
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Radix-2 Self-Recursive Sparse
Factorizations of Delay Vandermonde
Matrices for Wideband Multi-Beam
Antenna Arrays
SIRANI M. PERERA1, ARJUNA MADANAYAKE2, (Member, IEEE), and RENATO J. CINTRA3,4,
(Senior Member, IEEE)
1Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA (e-mail: pereras2@erau.edu)
2Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174 USA (e-mail: amadanay@fiu.edu)
3Departamento de Estatística, Universidade Federal de Pernambuco, Recife, PE 50740540 Brazil (e-mail: rjdsc@de.ufpe.br)
4Department of Electrical and Computer Engineering, University of Calgary, AB T2N 1N4 Canada

Corresponding author: Sirani M. Perera (e-mail: pereras2@erau.edu).

This work was supported in part by the National Science Foundation with Award Numbers 1711625, 1711395, and 1902283; and by CNPq
under grant 306437/2015-5.

ABSTRACT This paper presents a self-contained factorization for the Vandermonde matrices associated
with true-time delay based wideband analog multi-beam beamforming using antenna arrays. The proposed
factorization contains sparse and orthogonal matrices. Novel self-recursive radix-2 algorithms for Vander-
monde matrices associated with true time delay based delay-sum filterbanks are presented to reduce the
circuit complexity of multi-beam analog beamforming systems. The proposed algorithms for Vandermonde
matrices by a vector attain O(N logN) delay-amplifier circuit counts. Error bounds for the Vandermode
matrices associated with true-time delay are established and then analyzed for numerical stability. The
potential for real-world circuit implementation of the proposed algorithms will be shown through signal
flow graphs that are the starting point for high-frequency analog circuit realizations.

INDEX TERMS Sparse matrices, Algorithm design and analysis, Computational complexity, Accuracy,
Error analysis, Fast Fourier transforms, Antenna arrays, Integrated circuits, Wireless communication

I. INTRODUCTION

THE realization of narrowband discrete Fourier transform
(DFT) multi-beams is itself a hard engineering prob-

lem due to circuit complexity of the aperture transceivers.
For example, the phasing network required for forming
N beams requires N2 phasing elements. The DFT is a
linear operation that maps an N -point input signal x =[
x[0] x[1] · · · x[N − 1]

]>
into an N -point output sig-

nal X =
[
X[0] X[1] · · · X[N − 1]

]>
according to

the following relationship: X = FN · x, where FN is
the DFT matrix, whose elements are given by ωklN , k, l =
0, 1, . . . , N − 1, where ωN = exp

(
−j 2π

N

)
is the N th root of

unity and j =
√
−1.

Evaluated by means of direct matrix-vector multiplica-
tions, the direct computational complexity of the DFT is in
O(N2), with N2 complex multiplications and N(N − 1)

complex additions. The DFT matrix has been studied for
the last 50 years, and there exist a multitude of fast algo-
rithms (collectively called fast Fourier transforms (FFTs))
that compute the DFT using O(N logN) operations, which
is significantly lower when compared with the direct imple-
mentations. The use of a spatial FFT leads to N indepen-
dent orthogonal RF beams at O(N logN) complexity. In
fact, by taking a given FFT algorithm and implementing its
“Twiddle Factors” (which are intermediate constant complex
multiplications found in FFT algorithms) using microwave or
analog IC-based phase-shifter implementations has led to the
“Butler Matrix” type multi-beam array beamformers that are
well known in the literature. However, such FFT beams suffer
from frequency dependent beam directions. Known as “beam
squint” because the beam directions are strongly dependent
on the temporal frequency of operation, DFT based multi-
beam beamformers can only be used for narrowband wireless

VOLUME 4, 2016 1

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

systems.
The FFT is capable of computing the DFT or its inverse in

O(N logN) complexity. Therefore, FFT-based multi-beam
beamformers are very useful for wireless systems having
narrow bandwidth. However, for emerging 5G mmW sys-
tems that exploit increasingly wide bandwidths, the beam-
squint problem can be significant. For emerging 5G mmW
systems that fully exploit the available bandwidth for in-
creasing system capacity, one must utilize the true time-delay
based multi-beam beamformers described by its own delay
Vandermonde matrix (DVM). The DVM, however, is equal
to the DFT only at a single temporal frequency. Therefore,
FFT-based factorizations are not applicable for the DVM
matrix. In this paper, we describe the complexity of an FFT-
like factorization algorithm for the Vandermonde matrices,
in order to be able to implement truly wideband multi-beam
mmW beamformers based on true-time-delay networks albeit
at O(N logN) complexity.

The paper is organized as follows. Section II contains
an introduction to complexity metrics of analog and digi-
tal parallel computation systems for matrix-vector products.
Section III introduces novel self-contained factorizations for
Vandermonde matrices and radix-2 algorithms, while in sec-
tion IV we will derive arithmetic complexity and elabo-
rate on numerical results based on the proposed algorithms
for Vandermonde matrices. Next, section V analyzes error
bounds and stability in computing radix-2 algorithms for
Vandermonde matrices having true time-delays. In section
VI we will present signal flow graphs of the proposed radix-
2 algorithm for Vandermonde matrices. Finally, section VII
concludes the paper.

II. ANALOG IMPLEMENTATIONS FOR 5G AND BEYOND:
QUANTIFYING COMPLEXITY
Fast analog radio frequency (RF) integrated circuit (IC) re-
alizations of the beamforming algorithms become necessary
when the bandwidths of interest are greater than a few GHz.
For emerging 5G, 6G and beyond, the bandwidths of interest
are too high for digital computing solutions to keep up. The
solution is to replace digital systems with fast analog imple-
mentations of wideband beamforming algorithms, which in
turn, requires a revisit to traditional algorithm complexity
theory because of differences in analog parallel architec-
tures compared to conventional digital approaches. In analog
implementations, the bandwidth effectively sets the rate at
which the analog computation can be updated. The DVM
building block employs true time delays that can be realized
using transmission line segments and/or all-pass networks
followed by amplification stages.

Let us define DVM fast algorithms as consisting of gain-
delay-block (GDB) and addition/subtraction blocks. Instead
of computing the number of multiplications for accessing
with arithmetic complexity (as one would do for digital
systems), we need to count the number of parallel circuit
implementations of GDBs in order to access the circuit com-
plexity of analog parallel algorithms. The larger the number

of GDBs, the higher the circuit complexity and hence higher
chip area and power consumption. In analog fast algorithms,
the objective is to factorize the original matrix into products
of sparse matrices, such that the total number of GDBs is
reduced from O(N2) to O(N logN). We remark here that
the gain is not equivalent to the coefficient multiplication.
Although a delay of t is simply multiplication by e−jωt

in the mathematical sense, it requires a separate true time
delay circuit in the analog domain. Hence, the multiplication
complexity is different from GBD counts.

III. SELF-CONTAINED FACTORIZATION AND
ALGORITHM FOR VANDERMONDE MATRICES
Low complexity and stable algorithms for the delay Vander-
monde matrix, AN = [αkl]N,N−1

k=1,l=0, where α = e−jωtτ and
accounts for the phase rotation associated with the delay τ at
frequency f , and ωt = 2πf , have been derived through our
previous work [1], [16], [17]. It is important to realize that
the matrix elements are integer powers of α = e−jωtτ which
are functions of the temporal frequency variable ωt; this
is an important distinction from the DFT matrix where the
elements are constants defined as the primitive N th roots of
unity. Because integer powers of α = e−jωtτ are dependent
on ωt the DVM frequency responses are functions of two
frequency variables: ωx, which is typically a spatial variable,
and ωt which is typically the temporal frequency variable.
The DVM matrix frequency responses are defined using the
spatial frequency variable ωx via 2-D filterbank responses
that contain ωt as a parameter, and given by the expression
for the kth filter for k = 0, 1, . . . , N − 1 as Hk(jωx, jωt) =∑
i α

kie−jωxi, i = 0, 1, . . . , N − 1. Therefore, considering
both ωx and ωt the DVM definesN 2-D frequency responses.

Further, the DVM is the super-class of the DFT ma-
trix without having nice properties like unitary, periodic-
ity, symmetry, and circular shift. There is no self-contained
radix-2 DVM algorithm in the literature. The manuscript
[17] proposes a self-contained sparse factorization of DVM
with O(N2) arithmetic complexity. The displacement struc-
ture of Vandermonde-related matrices is used to derive
O(N log2N) arithmetic complexity algorithms in [7], [8]
and an O(N) arithmetic complexity algorithm in [14]. The
manuscripts [12], [13], [23] propose O(N2) complexity
algorithms to compute Vandermonde matrices (having real
nodes) by a vector. The DVM algorithm in [17] extends the
results in [12], [13], [23] utilizing complex nodes without
using displacement equations as in [7], [8], [14]. Moreover,
we have addressed the error bounds and stability of the DVM
algorithm in [17] by filling the gaps in [12], [13], [23].
The DVM algorithm in [16] is faster than [17] but does not
produce arithmetic complexity of order O(N logN). On the
other hand, there are no constraints for nodes of DVM in [17]
as opposed to what we propose here.

In this section, we derive novel self-contained factorization
for the Vandermode-type matrices and propose a radix-2
algorithm for the Vandermonde matrices. We will account for
the phase rotation associated with delay and frequency in the

2 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

factorization of Vandermonde matrices.

A. SELF-CONTAINED FACTORIZATION FOR
VANDERMONDE MATRICES
Algorithms operating on analog signals for computing Van-
dermonde matrix by a vector can be seen as the evaluation
of (N − 1)th degree polynomial at N points, albeit using
a paralleled analog computing circuit as opposed to a dig-
ital realization that must operate on samples and quantized
signals. Here we derive self-contained factorization of Van-
dermonde matrices to obtain efficient continuous-time algo-
rithms for implementation on analog circuits while reducing
GDB counts.

One can observe the computation of Vandermonde matrix
by a vector with arithmetic complexity O(N log2N) in [4],
[7], [8]. Here, arithmetic complexity refers to the number
of GDBs in an analog RF-IC circuit implementation, unlike
the traditional approach of the number of multipliers and
adders in a digital system. There are several mathematical
techniques available to derive radix-2 and split-radix FFT
algorithms, as described in [3], [10], [18], [20], [22]. It has
been shown in [15] that Vandermonde matrices are badly
ill-conditioned with a narrow class of exceptions whereas
cyclic sequences of nodes are equally spaced on the unit
circle C(0, 1). In here, we propose self-contained and sparse
factorization for the well-conditioned Vandermonde matrices
and extend the results for C(0, r), where r > 1 (i.e. circle
of radius r centered at the origin in the complex plane).
The proposed factorizations will then be used to derive fast
algorithms while reducing GDB counts.

Theorem III.1. Let the Vandermonde matrix VN =
[vlk]N−1

k,l=0 be defined by equally spaced nodes {v0, v1, . . . , vN−1}
on C(0, 1) (in counterclockwise direction) and N = 2t

(t ≥ 1). Then VN (v0, v1, . . . , vN−1) can be factored into

VN = PTN

[
VN

2

VN
2

][
IN

2

ḊN
2

] IN
2

IN
2

IN
2
−IN

2


[
IN

2

c · IN
2

]
(1)

where PN is the even-odd permutation matrix, IN
2

is the

identity matrix, ḊN
2

= diag[el(
2πj
N)]

N
2 −1

l=0 , c = e
jθN
2 , and

0 ≤ θ < 2π.

Proof. Let us permute rows of VN by multiplying with PN
and write the result as the block matrices:

PNVN =
[
vl2k
]N

2 −1

k,l=0

[
v
(N2 +l)
2k

]N
2 −1

k,l=0[
vl2k+1

]N
2 −1

k,l=0

[
v
(N2 +l)
2k+1

]N
2 −1

k,l=0

 (2)

It is clear that the (1,1) block of the product PNVN is VN
2

.

Now, we consider (1,2), (2,1), and (2,2) blocks of PNVN

(2) and represent each of these by VN
2

and the product of
diagonal matrices.
By (1,2) block of (2) we get:

[
v
(N2 +l)
2k

]N
2 −1

k,l=0

= diag
[
v
N
2

2k

]N
2 −1

k=0
·
[
vl2k
]N

2 −1

k,l=0
(3)

Since nodes are equally spaced on C(0, 1), we have v2k+1 =

v2k · e
2πj
N , for k = 0, 1, . . . , N2 − 1. Now by (2,1) block of

(2) we get:

[
vl2k+1

]N
2 −1

k,l=0
=
[
vl2k
]N

2 −1

k,l=0
· diag[el(

2πj
N)]

N
2 −1

l=0 (4)

By (2,2) block of (2) we get:

[
v
(N2 +l)
2k+1

]N
2 −1

k,l=0

= − diag
[
v
N
2

2k

]N
2 −1

k=0
·
[
vl2k
]N

2 −1

k,l=0
·

diag[el(
2πj
N)]

N
2 −1

l=0

(5)

Thus by (3), (4), and (5), we can state (2) as:

PNVN =

 VN
2

DN
2
·VN

2

VN
2
· ḊN

2
−DN

2
·VN

2
· ḊN

2

 (6)

where DN
2

= diag
[
v
N
2

2k

]N
2 −1

k=0
. Let us consider the product

of mth row of VN and lth column of VH
N , where VH

N is the
conjugate transpose of VN . Thus, we have:

VN (m, :) ·VH
N (:, l)

= 1 + vm−1v̄l−1 + v2
m−1v̄

2
l−1 + · · ·+ v

(N−1)
m−1 v̄

(N−1)
l−1

=

{
N,when m = l,
0,when m 6= l,

In the above, the first equality follows as vk, v̄k ∈ C(0, 1)
for k = 0, 1, . . . , N − 1 and the second equality follows as
v2k+1 = v2k · e

2πj
N . Hence, VN is unitary up to scaling by

1√
N

. By using this we can state (6) as:

PNVN =

[
VN

2

VN
2

]
 IN

2

2
N ·V

H
N
2

·DN
2
·VN

2

ḊN
2
− 2
N ·V

H
N
2

·DN
2
·VN

2
· ḊN

2

 (7)

Now let us consider the product VH
N
2

· DN
2
· VN

2
i.e. the

product of mth row of VH
N
2

· DN
2

-say V̂N
2

and lth column

VOLUME 4, 2016 3

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

of VN
2

. Therefore, we have that

V̂N
2

(m, :) ·VN
2

(:, l)

= v̄m−1
0 v

N
2

0 vl−1
0 + v̄m−1

2 v
N
2

2 vl−1
2 + v̄m−1

4 v
N
2

4 zl−1
4

+ · · ·+ v̄m−1
N−2v

N
2

N−2v
l−1
N−2

=


N
2 −1∑
k=0

v
N
2

2k , when m = l,

0, when m 6= l,

In the above, the first equality follows as v2k, v̄2k ∈ C(0, 1)
and the second equality follows as v2k are nodes of VN

2
and

v2k+2 = v2k ·e
4πj
N . Thus, by following the above one can see

the (m, l) entry of V̂N
2
·VN

2
· ḊN

2
as

(m, l) entry of V̂N
2
·VN

2
· ḊN

2

=


N

2 −1∑
k=0

v
N
2

2k

 el(
2πj
N),when m = l,

0,when m 6= l.

Notice that even nodes on C(0, 1) can be expressed as v2k =

ej(θ+
4πk
N) for k = 0, 1, . . . , N2 −1. Thus, by raising each even

node to the power of N2 and taking average we get c = e
jθN
2

where j2 = −1. Hence,

VN = PTN

[
VN

2

VN
2

] IN
2

c · IN
2

ḊN
2
−c · ḊN

2

 (8)

and the claim of the theorem follows.

Remark III.2. The last matrix in the factorization (8) has
been split into three sparse matrices in (1) to reduce the
multiplication counts and hence for efficient hardware im-
plementation.

Corollary III.3. Let the Vandermonde matrix ṼN =
[ṽlk]N−1

k,l=0 be defined by equally spaced nodes {ṽ0, ṽ1, . . . , ṽN−1}
on C(0, r), where r > 1 (in counterclockwise direction) and
N = 2t (t ≥ 1). Then ṼN (ṽ0, ṽ1, . . . , ṽN−1) can be factored
into

ṼN = VND̃N (9)

where D̃N = diag[rl]N−1
l=0 and VN is defined via (1).

Proof. This is trivial as ṽk = r · vk for k = 0, 1, . . . , N −
1.

The following self-contained factorization for the Van-
dermonde matrices is proposed in connection to the phase
rotation associated with delay τ and frequency ωt = 2πf .

Theorem III.4. Let the Vandermonde matrix VN =
[vlk]N−1

k,l=0 be defined by equally spaced nodes {v0, v1, . . . , vN−1}

onC(0, 1) (in clockwise direction) andN = 2t (t ≥ 1). Then
VN (v0, v1, . . . , vN−1) can be factored into

VN = PTN

[
VN

2

VN
2

][
IN

2
¯̇DN

2

] IN
2

IN
2

IN
2
−IN

2


[
IN

2

c̄ · IN
2

]
(10)

where IN
2

is the identity matrix, ¯̇DN
2

= diag[e−l(
2πj
N)]

N
2 −1

l=0 ,

c̄ = e−
jθN
2 , and θ = 2πfτ = ωtτ , s.t. 0 ≤ θ < 2π .

Proof. The proof follows similar lines as that of Theorem
III.1, except ¯̇DN

2
= diag[e−l(

2πj
N)]

N
2 −1

l=0 instead of ḊN
2

=

diag[el(
2πj
N)]

N
2 −1

l=0 and c̄ instead of c.

Remark III.5. Theorem III.4 has proposed a self-contained
factorization, as opposed to a scaled DFT matrix. If one
chooses to scale DFT matrices to factor VN , it results in
the computation of small complex numbers and leads to zero
matrices [9]. The proposed factorization for VN in (10)
overcomes this barrier.

Corollary III.6. Let the Vandermonde matrix ṼN =
[ṽlk]N−1

k,l=0 be defined by equally spaced nodes {ṽ0, ṽ1, . . . , ṽN−1}
on C(0, r), where r > 1 (in clockwise direction) and N = 2t

(t ≥ 1). Then ṼN (ṽ0, ṽ1, . . . , ṽN−1) can be factored into

ṼN = VND̃N (11)

where D̃N = diag[rl]N−1
l=0 and VN is defined via (10).

Proof. This is trivial as ṽk = r · vk for k = 0, 1, . . . , N −
1.

Remark III.7. When θ = 0 and r = 1, the proposed
factorization for the Vandermode matrices given in Theorem
III.4, reduces to the well known self-contained DFT matrix
factorization [3], [19], [22], [24]. Thus, we can use this
property to define a delay Vandermonde matrix to solve the
beam squint problem as well as allow high-speed analog
realizations for future high bandwidth applications where the
slowing down of Moore’s law prevents the adoption of digital
parallel processing architectures.

B. SELF-RECURSIVE ALGORITHMS FOR
VANDERMONDE MATRICES
In the following, we will state self-recursive radix-2 al-
gorithms for Vandermonde matrices with the help of the
Theorem III.1, Theorem III.4, Corollary III.3 and Corollary
III.6. Let us call the corresponding algorithms vanc(N),
vancc(N), vancr(N), and vanccr(N) respectively, e.g., the
acronym vancr(N) was selected to refer to the factorization
for the Vandemode matrices having clockwise nodes on the
circle of radius r. We use the following notation for the inputs
of the algorithms i.e. N for the size of the matrices, θ, where
0 ≤ θ < 2π, for the angle of rotation from the positive
real axis (positive or negative based on counterclockwise or

4 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

clockwise direction), r for the magnitude, and z for the input
vector.

Before stating algorithms, let us use the following notation
to denote sparse matrices which will be used hereafter for
N ≥ 4.

D̂N =

[
IN

2

ḊN
2

]
, ĎN =

[
IN

2
¯̇DN

2

]

ÎN =

 IN
2

IN
2

IN
2
−IN

2

 ,

CN =

[
IN

2

c · IN
2

]
, and C̄N =

[
IN

2

c̄ · IN
2

]
(12)

Algorithm III.8. vancc(z,N)
Input: N = 2t (t ≥ 1), N1 = N

2 , θ, and z ∈ Rn or Cn.
1) If N = 2, then

y =

[
1 ejθ

1 −ejθ
]

z.

2) If N ≥ 4, then
u := CNz,
v := ÎNu,
w := D̂Nv,
s1 := vancc

(
[wi]

N1−1
i=0 , N1

)
,

s2 := vancc
(

[wi]
N
i=N1

, N1

)
,

y := PT
N

(
s1T , s2T

)T
.

Output: y = VNz.

Algorithm III.9. vanc(z,N)
Input: N = 2t (t ≥ 1), N1 = N

2 , θ, and z ∈ Rn or Cn.
1) If N = 2, then

y =

[
1 e−jθ

1 −e−jθ
]

z.

2) If N ≥ 4, then
u := C̄Nz,
v := ÎNu,
w := ĎNv,
s1 := vanc

(
[wi]

N1−1
i=0 , N1

)
,

s2 := vanc
(

[wi]
N
i=N1

, N1

)
,

y := PT
N

(
s1T , s2T

)T
.

Output: y = VNz.

Algorithm III.10. vanccr(z,N)
Input: N = 2t (t ≥ 1), N1 = N

2 , r, θ, and z ∈ Rn or Cn.
1) If N = 2, then

y =

[
1 rejθ

1 −rejθ
]

z.

2) If N ≥ 4, then
u := D̃Nz,
y := vancc

(
[ui]

N−1
i=0 , N

)
.

Output: y = ṼNz.

Algorithm III.11. vancr(z,N)
Input: N = 2t (t ≥ 1), N1 = N

2 , r, θ, and z ∈ Rn or Cn.
1) If N = 2, then

y =

[
1 re−jθ

1 −re−jθ
]

z.

2) If N ≥ 4, then
u := D̃Nz,
y := vanc

(
[ui]

N−1
i=0 , N

)
.

Output: y = ṼNz.

IV. ANALOG GDB-COMPLEXITY
The number of additions and multiplications required to carry
out a computation is called the arithmetic complexity in
a digital computing system. Here, because our intention is
to realize these algorithms as high-speed analog computing
circuits operating at RF, we use the modified arithmetic
complexity metric where we are counting the number of
GDBs instead of multipliers. In this section, the GDB counts
of the proposed self-contained factorization for the Vander-
monde matrices via algorithms vanc(z,N), vancc(z,N),
vancr(z,N), and vanccr(z,N) will be addressed. The
direct analog computation of the Vandermonde matrix by a
vector z ∈ C in the usual way requires O(N2) GDB circuits
to be realized in parallel in the RF-IC analog computing de-
vice. However, we will show in this section that the proposed
self-recursive radix-2 algorithms can be utilized to compute
Vandermonde matrices by a vector with O(N log N) GDB
counts.

This is a dramatic circuit complexity reduction of Vander-
monde matrices by a vector in the literature. Although the
computation speed is still the same, the new factorization
reduces chip area and power consumption due to the smaller
amount of GDB circuits that have to be physically realized
on the analog computing device.

A. GDB COUNTS OF ANALOG FAST ALGORITHMS FOR
VANDERMONDE MATRICES
Here we analyze the analog GDB counts of the radix-2
algorithms for Vandermonde matrices presented in Section
III-A. Let us denote the number of complex/real additions
(say #aC/#aR respectively) and complex/real multiplica-
tions (say #mC/#mR respectively) required to compute
y = VNz and y = ṼNz having z ∈ CN or RN . We do
not count multiplication by ±1 and permutation.

Let us first analyze the complex GDB counts of the radix-
2 algorithms for Vandermonde matrices by a complex input
vector. We recall that the GDBs implement a complex multi-
plication defined in the frequency domain ωt which requires
a time-domain delay to implement on the DVM signal flow
graphs. We recall that the independent frequency variable
of the DVM is ωx and that ωt is the temporal frequency
parameter associated with the matrix elements α. This is why
the complex multiplication operations, which contain e−jωtτ

terms, must in practice be realized in the time domain using
time-delays.

VOLUME 4, 2016 5

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Theorem IV.1. Let N = 2t(≥ 2) and θ be given. The com-
plex GDB counts of the proposed vancc(z,N) algorithm
with z ∈ CN is given by

#aC(V anCC,N) = Nt,

#mC(V anCC,N) = Nt−N + 1. (13)

Proof. Referring to the algorithm vancc(z,N), we get

#aC(VanCC, N) = 2 ·#aC
(

VanCC,
N

2

)
+ #aC

(
D̂N

)
+ #aC

(
ÎN

)
+ #aC (CN)

(14)
By following the structures of D̂N , ÎN and CN ,

#aC
(
D̂N

)
= 0, #mC

(
D̂N

)
=
N

2
− 1

#aC
(
ÎN

)
= N, #mC

(
ÎN

)
= 0

#aC (CN) = 0, #mC (CN) =
N

2

(15)

Thus by using the above, we could state (14) as the first order
difference equation with respect to t ≥ 2

#aC(VanCC, 2t)− 2 ·#aC
(
VanCC, 2t−1

)
= 2t.

Solving the above difference equation using the initial condi-
tion #aC(VanCC, 2) = 2, we can obtain

#aC(VanCC, 2t) = Nt.

Now by using the algorithm vancc(z,N) and (15), we could
obtain another first order difference equation with respect to
t ≥ 2

#mC(VanCC, 2t)− 2 ·#mC
(
VanCC, 2t−1

)
= 2t − 1.

Solving the above difference equation using the initial condi-
tion #mC(VanCC, 2) = 1, we can obtain

#mC(VanCC, 2t) = Nt−N + 1.

Corollary IV.2. Let N = 2t(≥ 2), r and θ be given.
The complex GDB counts of the proposed vanccr(z,N)
algorithm with z ∈ CN is given by

#aC(V anCCR,N) = Nt,

#mC(V anCCR,N) = Nt− 1

2
N. (16)

Proof. The multiplication of the diagonal matrix D̃N with a
complex input counts no addition and N

2 − 1 multiplications.
Thus by using vanccr(z,N) algorithm and GDB counts in
(13), the complex GDB counts can be obtained as in (13).

Theorem IV.3. Let N = 2t(≥ 2) and θ be given. The
complex GDB counts of the proposed vanc(z,N) algorithm
with z ∈ CN is given by

#aC(V anC,N) = Nt,

#mC(V anC,N) = Nt−N + 1. (17)

Proof. The proof follows similar lines as that of Theorem
IV.1 except ĎN instead of D̂N and C̄N instead of CN .

Corollary IV.4. Let N = 2t(≥ 2), r and θ be given. The
complex GDB counts of the proposed vancr(z,N) algo-
rithm with z ∈ CN is given by

#aC(V anCR,N) = Nt,

#mC(V anCR,N) = Nt− 1

2
N. (18)

Proof. The multiplication of the diagonal matrix D̃N with a
complex input counts no addition and N

2 − 1 multiplications.
Thus by using vancr(z,N) algorithm and GDB counts in
(17), the complex GDB counts can be obtained as in (18).

Let us analyze the real GDB counts of the radix-2 algo-
rithms for Vandermonde matrices by a real input vector. Here
we count the multiplication of two complex numbers with 2
real additions and 4 real multiplications.

Theorem IV.5. Let N = 2t(≥ 2) and θ be given. The real
GDB counts of the proposed vancc(z,N) algorithm with
z ∈ RN is given by

#aR(V anCC,N) = Nt,

#mR(V anCC,N) = 2Nt− 5

2
N + 2. (19)

Proof. Referring to the algorithm vancc(z,N), we get

#mR(VanCC, N) = 2 ·#mR
(

VanCC,
N

2

)
+ #mR

(
D̂N

)
+ #mR

(
ÎN

)
+ #mR (CN)

(20)
By following the structures of D̂N , ÎN and CN ,

#aR
(
D̂N

)
= 0, #mR

(
D̂N

)
= N − 2,

#aR
(
ÎN

)
= N, #mR

(
ÎN

)
= 0,

#aR (CN) = 0, #mR (CN) = N.

(21)

Thus by using the above, we could state (20) as the first
order difference equation with respect to t ≥ 2

#mR(VanCC, 2t)− 2 ·#mR
(
VanCC, 2t−1

)
= 2 · 2t − 2.

Solving the above difference equation using the initial condi-
tion #mR(VanCC, 2) = 1, we can obtain

#mR(VanCC, 2t) = 2Nt− 5

2
N + 2

Now by using the algorithm vancc(z,N) and (15), we could
obtain another first order difference equation with respect to
t ≥ 2

#aR(VanCC, 2t)− 2 ·#aR
(
VanCC, 2t−1

)
= 2t.

6 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Solving the above difference equation using the initial condi-
tion #aR(VanCC, 2) = 2, we can obtain

#aR(VanCC, 2t) = Nt.

Corollary IV.6. Let N = 2t(≥ 2), r and θ be given. The
real GDB counts of the proposed vanccr(z,N) algorithm
with z ∈ RN is given by

#aR(V anCCR,N) = Nt,

#mR(V anCCR,N) = 2Nt− 3

2
N + 1. (22)

Proof. D̃N is a diagonal matrix with real entries so the
number of additions will remain the same as in (19) while
the number of multiplications will be increased by N − 1 in
(19).

Theorem IV.7. Let N = 2t(≥ 2) and θ be given. The real
GDB counts of the proposed vanc(z,N) algorithm with z ∈
RN is given by

#aR(V anC,N) = Nt,

#mR(V anC,N) = 2Nt− 5

2
N + 2. (23)

Proof. The proof follows similar lines as that of Theorem
IV.5 except ĎN instead of D̂N and C̄N instead of CN .

Corollary IV.8. LetN = 2t(≥ 2), r and θ be given. The real
GDB counts of the proposed vancr(z,N) algorithm with
z ∈ RN is given by

#aR(V anCR,N) = Nt,

#mR(V anCR,N) = 2Nt− 3

2
N + 1. (24)

Proof. D̃N is a diagonal matrix with real entries so the
number of additions will remain the same as in (23) while
the number of multiplications will be increased by N − 1 in
(23).

B. NUMERICAL RESULTS
Here we provide numerical results for the GDB counts of
the proposed radix-2 algorithms vanc(z,N), vancc(z,N),
vancr(z,N), and vanccr(z,N). We consider the direct
computation of Vandermonde matrices V and Ṽ by the vec-
tor z ∈ CN withN(N−1) complex additions and multiplica-
tions (note that V and Ṽ have 1’s along the first column so we
counted the multiplication count as N(N − 1) as opposed to
N2). Also, the direct computation of Vandermonde matrices
V and Ṽ by the vector z ∈ RN is taken as N(2N − 1)
real additions and 2N(N − 1) real multiplications (since
vk = e−j(θ+

2πk
N) we have considered on computing the pow-

ers of nodes using vlk = e−jl(θ+
2πk
N) for l = 2, 3, · · · , N −

1). Note that we have not counted the multiplication by
1 in the Vandermonde matrices. The numerical results for
the GDB counts of the proposed algorithms vanc(z,N),
vancr(z,N), vancc(z,N),and vanccr(z,N) with corre-
sponding matrices VN and ṼN varying sizes from 4 × 4 to
4096× 4096 are shown in Tables 1, 2, and 3.

Following Tables 1, 2, and 3, the proposed radix-2 algo-
rithms for the Vandermonde matrices have shown significant
arithmetic complexity reduction as opposed to the DVM
algorithms presented in [1], [16], [17]. At the same time, we
should recall that the DVM algorithms proposed in [1], [16],
[17] have no restriction for nodes or delays as in this paper.
Moreover, the proposed radix-2 algorithms for Vandermonde
matrices have reduced GDB counts extensively opposed to
the direct computation of Vandermonde matrices by a vector.
More importantly, we have achieved the lowest GDB counts
of radix-2 algorithms on computing Vandermonde matrices
by a vector in the literature while covering radix-2 DFT
algorithms as a subclass of the proposed radix-2 algorithms.

V. ERROR BOUND AND NUMERICAL STABILITY OF
RADIX-2 VANDERMONDE ALGORITHMS
A. THEORETICAL ANALYSIS
Error bounds and numerical stability when computing the
radix-2 Vandermonde algorithms associated with true time
delays are the main concern in this section. To derive analytic
results for error bound, we will use the perturbation of the
product of matrices (stated in [9]). Following the proposed
radix-2 algorithms vancc(z,N) and vanc(z,N), we have
to compute weights e±k(2πj

N) = ωk±(say), where ω± =

e±
2πj
N for k = 0, 1, . . . , N2 −1. The way we compute weights

affects the accuracy of the algorithms. Thus, we will assume
that the computed weights ω̂k± are used and satisfy for all
k = 0, 1, . . . , N2 − 1

ω̂k± = ωk± + εk± , |εk+ | ≤ µ+, |εk− | ≤ µ−, (25)

where µ+ := c1u andµ− := c1u u is the unit roundoff, and
c1 and c2 are constants that depend on the method [22].

Let’s recall the perturbation of the product of matrices
stated in [9, Lemma 3.7] i.e. if Ak+∆Ak ∈ RN×N satisfies
|∆Ak| ≤ δk|Ak| for all k, then∣∣∣∣∣

m∏
k=0

(Ak + ∆Ak)−
m∏
k=0

Ak

∣∣∣∣∣ ≤(
m∏
k=0

(1 + δk)− 1

)
m∏
k=0

∣∣∣∣∣Ak

∣∣∣∣∣
where |δk| < u. Moreover, recall

N∏
k=1

(1 + δk)±1 = 1 + θN

where |θN | ≤ Nu
1−Nu =: γN and γk + u ≤ γk+1, γk + γj +

γkγj ≤ γk+j from [9, Lemma 3.1 and Lemma 3.3], and for
x, y ∈ C, fl(x±y) = (x+y)(1+δ) where |δ| ≤ u, fl(xy) =
(xy)(1 + δ) where |δ| ≤

√
2γ2 from [9, Lemma 3.5].

To carry out error analysis of the proposed algorithms in
complex arithmetic, we implement complex arithmetic using
real arithmetic operations computed according to number of
additions and multiplications of non-unit numbers. Thus, we
multiply ÎN (because it has only block identity matrices) and
D̂N , which were defined in (12), and name as BN s.t. BN =

VOLUME 4, 2016 7

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 1: Complex GDB counts of the proposed radix-2 algorithms (i.e. vanc(z,N), vancr(z,N), vancc(z,N),and
vanccr(z,N)) vs Direct computation

N Direct #aC(V anC,N)/ #mC(V anC,N)/ #mC(V anCR,N)/
Add/Multi #aC(V anCR,N)/ #mC(V anCC,N) #mC(V anCCR,N)

#aC(V anCC,N)/
#aC(V anCCR,N)

4 12 8 5 6
8 56 24 17 20
16 240 64 49 56
32 992 160 129 144
64 4032 384 321 352
128 16256 896 769 832
256 65280 2048 1793 1920
512 261632 4608 4097 4352
1024 1047552 10240 9217 9728
2048 4192256 22528 20481 21504
4096 16773120 49152 45057 47104

TABLE 2: Real GDB counts of the proposed radix-2 algorithms (i.e. vanc(z,N) and vancc(z,N)) vs Direct computation

N Direct Add #aR(V anC,N)/ Direct Multi #mR(V anC,N)/
#aR(V anCC,N) #mR(V anCC,N)

4 28 8 24 8
8 120 24 112 30
16 496 64 480 90
32 2016 160 1984 242
64 8128 384 8064 610
128 32640 896 32512 1474
256 130816 2048 130560 3458
512 523776 4608 523264 7938
1024 2096128 10240 2095104 17922
2048 8386560 22528 8384512 39938
4096 33550336 49152 33546240 88066

TABLE 3: Real GDB counts of the proposed radix-2 algorithms (i.e. vancr(z,N) and vanccr(z,N)) vs Direct computation

N Direct Add #aR(V anCR,N)/ Direct Multi #mR(V anCR,N)/
#aR(V anCCR,N) #mR(V anCCR,N)

4 28 8 24 11
8 120 24 112 37
16 496 64 480 105
32 2016 160 1984 273
64 8128 384 8064 673
128 32640 896 32512 1601
256 130816 2048 130560 3713
512 523776 4608 523264 8449
1024 2096128 10240 2095104 18945
2048 8386560 22528 8384512 41985
4096 33550336 49152 33546240 92161

 IN
2

IN
2

ḊN
2
−ḊN

2

. Similarly, we multiply ÎN (because it has

only block identity matrices) and ĎN , which were defined in

(12), and name as B̌N s.t. B̌N =

 IN
2

IN
2

¯̇DN
2
− ¯̇DN

2

.

Theorem V.1. Let ŷ = fl(VNz), where N = 2t(t ≥ 2),
be computed using the algorithm vancc(z,N), and assume
that (25) holds. Then

‖y − ŷ‖2
‖y‖2

≤ tν+

1− tν+
N

1
2 (26)

where ν+ = η+γ3 + η+ + γ3 and η+ = µ+ + γ4(1 + µ+).

Proof. Using the algorithm vancc(z,N) and the computed
matrices B̂(k) (in terms of computed weights ω̂k+) for k =
0, 1, · · · , t− 2: we have

ŷ = fl

(
P(0)P(1) · · ·P(t− 2) V(t− 1) B̂(t− 2)C(t− 2) · · ·

B̂(1)C(1)B̂(0)C(0) z

)
= P(0)P(1) · · ·P(t− 2) (V(t− 1) + ∆V(t− 1))

(B̂(t− 2) + ∆B̂(t− 2))(C(t− 2) + ∆C(t− 2)) · · ·
(B̂(1) + ∆B̂(1))(C(1) + ∆C(1))

(B̂(0) + ∆B̂(0))(C(0) + ∆C(0)) z

8 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Each block diagonal matrix P(k) and B̂(k) is formed by 2k number
of PT

N
2k

’s and B N
2k

’s respectively, in block diagonal positions. Using
the fact that each B N

2k
has only two non-zeros per row and recalling

that we are using complex arithmetic, we get:∣∣∣∆B̂(k)
∣∣∣ ≤ γ4 ∣∣∣B̂(k)

∣∣∣ for k = 0, 1, · · · , t− 2.

Using the fact that B̂(k) are computed using the computed weights
ω̂k
+, we get:

B̂(k) = B(k) + ∆B(k), |∆B(k)| ≤ µ+ |B(k)| .

Each block diagonal matrix C(k) is formed by 2k number of C N
2k

’s
in block diagonal positions. Using the fact that each C N

2k
has only

one non-zeros per row and recalling that we are using complex
arithmetic, we get:

|∆C(k)| ≤ γ3 |C(k)| for k = 0, 1, · · · , t− 2.

V(t− 1) is a block diagonal matrix and formed by 2t−1 number of
V2’s in diagonal positions. Hence

|∆V(t− 1)| ≤ γ3 |V(t− 1)| .
Thus overall,

ŷ = P(0)P(1) · · ·P(t− 2)(V(t− 1) + ∆V(t− 1))

(B(t− 2) + E(t− 2))(C(t− 2) + ∆C(t− 2)) · · ·
(B(1) + E(1))(C(1) + ∆C(1))

(B(0) + E(0))(C(0) + ∆C(0)) z

where |E(k)| ≤ (µ+ + γ4(1 + µ+))|B(k)| = η+|B(k)|.
Hence

|y − ŷ| ≤ [(1 + η+)t−1(1 + γ3)t − 1]P(0)P(1) · · ·P(t− 2)

|V(t− 1)||B(t− 2)||C(t− 2)| · · · |B(1)||C(1)|
|B(0)||C(0)||z|.

Since each C(k) is an unitary matrix, and each B(k) and V(t −
1) are unitary matrices up to scaling, we get ‖C(k)‖2 = 1 and
‖B(k)‖2 = ‖V(t− 1)‖2 =

√
2. Hence,

‖y − ŷ‖2 ≤ tν+
1− tν+

2t‖z‖2,

where ν+ = η+γ3 + η+ + γ3. Now following VNVH
N = N · IN ,

we get ‖y‖2 =
√
n‖z‖2, and hence the result.

Corollary V.2. Let ŷ = fl(VNz), where N = 2t(t ≥ 2),
be computed using the algorithm vancc(z,N), and assume
that (25) holds. Then the proposed radix-2 algorithm for Van-
dermonde matrices i.e. vancc(z,N) is numerically stable.

Proof. Theorem V.1 immediately follows that the pro-
posed radix-2 algorithm for Vandermonde matrices i.e.
vancc(z,N) can be computed with tiny forward error pro-
vided that the weights i.e. ωk+ are computed stably. On the
other hand, ŷ = y + ∆y = VNz + ∆y. Thus, we get
ŷ = VN (z + ∆z) and ‖∆z‖2

‖z‖2 = ‖∆y‖2
‖y‖2 . If we compute

y = VNz using the brute force computation, we get

|y − ŷ| ≤ γN+2|VN ||z|.

Since VN is unitary w. r. t. scaling, this immediately reduces
to

‖y − ŷ‖2
‖y‖2

≤ γN+2N
1
2 . (27)

As µ+ = O(u), the error (26) of the proposed radix-2
algorithm is much more smaller than that in (27). Thus, the
proposed algorithm is backward stable. Hence, the proposed
algorithm is numerically stable.

Theorem V.3. Let ŷ = fl(VNz), where N = 2t(t ≥ 2), be
computed using the algorithm vanc(z,N), and assume that
(25) holds. Then

‖y − ŷ‖2
‖y‖2

≤ tν−
1− tν−

N
1
2 (28)

where ν− = η−γ3 + η− + γ3 and η− = µ− + γ4(1 + µ−).

Proof. The proof follows similar lines as that of Theorem V.1
except ̂̌B(k), C̄(k), ω̂k−, and µ− instead of B̂(k), C(k), ω̂k+,
and µ+, respectively.

Corollary V.4. Let ŷ = fl(VNz), where N = 2t(t ≥ 2),
be computed using the algorithm vanc(z,N), and assume
that (25) holds. Then the proposed radix-2 algorithm for
Vandermonde matrices i.e. vanc(z,N) is numerically stable.

Proof. The proof follows similar lines as in Corollary V.2.

B. NUMERICAL RESULTS
We will now state numerical results in connection to the error
bounds of the proposed radix-2 algorithms for Vandermonde
matrices and compare the results with the error bound of
the radix-2 FFT algorithm analyzed in [9]. With the help of
the radix-2 factorization of the DFT matrices in [22], it was
proved in [9] that the error bound on computing radix-2 FFT
algorithm is given by;

‖y − ŷ‖2
‖y‖2

≤ tη

1− tη
N

1
2 (29)

where ŷ = fl(FNx), FN is the DFT matrix, N = 2t,
η = µ + γ4(1 + µ), and µ depends on the methods for
computing the weights as specified in [22]. We compare the
error bounds of the proposed radix-2 algorithms for Vander-
monde matrices shown in (26) and (28) with the radix-2 FFT
algorithm (29) using MATLAB(R2014a version). In these
calculations, we have chosen µ = µ+ = µ− = 10−15 and
γN = Nu

1−Nu where N = 2t and u is the machine precision.
Since µ = O(u), we have chosen u = 10−15. Table 4
shows the error bounds of the proposed radix-2 algorithms
for Vandermonde matrices and radix-2 FFT algorithm in [9].

Based on the numerical results shown in Table 4, the
proposed radix-2 algorithms for Vandermode matrices and
radix-2 FFT algorithm have the same error orders except for
N = 16, and 256. Even with these two N values, error
orders of the proposed algorithms and FFT vary only by
10−1 and relatively very low. To sum up, Table 4 shows that
the proposed radix-2 algorithms for Vandermonde matrices
provide tiny forward errors.

VOLUME 4, 2016 9

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 4: Error bounds of the proposed radix-2 algorithms
(i.e. vancc(z,N) and vanc(z,N)) vs radix-2 FFT algo-
rithm [9]

N Error Bound Error Bound
vancc(z,N)/vanc(z,N) FFT

4 3.2× 10−14 2× 10−14

8 6.8× 10−14 4.2× 10−14

16 1.3× 10−13 8× 10−14

32 2.3× 10−13 1.4× 10−13

64 3.8× 10−13 2.4× 10−13

128 6.3× 10−13 4× 10−13

256 1× 10−12 6.4× 10−13

512 1.6× 10−12 1× 10−12

1024 2.6× 10−12 1.6× 10−12

2048 4× 10−12 2.5× 10−12

4096 6.1× 10−12 3.8× 10−12

VI. SIGNAL FLOW GRAPHS FOR RADIX-2
VANDERMONDE ALGORITHMS
In this section, we use signal flow graphs to illustrate the
connection between algebraic operations used in sparse and
orthogonal factorization of Vandermonde matrices with the
fundamental signal flow graphs (SFG) building blocks (i.e.
adders and multipliers). We provide two signal flow graphs
to show the simplicity of the proposed radix-2 algorithms for
Vandermonde matrices. Being pivotal for efficient physical
implementation in hardware, SFGs should represent a nu-
merical algorithm in its fully factorized form in such a way
that more sparse matrices are resulted and, as a consequence,
less arithmetic operations demanded. Thus, Fig. 1 displays
the SFG for the proposed vanc(z,N) algorithm for the case
N = 8. The recursive nature is evident as we express the 8-
point SFG in terms of the 4- and 2-point SFGs. Notice that,
the SFG of the vancc(z,N) algorithm is not presented be-
cause the delays have been replaced with time advances that
are not realizable in real-time circuits. But for the software
implementation purposes, we have proposed vancc(z,N)
algorithm in Section III-B to effectively compute Vander-
monde matrices.

VII. CONCLUSION
We have proposed novel self-recursive radix-2 algorithms for
Vandermonde matrices. These algorithms have sparse and or-
thogonal factors. We have shown that the well known radix-2
DFT algorithm is a subclass of the proposed algorithms for
the Vandermonde matrices. The proposed algorithms attain
the lowest gain-delay-block counts for Vandermonde matri-
ces by a vector, in the literature. Theoretical error bounds
on computing the radix-2 algorithms and stability of the
proposed algorithms are established. Numerical results of
the forward error bounds of the proposed radix-2 algorithms
are compared with the radix-2 FFT algorithm. The proposed
radix-2 algorithms have shown tiny forward and backward
errors when weights are computed stably. Signal flow graphs
were presented to show the simplicity of the proposed al-
gorithm and to realize high-frequency analog circuits. Using
the radix-2 algorithms for Vandermonde matrices associated

V4

V4

z1

z2

z4

z5

z6

z7

z3

z0

d̈e−j4θ

e−j4θ

e−j4θ

e−j4θ

y0

y1

y2

y3

y4

y5

y6

y7

−j

− ¯̈
d

(a) 8-point

V2

V2e−j2θ

e−j2θ

−j

(b) 4-point

e−jθ

(c) 2-point

FIGURE 1: Signal flow graph of the 2-, 4-, and 8-point vanc
decompositions, where d̈ =

√
2

2 (1 − j) and dashed arrows
represent multiplication by −1.

with true time delay based delay-sum filterbanks, we have
reduced the circuit complexity of multi-beam analog beam-
forming systems significantly.

REFERENCES
[1] V. Ariyarathna, N. Udayanga, A. Madanayake, S. M. Perera, L. Belostot-

ski, and R. J Cintra, Design methodology of an analog 9-beam squint-free
wideband IF multi-beamformer for mmW applications, In: Proceedings of
IEEE 2017 Moratuwa Engineering Research Conference (MERCon): 236-
241, IEEE, (2017)

[2] J. F. Canny, E. Kaltofen, and L. Yagati, Solving systems of non-linear
equations faster, in Proc. ACM-SIGSAM 1989 Internat. Symp. Symbolic
Algebraic Comput., ACM, New York 34-42, 1989.

[3] J. W. Cooley and J. W. Tukey, An algorithm for the machine calculation of
complex Fourier series, Math. Comp. 19:297-301, (1965).

[4] J. R. Driscoll, D. M. Healy, Jr., and D. N. Rockmore Fast Discrete
Polynomial Transforms with Applications to Data Analysis for Distance
Transitive Graphs, SIAM J. Comput. 26(4), 1066-1099, (1997).

[5] W. Gautschi and G. Inglese, Lower bounds for the condition number of
Vandermonde matrix, Numerische Mathematik 52:241-250, (1988).

[6] W. Gautschi, How Unstable are Vandermonde Systems?, International
Symposium on Asymptotic and Computational Analysis: Conference in
Honor Frank W. J. Olver’s 65th Birthday (R. Wong, editor), Lecture Notes
in Pure and Applied Mathematics, 124, 193-210, Marcel Dekker, New
York, 1990.

[7] I. Gohberg and V. Olshevsky Complexity of multiplication with vectors for
structured matrices, Linear Algebra Appl., 202(1994) 163-192.

[8] I.Gohberg and V. Olshevsky. Fast algorithms with preprocessing for
matrix-vector multiplication problems, Journal of Complexity 10:411-427,
(1994).

[9] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM
Publications, Philadelphia, USA, 1996.

10 VOLUME 4, 2016

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[10] S. G. Johnson and M. Frigo, A modified split-radix FFT with fewer
arithmetic operations, IEEE Trans. Signal Processing 55 (1), 111-119,
(2007).

[11] T. Kailath and V. Olshevsky, Displacement structure approach to polyno-
mial Vandermonde and related matrices, Linear Algebra Appl. 261:49-90,
(1997).

[12] H. Oruc and H. K. Akmaz, Symmetric functions and the Vandermonde
matrix, Journal of Computational and Applied Mathematics 172:49-64,
(2004).

[13] H. Oruc and G. M. Phillips, Explicit factorization of the Vandermonde
matrix, Linear Algebra and its Applications 315:113-123, (2000).

[14] V. Y. Pan, Fast approximate computations with Cauchy matrices and
polynomials, Math. of Computation 86: 2799-2826, (2017).

[15] V. Y. Pan, How Bad Are Vandermonde Matrices?, SIAM Journal of Matrix
Analysis 37(2): 676-694, (2016).

[16] S. M. Perera, A. Madanayake, and R. J Cintra, Efficient and Self-Recursive
Delay Vandermonde Algorithm for Multi-beam Antenna Arrays, submitted
to Linear Algebra and Its Applications, (2019)

[17] S. M. Perera, V. Ariyarathna, N. Udayanga, A. Madanayake, G. Wu,
L. Belostotski, Y. Wang, S. Mandal, R. J. Cintra, and T. S. Rappaport,
Wideband N-beam Arrays with Low-Complexity Algorithms and Mixed-
Signal Integrated Circuits, IEEE Journal of Selected Topics in Signal
Processing 12(2): 368-382, (2018)

[18] K. R. Rao, D.N. Kim, and J. J. Hwang, Fast Fourier Transform: Algorithm
and Applications, Springer, New York, USA, (2010).

[19] G. Strang, Wavelets, American Scientist JSTOR 82(3):250-255, (1994).
[20] G. Strang, Introduction to Applied Mathematics, Wesley-Cambridge Press,

USA, (1986).
[21] E. E. Tyrtyshnikov, How Bad Are Hankel Matrices? Numerische Mathe-

matik 67(2): 261-269, 1994.
[22] C. Van Loan, Computational Frameworks for the Fast Fourier Transform,

SIAM Publications, Philadelphia, USA, (1992).
[23] S.-liang Yang, On the LU factorization of the Vandermonde matrix, Dis-

crete Applied Mathematics 146:102-105, (2005).
[24] R. Yavne, An economical method for calculating the discrete Fourier

transform, in Proc. AFIPS Fall Joint Computer Conf., 33,115-125, (1968).

SIRANI M. PERERA received the Ph.D. in Math-
ematics from the University of Connecticut, USA
in 2012. She was the first Sri Lankan to attend
the Center for Mathematical Sciences at the Uni-
versity of Cambridge, UK with full Shell Cen-
tenary Scholarship (under The Cambridge Com-
monwealth Trust), and obtained the Part III Tri-
pos (Hons.) in Mathematics in 2006. Perera has
received the B.Sc. (Hons.) in Mathematics from
the University Sri Jayewardenepura, Sri Lanka in

2004. Since 2015, she has been an assistant professor in Mathematics
at Embry-Riddle Aeronautical University (ERAU), USA. She is working
in the field of Numerical Linear Algebra. Her research interests include
Scientific Computing, Structured Matrices (e.g. Vandermonde, Quasisepa-
rable, Semiseparable, Bezoutian, and Banded), Matrices with Displacement
Structure, DCT, DST, FFT, Fast and Stable Algorithms, Complexity and
Performance of Algorithms, Signal Processing, and Image Processing. Dr.
Perera is a member of SIAM.

ARJUNA MADANAYAKE completed his Ph.D.
and MS at University of Calgary, Canada, both
in Electrical Engineering, and the B.Sc. in Elec-
tronic and Telecom Engineering from University
of Moratuwa, Sri Lanka. He is an Associate Pro-
fessor of Electrical and Computer Engineering at
Florida International University (FIU), Miami, FL.
His research interests are in signal processing,
circuits, electronics and antenna array processing.

RENATO J. CINTRA (SM’2010) received the
D.Sc. degrees in electrical engineering from Uni-
versidade Federal de Pernambuco (UFPE), Recife,
Brazil, in 2005. He joined the Centre for Natural
and Exact Sciences, UFPE, in 2005. He was a
visiting professor at the Département Informa-
tique, INSA, Lyon, France, and at the University
of Calgary, Canada. He was an associate editor for
the IEEE Geoscience and Remote Sensing Letters;
and Springer Circuits, Systems, and Signal Pro-

cessing. Currently he serves as associate editor for IET Circuits, Devices
and Systems, for the Journal of Communication and Information Systems;
and as subject editor for Electronics Letters. His long-term topics of research
include: approximation theory for discrete transforms, theory and methods
for digital signal/image processing, and probabilistic methods. Dr. Cintra is
also a SIAM member.

VOLUME 4, 2016 11

