®

Check for
updates

Abstraction and Subsumption in Modular
Verification of C Programs

Lennart Beringer®™ and Andrew W. Appel

Princeton University, Princeton, NJ 08544, USA
{eberinge,appel}@cs.princeton.edu

Abstract. Representation predicates enable data abstraction in sep-
aration logic, but when the same concrete implementation may need
to be abstracted in different ways, one needs a notion of subsumption.
We demonstrate function-specification subtyping, analogous to subtyp-
ing, with a subsumption rule: if ¢ is a funspec_sub of 1, that is ¢ <: 9,
then = : ¢ implies = : 1, meaning that any function satisfying specifi-
cation ¢ can be used wherever a function satisfying 1 is demanded. We
extend previous notions of Hoare-logic sub-specification, which already
included parameter adaption, to include framing (necessary for separa-
tion logic) and impredicative bifunctors (necessary for higher-order func-
tions, i.e. function pointers). We show intersection specifications, with the
expected relation to subtyping. We show how this enables compositional
modular verification of the functional correctness of C programs, in Coq,
with foundational machine-checked proofs of soundness.

Keywords: Foundational program verification - Separation logics -
Specification subsumption

1 Introduction

Even in the 21st century, the world still runs on C: operating systems, run-
time systems, network stacks, cryptographic libraries, controllers for embedded
systems, and large swaths of critical infrastructure code are either directly hand-
coded in C or employ C as intermediate target of compilation or code synthesis.
Analysis methods and verification tools that apply to C thus remain a vital area
of research. The Verified Software Toolchain (VST) [4] is a semi-automated proof
system for functional-correctness verification of C programs that integrates two
long-standing lines of research: (i) program logics with machine-checked proofs
of soundness; (ii) practical verification tools for industry-strength programming
languages. VST consists of three main components:

Verifiable C [3] is a higher-order impredicative concurrent separation logic
covering almost all the control-flow and data-structuring features of C (we
currently omit goto and by-copy whole-struct assignment);

© Springer Nature Switzerland AG 2019
M. H. ter Beek et al. (Eds.): FM 2019, LNCS 11800, pp. 573-590, 2019.
https://doi.org/10.1007/978-3-030-30942-8_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-30942-8_34&domain=pdf
https://doi.org/10.1007/978-3-030-30942-8_34

574 L. Beringer and A. W. Appel

VST-Floyd [7] is a library of lemmas, definitions, and automation tactics that
assist the user in applying the program logic to a program, using forward
symbolic execution, with separation logic assertions as symbolic states;

The semantic model justifies the proof rules, exploiting the theories of step-
indexing, impredicative quantification, separation algebras, and concurrent
ghost state. The semantic model is the basis of a machine-checked proof [4],
in Coq, that the Verifiable C program logic is sound w.r.t. the operational
semantics of CompCert Clight. Thus the user’s Coq proof in Verifiable C com-
poses with our soundness proof of Verifiable C and with Leroy’s CompCert
compiler correctness proof [15] to yield an end-to-end proof of the functional
correctness of the assembly-language program.

VST’s key feature—distinguishing it from tools such as VCC [8], Frama-C [11],
or VeriFast [9]—is that it is entirely implemented in the Coq proof assistant. A
user imports C code into the Coq development environment and applies VST-
Floyd’s automation—computational decision procedures from Coq’s standard
library, plus custom-built tactics for forward symbolic execution and entailment
checking—to construct formal derivations in the Verifiable C program logic.
The full power of Coq and its libraries are available to manipulate application-
specific mathematics. The semantic validity of the proof rules—machine-checked
by Coq’s kernel—connects these derivations to Clight, i.e. CompCert’s represen-
tation of parsed and determinized C code.

Recent applications of VST include the verification of cryptographic primi-
tives from OpenSSL [2,6] and mbedTLS [24], an asynchronous communication
mechanism [17], and an internet-facing server component [13]. Ongoing efforts
elsewhere include a generational garbage collector and a malloc-free library.

Motivated by these applications, we now add support for data abstraction, a key
enabler of scalability. As shown in previous work [21], separation logic can easily
express data abstraction, using abstract predicates: just as the client program of
an abstract data type (ADT) can be written without knowing the representation,
verification of the client can proceed without knowing the representation. In type
theory, this is the principle of existential types [18].

But in real-life modular programming, the same function may want more than
one specification. For example, a function may expose a concrete specification
to “friend” functions that know the representation of internal data and a more
abstract specification for clients that do not. In this case, one should not have to
verify the function-body twice, once for each specification; instead, one should
verify the function-body with respect to the concrete specification, then prove
the concrete implies the abstract. Again, type theory provides an appropriate
notion: subtyping [22]. In other cases, it may be desirable to specify different
use cases of a function—applying, for example, to different input configurations,
or to different control flow paths—using different specifications, perhaps using
different abstract predicates. Yet again, type theory provides a useful analogue:
intersection types, a form of ad-hoc polymorphism.

These observations motivate the use of type-theoretic principles as guidelines
for developing specification mechanisms and automation features for abstrac-

Abstraction and Subsumption in C 575

tion. We now take a step in this direction, focusing primarily on the notion of
subtyping. The observation that Hoare’s original rule of consequence is insuf-
ficiently powerful in languages with (recursive) procedures motivated research
into parameter adaptation, by (among others) Kleymann, Nipkow, and Nau-
mann [12,19,20]. Indeed, Kleymann observed that ([12], p. 9).

— in proving that the postcondition has been weakened, one may also assume the
precondition of the conclusion holds. . .

— one may adjust the auxiliary variables in the premise. Their value may depend
on the value of auxiliary variables in the conclusion and the value of all pro-
gram variables in the initial state.

But these developments were carried out for small languages and predate the
emergence of separation logic. The present article hence revisits these ideas in the
context of VST, by developing a powerful notion of function-specification sub-
typing for higher-order impredicative separation logic. Our treatment improves
on previous work in several regards:

— We support function-specifications of function pointers, as part of our support
for almost the entire C language. Kleymann only considers a single (anony-
mous, parameterless, but possibly recursive) procedure, while Nipkow sup-
ports mutual recursion between named procedures.

— Our notion of subtyping avoids direct quantification over states, thus permit-
ting a higher-order impredicative separation logic in the style of VST and
Iris [10], where “assertion” must be an abstract type with a step-indexed
model rather than simply state—Prop. This is necessary to fully support
function pointers and higher-order resource invariants (for concurrent pro-
gramming). In contrast, Kleymann’s and Nipkow’s assertions are predicates
over states, and the side conditions of their adaptation rules explicitly quan-
tify over states. Naumann’s formulation using predicate transformers captures
the same relationship in a slighty more abstract manner.

— VST associates function specifications to globally named functions in its proof
context A and includes a separation logic assertion func_at that attaches spec-
ifications to function-pointer values. Our treatment integrates subsumption
coherently into proof contexts, func_at, and the soundness judgment. We sup-
port subsumption at function call sites but also incorporate subsumption in
a notion of (proof) context subtyping that is reminiscent of record subtyp-
ing [22]. This will allow bundling function specifications into specifications of
objects or modules that can be abstractly presented to client programs and
are compatible with behavioral subtyping [14,16,23].

— We introduce intersection specifications and show that their interaction with
subsumption precisely matches that of intersection types.

Our presentation is example-driven: we illustrate several use cases of sub-
sumption on concrete code fragments in Verifiable C. Technical adaptations
of the model that support these verifications have been machine-checked for
soundness, but in the paper we only sketch them. The full Coq proofs of our
example are in the VST repo, github.com/PrincetonUniversity/VST in direc-

tory progs/pile.

http://github.com/PrincetonUniversity/VST

576 L. Beringer and A. W. Appel

2 Function Specifications in Verifiable C

Our main example is an abstract data type (ADT) for piles, simple collections
of integers. Figure 1 (on the next page) shows a modular C program that throws
numbers onto a pile, then adds them up.
main.c /ma\in.c\
- { tr;hle‘h one‘pile,h trrmg.h aTile.h

| ‘ onepile.c triang.c fastapile.c

onepn{c W?"“ \ ///

pile.h pile_private.h pile.h fastpile_private.h
N R -BEK N/ 5
pile.c pile list fastpile.c pile

The diagram at left shows that pile.c is imported by onepile.c (which manages a
single pile), apile.c (which manages a single pile in a different way), and triang.c
(which computes the nth triangular number). The latter three modules are
imported by main.c. Onepile.c and triang.c import the abstract interface pile.h;
apile.c imports also the low-level concrete interface pile_private.h that exposes the
representation—a typical use case for this organization might be when apile.c
implements representation-dependent debugging or performance monitoring.

When—as shown on the right—pile.c is replaced by a faster implementation
fastpile.c (code in Fig. 3) using a different data structure, apile.c must be replaced
with fastapile.c, but the other modules need not be altered, and neither should
their specification or verification.

Figure2 presents the specification of the pile module, in the Verifiable C
separation logic. Each C-language function identifier (such as _Pile_add) is bound
to a funspec, a function specification in separation logic.

Before specifying the functions (with preconditions and postconditions), we
must first specify the data structures they receive as arguments and return as
results. Linked lists are specified as usual in separation logic: listrep is a recursive
definition over the abstract (“mathematical”) list value o, specifying how it is
laid out in a memory footprint rooted at address p. Then pilerep describes a
memory location containing a pointer to a listrep.

A funspec takes the form, WITH Z: ¥ PRE ... POST For example, take
Pile_add_spec from Fig. 2: the Z are bound Coq variables visible in both the pre-
condition and postcondition, in this case, p:val, n:Z, o:list Z, gv:globals, where p
is the address of a pile data structure, n is the number to be added to the pile,
o is the sequence currently represented by the pile, and gv is a way to access all
named global variables. The PREcondition is parameterized by the C-language
formal parameter names _p and _n. An assertion in Verifiable C takes the
form, PROP(propositions) LOCAL(variable bindings) SEP(spatial conjuncts). In

/* pile.h x/

typedef struct pile *Pile;

Pile Pile_new(void);

void Pile_add(Pile p, int n);

int Pile_count(Pile p);
void Pile_free(Pile p);

/* onepile.h x/

void Onepile_init(void);
void Onepile_add(int n);
int Onepile_count(void);

/* apile.h x/
void Apile_add(int n);
int Apile_count(void);

/* triang.h */
int Triang_nth(int n);

/* triang.c x/
#include " pile.h”
int Triang_nth(int n) {
intic;
Pile p = Pile_new();
for (i=0; i<n; i++)
Pile_add(p,i+1);
¢ = Pile_count(p);
Pile_free(p);
return c;

}

/* onepile.c x/

#include " pile.h”

Pile the_pile;

void Onepile_init(void)
{the_pile = Pile_new();

void Onepile_add(int n)
{Pile_add(the_pile, n);}

int Onepile_count(void)

{return Pile_count(the_pile);}

}

Abstraction and Subsumption in C 577

/* pile_private.h x/
struct list {int n; struct list *next;};
struct pile {struct list xhead;};

/* pile.c x/

#include <stddef.h>

#tinclude "stdlib.h”

#include "pile.h”

#include " pile_private.h”

Pile Pile_new(void) {
Pile p = (Pile)surely_malloc(sizeof *p);
p— head=NULL;
return p;

}
void Pile_add(Pile p, int n) {
struct list xhead = (struct list *)
surely_malloc(sizeof xhead);
head— n=n;
head— next=p— head;
p— head=head;

int Pile_count(Pile p) {
struct list xq;
int c=0;
for(q=p— head; q; g=q— next)
c+=qg—n;
return c;

}
void Pile_free(Pile p) { . . . }

/* apile.c x/
#include " pile.h”
#include " pile_private.h”
#include " apile.h”
struct pile a_pile = {NULL};
void Apile_add(int n)
{Pile_add(&a-pile, n);}
int Apile_count(void)
{return Pile_count(&a._pile);}

Fig. 1. The pile.h abstract data type has operations new, add, count, free. The triang.c
client adds the integers 1-n to the pile, then counts the pile. The pile.c implementation
represents a pile as header node (struct pile) pointing to a linked list of integers. At
bottom, there are two modules that each implement a single “implicit” pile in a module-
local global variable: onepile.c maintains a pointer to a pile, while apile.c maintains a
struct pile for which it needs knowledge of the representation through pile_private.h.

578 L. Beringer and A. W. Appel

(* spec_pile.v x)
(* representation of linked lists in separation logic *)
Fixpoint listrep (o: list Z) («: val) : mpred :=
match o with
| hiths = EX ywval, 1! (0 < h <Int.maxsigned) &&
data_at Ews tlist (Vint (Int.repr h), y) =
+ malloc_token Ews tlist = x listrep hs y
| nil = 11 (z = nullval) && emp
end.

(* representation predicate for piles *)
Definition pilerep (o list Z) (p: val) : mpred :=
EX z:val, data_at Ews tpile x p * listrep o z.

Definition pile_freeable (p: val) :=
malloc_token Ews tpile p.

Definition Pile_new_spec :=
DECLARE _Pile_new
WITH guv: globals
PRE [] PROP() LOCAL(gvars gv) SEP(mem_mgr gv)
POST] tptr tpile]
EX p: val,
PROP() LOCAL(temp ret_temp p)
SEP(pilerep nil p; pile_freeable p; mem_mgr gv).

Definition Pile_add_spec :=
DECLARE _Pile_add
WITH p: val, n: Z, o: list Z, gv: globals
PRE [_p OF tptr tpile, .n OF tint]
PROP(0 <n < Int.max_signed)
LOCAL(temp _p p; temp _n (Vint (Int.repr n));
gvars gv)
SEP(pilerep o p; mem_mgr gv)
POST] tvoid]
PROP() LOCAL()
SEP(pilerep (n::0) p; mem_mgr gv).

Definition sumlist : list Z — Z := List.fold_right Z.add 0.

Definition Pile_count_spec :=
DECLARE _Pile_count
WITH p: val, o: list Z
PRE [-p OF tptr tpile]

PROP(0 < sumlist o < Int.max_signed) LOCAL (temp _p p)

SEP(pilerep o p)
POST] tint]

Notation key

mpred predicate on memory

EX existential quantifier

I injects Prop into mpred

&& nonseparating conjunction

dataatmTovp is prrw,
separation-logic mapsto
at type 7, permission m

malloc_token ™ 7 & represents
“capability to deallocate x”

Ews the “extern write share”
gives write permission

_Pile_new is a C identifier

WITH quantifies variables
over PRE/POST of funspec

The C function’s return type,
tptr tpile, is “pointer
to struct pile”

PROP(...) are pure propositions
on the WITH-variables

LOCAL(... temp pp ...)
associates C local var _p
with Coq value p

gvars gv establishes gv as
mapping from C global
vars to their addresses

SEP(R:; R2) are separating
conjuncts Ry % Ra

mem_mgr gv represents
different states of the
malloc/free system in
PRE and POST of
any function that
allocates or frees

PROP() LOCAL(temp ret_temp (Vint (Int.repr (sumlist 0))))

SEP(pilerep o p).

Fig. 2. Specification of the pile module (Pile_free_spec not shown).

Abstraction and Subsumption in C 579

this case the PROP asserts that n is between 0 and max-int; LOCAL asserts' that
address p is the current value of C variable _p, integer n is the value of C variable
_n, and gv is the global-variable access map. The precondition’s SEP clause has
two conjuncts: the first one says that there’s a pile data structure at address p
representing sequence o; the second one represents the memory-manager library.
The spatial conjunct (mem_mgr gv) represents the private data structure of the
memory-manager library, that is, the global variables in which the malloc-free
system keeps its free lists.

The SEP clause of the POSTcondition says that the pile at address p now
represents the list n::o, and that the memory manager is still there.

Verifying that pile.c’s functions satisfy the specifications in Fig. 2 using VST-
Floyd is done by proving Lemmas like this one (in file verif_pile.v):

Lemma body_Pile_new: semax_body Vprog Gprog f_Pile_new Pile_new_spec.
Proof. ... (7 lines of Coq proof scriptx).... Qed.

This says, in the context Vprog of global-variable types, in the context Gprog
of function-specs (for functions that Pile.new might call), the function-body
f_Pile_new satisfies the function-specification Pile_new_spec.

Linking

A modular proof of a modular program is organized as follows: CompCert parses
each module M.c into the AST file M.v. Then we write the specification file
spec_M.v containing funspecs as in Fig. 2. We write verif_M.v which imports spec
files of all the modules from which M.c calls functions, and contains semax_body
proofs of correctness (such as body_Pile_new at the end of Sect.2), for each of
the functions in M.c.

What’s special about the main() function is that its separation-logic precon-
dition has all the initial values of the global variables, merged from the global
variables of each module. In spec_main we merge the ASTs (global variables
and function definitions) of all the M.v by a simple, computational, syntactic
function. This is illustrated in the Coq files in VST /progs/pile.

VST’s main soundness statement is that, when running main() in CompCert’s
operational semantics, in the initial memory induced from all global-variable ini-
tializers, the program is safe and correct—with a notion of partial correctness in
interacting with the world via effectful external function calls [13] and returning
the “right” value from main.

3 Subsumption of Function Specifications

We now turn to the replacement of pile.c by a more performant implementa-
tion, fastpile.c, and its specification—see Fig.3. As fastpile.c employs a differ-

1A LOCAL clause temp _p p asserts that the current value of C local variable _p is

the Coq value p. If n is a mathematical integer, then Int.repr n is its projection into
32-bit machine integers, and Vint projects machine integers into the type of scalar
C-language values.

580 L. Beringer and A. W. Appel

/* fastpile_private.h x/
struct pile { int sum; };

/* fastpile.c x/
#include . . .
#include " pile.h”
#include " fastpile_private.h”
Pile Pile_new(void)
{Pile p = (Pile)surely_malloc(sizeof *p); p— sum=0; return p; }
void Pile_add(Pile p, int n)
{int s = p—sum; if (0<n && n<INT_MAX-s) p— sum = s+n; }
int Pile_count(Pile p) {return p— sum;}
void Pile_free(Pile p) {free(p);}

(* spec_fastpile.v x)
Definition pilerep (o: list Z) (p: val) : mpred :=
EX s:Z, 1! (0<s<Int.maxsigned A Forall (Z.le 0) o A
(0 <sumlist o < Int.max_signed — s=sumlist o))
&& data_at Ews tpile (Vint (Int.repr s)) p.

Definition pile_freeable := (looks identical to the one in fig.2 x)
Definition Pile_new_spec := (* looks identical to the one in fig.2)
Definition Pile_add_spec := (* looks identical to the one in fig.2 *)
Definition Pile_count_spec := (x looks identical to the one in fig.2)

Fig. 3. fastpile.c, a more efficient implementation of the pile ADT. Since the only query
function is count, there’s no need to represent the entire list, just the sum will suffice.
In the verification of a client program, the pilerep separation-logic predicate has the
same signature: list Z — val — mpred, even though the representation is a single number
rather than a linked list.

ent data representation than pile.c, its specification employs a different repre-
sentation predicate pilerep. As pilerep’s type remains unchanged, the function
specifications look virtually identical?; however, the VST-Floyd proof scripts
(in file verif_fastpile.v) necessarily differ. Clients importing only the pile.h inter-
face, like onepile.c or triang.c, cannot tell the difference (except that things run
faster and take less memory), and are specified and verified only once (files
spec-onepile.v/verif_onepile.v and spec_triang.v/verif_triang.v).

But we may also equip fastpile.c with a more low-level specification (see Fig. 4)
in which the function specifications refer to a different representation predicate,
countrep. In reasoning about clients of this low-level interface, we do not need
a notion of “sequence”—in contrast to pilerep in Fig. 3. The new specification is
less abstract than the one in Fig. 3, and closer to the implementation. The sub-
sumption rule (to be introduced shortly) allows us to exploit this relationship:

2 Existentially abstracting over the internal representation predicates would further
emphasize the uniformity between fastpile.c and pile.c—a detailed treatment of this
is beyond the scope of the present article.

Abstraction and Subsumption in C 581

(* spec_fastpile_concrete.v)

Definition countrep (s: Z) (p: val) : mpred := EX s':Z,
1 (0<s A 0<s" <Int.maxsigned A (s <lInt.maxsigned — s'=s)) &&
data_at Ews tpile (Vint (Int.repr s')) p.

Definition count_freeable (p: val) := malloc_token Ews tpile p.
Definition Pile_new_spec := ...

Definition Pile_add_spec :=
DECLARE _Pile.add
WITH p: val, n: Z, s: Z, gv: globals
PRE [_p OF tptr tpile, -n OF tint]
PROP(0 < n < Int.max_signed)
LOCAL(temp _p p; temp _n (Vint (Int.repr n)); gvars gv)
SEP(countrep s p; mem.mgr gv)
POST tvoid |
PROP() LOCAL() SEP(countrep (n + s) p; mem_mgr gv).

Definition Pile_count_spec := ...

Fig. 4. The fastpile.c implementation could be used in applications that simply
need to keep a running total. That is, a concrete specification can use a predicate
countrep: Z — val — mpred that makes no assumption about a sequence (list Z). In
countrep, the variable s’ and the inequalities are needed to account for the possibility
of integer overflow.

we only need to explicitly verify the code against the low-level specification and
can establish satisfaction of the high-level specification by recourse to subsump-
tion. This separation of concerns extends from VST specifications to model-level
reasoning: for example, in our verification of cryptographic primitives we found
it convenient to verify that the C program implements a low-level functional
model and then separately prove that the low-level functional model implements
a high-level specification (e.g. cryptographic security).® In our running example,
fastpile.c’s low-level functional model is integer (the Coq Z type), and its high
level specification is list Z.

To formally state the desired subsumption lemma, observe that notation like
DECLARE _Pile_add WITH ... PRE ... POST ... is merely VST’s syntactic sugar

3 For example: in our proof of HMAC-DRBG [24], before VST had function-spec
subsumption, we had two different proofs of the function f_mbedtls_hmac_drbg_seed,
one with respect to a more concrete specification drbg_seed.inst256_spec and one
with respect to a more abstract specification drbg_seed_inst256_spec_abs. The latter
proof was 202 lines of Coq, at line 37 of VST /hmacdrbg/drbg_protocol_proofs.v
in commit 3e61d2991e3d70f5935ae69¢88d7172cf639b9bc of https://github.com/
PrincetonUniversity /VST. Now, instead of reproving the function-body a second
time, we have a funspec_sub proof that is only 60 lines of Coq (at line 42 of the same
file in commit ¢2fc3d830e15f4c70bc45376632¢2323743858ef).

https://github.com/PrincetonUniversity/VST
https://github.com/PrincetonUniversity/VST

582 L. Beringer and A. W. Appel

for a pair that ties the identifier _Pile_add to the funspec WITH...PRE...POST.
For _Pile_.add we have two such specifications,

spec_fastpile.Pile_add_spec: ident*funspec (* in Figure 3 x)
spec_fastpile_concrete.Pile_add_spec: ident*funspec (* in Figure 4 x).

and our notion of funspec subtyping will satisfy the following lemma.

Lemma sub_Pile_add: funspec_sub (snd spec_fastpile_concrete.Pile_add_spec)
(snd spec_fastpile.Pile_add_spec).

and similarly for Pile_new and Pile_count. Specifically, we permit related specifica-
tions to have different WITH-lists, in line with Kleymann’s adaptation-complete
rule of consequence

F{P{Q'}
- {P}{Q}

where assertions are binary predicates over auxiliary and ordinary states, and
Z,7'" are the WITH values.?
Our subsumption applies to function specifications, not arbitrary statements
c. In the rule for function calls, it ensures that a concretely specified function
can be invoked where callers expect an abstractly specified one, just like the
I'Fe:o o<:7

subsumption rule of type theory: e . It is also reflexive and tran-
i T

VZNo.PZo —NT1.3Z' (P'Z'a N(Q'Z'T — QZT))

sitive.

Support for Framing. An important principle of separation logic is the frame
rule:

{P}c{Q} .
modifiedvars(c) N freevars(R) =
{P*R}C{P*R}((<) (B)=10)
We have found it useful to explicitly incorporate framing in funspec_sub, because
abstract specifications may have useless data. Consider a function that performs
some action (e.g., increment a variable) using some auxiliary data (e.g., an array
of 10 integers):

int incrl(int i, unsigned int xauxdata) {auxdata[i%10] += 1; return i+1;}

The function specification makes clear that the private contents of the auxdata
is, from the client’s point of view, unconstrained; the implementation is free to
store anything in this array:

Definition incrl_spec := DECLARE _incrl
WITH i: Z, a: val, 7: share, private: list val
PRE [.i OF tint, _auxdata OF tptr tuint]
PROP (0 <i < Int.max_signed; writable_share 7)

* We give Kleymann’s rule for total correctness here. VST is a logic for partial cor-
rectness, but its preconditions also guarantee safety; Kleymann’s partial-correctness
adaptation rule cannot guarantee safety.

Abstraction and Subsumption in C 583

LOCAL(temp i (Vint (Int.repr)); temp _auxdata a)
SEP(data_at sh (tarray tuint 10) private a)
POST [tint]
EX private’: list val, PROP() LOCAL(temp ret_temp (Vint (Int.repr (i+1))))
SEP(data.at 7 (tarray tuint 10) private’ a).

You might think the auxdata is useless, but (i) real-life interfaces often have

useless or vestigial fields; and (ii) this might be where the implementation keeps

profiling statistics, memoization, or other algorithmically useful information.
Here is a different implementation that should serve any client just as well:

int incr2(int i, unsigned int xauxdata) {return i+1;}
Its natural specification has an empty SEP clause:

Definition incr2_spec := DECLARE _incr2
WITH i: Z
PRE [.i OF tint, _auxdata OF tptr tuint]
PROP (0<i < Int.max_signed) LOCAL(temp _i (Vint (Int.repr4))) SEP()
POST [tint]
PROP() LOCAL(temp ret_temp (Vint (Int.repr (i+1)))) SEP().

The formal statement that incr2 serves any client just as well as incrl is another
case of subsumption:

Lemma sub_incr12: funspec_sub (snd incr2_spec) (snd incrl_spec).

In the proof, we use (data.at 7 (tarray tuint 10) private a) as the frame.
If the auxdata is a global variable instead of a function parameter, all the
same principles apply:

int global_auxdata[10];
int incr3(int i) {global_auxdata[i%10] += 1; return i+1;}
int incrd(int i) {return i+1;}

We define a funspec for incr3 whose SEP clause mentions the auxdata, we define
a funspec for incr4 whose SEP clause is empty, and we can prove,

Lemma sub.incr34: funspec_sub (snd incr4_spec) (snd incr3_spec).

For another example of framing, consider again Fig.2, the specification of
pilerep, pile_freeable, Pile_new_spec, etc. One might think to combine pile_freeable
(the memory-deallocation capability) with pile_rep (capability to modify the con-
tents) yielding a single combined predicate pilerep’. That way, proofs of client
programs would not have to manage two separate conjuncts.

That would work for clients such as triang.c and onepile.c, but not for apile.c
which has an initialized global variable (a_pile) that satisfies pilerep but not
pile_freeable (since it was not obtained from the malloc-free system). Further-
more, the specifications of pile_add and pile_count do not mention pile_freeable in
their pre- or postconditions, since they have no need for this capability.

By using funspec_sub (with its framing feature), we can have it both ways.
One can easily make a more abstract spec in which the funspecs of pile_new,

584 L. Beringer and A. W. Appel

pile_add, pile_count, pile_free all take pilerep’ in their pre- and postconditions;
onepile and triang will still be verifiable using these specs. But in proving
funspec_sub, therefore, specifications for pile_add and pile_count now do implicitly
take pile_freeable in their pre- and postconditions, even though they have no use
for it; this is the essence of the frame rule.

4 Definitions of Funspec Subtyping

Except in certain higher-order cases, we use this notion of function specification:

NDmk_funspec (f: funsig) (cc: calling_.convention)
(A: Type) (Pre Post: A — environ — mpred): funspec.

To construct a nondependent (ND) function spec, one gives the function’s C-
language type signature (funsig), the calling convention (usually cc=cc_default),
the precondition, and the postcondition. A gives the type of variable (or tuple of
variables) “shared” between the precondition and postcondition. Pre and Post are
each applied to the shared value of type A, then to a local-variable environment
(of type environ) containing the formal parameters or result-value (respectively),
finally yielding an mpred, a spatial predicate on memory.

For example, to specify an increment function with formal parameter _p
pointing to an integer in memory, we let A = int, so that

Pre=Xi: A Ap.p(.p) — i and Post= Xi: A Mp.p(-p)+— (i+1).

This form suffices for most C programming. But sometimes in the presence
of higher-order functions, one wants impredicativity: A may be a tuple of types
that includes the type mpred. If this is done naively, it cannot typecheck in CiC
(there will be universe inconsistencies); see the Appendix.

General Funspec. Higher-order function specs are (mostly) beyond the scope of

this paper. When precondition and postcondition must predicate over predicates,

we must ensure that each is a bifunctor, that is, we must keep track of covari-

ant and contravariant occurrences, and so on. This approach was outlined by

America and Rutten [1] and has been implemented both in Iris [10] and VST.?
VST’s most general form of function spec is,

Inductive funspec :=
mk_funspec: forall (f: funsig) (cc: calling_convention) (A: TypeTree)
(P Q: forall ts, dependent_type_functor_rec ts (AssertTT A) mpred)
(P_ne: super_non_expansive P) (Q-ne: super_non_expansive Q), funspec.

Here, super_non_expansive is a proof that the precondition (or postcondition) is
a nonexpansive (in the step-indexing sense) bifunctor; see the Appendix. The
nondependent (ND) form of mk_funspec shown above is simply a derived form of
dependent mk_funspec.

5 Bifunctor function-specs in VST were the work of Qinxiang Cao, Robert Dockins,
and Aquinas Hobor.

Abstraction and Subsumption in C 585

Too-Special Funspec Subtyping. Let’s consider the obvious notion of funspec
subtyping: ¢; is a subtype of ¢, if the precondition of ¢, entails the precondition
of ¢1, and the postcondition of ¢; entails the postcondition of ¢o.

Definition far_too_special_NDfunspec_sub (f; f2 : funspec) :=

let A := funsig_tycontext (funsig_of_funspec f1) in

match f1, fo with
NDmk_funspec fsig, cc1 A1 P1 @1, NDmk_funspec fsigy cca As Po Q2 =
fsigy = fsigy N\ cc1 = cca N Ay = As A (Vo Ay, A, Py nil © Py il 2) A
(Vx : A1, (retO_tycon A), Q1 nil z Q2 nil x)

end.

We write A, P, nil z F Py nil x, where P; and P, are the preconditions of f;
and fo, nil expresses that these are nondependent funspecs (no bifunctor struc-
ture), and z is the value shared between precondition and postcondition. The
type-context A provides the additional guarantee that the formal parameters
are well typed, and retO_tycon A guarantees that the return-value is well typed.

This notion of funspec-sub is sound (w.r.t. subsumption), but barely useful:
(1) it requires that the witness types of the two funspecs be the same (4; = Aj),
(2) it doesn’t support framing, and (3) it requires Q1 F Q2 even when Ps is not
satisfied. Fach of these omissions prevents the practical use of funspec-sub in
real verifications, but only (1) and (3) were addressed in previous work [12,20].

Useful, Ordinary Funspec Subtyping. If NDmk_funspec were a constructor, we
could define,

Definition NDfunspec_sub (f; f2 : funspec) :=
let A := funsig_tycontext (funsig_of_funspec f1) in
match fl, f2 with
NDmk_funspec fsig; cc1 A1 P1 @1, NDmk_funspec fsig, cco Ay Py Q2 =
fsigy = fsigy N\ cc1 = cca A
V(EQ : AQ,
A, P2 nil T2 =
EX z1:A4;, EX F:mpred, ((MAp.F) * Py nil 1) &&
I ((retO-tycon A), (Ap.F) * Q1 nil z1 F Q2 nil x2))
end.

Here, each of the three deficiencies is remedied: the witness value xy : Ap is
existentially derived from xs : As, the frame F' is existentially quantified, and
the entailment @ F Q)5 is conditioned on the precondition P, being satisfied.

This version of funspec-sub is, we believe, fully general for NDmk_funspec,
that is, for function specifications whose witness types A do not contain (covari-
ant or contravariant) occurrences of mpred. We present the general, dependent
funspec-sub in the Appendix, with its constructor mk_funspec, and show the con-
struction of NDmk_funspec as a derived form. And actually, since NDmk_funspec
is not really a constructor (it is a function that applies the constructor
mk_funspec), we must define NDfunspec_sub as a pattern-match on mk_funspec;
see the Appendix.

586 L. Beringer and A. W. Appel

5 The Subsumption Rules

The purpose of funspec_sub is to support subsumption rules.

Our Hoare-logic judgment takes the form A - {P}c{Q} where the context
A describes the types of local and global variables and the funspecs of global
functions. We say A <: A’ if A is at least as strong as A’; in Verifiable C this is
written tycontext_sub A A’. Again, this relation is reflexive and transitive.

Definition (glob_specs): If i is a global identifier, write (glob_specs A)!i to be the
option(funspec) that is either None or Some ¢.

Lemma funspec_sub_tycontext_sub: Suppose A agrees with A’ on types
attributed to global variables, types attributed to local variables, current func-
tion return type (if any), and differs only in specifications attributed to global
functions, in particular: For every global identifier 4, if (glob_specs A)!i = Some ¢
then (glob_specs A’)!i = Some ¢’ and funspec_sub ¢ ¢’. Then A <: A’.

Proof. Trivial from the definition of A <: A'.
Theorem (semax_Delta_subsumption):
A< A A F{PY{Q)
A A{P}c{Q}

Proof. Nontrivial. Because this is a logic of higher-order recursive function point-
ers, our Coq proof® in the modal step-indexed model uses the L&b rule to handle
recursion, and unfolds our rather complicated semantic definition of the Hoare
triple [4].

But this is not the only subsumption rule we desire. Because C has function-
pointers, the general function-call rule is for A = {P}ey(eq,...,e,){Q} where
es is an expression that evaluates to a function-pointer. Therefore, we cannot
simply look up ef as a global identifier in A. Instead, the precondition P must
associate the value of ey with a funspec. Without subsumption, the rules are:

AFerdv
(glob_specs A)!f = Some ¢ AbFe Jv...AF e, v,
A flwo Px F func_ptrv ¢
AF {funcptrvg A Ple{Q} P(w) = {PHQ}
AFA{P}AQ} AF{P =« F}es(er,ea,...,en){Q* F}

The rule semax_fun_id at left says, if the global context A associates identifier
f with funspec ¢, and if f evaluates to the address v, then for the purposes of
proving {P}c{Q} we can assume the stronger precondition in which address v
has the funspec ¢.

The semax_call rule says, if ey evaluates to address v, and the precondition
factors into conjuncts P F' that imply address v has the funspec ¢, then choose a

5 See file veric/semax_lemmas.v in the VST repo.

Abstraction and Subsumption in C 587

witness w (for the WITH clause), instantiate the witness of ¢ with w, and match
the precondition and postcondition of ¢(w) with P and Q; then the function-call
is proved. (Functions can return results, but we don’t show that here.)

To turn semax_call into a rule that supports subsumption, we simply replace
the hypothesis ¢(w) = {P}HQ} with ¢ <: ¢’ A ¢'(w) = {PHQ}.

To reconcile semax_Delta_subsumption and semax_fun_id, we build <: into the
definition of the predicate func_ptr v ¢, i.e. permit ¢ to be more abstract than
the specification associated with address v in VST’s semantic model (“rmap”).

6 Intersection Specifications

In some of our verification examples, we found it useful to separate different use
cases of a function into separate function specifications. One can easily do this
using a pattern that discriminates on a boolean value from the WITH list jointly
in the pre- and postcondition:

WITH b : bool,Z : 7 PRE if b then P; else P, POST if b then Q1 else (Q>.

To attach different WITH-lists to different cases, we may use Coq’s sum type
to define a type such as Variant T := casel: int | case2: string. and use it in a
specification

WITHZ: 7,t: T,y : &
PRE [...] match ¢ with casel i = P;(&,i,9) | case2 s = P»(Z,s,¥) end
POST [...] match ¢ with casel i = Q1(Z,1,7) | case2 s = Q2(Z, s,7) end.

which amounts to the intersection of

WITH Z: 7,i:int,§: & PRE [...] Py (Z,4,7) POST [...] Q:1(Z,4,¥) and

WITH & : 7, s : string, 3 : & PRE [...] Pa(Z,4, §) POST [...] Q2(Z, 1, 7).
Generalizing to arbitrary index sets, we may—for a given function signature

and calling convention—combine specifications into specification families. (We

show the nondependent (ND) case; the Coq proofs cover the general case.)

Definition funspec_Pi_ND sig cc (I:Type) (A : | — Type)
(Pre Post: forall i, A i — environ — mpred): funspec := ...

In previous work [5] we showed how relational (2-execution) specifications
can be encoded as unary VDM-style specifications. Intersection specifications
internalize VDM’s “sets of specifications” feature.

The interaction between this construction and subtyping follows precisely
that of intersection types in type theory: the lemmas

Lemma funspec_Pi_ND_sub: forall fsig cc | A Pre Post i,
funspec_sub (funspec_Pi_ND fsig cc | A Pre Post)
(NDmk_funspec fsig cc (A i) (Pre i) (Post i)).

Lemma funspec_Pi_ND_sub3: forall fsig cc | A Pre Post g (i:)
(HI: forall i, funspec_sub g (NDmk_funspec fsig cc (A i) (Pre i) (Post i))),
funspec_sub g (funspec_Pi_ND fsig cc | A Pre Post).

588 L. Beringer and A. W. Appel

Vi, 0 <: T
o <: NieIT; ’
the specializations of which to the binary case appear on page 206 of TAPL [22].
We expect these rules to be helpful for formalizing Leavens and Naumann’s
treatment of specification inheritance in object-oriented programs [14].

are counterparts of the typing rules Ajerr; <:7; (for all ¢ € I) and

7 Conclusion

Even without funspec subtyping, separation logic easily expresses data abstrac-
tion [21]. But real-world code is modular (as in our running example) and recon-
figurable (as in the substitution of fastpile.c for pile.c). Therefore a notion of
specification re-abstraction is needed. We have demonstrated how to extend
Kleymann’s notion from commands to functions, and from first-order Hoare
logic to higher-order separation logic with framing. We have a full soundness
proof for the extended program logic, in Coq. Our funspec_sub integrates nicely
with our existing proof automation tools and our existing methods of verify-
ing individual modules. As a bonus, one’s intuition that function-specs are like
the “types” of functions is borne out by our theorems relating funspec_sub to
intersection types.

Future Work: When a client module respects data abstraction, such as onepile.c
and triang.c in our example, its Coq proof script does not vary if the imple-
mentation of the abstraction changes (such as changing pile.c to fastpile.c). But
our current proofs need to rerun the proof scripts on the modified definition of
pilerep. As footnote 2 suggests, this could be avoided by the use of existential
quantification, in Coq, to describe data abstraction at the C module level.

Acknowlegdements. This work was funded by the National Science Foundation
under the awards 1005849 (Verified High Performance Data Structure Implementa-
tions, Beringer) and 1521602 Expedition in Computing: The Science of Deep Specifica-
tion, Appel). We are grateful to the members of both projects for their feedback, and
we greatly appreciate the reviewers’ comments and suggestions.

Appendix: Fully General funspec_sub

NDfunspec_sub as introduced in Sect.4 specializes the “real” subtype relation
¢ <: 1 in two regards: first, it only applies if ¢ and 1) are of the NDfunspec form,
i.e. the types of their WITH-lists (“witnesses”) are trivial bifunctors as they do
not contain co- or contravariant occurrences of mpred. Second, it fails to exploit
step-indexing and is hence unnecessarily strong.

The technical report (www.cs.princeton.edu/~eberinge/funspec_sub.pdf)
contains a brief appendix presenting the fully general funspec_sub._si.

www.cs.princeton.edu/{~}eberinge/funspec_sub.pdf

Abstraction and Subsumption in C 589

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

America, P., Rutten, J.: Solving reflexive domain equations in a category of com-
plete metric spaces. J. Comput. Syst. Sci. 39(3), 343-375 (1989)

Appel, A.W.: Verification of a cryptographic primitive: SHA-256. ACM Trans. on
Program. Lang. Syst. 37(2), 7:1-7:31 (2015)

Appel, A.W., Beringer, L., Cao, Q., Dodds, J.: Verifiable C: applying the verified
software toolchain to C programs (2019). https://vst.cs.princeton.edu/download/
VC.pdf

Appel, A W., et al.: Program Logics for Certified Compilers. Cambridge University
Press, Cambridge (2014)

Beringer, L.: Relational decomposition. In: van Eekelen, M., Geuvers, H., Schmaltz,
J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol. 6898, pp. 39-54. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22863-6_6

Beringer, L., Petcher, A., Ye, K.Q., Appel, A.W.: Verified correctness and security
of OpenSSL HMAC. In: 24th USENIX Security Symposium, pp. 207-221. USENIX
Assocation, August 2015

Cao, Q., Beringer, L., Gruetter, S., Dodds, J., Appel, A.W.: VST-Floyd: a sepa-
ration logic tool to verify correctness of C programs. J. Autom. Reason. 61(1-4),
367-422 (2018)

Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Berghofer,
S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp.
23-42. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03359-9_2
Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41-55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20398-
54

Jung, R., Krebbers, R., Jourdan, J.-H., Bizjak, A., Birkedal, L., Dreyer, D.: Iris
from the ground up: a modular foundation for higher-order concurrent separation
logic. J. Funct. Program. 28 (2018)

Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573-609 (2015)
Kleymann, T.: Hoare logic and auxiliary variables. Formal Aspects Comput. 11(5),
541-566 (1999)

Koh, N., et al.: From C to interaction trees: specifying, verifying, and testing a
networked server. In: Proceedings of the 8h ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, pp. 234-248. ACM (2019)

Leavens, G.T., Naumann, D.A.: Behavioral subtyping, specification inheritance,
and modular reasoning. ACM Trans. Program. Lang. Syst. 37(4), 13:1-13:88 (2015)
Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107-
115 (2009)

Liskov, B., Wing, J.M.: A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst. 16(6), 1811-1841 (1994)

Mansky, W., Appel, A.W., Nogin, A.: A verified messaging system. In: Proceed-
ings of the 2017 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2017. ACM (2017)

Mitchell, J.C., Plotkin, G.D.: Abstract types have existential type. ACM Trans.
Program. Lang. Syst. 10(3), 470-502 (1988)

https://vst.cs.princeton.edu/download/VC.pdf
https://vst.cs.princeton.edu/download/VC.pdf
https://doi.org/10.1007/978-3-642-22863-6_6
https://doi.org/10.1007/978-3-642-03359-9_2
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4

590

19.

20.

21.

22.

23.

24.

L. Beringer and A. W. Appel

Naumann, D.A.: Deriving sharp rules of adaptation for Hoare logics. Technical
report 9906, Department of Computer Science, Stevens Institute of Technology
(1999)

Nipkow, T.: Hoare logics for recursive procedures and unbounded nondeterminism.
In: Bradfield, J. (ed.) CSL 2002. LNCS, vol. 2471, pp. 103-119. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45793-3_8

Parkinson, M.J., Bierman, G.M.: Separation logic and abstraction. In: 32nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL
2005), pp. 247-258 (2005)

Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
Pierik, C., de Boer, F.S.: A proof outline logic for object-oriented programming.
Theor. Comput. Sci. 343(3), 413-442 (2005)

Ye, K.Q., Green, M., Sanguansin, N., Beringer, L., Petcher, A., Appel, A.W.:
Verified correctness and security of mbedTLS HMAC-DRBG. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security
(CCS 2017). ACM (2017)

https://doi.org/10.1007/3-540-45793-3_8

	Abstraction and Subsumption in Modular Verification of C Programs
	1 Introduction
	2 Function Specifications in Verifiable C
	3 Subsumption of Function Specifications
	4 Definitions of Funspec Subtyping
	5 The Subsumption Rules
	6 Intersection Specifications
	7 Conclusion
	References

