algorithm that combines partially observed time series data
with a fully observed embedded network. In [10], the authors
have further developed DCMF into a higher dimension model
by considering more than one type of measurements. However,
both paper assume complete knowledge of the embedded
network. Our paper considers partially observed network in-
formation.

Neural network approach has been introduced to time
series problem. [11]–[13] proposed recurrent neural network
based algorithms. However, they are looking at classification
problems with missing values in time series. In this paper, we
studied the problem of recovering the missing value itself.

We note that [4], [9], [10] proposed to connect two differ-
ent data resources via a shared latent feature space, which
motivated our algorithm, NetDyna, which use a common
latent feature space for both time series and the embedded
network. Finally, [14] introduces different types of missing
value patterns. In this paper, we considers three different
patterns including missing uniformly, missing as a block,
and missing entirely. Our experimental results show that our
algorithm outperforms other algorithms in most cases under
these three different missing patterns.

III. MODEL AND PROBLEM FORMULATION

In this section, we present our model and formulate the
problem of recovering coevolving time series under our model
as a maximum likelihood problem.

A. Joint Embedding of Coevolving Time Series

We assume the coevolving time series are associated with
a network where each node is the source of a time series and
time series are correlated if the two sources are neighbors. Our
goal is to recover missing values of coevolving time series with
partial time series and partial network information.

Example: Consider a smart house with six rooms as shown
in Figure 1, where sensors are placed in each room to track the
temperature. A directed edge (i, j) represents the dependency
of the temperature of room j on that of room i. The time series
data are partially observed, as shown in Table I. Our goal is to
recover missing values in time series data and missing edges
of the network. �

TABLE I: Room Temperature Data of a Smart House

t1 t2 t3 t4 t5
room 1 72 73 74
room 2 74 73 72
room 3 71 73 75
room 4 76 73 74
room 5 74 71
room 6 75 73 72

Fig. 1: The Network Associated with Room Temperature Data

Consider coevolving time series with N sources and over
T time slots. Each source creates one measurement at each
time slot. The coevolving temperature data can be represented
by an N × T matrix X. The weighted adjacency matrix of
the network is an N × N matrix, denoted by S. Note that
without imposing any structure on the time series data, missing
measurements can be arbitrary values, so it is impossible to
recover these missing values. A widely observed structure in
real-world datasets is that high-dimensional data can often
be embedded into a low-dimensional space, which makes
recovery of missing values possible. For example, matrix
completion algorithms such as collaborative filtering are often
based on this assumption. By leveraging this observation, we
propose joint time series and network embedding. In particular,
we assume each node (say node i) is associated with an L-
dimensional latent vector Ui ∈ RL. We define U to be an
L × N matrix such that the ith column Ui � U(:,i) is the
latent vector of object i. In addition, there is L-dimensional
time series Zt ∈ RL which evolves as a linear system such
that

Zt = BZt−1 +Wt

where B is an L × L transition matrix, Z1 ∼ N (z0,Ψ0)
and Wt ∼ N (

0, σ2
ZI

)
. Note that Z1 is an L-dimensional

Gaussian vector with a general distribution and Wt is zero
mean Gaussian vector with i.i.d. components, representing
i.i.d. Gaussian noise.

The time series data Xt (an N -dimensional vector) is
generated based on U and Zt such that

Xt = U′Zt + εt,

where εt ∼ N (
0, σ2

XI
)

is a N -dimensional zero mean
Gaussian noise.
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The network matrix S is generated based on U such that

S = V′U+ τ (1)

where V is an L×N matrix such that the ith column Vi �
V(:,i) ∼ N (

Ui, σ
2
V I

)
and τi � τ(:,i) ∼ N (

0, σ2
SI

)
.

Figure 2 summarizes the joint embedding model, where U
and Z are latent variables and X and S are observed variables.

Fig. 2: Time Series and Network Joint Embedding

B. Missing Values Recovery Problem and Maximum Likeli-
hood Formulation

With the model and notation defined above, we introduce
the maximum likelihood formulation for tackling the missing
value recovery problem defined below. We define an N × T
matrix M such that Mnt = 1 when Xnt is observed and
Mnt = 0 if Xnt is missing; and define an N ×N matrix M̃
such that M̃ij = 1 if the edge weight (i, j) is observed and
M̃ij = 0 otherwise. These two matrices specify the entries of
missing values.

Summarizing the model we have introduced, we have

Zt = BZt−1 +Wt (2)
Xt = Mt � (U′Zt + εt) (3)

S = M̃� (V′U+ τ), (4)

where Mt = M(:,t) is the tth column of matrix M.

Let X̂ and Ŝ denote the observed time series and weighted
adjacency matrix, where the missing values are set to be zero.
The missing value recovery problem is defined below.
Missing Value Recovery:
Input: Partially observed time series from a networked data
sources and a partially observed network, i.e. X̂, M, Ŝ, M̃.
Output: Complete time series data and network data X and S
that match the observed data, i.e. X�M = X̂ and S�M̃ = Ŝ.

Note that the co-evolving time series is a high-dimensional
random process defined by (2)-(4), which is characterized by
the parameter set

θ = {U,B, z0,Ψ0, σZ , σX , σV , σS} .
We propose the following maximum likelihood problem for
recovering the missing values:

max
X,S,θ

p
(
X,S|θ, X̂, Ŝ

)
(5)

Note that the condition X̂ and Ŝ mean

X�M = X̂ and S� M̃ = Ŝ.

Table II summarizes the key notations to be used throughout
the paper.

TABLE II: Symbols and Definitions

Symbol Definitions and Descriptions

A matrix (bold upper case)
Aij the element at row i and column j of matrix A

A(:, j) the jth column of matrix A
A(i, :) the ith row of matrix A
AT transpose of matrix A
a column vector (bold lower case)
� Hadamard product

X time series matrix
M indicator matrix for time series matrix
S embedded network matrix
M̃ indicator matrix for embedded network matrix
Z time series latent matrix
V network latent matrix
B transition matrix
U object latent matrix
T time duration
N number of measurements in system
L dimension of latent space

N (z|μ,Σ) Gaussian distribution random variable
with mean μ and covariance matrix Σ

IV. PROPOSED ALGORITHM: NETDYNA

Since directly maximizing likelihood (5) is intractable [15],
[16], we first use the expectation-maximization (EM) algo-
rithm to maximize the evidence lower bound, defined below,
to find θ based on the observed data

EZ,V|θ,X̂,Ŝ[ln p(X̂, Ŝ,Z,V|θ)]. (6)

After obtaining θ, and distributions of latent variables Z and
U, we then recover the missing time series and network data
by solving the maximum likelihood problem.

The EM algorithm first initializes parameter set θ. In the
expectation step, we compute the distributions of latent vari-
ables Z and V conditioned on the current parameter set θ and
observed data and then calculate (6). In the maximization step,
we iteratively update the parameter set θ based on the current
distribution of latent variables. The algorithm terminates after
the value of the evident lower bound converges.

A. The E-Step

In this step, parameter set θ is fixed. According to Figure 2,
time series data X and network data S are conditionally inde-
pendent given U, so can be inferred separately. In particular,
we have

EZ,V|θ,X̂,Ŝ[ln p(X̂, Ŝ,Z,V|θ)] (7)

=E

[
ln p(Z1|θ)

T∏
t=2

p(Zt|Zt−1,θ)
T∏

t=1

∏
i:Mit=1

p(Xit|Zt,θ)

×
N∏
i=1

p(Vi|θ)
N∏
i=1

∏
j:M̃ij=1

p(Sij |Vi,θ)

⎤
⎦ . (8)

To calculate expectation, the first step is to calculate the
distributions of latent variables Z and V given the parameter
set θ and observed data X̂ and Ŝ.
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1) Distributions of Latent Variables for Time Series Data:
Equations (2) and (3) show the dynamic of latent process
{Zt}Tt=1 and partially observed {Xt}Tt=1. To simplify the
notation, for each time slot t = 1, · · · , T, define

Ot = {i|Mit > 0, i = 1, · · · , N}
X∗

t = Xt(Ot)

Ht = U′(Ot, :) (9)

where Ot is the index set of observed entries at time t, X∗
t is

the observed entries at time t and Ht is a compressed version
of matrix U′ at time t. For example, suppose

U′ =

⎛
⎝ 1 0

0.5 0.5
0 1

⎞
⎠ , Zt =

(
0.7
0.3

)
,

Xt =

⎛
⎝ 0.7

0.5
0

⎞
⎠ and Mt =

⎛
⎝ 1

1
0

⎞
⎠ .

Then we have

Ot = {1, 2}, X∗
t =

(
0.7
0.5

)
, and Ht =

(
1 0
0.5 0.5

)
.

We can rewrite equation (3) as follows:

X∗
t = HtZt + εt. (10)

Since noises and the initial condition are Gaussian, so are
the posteriors of latent variable {Zt}Tt=1. Then, we apply
the forward-backward algorithm [16] or Kalman filter and
smoother [17], [18] to calculate the posteriors. Define the
following two posterior distributions, one conditioned on ob-
servations up to time t and the other on all observations:

p(Zt|X∗
1, · · · ,X∗

t ) = N (Zt|μt,Ψt)

p(Zt|X∗
1, · · · ,X∗

T ) = N (Zt|μ̃t, Ψ̃t).

By applying the forward algorithm (or the Kalman filter) to
estimate μt and Ψt, we have

Pt−1 = BΨt−1B
′ + σ2

ZI

Kt = Pt−1H
′
t(HtPt−1H

′
t + σ2

XI)−1

μt = Bμt−1 +Kt(X
∗
t −HtBμt−1)

Ψt = (I−KtHt)Pt−1 (11)

with initial conditions

K1 = Ψ0H
′
1(H1Ψ0H

′
1 + σ2

XI)−1

μ1 = z0 +K1(X
∗
1 −H1Bz0)

Ψ1 = (I−K1H1)Ψ0. (12)

Then, by applying the backward algorithm (or Kalman
smoother), we have

Jt = ΨtB
′(Pt)

−1

μ̃t = μt + Jt(μ̃t+1 −Bμt)

Ψ̃t = Ψt + Jt(Ψ̃t −Pt)J
′
t. (13)

The expectations are

E[Zt] = μ̃t

E[ZtZ
′
t−1] = Ψ̃tJ

′
t−1 + μ̃tμ̃

′
t−1

E[ZtZ
′
t] = Ψ̃t + μ̃tμ̃

′
t (14)

which are needed for parameter update in maximization step.
2) Distributions of Latent Variables for Network Data:

Now the posterior distributions of network latent variables can
also be similarly derived. Rewrite (4)

S′ = M̃′ � (U′V + τ), (15)

and define

Õj = {i|M̃′
ij = M̃ji > 0, i = 1, · · · , N}

S∗
j = S′

j(Õj)

Gj = U′(Õj , :) (16)

where Õj is the index set of observed entries of column M̃′
j(or

row M̃(j, :)), S∗
j is the observed entries of column vector S′

j

and Gj is the compressed version of U′. Further rewrite (4)
as follows:

S∗
j = GjVj + τj

Noises for network data are also Gaussian, so are the posteriors
of latent variables {Vi}Ni=1. Note that we assume that for V,
columns are independent of each other. Define

p(Vj |S∗
j ) = N (Vj |νj ,γj)

By applying Bayes’ theorem, we have

γj = (σ−2
V I+ σ−2

S G′
jGj)

−1

νj = γj(σ
−2
S G′

jS
∗
j + σ−2

V Uj). (17)

The expectations are

E[Vj ] = νj

E[VjV
′
j ] = γj + νjν

′
j (18)

which are also used in the maximization step.
After obtaining the distributions of latent variables, we can

obtain the following approximation for the evidence lower
bound. The details are omitted due to the page limit. Note
that we add a scalar λ into the approximation which balances
the contributions of observed network data and time series
data in inferring the latent variable U, which turns out to be
important as we will see in the numerical evaluation.

Q(θ) �EZ,V|θ,X̂,Ŝ[ln p(X̂, Ŝ,Z,V|θ)] (19)

=(1− λ)

(
−1

2
tr(Ψ−1

0 (E[Z1Z
′
1]− E[Z1]z

′
0 − z0E[Z′

1]

+ z0z
′
0)) +

1

2
ln |Ψ−1

0 |+ σ−2
Z

2

T∑
t=2

(− tr(E[ZtZ
′
t])

+ tr(B′E[ZtZ
′
t−1] + tr(BE[Zt−1Z

′
t]))

− tr(B′BE[Zt−1Z
′
t−1]))−

L(T − 1)

2
lnσ2

Z
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− 1

2σ2
Z

T∑
t=1

((X∗
t )

′X∗
t − 2(X∗

t )
′HtE[Zt]

+ tr(H′
tHtE[ZtZ

′
t]))−

1

2

T∑
t=1

N∑
i=1

Mit lnσ
2
S

)

+ λ

(
σ−2
V

2

N∑
i=1

(tr(E[ViV
′
i])− 2U′

iE[Vi] +U′
iUi)

− NL

2
lnσ2

V − 1

2σ2
S

N∑
i=1

((S∗
i )

′S∗
i − 2(S∗

i )
′GiE[Vi]

+ tr(G′
iGiE[ViV

′
i]))−

1

2

N∑
i=1

N∑
j=1

M̃ji lnσ
2
S

⎞
⎠

+ const

B. The M Step

In the M step, we iteratively update the parameter set

θ = {U,B, z0,Ψ0, σZ , σX , σV , σS}

by fixing the distributions of the latent variables. In par-
ticular, to update their values, we sequentially setting
the derivative of the parameters in parameter set θ =
{U,B, z0,Ψ0, σZ , σX , σV , σS} to be 0.

In a summary, after the E-step, we update the parameter set
θ with the following update rules:

znew
0 = E[Z1]

Ψnew
0 = E[Z1Z

′
1]− E[Z1]E[Z′

1]

Bnew = (
T∑

t=2

E[ZtZ
′
t−1])(

T∑
t=2

E[Zt−1Z
′
t−1])

−1

(σ2
Z)

new =
1

L(T − 1)

T∑
t=2

tr(E[ZtZ
′
t]− E[ZtZ

′
t−1](B

new)′

−BnewE[ZtZ
′
t−1] +BnewE[Zt−1Z

′
t−1](B

new)′)

(σ2
V )

new =
1

NL

N∑
i=1

(tr(E[ViV
′
i])− 2U′

iE[Vi] +U′
iUi)

Unew
i = A1A

−1
2

A1 =
λ

σ2
S

N∑
j=1

M̃jiSjiE[Vj ]
′ +

(1− λ)

σ2
X

T∑
t=1

MitXitE[Zt]
′

+
λ

(σ2
V )

new E[Vi]
′

A2 =
λ

σ2
S

N∑
j=1

M̃jiE[VjV
′
j ] +

(1− λ)

σ2
X

T∑
t=1

MitE[ZtZ
′
t]

+
λ

(σ2
V )

new I

(σ2
X)new =

1∑T
t=1

∑N
i=1 Mit

T∑
t=1

((X∗
t )

′X∗
t − 2(X∗

t )
′Hnew

t E[Zt]

+ tr(Hnew
t E[ZtZ

′
t](H

new
t )′))

Algorithm 1: NetDyna
Input : Data set {X,M,S, M̃}, latent dimension L and

network weight λ
Output: Parameter set θ and estimated X,S

1 repeat
2 for t = 1 : T do
3 Construct Ht based on Eq.(9);
4 Estimate μt,Ψt based on Eq.(11) and Eq.(12);
5 end
6 for t = T : 1 do
7 Estimate μ̃t, Ψ̃t based on Eq.(13);
8 Estimate E[Zt], E[ZtZ

′
t−1], E[ZtZ

′
t] based on

Eq.(14);
9 end

10 for j = 1 : N do
11 Construct Gj based on Eq.(16);
12 Estimate νj , γj based on Eq.(17);
13 Estimate E[vj ], E[vjv

′
j ] based on Eq.(18);

14 end
15 Update parameter set θ based on Eq.(20);
16 until converge;
17 Set Z = (μ̃1, · · · , μ̃T ) and V = (ν1, · · · , νN );
18 Reconstruct X = M� X̂+ (1N×T −M)�U′Z and

S = M̃� Ŝ+ (1N×N − M̃)�V′U;

(σ2
S)

new =
1∑N

j=1

∑N
i=1 M̃ij

N∑
j=1

((S∗
j )

′S∗
j − 2(S∗

j )
′Gnew

j E[Vj ]

+ tr(Gnew
j E[VjV

′
j ](G

new
j )′)) (20)

The new parameter set

θ = {Unew,Bnew, znew
0 ,Ψnew

0 , σnew
Z , σnew

X , σnew
V , σnew

S }
will be used in the next E-step.

C. Recovering Missing Values

After the EM algorithm converges, we set Z =
(μ̃1, · · · , μ̃T ) and V = (ν1, · · · , νN ). Then, we recover the
missing values by setting

X =M� X̂+ (1N×T −M)�U′Z

S =M̃� Ŝ+ (1N×N − M̃)�V′U.

Note that these recovery rules are obtained based on the fact
that the means are the maximum likelihood solutions given Z,
V and U.

D. NetDyna

The proposed algorithm is summarized in Algorithm 1
named NetDyna. And the following two theorems summa-
rize the time complexity and the memory complexity of the
algorithm.

Theorem 1: The time complexity of NetDyna is
O(#iteration · (TL3 + NL3 +

∑
t(ntL

2 + n2
tL + n3

t ) +∑
j(n

2
jL+ njL

2)).
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Here, nt denotes the number of observed entries in Xt, i.e.
cardinality of Ot, and nj denotes the number of observed
entries in S(j, :), i.e. cardinality of Õj .

Proof 1: The overall time complexity is composed of 4 parts,
computing time series data in E step, computing network data
in E step, updating parameter set in M step and computing the
evidence lower bound.
For each iteration, the complexity for time series in E step is
O(L3T +

∑
t L

2nt + Ln2
t + n3

t ), including computation for
forward algorithm, backward algorithm and expectations; the
complexity for network data is O(L3N+L2

∑
j nj), including

computation for inferring and expectations; the complexity
for updating parameter set is O(TL3 + NL3 + L2

∑
j nj +

L2
∑

t nt + L
∑

t n
2
t + L

∑
j n

2
j ); the complexity for com-

puting evidence lower bound is O(L3 + L2T + L
∑

t nt +
NL + L

∑
j nj). So, for each iteration, the complexity is

O(TL3+NL3+
∑

t(ntL
2+n2

tL+n3
t )+

∑
j(n

2
jL+njL

2)).
Thus, the overall complexity is the result in the theorem.

Theorem 2: The memory complexity of NetDyna is
O(NT + L2T +N2 + L2N).

Proof 2: The space complexity is composed of 4 parts,
storing input dataset, parameter set, intermediate values in
E step and loglikelihood values. For input dataset, the space
complexity is O(NT +N2); for parameter set, the complexity
is O(LN); for intermediate values in E step, the complexity
is O(L2T +L2N); for loglikelihood, the complexity is O(1).
Thus, overall space complexity is O(NT+L2T+N2+L2N).

V. EXPERIMENTAL RESULTS

This section presents a comprehensive experimental evalua-
tion of NetDyna, in terms of its effectiveness, sensitivity and
efficiency, with two real datasets; and its comparison with five
existing algorithms.

A. Experimental Setup

To evaluate the reconstruction performance of NetDyna, we
use the root mean squared error(RMSE) for both time series
data and network data

RMSEtime =

√√√√∑
i,t(1−Mit)(Xit − X̂it)2∑

i,t(1−Mit)

RMSEnet =

√√√√∑
i,j(1− M̃ij)(Sij − Ŝij)2∑

i,j(1− M̃ij)

where X̂it, Ŝij are observed values and Xit,Sij are recon-
structed values. Note that we will divide the dataset into
training and test parts, the metrics are on test data.

1) Motes Dataset: The Motes dataset1 consists of temper-
ature measurements from 54 sensors deployed at the Intel
Berkeley Research Lab over a month. The temperature mea-
surements are the time series data. The dataset also contains
locations of the sensors and the connectivity probabilities

1http://db.csail.mit.edu/labdata/labdata.html

among sensors. So using these information, we define each
entry of the network matrix as following:

Sij = α · (1− dij
maxi,j(dij)

) + (1− α) · cij

where dij is the Euclidian distance between sensor i and sensor
j, cij is the connectivity probability between sensor i and
sensor j, and α is weight control of the two parts. In the
experiment, we set α = 0.5. In all the Motes dataset related
simulations, we use data from all 54 sensors and time slots
from 1 to 2880. Note that 2880 time slots is roughly duration
of a whole day.

2) Motion Capture Dataset: Motion Capture dataset2 con-
sists of body movement measurements from markers placed on
human body. We used the Mawashi Geri data, a ”spin kick”
martial art movement, in which 41 markers have been used
and there are 1472 frames. Each marker has 3-dimensional
coordinates so we have 123 features. Using these data, we
define each entry of network matrix as following:

Sij = α · (1− dij
maxi,j(dij)

)

where dij is the Euclidian distance between two markers,
while α = 1 if i and j are the same coordinate, otherwise
α = 0.5.

Note that we have standardized, i.e. subtracted the mean
and divided by the standard deviation, both datasets before
applying NetDyna and other state-of-the-art algorithms.

We consider three types of synthetic missing value patterns
for time series data: missing as a block fashion, missing
uniformly and missing entirely. For the network data, we
assume each entry is missing uniformly at random.

• Missing as a block, also called occlusion in [8]: We
randomly pick a sensor j and a starting time slot t
for this marker. Then, we choose the duration of the
missing block for the selected sensor and starting time
as a Poisson distributed random variable according to
the observed statistics. We repeat this step until the
percentage of missing values reaches the threshold we
set.

• Missing uniformly: For each observed value, we uni-
formly at random remove it according to a pre-selected
probability.

• Missing entirely: Randomly choose one of the time series
and remove it entirely.

B. Effectiveness

For effectiveness, we compared NetDyna with the following
algorithms.

1) Dynamical Contextual Matrix Factorization(DCMF) [9]:
It is a time series data mining algorithm with fully
observed embedded network information. DCMF infers
the missing values based on both observed values in
time series data and complete network data. However,

2http://mocap.cs.cmu.edu
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the fully observed network information is based only
a zero mean prior, which is lack of accountability for
network information.

2) Dynamical Matrix Factorization(DMF) [9]: DMF is also
a special case of DCMF, where missing values are
inferred solely based on observed time series data. If
we set λ = 0, NetDyna becomes DMF. We omit the
result of that when comparing the algorithms.

3) DynaMMo [8]: It is a time series data mining algorithm
with no network information. DynaMMo utilizes only
time series data X, where missing values are filled
by interpolation or other methods first. Then, learn
the system parameter by maximizing the likelihood of
time series data, which include both observed data and
interpolated data. Note that interpolated data are also
used in the objective; however, in a missing as a block
setting, where missing values are evolving far from
linear interpolation, the learning process will be misled.

4) Missing value Singular Value Decomposition(MSVD)
[3]: It combines the idea of SVD with interpolation.
The method first uses linear interpolation to fill the
missing values, then iteratively applies SVD to the time
series matrix and updates the missing values accordingly.
Again, like DynaMMo, MSVD will also be potentially
misled by interpolated data.

5) Probabilistic Matrix Factorization(PMF) [2]: PMF is a
collaborative filtering algorithm, where it learns the la-
tent variables by maximizing a posteriori of the observed
values. However, PMF does not consider the dynamics
of time series evolution.

Throughout the simulations, we set L = 15 for all algorithms
for both Motes dataset and Motion Capture dataset.
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Fig. 3: quantative results for Motes dataset

Figure 3 shows the results of recovering missing time series
values under the algorithms mentioned above and NetDyna.
We selected the 48th sensor in the Motes dataset, two con-
secutive parts are missing, whose true values are denoted by
blue dashed lines; three consecutive parts are observed, which
are denoted by green lines. In this case, all algorithms are
trying to recover the missing values and the algorithm that

TABLE III: Root-Mean-Square-Error (RMSE) with the Motes
dataset under missing as a block

Missing NetDyna DCMF DynaMMo PMF MSVD
(10%,0%) 0.1581 0.1604
(10%,10%) 0.1628 0.2603 0.4190 0.9118 0.6000
(10%,20%) 0.1487 0.2696
(50%,0%) 0.3191 0.3173
(50%,10%) 0.3186 0.3765 0.6599 0.9736 0.7735
(50%,20%) 0.3082 0.4417
(90%,0%) 0.6420 0.7238
(90%,10%) 0.6198 0.6722 0.8990 1.0284 0.9834
(90%,20%) 0.6108 0.7239

TABLE IV: Root-Mean-Square-Error (RMSE) with the Motes
dataset under missing uniformly random

Missing NetDyna DCMF DynaMMo PMF MSVD
(10%,0%) 0.0135 0.0133
(10%,10%) 0.0134 0.0134 0.0140 0.0436 0.0257
(10%,20%) 0.0135 0.0133
(50%,0%) 0.0141 0.0145
(50%,10%) 0.0142 0.0148 0.0490 0.0614 0.0237
(50%,20%) 0.0142 0.0145
(90%,0%) 0.0226 0.0243
(90%,10%) 0.0234 0.0236 0.1684 0.4160 0.0214
(90%,20%) 0.0226 0.0237

tracks blue dashed curve the closest is the best. PMF, MSVD,
DCMF, DynaMMo and NetDyna are denoted by shiny green,
blue, red, yellow and purple curves respectively. As we can see
that in the first missing parts, NetDyna i.e. the purple curve
tracks the missing values the best. Although in the second
missing parts DCMF is very close to NetDyna, the overall
performance of NetDyna beats all state-of-the-art algorithms.

From Table III to Table VII, we will show the quantitative
comparisons of time series data error of different algorithms
with different missing patterns on both datasets.

The quantitative comparisons with the state-of-the-art algo-
rithms are shown in Table III and Table IV under different
missing percentages for the Motes dataset. In the missing
column, the first number is the missing percentage of the time
series data and the second number is the missing percentage
of network data. Note that the DCMF algorithm also considers
network information, however it only allows complete network
information. Therefore, for partially observed network infor-
mation, we set network value to be 0, i.e. no connection, for
the unobserved entries.

Under the missing as a block model with different missing
percentage settings, NetDyna outperforms other algorithms
almost in all cases. We note that with fully observed network
information, DCMF performs closely to NetDyna; however,
with partially observed network, NetDyna outperforms sig-
nificantly. Also, under different percentages of partially ob-
served network information, the RMSEs are similar to that of
completely observed network information. Under the missing
uniformly model, NetDyna slightly outperforms DCMF and
outperforms other algorithms in almost all cases by a larger
margin.

Table V and Table VI summarize the results using the
Motion Capture dataset. Under missing as a block setting,
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TABLE V: Root-Mean-Square-Error (RMSE) with the Motion
Capture dataset under missing as a block

Missing NetDyna DCMF DynaMMo PMF MSVD
(10%,0%) 0.0486 0.0487
(10%,10%) 0.0476 0.0626 0.0676 0.8291 0.2350
(10%,20%) 0.0484 0.0838
(30%,0%) 0.0808 0.1035
(30%,10%) 0.0823 0.1206 0.1591 0.8443 0.2661
(30%,20%) 0.0867 0.1072
(50%,0%) 0.1991 0.2520
(50%,10%) 0.1813 0.2562 0.1854 0.8792 0.2797
(50%,20%) 0.1750 0.2654
(90%,0%) 0.8720 0.9981
(90%,10%) 0.7780 0.7241 0.3358 0.9618 0.3092

TABLE VI: Root-Mean-Square-Error (RMSE) with the Mo-
tion Capture dataset under missing uniformly random

Missing NetDyna DCMF DynaMMo PMF MSVD
(10%,0%) 0.0139 0.0139
(10%,10%) 0.0139 0.0139 0.0139 0.9995 0.0152
(10%,20%) 0.0140 0.0139
(50%,0%) 0.0142 0.0142
(50%,10%) 0.0142 0.0142 0.0145 0.9998 0.0177
(50%,20%) 0.0142 0.0142
(90%,0%) 0.0267 0.0297
(90%,10%) 0.0268 0.0299 0.1193 1.0010 0.0280
(90%,20%) 0.0260 0.0299

NetDyna outperforms all other algorithms up to missing 50%
missing time series data. With sparse Motion Capture data
such as when 90% time series data are missing, NetDyna is
not as accurate as DynaMMo and MSVD. Under the missing
uniformly model, NetDyna outperforms other algorithms.

Table VII shows the results when one time series is
completely missing and the number in the missing column
denotes the percentage of missing network data. In this case,
DynaMMo, MSVD and PMF algorithms are not defined. To
have more comparisons, we introduced two more heuristic
baselines.

• heuristic average: Recover the missing time series as the
average of other time series whose sensors are connected
with the missing sensor.

• heuristic weighted average: Recover the missing time
series as the weighted average of other time series whose
sensors are connected with the missing sensor.

As a result, NetDyna outperforms all the algorithms in the
Motes dataset under all settings; with the Motion Capture
dataset, NetDyna also outperforms in most of the cases,
especially with partially observed network.

C. Sensitivity Results

The experimental studies in section focus on the per-
formance of NetDyna with different network weights and
different levels of network sparsity.

1) Network Weight: We will first show that considering
network data helps the recover missing time series data.
Besides, the impact of network weight on NetDyna will be
seen.

TABLE VII: Root-Mean-Square-Error (RMSE) with the Motes
and Motion Capture datasets under one time series is entirely
missing

RMSE NetDyna DCMF Average Weighted Average
Motes(0%) 0.1133 0.1375 0.3603 0.3354
Motes(10%) 0.1154 0.1356 0.3637 0.3407
Motes(20%) 0.1155 0.2805 0.3627 0.3311
Motion(0%) 0.2248 0.2216 0.9287 0.7113
Motion(10%) 0.2185 0.2351 0.9247 0.7106
Motion(20%) 0.2183 0.3061 0.9386 0.7152

Figure 4 shows the performance with different network
weights under the missing as a block model, missing uniformly
model and missing entirely model, respectively, for the Motes
dataset. Here we set network data to be fully observed for
all these missing patterns. From the results, we can see
that considering network information, i.e. λ > 0, in general
improve the accuracy compared with only considering time
series data, i.e. λ = 0.

Under the missing as a block mode, the best λ is between
(0.97, 0.99) in our experiments. Under the missing uniformly
model, utilizing network information, i.e. λ ∈ (0, 1], helps
improve the performance significantly when time series data
is sparse, e.g. when 90% are missing as shown in Figure 4b.
Under the missing entirely model, we can see that considering
network data significantly improves the recovery results.We
have similar results for Motion Capture dataset as well in
Figure 5.

2) Network Sparsity: The experiment results focus on using
partially observed network data for recovering missing values
of time series data.

Figure 6 shows the performance with different amounts of
network data under the missing as a block model, missing
uniformly model and missing entirely model, respectively, for
the Motes dataset.

From Figure 6a, we can see that even missing up to 30% of
the network information, NetDyna performs closely to that of
with fully observed network information. The best empirical
network weights are in the interval (0.9, 1).

For the uniformly missing case, we can observe from Figure
4b that network data is more helpful in the sparse time
series data case, thus the result shown is when 90% time
series data are missing. Similarly, with partially observed
network information, the performance of NetDyna can also
be enhanced. The best empirical network weight is in interval
(0.4, 0.6). For the entirely missing model, Figure 4c shows
that with partially observed network information, the recovery
results are as good as that of full network information. For the
Motion Capture dataset, we have similar results as shown in
Figure 7.

D. Network Data Recovery

In addition to recovering time series data, NetDyna can also
recover the embedded network. In the presence of missing
values in network information, it is inferred from observed
network data and observed time series data. With 95% of time
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Fig. 4: The impact of the network weight on the performance with the Motes dataset
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Fig. 5: The impact of the network weight on the performance with the Motion Capture dataset

0 0.2 0.4 0.6 0.8 1
network weight

0.1

0.15

0.2

0.25

0.3

0.35

R
M

SE

no missing
10% missing
20% missing
30% missing

(a) under missing as a block fashion

0 0.2 0.4 0.6 0.8 1
network weight

0

0.05

0.1

0.15

0.2

R
M

SE

no missing
10% missing
20% missing
30% missing
40% missing

(b) under missing uniformly fashion

network weight
0 0.2 0.4 0.6 0.8 1

R
M

SE

0

0.2

0.4

0.6

0.8

1

1.2

1.4
no missing
10% missing
20% missing

(c) under missing entirely fashion

Fig. 6: The impact of sparsity of network information on the performance with the Motes dataset
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Fig. 7: The impact of sparsity of network information on the performance with the Motion Capture dataset
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series data missing, we vary the sparsity of network data for
Motes dataset. The reconstruction error for network data is
shown in Figure 8. For network data recovery, the accuracy of
recovering network data can increase when the network weight
increases as shown in the figure.
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Fig. 8: network data sparsity on network data recovery

E. Efficiency Results

As we discussed in Section 4 that the complexity of Net-
Dyna is O(#iteration · (TL3 + NL3 +

∑
t(ntL

2 + n2
tL +

n3
t )+

∑
j(n

2
jL+njL

2)). Figure 9 shows the running time of
the algorithm on the Motes dataset versus the sequence length
under missing as a block setting with different time series
missing percentages and fully observed network information.
We can see that the running time is almost linear to the
sequence duration; and the algorithm is faster with sparser
time series data.
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Fig. 9: running time versus the sequence length

VI. CONCLUSION

In this paper, we introduced NetDyna to recover the missing
values both in co-evolving time series data and embedded
network. With the idea that projecting both data sources onto a
shared low dimensional space, we leveraged Kalman filter and
matrix factorization based techniques to derive our algorithm.

By optimizing the evidence lower bound, NetDyna infer the
missing values through learning the observed data from both
sources.

The real dataset experiments show that NetDyna can
achieve high accuracy in a robust setting. The sensitivity
results also show that (1) NetDyna has effectively utilized
even partially observed network information and outperforms
other state-of-the-art algorithms.s; (2) even with incomplete
network data and the whole time series for a node is missing,
NetDyna is able to recover it with higher accuracy than state-
of-the-art algorithms; (3) NetDyna scales linearly w.r.t. time
duration T .
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