
1 A Late-Stage Functionalization Approach to Derivatives of the 2 Pyrano[3,2-*a*]carbazole Natural Products

3 Krissada Norseeda,[†] Valentina Gasser,[‡] and Richmond Sarpong*[‡]

4 Department of Chemistry, University of California, Berkeley, California 94720, United States

5 Supporting Information

6 **ABSTRACT:** Site-selective late-stage functionalizations of a
7 pyrano[3,2-*a*]carbazole core related to the murrayamine
8 natural products is reported. Specifically, selective C3 and C6
9 bromination has been achieved as well as C8 borylation. These
10 functionalizations set the stage for access to a variety of natural
11 products as well as their derivatives.

12 The pyrano[3,2-*a*]carbazole natural products are a well-
13 known family of compounds that include the murray-
14 amines, exozoline, mahanimbine, murrayazolinine, and murrayacinine (see Figure 1).^{1–4} These molecules are charac-
15

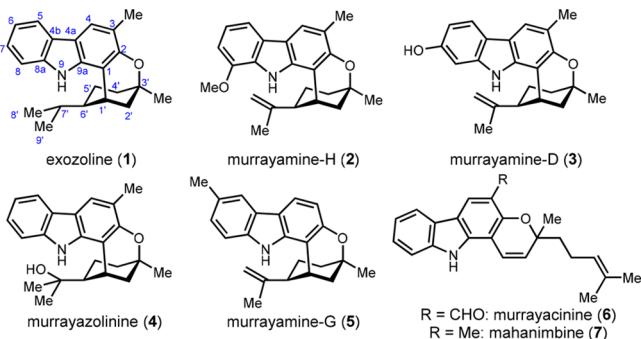


Figure 1. Selected natural products in the pyrano[3,2-*a*]carbazole family.

16 terized by a carbazole core and a chromene unit (e.g., as in
17 murrayacinine, 6) that may be further transformed into a
18 bridged bicycle consisting of pyran and cyclohexane units (as
19 in 1–5).

20 In addition to the carbazole and bridged rings that are found
21 in these natural products, they also often possess a methyl
22 group or an oxidized variant thereof (e.g., a formyl group) at
23 C3 (see 1 for numbering). Methyl substituents are found in a
24 wide range of bioactive molecules including natural products
25 and can contribute significantly to their bioactivity.^{5,6} The
26 biological activity of pyrano[3,2-*a*]carbazole natural products
27 includes anti-inflammatory, antimicrobial, antiulcer, antiplate-
28 let aggregation, and antioxidant and anticancer activities.^{7–10}

29 This activity has primarily been explored only for molecules in
30 this family that bear a methyl group at C3. It may be the case

31 that the introduction of methyl groups or other substituents at
32 other locations on these molecules could lead to novel or
33 enhanced activity.

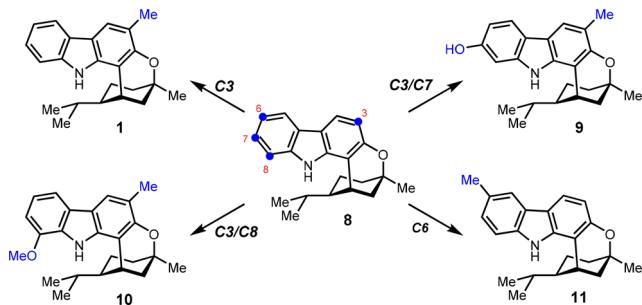
34 For example, the introduction of additional methyl groups
35 on pharmaceutically active molecules can imbue them with
36 conformations that enhance their activity, as well as increase
37 their hydrophilicity and solubility. On the basis of the
38 emerging importance of this “magic methyl” effect on
39 biological activity as recently reviewed by Cernak et al.,¹¹ we
40 wondered whether the bioactivity of the pyrano[3,2-*a*]-
41 carbazole natural products could be varied or further enhanced
42 by changing the group at C3. For example, an isotopically
43 labeled variant of the methyl group as well as a range of
44 heteroatoms, alkyl, aryl, alkenyl, and alkynyl groups could be
45 introduced at a late stage.

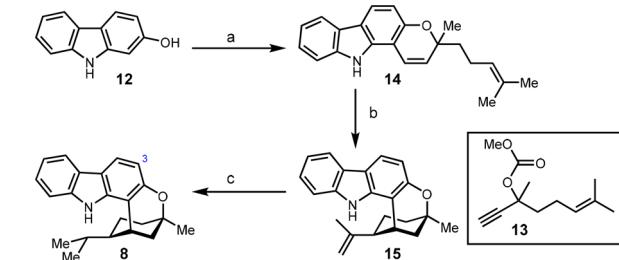
46 We sought to test the importance of substitution to
47 biological activity on the carbazole core of the exozoline-type
48 natural products by designing a common intermediate that
49 would enable late-stage installation of different groups at C3.
50 We chose to focus on a subset of natural products for this
51 study (1–5) that display the range of substituents found in the
52 entire family (i.e., at C3, C6, C7, and C8). In addition to a late-
53 stage functionalization at C3, an approach to all the targeted
54 molecules from a common intermediate would require the
55 identification of methods that also achieve C6–C8 function-
56 alization.

57 To achieve these goals, we envisioned a series of site-
58 selective functionalization reactions on common intermediate
59 8 (Figure 2). For example, bromination at C3 of 8 would set
60 the stage for a variety of cross-coupling reactions including
61 Suzuki, Sonogashira, Heck, Stille, and Kumada processes.
62

Received: March 4, 2019

Published: April 10, 2019




Figure 2. Potentially accessible exozoline derivatives from common intermediate 8.

62 Alternatively, the ability to effect position-selective bromination 63 at C6 of 8 would make possible a similar range of 64 substitutions at this position as well. Borylation at C8 of 8 65 would set the stage for oxygenation at this position, which 66 would lead to natural product derivatives such as dihydro- 67 murrayamine H (10). Finally, cine substitution of C8- 68 borylated intermediates (e.g., using a borono-Catellani 69 process)¹² could enable us to install substituents at C7.

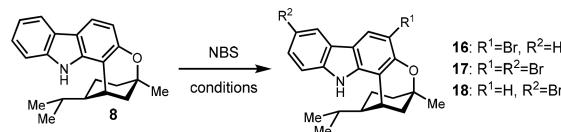
70 ■ PREPARATION OF COMMON INTERMEDIATE 8

71 Common intermediate 8 was readily prepared by adapting the 72 known procedure for the preparation of exozoline reported by 73 Knölker et al.^{2,3,13} Commercially available 2-hydroxycarbazole 74 (12, Scheme 1) was treated with carbonate 13¹⁴ in the

Scheme 1. Preparation of Common Intermediate 8 (All Compounds Are Racemic)^a

^a(a) 13, DBU, Cul, ACN, rt, o/n, then PhMe, 110 °C, o/n, 50% (97%); (b) (±)-CSA, PhMe, 40 °C, 41.5 h, 99%; (c) H₂, Pd/C, MeOH/DCM, 91%.

75 presence of CuI and DBU to form a phenol ether intermediate, 76 which following a Claisen rearrangement provided 14, bearing 77 a chromene unit. Treatment of 14 with (±)-camphorsulfonic 78 acid ((±)-CSA) effected an acid-mediated cyclization to afford 79 15. Hydrogenation of the isopropenyl group of 15 using H₂ 80 with Pd/C gave 8 in 45% yield over the three steps.

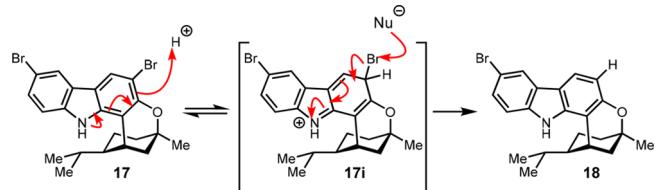

81 ■ FUNCTIONALIZATION AT C3 AND C6 OF 8

82 Our plans to functionalize the carbazole core of 8 commenced 83 with an attempted lithiation at C3 using *n*-BuLi, *s*-BuLi, or *t*- 84 BuLi. It was anticipated that the ethereal oxygen atom at C2 of 85 8 would favor deprotonation at C3. However, the acidic 86 carbazole N–H group necessitated the use of an excess of 87 these bases. In all cases, only starting material was recovered 88 upon quenching the presumed dianion intermediate with a 89 range of electrophiles.

90 In the pursuit of milder conditions that would obviate the 91 need for protection of the carbazole N–H group, we opted

instead to investigate bromination, given the emerging 92 successes of site-selective halogenations of carbazoles and the 93 benzenoid portion of indoles.¹⁵ Treating 8 with 1 equiv of 94 NBS in acetonitrile at room temperature led smoothly to 95 bromide 16 in 92% yield (entry 1, Table 1). Furthermore, 96 t1

Table 1. Bromination of 8 Using N-Bromosuccinimide (NBS)


entry	NBS (equiv)	solvent	temp	time	yield ^a (%)		
					16	17	18
1	1	ACN	rt	<1 min	92	—	—
2	2	ACN	rt	<1 min	—	99	—
3	1	ACN	100 °C	o/n	—	32	11
4	2	ACN	100 °C	o/n	—	30	25

^aIsolated yield.

upon treating 8 with 2 equiv of NBS, we observed the 97 formation of the dibrominated product (17) in quantitative 98 yield (entry 2). Interestingly, upon increasing the temperature 99 of the bromination reaction to 100 °C, a mixture of 17 and 100 18 was obtained in moderate combined yield (entry 3). The use 101 of a larger amount of NBS (2 equiv) under identical conditions 102 led to a modest increase in the amount of 18 that was obtained 103 (entry 4).

We hypothesize that C6-brominated 18 arises from C3, C6 105 dibrominated 17 by a protonation event at C3 (see Scheme 2).¹⁰⁶ s2 Addition of a nucleophile to the Br atom at C3 of the 107 protonated intermediate (17i) would then restore the 108 pyrano[3,2-*a*]carbazole nucleus. 109

Scheme 2. Possible Mechanism of C6 Bromination

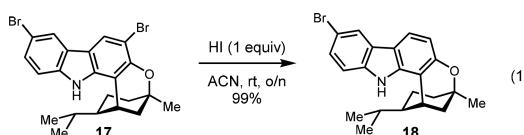
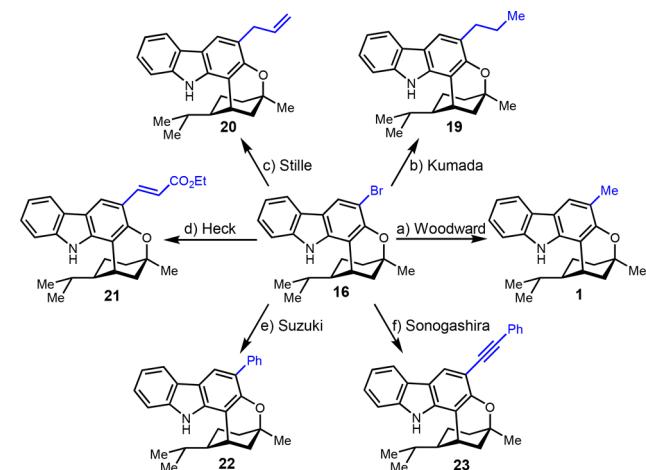

On this basis, it was anticipated that introducing an acid 110 during the bromination of 16 could increase the conversion to 111 bromide 18. Consistent with this hypothesis, when bromide 112 16 was treated with 1 equiv of NBS in AcOH at 100 °C for 5 min 113 (Table 2, entry 2), it was completely converted to dibromide 114 t2 17 (determined by TLC and subsequent ¹H NMR analysis). 115 After 16 h at this temperature, a 1:1 ratio of C3 debrominated 116 product 18 and dibromide 17 was observed (¹H NMR). 117 Alternatively, adding 1 equiv of TMSCl during the 118 bromination¹⁶ of 16 (Table 2, entry 3) also led to some 119 formation of 18. On the other hand, the introduction of Ac₂O 120 or HCl during the bromination of 16 only resulted in the 121 formation of 17 (i.e., without the attendant debromination to 122 give 18; entries 4 and 5). Interestingly, 16 was recovered 123 unchanged when subsequent bromination was attempted in 124 HBr (entry 6). However, with HI as a mediator, we observed 125 the C3 debromination to provide common intermediate 8. 126

Table 2. Acid-Mediated Debromination Studies

entry	solvent ^a	conversion (%)	17:18 ^b
1	ACN	100	1:0.2
2	AcOH	100	1:1
3 ^c	ACN	100	1:1
4	Ac ₂ O	100	1:0
5	HCl	30	1:0
6	HBr	0	NA
7	HI	100	— ^d

^a[0.05 M]. ^bNMR ratio. ^cTMSCl (1 equiv) was added. ^donly C3 debromination occurred.


Finally, treating **17** with 1 equiv of HI at 23 °C directly provided **18** in quantitative yield (eq 1). Overall, using a combination of NBS with acid additives, we are able to effect selective brominations at C3 and/or C6.

With bromide **16** in hand, we examined its conversion to exozoline (**1**) using several cross-coupling reactions to install the requisite methyl group. First, a Suzuki-type methyl coupling with trimethylboroxine (TMB)¹⁷ using $Pd(PPh_3)_4$ and K_2CO_3 provided **1** in 41% yield (Table 3, entry 1). With Cs_2CO_3 as a base (entry 2), we observed only trace amounts of **1**. Surprisingly, with Cs_2CO_3 as the base but using Pd_2dba_3 and BF_3CH_3K as the cross-coupling partner, the desired product was obtained in 76% yield (entry 3). We have also explored the use of bis(trimethylaluminum)-1,4-diazabicyclo[2.2.2]-octane (DABAL- Me_3), which was reported by Woodward et al.,¹⁸ as an effective cross-coupling partner for the introduction of methyl groups. While initial studies only yielded 43% of **1** (Pd_2dba_3 (1.5 mol %), DABAL- Me_3 (0.8 equiv), and XPhos (3 mol %) in THF; entry 4), increasing the amount of DABAL- Me_3 to 2 equiv gave **1** in quantitative yield (entry 5).

Cross-coupling of bromide **16** using a combination of Pd_2dba_3 (1.5 mol %) and XPhos (3.0 mol %) also worked well

for Suzuki and Stille reactions to provide **22** and **20** in 99% and 62% yield, respectively (Scheme 3). However, for Kumada, 149 150 s3

Scheme 3. Functionalization at C3^a

^a(a) $Pd_2(dbu)_3$, XPhos, DABAL- Me_3 , THF, 80 °C, 4 h (99%); (b) $Pd_2(dbu)_3$, XPhos, *i*-PrMgBr, THF, 80 °C, o/n, (78%); (c) $Pd_2(dbu)_3$, XPhos, allyltributylstannane, THF, 80 °C, o/n, (62%); (d) $Pd_2(dbu)_3$, XPhos, ethyl acrylate, THF, 80 °C, o/n, (99%); (e) $Pd_2(dbu)_3$, XPhos, $PhB(OH)_2$, THF, 80 °C, o/n, (83%); (f) $Pd_2(dbu)_3$, XPhos, phenylacetylene, THF, 80 °C, o/n (99%).

Heck, and Sonogashira-type cross-couplings, a higher loading of the catalyst (10 mol % Pd_2dbu_3) and ligand (20 mol % XPhos) were necessary in order to obtain high yields of **19**, **21**, and **23**.

Using the conditions that provide **18** in high yield (i.e., **17** → **18**; eq 1), we have prepared reasonable amounts of **18** to investigate its cross-coupling. For example, in an initial study, using our optimal conditions for methyl cross-coupling (5 mol % Pd_2dbu_3 , 10 mol % XPhos) dihydromurrayamine G (**11**) was obtained from **18** in 99% yield (eq 2).

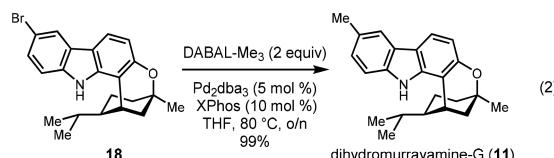
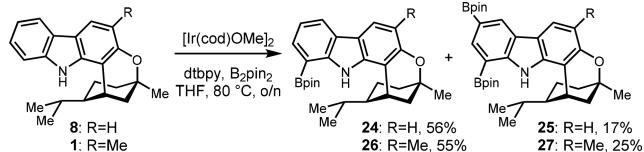
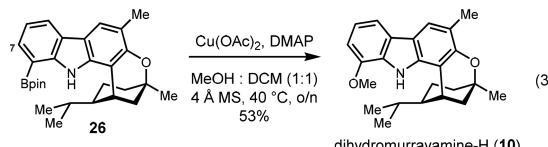


Table 3. Optimization of Methyl Cross-Coupling Reaction


entry	reagent (equiv)	catalyst	additive	solvent	temp	time	yield ^a
1	TMB (1.2)	$Pd(PPh_3)_4$	K_2CO_3	dioxane	reflux	o/n	41%
2	TMB (1.2)	$Pd(PPh_3)_4$	Cs_2CO_3	dioxane	reflux	o/n	trace
3	$BF_3CH_3^-K^+$ (1.0)	$Pd_2(dbu)_3$	Cs_2CO_3	dioxane	reflux	6 h	76%
4	DABAL- Me_3 (0.8)	$Pd_2(dbu)_3$	XPhos	THF	reflux	o/n	43%
5	DABAL- Me_3 (2.0)	$Pd_2(dbu)_3$	XPhos	THF	reflux	4 h	99%

^aIsolated yield.

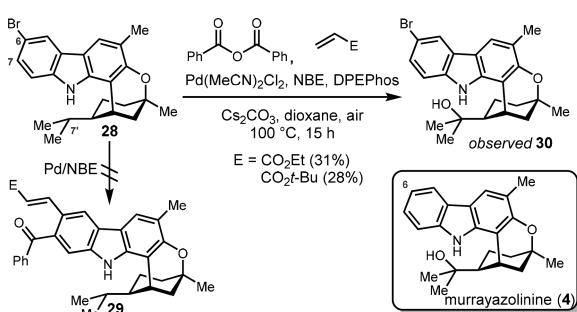
161 ■ FUNCTIONALIZATION AT C8 OF 8


162 We successfully effected C8-selective late-stage functionaliza-
163 tion of 8 using the Hartwig–Miyaura borylation¹⁹ protocol
164 (Scheme 4). Using $[\text{Ir}(\text{OMe})\text{COD}]_2$ (5 mol %), dtbpy (10

Scheme 4. Borylation at C6 and C8

165 mol %), and B_2pin_2 (2 equiv), 8 was borylated to give
166 pinacolboronic ester 24 (56% yield) along with bis-boronic
167 ester 25 (17% yield). We have also investigated the late-stage
168 functionalization of exozoline (1), which bears a methyl group
169 at C3. A selectivity trend for borylation similar to the case of 8
170 was observed here as well (see 26/27). Borylation at the C8
171 position of the pyrano[3,2-*a*]carbazole system is likely directed
172 by coordination to the nitrogen atom, consistent with
173 observations on the indole system as reported by Maleczka,
174 and Smith et al.²⁰ To improve the selectivity for C8 borylation,
175 we attempted to install a directing group on the carbazole
176 nitrogen. Unfortunately, we were unable to install a directing
177 group due to pronounced steric hindrance presumably
178 resulting from peri interactions as well as the isopropyl moiety.
179 Regardless, the borylation yields that we obtain with 8 are
180 comparable to those observed in silyl-directed iridium(III)
181 borylations of typical carbazole systems reported by Hartwig et
182 al.²¹

183 Compound 26 was easily converted to dihydromurray-
184 amine-H (10) in 53% yield using $\text{Cu}(\text{OAc})_2$ and DMAP in
185 $\text{MeOH}/\text{H}_2\text{O}$ in accord with the protocol of Sperry (eq 3).²²



186 We then attempted to use 26 to functionalize at C7 using a
187 borono-Catellani-type reaction ($\text{Pd}(\text{OAc})_2/\text{NBE}$).¹² Unfortu-
188 nately, 26 decomposed under the conditions attempted for
189 cine functionalization at C7.

190 ■ HYDROXYLATION AT C7'

191 In our attempts to functionalize 28²³ at C7 (Scheme 5), we
192 envisioned cine functionalization by exploiting the C6 bromine

Scheme 5. Synthesis of Alcohol 30

193 using a bromo-Catellani-type reaction on the basis of the 193 precedent of Dong and co-workers.^{24–26} In general, no 194 reaction was observed using $\text{Pd}(\text{OAc})_2/\text{NBE}$ as catalyst.¹⁹⁵ However, using $\text{Pd}(\text{MeCN})_2\text{Cl}_2/\text{NBE}$ with benzoyl anhydride 196 and *tert*-butyl acrylate or ethyl acrylate,^{25–27} we instead 197 observed small amounts of hydroxylation at C7' of 198 isopropyl-containing 28 to furnish alcohol 30, which is 199 structurally related to the natural product murrayazolinine 200 (4).²⁸ In addition, when exozoline (1) was treated under the 201 same conditions, murrayazolinine (4) was isolated in 16% 202 yield. Further studies to effect selective and high yielding 203 hydroxylation at C7' of related compounds are the subject of 204 future studies in our laboratories. 205

■ CONCLUSION

206 In conclusion, we report studies directed toward the late-stage 207 functionalization of the pyrano[3,2-*a*]carbazole scaffold related 208 to alkaloids in the murrayamine family using selective 209 brominations (at C3 and C6) and borylations (at C8) from 210 a common intermediate (8). The site-selective bromination 211 and borylations have enabled the installation of many other 212 functional groups at a late-stage, setting the stage for 213 structure–activity relationship studies inspired by the “magic 214 methyl” effect described for various pharmaceutically relevant 215 scaffolds. Attempts to functionalize at C7 inadvertently 216 identified conditions for hydroxylation at C7' that pave the 217 way to access murrayazolinine-type compounds bearing the 218 characteristic isopropenyl group. 219

■ EXPERIMENTAL SECTION

220 **General Experimental Methods.** *i. Solvents and Reagents.* 221 Commercial reagents were used without additional purification. 222 Acetonitrile (ACN), tetrahydrofuran (THF), toluene (PhMe), 223 methanol (MeOH), and triethylamine (Et_3N) were sparged with 224 argon and dried by passing through alumina columns in a Glass 225 Contour solvent purification system. *n*-BuLi solution, *s*-BuLi solution, 226 *t*-BuLi solution, and Grignard solutions were purchased in Sure/Seal 227 bottles and used directly. 1,4-Dioxane was purchased in an AcroSeal 228 bottle (99.5%, anhydrous, stabilized, over 4 Å molecular sieves) and 229 additionally sparged with N_2 prior to use. 230

231 *ii. Reaction Setup, Monitoring, and Product Purification.* 232 Reactions were carried out in flame- or oven-dried glassware under 233 a positive pressure of N_2 in anhydrous solvents using standard Schlenk 234 techniques. Reactions run at room temperature (22–23 °C) were 235 controlled by an IKA temperature modulator and monitored using 236 a combination of LC/MS analysis (Shimadzu LCMS-2020 (UFLC)) 237 equipped with the LC20AD solvent delivery system, a SPD-20AV 238 prominence UV-vis detector (SPD-M20A Photo Diode Array), and a 239 Thermo Scientific Hypersil GOLD HPLC column (5 μm particle size, 240 4.6 mm \times 50 mm)) and thin layer chromatography (TLC) on EMD 241 Millipore silica gel plates (glass backed, extra hard layer, 60 Å, 250 μm 242 thickness, F254 indicator). Visualization of the developed plates was 243 performed under UV light (254 nm) irradiation, and subsequent 244 gentle heating with *p*-anisaldehyde stain. Purification and isolation of 245 products were performed using silica gel chromatography (both 246 column and preparative thin layer chromatography). Flash column 247 chromatography was performed with either glass columns using 248 Silicycle silica gel (40–63 μm particle size) or with a Yamazen Smart 249 S4 Flash EPCLC W-Prep 2XY (dual channel) automated flash 250 chromatography system on pre-filled, Premium Universal columns 251 using ACS grade solvents. Organic solutions were concentrated under 252 reduced pressure on a Heidolph or Büchi temperature-controlled 253 rotary evaporator equipped with a dry ice/isopropanol condenser. 254

255 *iii. Analytical Instrumentation.* NMR spectral data were obtained 255 using deuterated solvents obtained from Cambridge Isotope 256

257 Laboratories, Inc. ^1H NMR and ^{13}C NMR data were recorded on a
 258 Bruker AV-300, AVB-400, AVQ-400, AV-500, DRX-500, AV-600, or
 259 AV-700 MHz spectrometer using CDCl_3 , CD_3OD , or C_6D_6 typically
 260 at 20–23 °C. Chemical shifts (δ) are reported in ppm relative to the
 261 residual solvent signal (δ 7.26 for ^1H NMR, δ 77.16 for ^{13}C NMR in
 262 CDCl_3).²⁹ Data for ^1H NMR spectroscopy are reported as follows;
 263 chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t =
 264 triplet, q = quartet, m = multiplet, br s = broad singlet, br d = broad
 265 doublet, dd = doublet of doublets, dt = doublet of triplets, dq =
 266 doublet of quartets, ddd = doublet of doublets of doublets, ddt =
 267 doublet of doublets of triplets, dddd = doublet of doublets of doublets
 268 of doublets, td = triplet of doublets, tt = triplet of triplets, qd = quartet
 269 of doublets), coupling constant (Hz), integration. Data for ^{13}C NMR
 270 spectroscopy are reported in terms of chemical shift (δ ppm). IR
 271 spectroscopic data were recorded on a Bruker ALPHA FT-IR
 272 spectrophotometer using a diamond attenuated total reflectance
 273 (ATR) accessory. Samples are loaded onto the diamond surface as a
 274 solution in organic solvent, and the data acquired after the solvent had
 275 evaporated. Mass spectral data were obtained from the Catalysis
 276 Facility of Lawrence Berkeley National Laboratory (supported by US
 277 Department of Energy under contract no. DE-AC02-05CH11231), on
 278 a PerkinElmer AxION 2 UHPLC-TOF system (ESI). Data acquisition
 279 and processing were performed using the XcaliburTM software.

280 **Synthesis of Common Intermediate 8 in Scheme 1.** **3,7-**
281 Dimethyloct-6-en-1-yn-3-yl Methyl Carbonate (13). 6-Methyl-5-
 282 hepten-2-one (5.0 g, 40 mmol) was dissolved in THF (40 mL, 1 M)
 283 in a round-bottomed flask equipped with a magnetic stir bar and
 284 cooled in an acetone/dry ice bath. Ethynylmagnesium bromide
 285 solution (0.5 M in THF, 0.10 L, 50 mmol) was added dropwise over
 286 30 min. The reaction mixture was stirred in the bath for 30 min and
 287 then allowed to warm gradually to room temperature over 1 h. The
 288 resulting mixture was cooled in an acetone/dry ice bath again, and
 289 methyl chloroformate (6.1 mL, 79 mmol) was added dropwise over
 290 15 min. The reaction mixture was stirred in the bath for 30 min and
 291 then allowed to warm gradually to room temperature over 2.5 h. The
 292 reaction mixture was quenched by the addition of NH_4Cl (saturated
 293 aqueous, 20 mL) and NaHCO_3 (saturated aqueous, 20 mL) and
 294 extracted with EtOAc (3 \times 20 mL). The combined organic extracts
 295 were washed with brine (20 mL), dried over Na_2SO_4 , filtered, and
 296 concentrated in vacuo. The crude extract was purified by column
 297 chromatography (eluting with 1–5% EtOAc in hexanes) to provide
 298 **13** as a yellow oil (7.1 g, 34 mmol, 86%); ^1H NMR (300 MHz,
 299 CDCl_3) δ 5.15 (dddd, J = 8.6, 5.8, 2.9, 1.4 Hz, 1H), 3.81 (s, 3H), 2.64
 300 (d, J = 0.9 Hz, 1H), 2.34–2.13 (m, 2H), 2.08–1.96 (m, 1H), 1.96–
 301 1.82 (m, 1H), 1.76 (d, J = 1.1 Hz, 3H), 1.72 (s, 3H), 1.66 (s, 3H).
 302 Spectroscopic data for this compound were identical to those
 303 reported.^{2,13}

304 **3-Methyl-3-(4-methylpent-3-en-1-yl)-3,11-dihydropyrano[3,2-a]-**
305 carbazole (14). 2-Hydroxycarbazole (12) (4.4 g, 24 mmol),
 306 carbonate **13** (9.3 mL, 48 mmol), and CuI (23 mg, 0.12 mmol)
 307 were dissolved in acetonitrile (0.80 L, 0.030 M) in a round-bottomed
 308 flask equipped with a magnetic stir bar. DBU (11 mL, 71 mmol) was
 309 added dropwise over 10 min. The reaction mixture was stirred at
 310 room temperature for 16 h, then concentrated in vacuo, and diluted
 311 with EtOAc (40 mL). The solution mixture was washed with HCl (1
 312 M aqueous solution, 10 mL) and extracted with EtOAc (3 \times 10 mL).
 313 The combined organic extracts were washed with brine (10 mL),
 314 dried over Na_2SO_4 , filtered, and concentrated in vacuo. The resulting
 315 crude extract was dissolved in toluene (0.40 L, 0.060 M) and then
 316 heated at reflux for 24 h. The reaction mixture was concentrated in
 317 vacuo to removed toluene. The residue was purified by column
 318 chromatography (eluting with 0–5% EtOAc in hexanes) to provide
 319 **14** as a yellow solid (3.8 g, 12 mmol, 50%); mp 82–84 °C; IR (thin
 320 film): 3459, 2925, 2866, 1069, 1457, 1305, 888, 738 cm^{-1} ; ^1H NMR
 321 (700 MHz, CDCl_3) δ 7.96–7.93 (m, 2H), 7.79 (d, J = 8.3 Hz, 1H),
 322 7.39 (d, J = 8.0 Hz, 1H), 7.33 (t, J = 7.6 Hz, 1H), 7.20 (t, J = 7.4 Hz,
 323 1H), 6.75 (d, J = 8.4 Hz, 1H), 6.65 (d, J = 9.4 Hz, 1H), 5.67 (d, J =
 324 9.7 Hz, 1H), 5.14–5.09 (m, 1H), 2.20–2.15 (m, 2H), 1.84–1.77 (m,
 325 1H), 1.78–1.71 (m, 1H), 1.67 (s, 3H), 1.59 (s, 3H), 1.46 (s, 3H);
 326 $^{13}\text{C}\{^1\text{H}\}$ NMR (176 MHz, CDCl_3) δ 152.0, 139.6, 136.4, 131.9,

128.9, 124.6, 124.2, 124.1, 120.6, 119.9, 119.6, 117.6, 117.4, 110.6, 327
 109.8, 104.7, 78.5, 41.0, 26.1, 25.8, 22.9, 17.8; HRMS (ESI/TOF) m/z /
 z: [M + H]⁺ calcd for $\text{C}_{22}\text{H}_{24}\text{NO}$ 318.1852; found 318.1855. 329

(1R,2S,5R)-5-Methyl-2-(prop-1-en-2-yl)-1,2,3,4,5,13-hexahydro-330
1,5-methanooxocino[3,2-a]carbazole (15). Chromene **14** (1.3 g, 4.2 331
 mmol) was dissolved in toluene (0.14 L, 0.030 M) in a round- 332
 bottomed flask equipped with a magnetic stir bar. (±)-CSA (0.10 g, 333
 4.2 mmol) was added, and the solution was heated in an oil bath at 60 334
 °C for 19 h. The reaction mixture was cooled to room temperature 335
 and concentrated in vacuo to remove toluene. The residue was 336
 transferred to a separatory funnel using EtOAc as a solvent, then 337
 washed with NaHCO_3 (saturated aqueous, 15 mL), and extracted 338
 with EtOAc (3 \times 15 mL). The combined organic extracts were 339
 washed with brine (15 mL), dried over Na_2SO_4 , filtered, and 340
 concentrated in vacuo. The residue was purified by column 341
 chromatography (eluting with 0–5% EtOAc in hexanes) to provide 342
15 as a light brown solid (1.3 g, 4.1 mmol, 99%); mp 141–142 °C; IR 343
 (thin film): 3416, 2967, 2918, 1457, 1081, 738 cm^{-1} ; ^1H NMR (700 344
 MHz, CDCl_3) δ 7.94 (d, J = 7.7 Hz, 1H), 7.81 (br s, 1H), 7.79 (d, J = 345
 8.3 Hz, 1H), 7.35 (d, J = 8.0 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.19 346
 (t, J = 7.4 Hz, 1H), 6.78 (d, J = 8.3 Hz, 1H), 4.84 (s, 1H), 4.75 (s, 347
 1H), 3.42 (s, 1H), 2.59 (br d, J = 12.2 Hz, 1H), 2.13 (br d, J = 10.4 348
 Hz, 1H), 2.09–2.02 (m, 1H), 1.97–1.91 (m, 1H), 1.71–1.60 (m, 349
 3H), 1.54 (s, 3H), 1.45 (s, 3H); $^{13}\text{C}\{^1\text{H}\}$ NMR (176 MHz, CDCl_3) δ 350
 155.5, 149.9, 139.9, 139.5, 124.4, 124.0, 119.5, 119.33, 119.31, 115.6, 351
 112.3, 110.4, 109.1, 105.9, 74.3, 48.7, 39.8, 37.6, 36.1, 29.0, 23.2, 21.7, 352
 HRMS (ESI/TOF) m/z : [M + Na]⁺ calcd for $\text{C}_{22}\text{H}_{23}\text{NNaO}$ 353
 340.1672; found 340.1670. 354

(1R,2R,5R)-2-Isopropyl-5-methyl-1,2,3,4,5,13-hexahydro-1,5-355
methanooxocino[3,2-a]carbazole (8). A mixture of compound **15** 356
 (0.80 g, 2.5 mmol) and Pd/C (10 wt %, 0.27 g, 0.25 mmol) was 357
 suspended in MeOH/DCM (4:1, 0.10 L) in a round-bottomed flask 358
 equipped with a magnetic stir bar. The reaction mixture was sparged 359
 with H_2 (balloon, 1 atm) for 15 min and then allowed to stir at room 360
 temperature for 16 h. The reaction mixture was filtered over a plug of 361
 Celite, which was rinsed with EtOAc (3 \times 10 mL). The combined 362
 organic filtrates were concentrated in vacuo and purified by column 363
 chromatography (eluting with 5% EtOAc in hexanes) to provide **8** as 364
 an amorphous white solid (0.74 g, 2.3 mmol, 91%); IR (thin film): 365
 3474, 2927, 2868, 1611, 1458, 1217, 738 cm^{-1} ; ^1H NMR (700 MHz, 366
 CDCl_3) δ 7.93 (d, J = 7.8 Hz, 1H), 7.79 (d, J = 8.3 Hz, 2H), 7.37 (d, J 367
 = 8.0 Hz, 1H), 7.30 (t, J = 7.3 Hz, 1H), 7.18 (t, J = 7.4 Hz, 1H), 6.75 368
 (d, J = 8.5 Hz, 1H), 3.46 (s, 1H), 2.09 (d, J = 13.7 Hz, 1H), 1.98– 369
 1.88 (m, 2H), 1.65 (d, J = 13.5 Hz, 1H), 1.60–1.53 (m, 1H), 1.49– 370
 1.42 (m, 2H), 1.42 (s, 3H), 1.30 (d, J = 6.1 Hz, 3H), 1.19 (qd, J = 371
 13.1, 4.5 Hz, 1H), 0.68 (d, J = 6.3 Hz, 3H); $^{13}\text{C}\{^1\text{H}\}$ NMR (151 372
 MHz, CDCl_3) δ 155.8, 139.7, 139.2, 124.3, 124.0, 119.6, 119.3, 119.2, 373
 115.7, 110.3, 109.4, 106.1, 74.3, 49.9, 40.3, 37.3, 32.0, 29.7, 28.9, 22.8, 374
 22.7, 20.1; HRMS (ESI/TOF) m/z : [M + H]⁺ calcd for $\text{C}_{22}\text{H}_{26}\text{NO}$ 375
 320.2009; found 320.2008. 376

Procedures for Bromination Reactions Using NBS. **C3-**
Monobromide (16). Compound **8** (0.74 g, 2.3 mmol) was dissolved 377
 in acetonitrile (46 mL, 0.050 M) in a round-bottomed flask equipped 378
 with a magnetic stir bar. NBS (0.41 g, 2.3 mmol) was added to the 379
 clear yellow solution at room temperature. The reaction mixture was 380
 immediately quenched with H_2O (15 mL). The resulting milky 382
 mixture was extracted with EtOAc (3 \times 10 mL). The combined 383
 organic extracts were washed with brine (15 mL), dried over Na_2SO_4 , 384
 filtered, and concentrated in vacuo. The crude extract was purified by 385
 column chromatography (eluting with 5% EtOAc in hexanes) to 386
 provide **16** as an amorphous white solid (0.90 g, 2.1 mmol, 92%); IR 387
 (thin film): 3460, 2949, 2869, 1610, 1447, 1380, 1221, 739 cm^{-1} ; ^1H 388
 NMR (600 MHz, CDCl_3) δ 8.07 (s, 1H), 7.90 (d, J = 7.8 Hz, 1H), 389
 7.78 (s, 1H), 7.37 (d, J = 7.9 Hz, 1H), 7.33 (t, J = 7.4 Hz, 1H), 7.20 390
 (t, J = 7.3 Hz, 1H), 3.45 (d, J = 3.4 Hz, 1H), 2.19–2.11 (m, 1H), 1.95 391
 (dd, J = 13.0, 2.7 Hz, 1H), 1.89 (dt, J = 13.0, 3.3 Hz, 1H), 1.68–1.62 392
 (m, 1H), 1.62–1.53 (m, 1H), 1.52–1.44 (m, 4H), 1.43–1.36 (m, 393
 1H), 1.28 (d, J = 6.4 Hz, 3H), 1.14 (qd, J = 13.2, 4.5 Hz, 1H), 0.68 394
 (d, J = 6.5 Hz, 3H); $^{13}\text{C}\{^1\text{H}\}$ NMR (151 MHz, CDCl_3) δ 151.5, 395
 139.4, 138.8, 124.8, 123.4, 122.6, 120.0, 119.5, 116.6, 110.5, 107.6, 396

397 102.9, 75.8, 50.0, 40.2, 37.3, 32.6, 29.8, 28.7, 22.9, 22.7, 20.1; HRMS
 398 (ESI/TOF) m/z : [M + H]⁺ calcd for $C_{22}H_{25}$ ^{79}Br NO 398.1114; found
 399 398.1115.

400 **C3,C6-Dibromide (17).** Compound 8 (50 mg, 0.16 mmol) was
 401 dissolved in acetonitrile (3.0 mL, 0.050 M) in a round-bottomed flask
 402 equipped with a magnetic stir bar. NBS (56 mg, 0.31 mmol) was
 403 added to the clear yellow solution at room temperature. The solution
 404 mixture was immediately quenched with H_2O (1.0 mL). The resulting
 405 milky mixture was extracted with EtOAc (3 \times 1.0 mL). The combined
 406 organic extracts were washed with brine (1.0 mL), dried over Na_2SO_4 ,
 407 filtered, and concentrated in vacuo. The crude extract was purified by
 408 column chromatography (eluting with 5% EtOAc in hexanes) to
 409 provide 17 as an amorphous white solid (74 mg, 0.16 mmol, 99%); IR
 410 (thin film): 3468, 2926, 2868, 1618, 1439, 1078, 889 cm^{-1} ; ¹H NMR
 411 (600 MHz, $CDCl_3$) δ 8.01 (s, 1H), 7.98 (d, J = 1.9 Hz, 1H), 7.77 (br
 412 s, 1H), 7.39 (dd, J = 8.5, 1.9 Hz, 1H), 7.22 (d, J = 8.5 Hz, 1H), 3.42
 413 (br q, J = 3.1 Hz, 1H), 2.15 (br ddt, J = 14.0, 4.9, 2.4 Hz, 1H), 1.95
 414 (dd, J = 13.0, 2.7 Hz, 1H), 1.87 (dt, J = 13.0, 3.2 Hz, 1H), 1.65 (br d,
 415 J = 13.7 Hz, 1H), 1.60–1.54 (m, 1H), 1.52–1.44 (m, 4H), 1.36 (ddt,
 416 J = 12.6, 8.7, 6.4 Hz, 1H), 1.27 (d, J = 6.4 Hz, 3H), 1.12 (qd, J = 13.2,
 417 4.5 Hz, 1H), 0.67 (d, J = 6.6 Hz, 3H); ¹³C{¹H} NMR (151 MHz,
 418 $CDCl_3$) δ 151.3, 138.5, 137.2, 126.6, 124.4, 122.0, 121.5, 114.8, 111.9,
 419 111.1, 106.9, 102.7, 75.2, 49.1, 39.4, 36.4, 31.8, 29.1, 27.8, 22.1, 21.8,
 420 19.3; HRMS (ESI/TOF) m/z : [M + H]⁺ calcd for $C_{22}H_{24}$ $^{79}\text{Br}_2$ NO
 421 476.0219; found 476.0217.

422 **C6-Monobromide (18).** Compound 17 (39 mg, 0.083 mmol) was
 423 dissolved in acetonitrile (1.7 mL, 0.050 M) in a reaction tube
 424 equipped with a magnetic stir bar. HI solution (57 wt % in H_2O , 11
 425 μL , 0.083 mmol) was added at room temperature. The reaction
 426 mixture was stirred at room temperature overnight, then quenched
 427 with $NaHCO_3$ (saturated aqueous, 1.0 mL), and extracted with
 428 EtOAc (3 \times 1.0 mL). The combined organic extracts were washed
 429 with brine (1.0 mL), dried over Na_2SO_4 , filtered, and concentrated in
 430 vacuo. The crude extract was purified by column chromatography
 431 (eluting with 5% EtOAc in hexanes) to provide 18 as a white solid
 432 (33 mg, 0.083 mmol, >99%); mp 169–170 °C; IR (thin film): 3449,
 433 2947, 2925, 2866, 1619, 1557, 1217, 803 cm^{-1} ; ¹H NMR (700 MHz,
 434 $CDCl_3$) δ 8.03 (d, J = 1.8 Hz, 1H), 7.78 (s, 1H), 7.73 (d, J = 8.5 Hz,
 435 1H), 7.38 (dd, J = 8.4, 1.9 Hz, 1H), 7.23 (d, J = 8.4 Hz, 1H), 6.76 (d,
 436 J = 8.5 Hz, 1H), 3.42 (br s, 1H), 2.09 (br d, J = 13.8 Hz, 1H), 1.95–
 437 1.88 (m, 2H), 1.65 (br d, J = 13.6 Hz, 1H), 1.60–1.52 (m, 1H),
 438 1.49–1.43 (m, 1H), 1.41 (s, 3H), 1.41–1.36 (m, 1H), 1.29 (d, J = 6.4
 439 Hz, 3H), 1.17 (qd, J = 13.2, 4.6 Hz, 1H), 0.69 (d, J = 6.5 Hz, 3H);
 440 ¹³C{¹H} NMR (176 MHz, $CDCl_3$) δ 156.4, 140.1, 137.8, 126.6,
 441 126.2, 122.0, 119.4, 114.8, 112.5, 111.7, 110.0, 106.2, 74.5, 49.9, 40.3,
 442 37.3, 32.0, 29.8, 28.9, 22.9, 22.7, 20.2; HRMS (ESI/TOF) m/z : [M +
 443 H]⁺ calcd for $C_{22}H_{25}$ ^{79}Br NO 398.1114; found 398.1118.

444 **6-Bromoexozoline (28).** Exozoline (1) (48 mg, 0.14 mmol) was
 445 dissolved in acetonitrile (3.0 mL, 0.050 M) in a reaction tube
 446 equipped with a magnetic stir bar. NBS (26 mg, 0.14 mmol) and
 447 TMSCl (18 μL , 0.014 mmol) were added at room temperature. The
 448 reaction mixture was quenched with H_2O (1.0 mL). The resulting
 449 milky mixture was extracted with EtOAc (3 \times 1.0 mL). The combined
 450 organic extracts were washed with brine (1.0 mL), dried over Na_2SO_4 ,
 451 filtered, and concentrated in vacuo. The crude extract was purified by
 452 column chromatography (eluting with 5% EtOAc in hexanes) to
 453 provide 28 as a white solid (59 mg, 0.14 mmol, >99%); mp 218–220
 454 °C; IR (thin film): 3465, 2926, 1625, 1460, 1211, 1055, 892, 797
 455 cm^{-1} ; ¹H NMR (600 MHz, $CDCl_3$) δ 8.00 (d, J = 1.9 Hz, 1H), 7.71
 456 (br s, 1H), 7.60 (s, 1H), 7.35 (dd, J = 8.4, 1.9 Hz, 1H), 7.21 (d, J =
 457 8.4 Hz, 1H), 3.42 (br d, J = 3.1 Hz, 1H), 2.31 (d, J = 0.9 Hz, 3H),
 458 2.10–2.03 (m, 1H), 1.95–1.84 (m, 2H), 1.66–1.52 (m, 3H), 1.49–
 459 1.35 (m, 1H), 1.41 (s, 3H), 1.28 (d, J = 6.2 Hz, 3H), 1.14 (qd, J =
 460 13.1, 4.5 Hz, 1H), 0.67 (d, J = 6.5 Hz, 3H); ¹³C{¹H} NMR (151
 461 MHz, $CDCl_3$) δ 154.8, 138.8, 137.8, 126.3, 126.2, 121.9, 119.7, 118.7,
 462 114.0, 112.2, 111.6, 105.7, 74.3, 50.0, 40.6, 37.3, 32.3, 29.8, 29.0, 22.9,
 463 22.8, 20.2, 17.0; HRMS (ESI/TOF) m/z : [M + H]⁺ calcd for
 464 $C_{23}H_{27}$ ^{79}Br NO 412.1271; found 412.1271.

465 **Procedures for Cross-Coupling Reactions. Exozoline (1).** To
 466 an oven-dried reaction tube bromide 16 (0.30 g, 0.75 mmol),

Pd₂(dba)₃ (10 mg, 0.011 mmol), XPhos (11 mg, 0.023 mmol), 467 DABAL-Me₃ (0.39 g, 1.5 mmol), and a magnetic stir bar were added. 468 The reaction tube was sealed with a PTFE lined cap. The solids were 469 dissolved in THF (4.4 mL, 0.17 M) and allowed to stir at 80 °C in an 470 oil bath for 4 h. The reaction mixture was carefully quenched by H_2O 471 (2.0 mL) and extracted with EtOAc (3 \times 2.0 mL). The combined 472 organic extracts were washed with brine (2.0 mL), dried over Na_2SO_4 , 473 filtered, and concentrated in vacuo. The crude extract was purified by 474 column chromatography (eluting with 10% EtOAc in hexanes) to 475 provide 1 as an amorphous white solid (0.25 g, 0.75 mmol, 99%); ¹H 476 NMR (600 MHz, $CDCl_3$) δ 7.93 (d, J = 7.7 Hz, 1H), 7.72 (br s, 1H), 477 7.68 (s, 1H), 7.37 (d, J = 8.0 Hz, 1H), 7.30 (t, J = 7.5 Hz, 1H), 7.18 478 (t, J = 7.4 Hz, 1H), 3.45 (br s, 1H), 2.36 (s, 3H), 2.11–2.05 (m, 1H), 479 1.96–1.88 (m, 2H), 1.64 (br d, J = 11.2 Hz, 1H), 1.61–1.54 (m, 1H), 480 1.50–1.43 (m, 2H), 1.43 (s, 3H), 1.30 (d, J = 5.9 Hz, 3H), 1.18 (qd, J 481 = 12.9, 4.5 Hz, 1H), 0.69 (d, J = 6.0 Hz, 3H). Spectroscopic data for 482 this compound were identical to those reported.² 483

(*R*,*2R*,*5R*)-2-*Isopropyl*-5-methyl-7-propyl-1,2,3,4,5,13-hexahydro-484 *dro*-1,5-methanooxocino[3,2-*a*]carbazole (19). To an oven-dried 485 reaction tube bromide 16 (30 mg, 0.075 mmol), Pd₂(dba)₃ (6.9 mg, 486 0.0075 mmol), XPhos (7.4 mg, 0.016 mmol) and a magnetic stir bar 487 were added. The reaction tube was sealed with a PTFE lined cap. The 488 reaction mixture was dissolved in THF (0.44 mL, 0.17 M), and then 489 isopropylmagnesium bromide solution (0.75 M in THF, 0.20 mL, 490 0.15 mmol) was added via syringe. The resulting mixture was stirred 491 at 80 °C in an oil bath overnight, quenched with NH_4Cl (saturated 492 aqueous, 0.20 mL), and extracted with EtOAc (3 \times 1.0 mL). The 493 combined organic extracts were washed with brine (1.0 mL), dried 494 over Na_2SO_4 , filtered, and concentrated in vacuo. The crude extract 495 was purified by column chromatography (eluting with 2% EtOAc in 496 hexanes) provided 19 as a colorless oil (21 mg, 0.059 mmol, 78%); IR 497 (thin film): 3463, 2954, 2926, 2867, 1611, 1429, 1307, 739 cm^{-1} ; ¹H 498 NMR (600 MHz, $CDCl_3$) δ 7.91 (d, J = 7.7 Hz, 1H), 7.71 (br s, 1H), 499 7.64 (s, 1H), 7.34 (d, J = 8.0 Hz, 1H), 7.30–7.25 (m, 1H), 7.15 (t, J = 500 7.4 Hz, 1H), 3.45 (br s, 1H), 2.70 (t, J = 7.5 Hz, 2H), 2.05 (br d, J = 501 13.1 Hz, 1H), 1.95–1.86 (m, 2H), 1.73–1.65 (m, 2H), 1.62 (br d, J = 502 14.5 Hz, 1H), 1.60–1.51 (m, 1H), 1.47–1.40 (m, 1H), 1.40 (s, 3H), 503 1.35–1.30 (m, 1H), 1.29 (d, J = 5.8 Hz, 3H), 1.15 (m, 1H), 0.98 (t, J 504 = 7.4 Hz, 3H), 0.67 (d, J = 5.9 Hz, 3H); ¹³C{¹H} NMR (151 MHz, 505 $CDCl_3$) δ 153.9, 139.2, 138.3, 124.4, 123.7, 122.7, 119.4, 119.2, 119.0, 506 114.9, 110.2, 105.6, 74.0, 50.2, 40.6, 37.4, 33.2, 32.3, 29.7, 29.0, 23.6, 507 23.0, 22.9, 20.2, 14.3; HRMS (ESI/TOF) m/z : [M + H]⁺ calcd for 508 $C_{25}H_{32}NO$ 362.2478; found 362.2476. 509

(*R*,*2R*,*5R*)-7-*Allyl*-2-*isopropyl*-5-methyl-1,2,3,4,5,13-hexahydro-510 1,5-methanooxocino[3,2-*a*]carbazole (20). To an oven-dried 511 reaction tube bromide 16 (30 mg, 0.075 mmol), Pd₂(dba)₃ (1.0 512 mg, 0.0011 mmol), XPhos (1.1 mg, 0.0023 mmol), and a magnetic 513 stir bar were added. The reaction tube was sealed with a PTFE lined 514 cap. The reaction mixture was dissolved in THF (0.44 mL, 0.17 M), 515 and then allyltributylstannane (47 μL , 0.15 mmol) was added via 516 syringe. The resulting mixture was stirred at 80 °C in an oil bath 517 overnight, quenched with NH_4Cl (saturated aqueous, 0.20 mL), and 518 extracted with EtOAc (3 \times 1.0 mL). The combined organic extracts 519 were washed with brine (1.0 mL), dried over Na_2SO_4 , filtered, and 520 concentrated in vacuo. The crude extract was purified by column 521 chromatography (eluting with 2% EtOAc in hexanes) to provide 16 as 522 a colorless oil (17 mg, 0.047 mmol, 62%); IR (thin film): 3319, 2929, 523 2830, 1452, 1216, 742 cm^{-1} ; ¹H NMR (600 MHz, $CDCl_3$) δ 7.91 (d, 524 J = 7.8 Hz, 1H), 7.72 (br s, 1H), 7.66 (s, 1H), 7.35 (d, J = 8.0 Hz, 525 1H), 7.28 (d, J = 7.4 Hz, 1H), 7.16 (t, J = 7.4 Hz, 1H), 6.11 (ddt, J = 526 16.8, 10.1, 6.7 Hz, 1H), 5.12 (d, J = 16.2 Hz, 1H), 5.04 (d, J = 10.0 527 Hz, 1H), 3.49 (d, J = 6.7 Hz, 2H), 3.46 (br s, 1H), 2.09–2.02 (m, 528 1H), 1.95–1.89 (m, 2H), 1.63 (br d, J = 12.5 Hz, 1H), 1.60–1.48 (m, 529 1H), 1.48–1.40 (m, 2H), 1.41 (s, 3H), 1.29 (d, J = 6.1 Hz, 3H), 1.15 530 (s, 1H), 0.67 (d, J = 6.2 Hz, 3H); ¹³C{¹H} NMR (151 MHz, 531 $CDCl_3$) δ 153.6, 139.2, 138.5, 138.2, 124.4, 123.8, 120.2, 532 119.4, 119.3, 118.9, 115.1, 114.8, 110.3, 105.8, 74.2, 50.1, 40.6, 37.3, 533 35.3, 32.3, 29.7, 29.0, 22.9, 22.9, 20.2; HRMS (ESI/TOF) m/z : [M + 534 H]⁺ calcd for $C_{25}H_{30}NO$ 360.2322; found 360.2312. 535

536 *Ethyl (E)-3-((1R,2R,5R)-2-Isopropyl-5-methyl-1,2,3,4,5,13-hexahydro-1,5-methanooxocino[3,2-a]carbazol-7-yl)acrylate (21).* To 537 an oven-dried reaction tube bromide **16** (30 mg, 0.075 mmol), 538 $\text{Pd}_2(\text{dba})_3$ (6.0 mg, 0.0075 mmol), XPhos (7.2 mg, 0.015 mmol), 539 K_2CO_3 (31 mg, 0.23 mmol), and a magnetic stir bar were added. The 540 reaction was sealed with a PTFE lined cap. The reaction mixture was 541 dissolved in THF (0.44 mL, 0.17 M), and then ethyl acrylate (16 μL , 542 0.15 mmol) was added via syringe. The resulting mixture was stirred 543 at 80 $^{\circ}\text{C}$ in an oil bath overnight, quenched with NH_4Cl (saturated 544 aqueous, 0.20 mL), and extracted with EtOAc (3 \times 1.0 mL). The 545 combined organic extracts were washed with brine (1.0 mL), dried 546 over Na_2SO_4 , filtered, and concentrated in vacuo. The crude extract 547 was purified by column chromatography (eluting with 2–10% EtOAc 548 in hexanes) to provide **21** as an orange oil (31 mg, 0.075 mmol, 99%); 549 IR (thin film): 3367, 2926, 2850, 1685, 1605, 1452, 1164, 1306, 1159, 550 740 cm^{-1} ; ^1H NMR (600 MHz, CDCl_3) δ 8.18 (d, J = 16.0 Hz, 1H), 551 8.09 (s, 1H), 7.94 (d, J = 7.7 Hz, 1H), 7.84 (br s, 1H), 7.38–7.31 (m, 552 2H), 7.21 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 16.0 Hz, 1H), 4.28 (q, J = 553 7.1 Hz, 2H), 3.45 (br s, 1H), 2.13 (br d, J = 13.8 Hz, 1H), 1.99–1.89 554 (m, 2H), 1.65 (d, J = 14.1 Hz, 1H), 1.61–1.56 (m, 1H), 1.50–1.44 555 (m, 4H), 1.36 (t, J = 7.1 Hz, 3H), 1.28 (d, J = 6.3 Hz, 3H), 1.28–1.22 556 (m, 1H), 1.14 (qd, J = 13.2, 4.5 Hz, 1H), 0.67 (d, J = 6.4 Hz, 3H); 557 $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 168.4, 155.1, 142.1, 141.3, 558 139.6, 124.9, 124.2, 120.3, 119.6, 119.3, 116.1, 115.6, 115.4, 110.5, 559 106.2, 75.5, 60.2, 49.9, 40.3, 37.1, 32.3, 29.8, 28.8, 22.9, 22.7, 20.1, 560 14.6; HRMS (ESI/TOF) m/z : [M + H]⁺ calcd for $\text{C}_{27}\text{H}_{32}\text{NO}_3$ 561 418.2377; found 418.2384.

562 *(1R,2R,5R)-2-Isopropyl-5-methyl-7-phenyl-1,2,3,4,5,13-hexahydro-1,5-methanooxocino[3,2-a]carbazole (22).* To an oven-dried 563 reaction tube bromide **16** (30 mg, 0.075 mmol), $\text{Pd}_2(\text{dba})_3$ (1.0 mg, 564 0.0011 mmol), XPhos (1.1 mg, 0.0023 mmol), phenylboronic acid 565 (18 mg, 0.15 mmol), K_2CO_3 (31 mg, 0.23 mmol), and a magnetic stir 566 bar were added. The reaction tube was sealed with a PTFE lined cap. 567 The reaction mixture was dissolved in THF (0.44 mL, 0.17 M). The 568 resulting mixture was stirred at 80 $^{\circ}\text{C}$ in an oil bath overnight, 569 quenched with NH_4Cl (saturated aqueous, 0.20 mL), and extracted 570 with EtOAc (3 \times 1.0 mL). The combined organic extracts were 571 washed with brine (1.0 mL), dried over Na_2SO_4 , filtered, and 572 concentrated in vacuo. The crude extract was purified by column 573 chromatography (eluting with 2–10% EtOAc in hexanes) to provide 574 **22** as a yellow oil (25 mg, 0.063 mmol, 83%); IR (thin film): 3460, 575 2926, 2867, 1611, 1429, 1307, 739 cm^{-1} ; ^1H NMR (600 MHz, 576 CDCl_3) δ 7.94 (d, J = 7.5 Hz, 1H), 7.86 (s, 1H), 7.80 (br s, 1H), 577 7.70–7.65 (m, 2H), 7.42 (t, J = 7.7 Hz, 2H), 7.38 (d, J = 8.0 Hz, 1H), 578 7.35–7.27 (m, 2H), 7.22–7.16 (m, 1H), 3.52 (br s, 1H), 2.11–2.05 579 (m, 1H), 2.02–1.92 (m, 2H), 1.68–1.62 (m, 1H), 1.58–1.51 (m, 580 1H), 1.50–1.44 (m, 2H), 1.37 (s, 3H), 1.32 (d, J = 5.9 Hz, 3H), 581 1.28–1.22 (m, 1H), 0.71 (d, J = 5.9 Hz, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (151 582 MHz, CDCl_3) δ 152.8, 140.2, 139.4, 139.3, 130.0, 127.8, 126.1, 124.5, 583 124.2, 122.6, 120.6, 119.7, 119.4, 115.6, 110.4, 106.2, 74.6, 50.2, 40.4, 584 37.3, 32.5, 29.8, 28.7, 23.0, 22.9, 20.2; HRMS (ESI/TOF) m/z : [M + 585 H]⁺ calcd for $\text{C}_{28}\text{H}_{30}\text{NO}$ 396.2322; found 396.2323.

586 *(1R,2R,5R)-2-Isopropyl-5-methyl-7-(phenylethynyl)-1,2,3,4,5,13-587 hexahydro-1,5-methanooxocino[3,2-a]carbazole (23).* To an oven- 588 dried reaction tube bromide **16** (30 mg, 0.075 mmol), $\text{Pd}_2(\text{dba})_3$ (6.9 589 mg, 0.0075 mmol), XPhos (7.2 mg, 0.015 mmol), CuI (1.4 mg, 590 0.0075 mmol), and a magnetic stir bar were added. The reaction tube 591 was sealed with a PTFE lined cap. The reaction mixture was sparged 592 with N_2 for 15 min and then dissolved in Et_3N (0.50 mL, 0.17 M). 593 Phenylacetylene (17 μL , 0.15 mmol) was added via syringe. The 594 resulting mixture stirred at 80 $^{\circ}\text{C}$ in an oil bath overnight, quenched 595 with NH_4Cl (saturated aqueous, 1.0 mL), and extracted with EtOAc 596 (3 \times 1.0 mL). The combined organic extracts were washed with brine 597 (1.0 mL), dried over Na_2SO_4 , filtered, and concentrated in vacuo. The 598 crude extract was purified by column chromatography (eluting with 599 2–5% EtOAc in hexanes) to provide **23** as a yellow oil (32 mg, 0.075 600 mmol, 99%); IR (thin film): 3465, 2926, 2867, 2204, 1609, 1445, 601 1205, 741 cm^{-1} ; ^1H NMR (600 MHz, CDCl_3) δ 8.05 (s, 1H), 7.93 602 (d, J = 7.8 Hz, 1H), 7.82 (br s, 1H), 7.57 (d, J = 7.4 Hz, 2H), 7.38– 603 7.26 (m, 5H), 7.20 (t, J = 7.3 Hz, 1H), 3.46 (br s, 1H), 2.19 (br d, J =

13.9 Hz, 1H), 2.00–1.91 (m, 2H), 1.66 (br d, J = 14.2 Hz, 1H), 604 1.62–1.54 (m, 1H), 1.50 (s, 3H), 1.46–1.38 (m, 1H), 1.30 (d, J = 6.3 605 Hz, 3H), 1.28–1.24 (m, 1H), 1.20 (qd, J = 13.1, 4.4 Hz, 1H), 0.69 (d, 606 J = 6.5 Hz, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 156.6, 140.0, 607 139.5, 131.6, 128.3, 127.5, 124.8, 124.6, 124.0, 123.4, 120.1, 119.6, 608 115.7, 110.5, 106.1, 104.1, 91.7, 88.1, 75.2, 50.0, 40.3, 37.2, 32.3, 29.9, 609 28.8, 22.9, 22.8, 20.2; HRMS (ESI/TOF) m/z : [M + H]⁺ calcd for 610 $\text{C}_{30}\text{H}_{30}\text{NO}$ 420.2322; found 420.2320. 611

612 **Procedures for Borylation Reactions.** *(1R,2R,5R)-2-Isopropyl- 613 5-methyl-12-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)- 614 1,2,3,4,5,13-hexahydro-1,5-methanooxocino[3,2-a]carbazole (24)* 615 and *(1R,2R,5R)-2-Isopropyl-5-methyl-10,12-bis(4,4,5,5-tetra- 616 methyl-1,3,2-dioxaborolan-2-yl)-1,2,3,4,5,13-hexahydro-1,5- 617 methanooxocino[3,2-a]carbazole (25).* To an oven-dried reaction 618 tube 8 (10 mg, 0.031 mmol) and a magnetic stir bar were added. The 619 reaction tube was transferred to a nitrogen-filled glovebox. [Ir(cod)- 620 $\text{OMe}]_2$ (0.60 mg, 0.94 μmol), dtbpy (0.50 mg, 1.9 μmol), and B_2pin_2 621 (16 mg, 0.063 mmol) were added. The reaction tube was sealed with 622 a PTFE lined cap and transferred out of the glovebox. The reaction 623 mixture was dissolved in THF (0.4 mL, 0.078 M) and allowed to stir 624 at 80 $^{\circ}\text{C}$ in an oil bath overnight. The reaction mixture was 625 concentrated in vacuo and purified by column chromatography 626 (eluting with 2–5% EtOAc in hexanes) to provide **24** and **25** in 73% 627 combined yield. **Compound 24:** a colorless oil (7.8 mg, 0.018 mmol, 628 56%); IR (thin film): 3452, 3053, 2971, 1620, 1431, 1396, 1130, 792, 629 680 cm^{-1} ; ^1H NMR (600 MHz, CDCl_3) δ 9.02 (br s, 1H), 8.04 (d, J 630 = 7.6 Hz, 1H), 7.79 (d, J = 8.4 Hz, 1H), 7.76–7.71 (m, 2H), 7.18 (t, J 631 = 7.4 Hz, 1H), 6.73 (d, J = 8.4 Hz, 1H), 3.54 (br s, 1H), 2.17 (s, 1H), 632 2.09 (br d, J = 13.8 Hz, 1H), 1.94 (s, 2H), 1.66 (br d, J = 14.2 Hz, 633 1H), 1.61–1.54 (m, 1H), 1.42 (s, 6H), 1.42 (s, 3H), 1.41 (s, 6H), 634 1.35 (d, J = 5.8 Hz, 3H), 1.20 (ddd, J = 25.0, 12.4, 3.6 Hz, 1H), 0.70 635 (d, J = 5.9 Hz, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (176 MHz, CDCl_3) δ 155.8, 636 144.8, 139.5, 131.0, 123.2, 122.6, 119.2, 118.8, 115.3, 109.0, 106.1, 637 84.1, 74.2, 50.1, 40.5, 37.4, 31.8, 29.5, 29.0, 25.3, 25.0, 23.6, 23.0, 638 20.5; HRMS (ESI/TOF) m/z : [M + H]⁺ calcd for $\text{C}_{28}\text{H}_{37}\text{BNO}_3$ 640 446.2861; found 446.2858. **Compound 25:** a colorless oil (2.4 mg, 641 0.0050 mmol, 17%); IR (thin film): 3488, 2973, 2927, 1600, 1394, 642 1328, 1141, 1086, 676 cm^{-1} ; ^1H NMR (600 MHz, CDCl_3) δ 9.11 (br 643 s, 1H), 8.52 (s, 1H), 8.24 (d, J = 1.2 Hz, 1H), 7.81 (d, J = 8.4 Hz, 644 1H), 6.73 (d, J = 8.4 Hz, 1H), 3.53 (br s, 1H), 2.08 (br d, J = 13.9 Hz, 645 1H), 1.93 (d, J = 3.0 Hz, 1H), 1.65 (br d, J = 13.7 Hz, 1H), 1.55 (d, J 646 = 12.5 Hz, 3H), 1.50–1.43 (m, 1H), 1.41 (s, 9H), 1.40 (s, 6H), 1.38 647 (s, 12H), 1.34 (d, J = 5.8 Hz, 3H), 1.20 (ddd, J = 13.3, 12.6, 4.5 Hz, 648 1H), 0.70 (d, J = 5.9 Hz, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (151 MHz, CDCl_3) δ 649 155.9, 147.1, 139.6, 138.2, 129.7, 122.9, 119.5, 115.5, 109.3, 106.2, 650 84.0, 83.6, 74.2, 50.2, 40.5, 37.5, 31.9, 29.5, 29.0, 25.3, 25.1, 25.0, 651 23.6, 23.0, 20.5; HRMS (ESI/TOF) m/z : [M + H]⁺ calcd for 652 $\text{C}_{34}\text{H}_{48}\text{B}_2\text{NO}_5$ 572.3713; found 572.3713. 653

654 *(1R,2R,5R)-2-Isopropyl-5,7-dimethyl-12-(4,4,5,5-tetramethyl- 655 1,3,2-dioxaborolan-2-yl)-1,2,3,4,5,13-hexahydro-1,5-methano- 656 oxocino[3,2-a]carbazole (26)* and *(1R,2R,5R)-2-Isopropyl-5,7-di- 657 methyl-10,12-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)- 658 1,2,3,4,5,13-hexahydro-1,5-methanooxocino[3,2-a]carbazole (27).* 659 To an oven-dried reaction tube exozoline (1) (32 mg, 0.096 mmol) 660 and a magnetic stir bar were added. The reaction tube was transferred 661 to a nitrogen-filled glovebox. [Ir(cod) $\text{OMe}]_2$ (3.2 mg, 0.0048 mmol), 662 dtbpy (2.6 mg, 0.0096 mmol), and B_2pin_2 (49 mg, 0.19 mmol) were 663 added. The reaction tube was sealed with a PTFE lined cap and then 664 transferred out of the glovebox. The reaction mixture was dissolved in 665 THF (1.2 mL, 0.078 M) and allowed to stir at 80 $^{\circ}\text{C}$ in an oil bath 666 overnight. The reaction mixture was concentrated in vacuo and 667 purified by column chromatography (eluting with 0–10% EtOAc in 668 hexanes) to provide **26** and **27** in 80% combined yield. **Compound 26:** 669 a colorless oil (24 mg, 0.053 mmol, 55%); IR (thin film): 3452, 2971, 670 2927, 1620, 1369, 1130 cm^{-1} ; ^1H NMR (700 MHz, CDCl_3) δ 8.96 (s, 671 1H), 8.03 (d, J = 7.8 Hz, 1H), 7.73 (d, J = 7.2 Hz, 1H), 7.68 (s, 1H), 672 7.17 (t, J = 7.4 Hz, 1H), 3.55 (br s, 1H), 2.35 (s, 3H), 2.11–2.05 (m, 673 1H), 1.93 (d, J = 2.9 Hz, 2H), 1.68–1.62 (m, 1H), 1.58 (dt, J = 13.0, 674 7.0 Hz, 1H), 1.43 (s, 9H), 1.42 (s, 6H), 1.36 (d, J = 5.2 Hz, 3H), 674 1.31–1.13 (m, 3H), 0.71 (d, J = 5.4 Hz, 3H); $^{13}\text{C}\{\text{H}\}$ NMR (176 675 MHz, CDCl_3) δ 154.1, 144.8, 138.2, 130.7, 123.2, 122.4, 119.5, 118.5, 676

677 117.5, 114.4, 105.5, 84.0, 74.0, 50.2, 40.8, 37.4, 32.0, 29.5, 29.1, 25.3,
 678 25.0, 23.6, 23.1, 20.5, 17.0; HRMS (ESI/TOF) *m/z*: [M + H]⁺ calcd
 679 for C₂₉H₃₉BN₃O₃ 460.3018; found 460.3022. **Compound 27**: a
 680 colorless oil (14 mg, 0.024 mmol, 25%); IR (thin film): 3451,
 681 2974, 1918, 1598, 1330, 1141 cm⁻¹; ¹H NMR (499 MHz, CDCl₃) δ
 682 9.03 (br s, 1H), 8.50 (s, 1H), 8.22 (s, 1H), 7.70 (s, 1H), 3.52 (br s,
 683 1H), 2.31 (s, 3H), 2.06 (br d, *J* = 12.7 Hz, 1H), 1.91 (d, *J* = 2.9 Hz,
 684 2H), 1.67–1.51 (m, 2H), 1.44–1.36 (m, 2H), 1.33 (d, *J* = 5.2 Hz,
 685 3H), 1.22–1.11 (m, 1H), 0.69 (d, *J* = 5.3 Hz, 3H); ¹³C{¹H} NMR
 686 (126 MHz, CDCl₃) δ 154.0, 146.8, 138.0, 137.7, 129.4, 122.8, 119.8,
 687 117.7, 114.4, 105.5, 83.8, 83.4, 73.9, 50.0, 40.6, 37.2, 31.9, 29.3, 28.9,
 688 25.1, 24.9, 24.9, 23.5, 22.9, 20.4, 17.0; HRMS (ESI/TOF) *m/z*: [M +
 689 H]⁺ calcd for C₃₅H₅₀B₂NO₅ 586.3870; found 586.3876.

690 **Synthesis of Dihydromurrayamine-G (11).** To an oven-dried
 691 reaction tube bromide **18** (21 mg, 0.053 mmol), Pd₂(dba)₃ (4.8 mg,
 692 0.0053 mmol), XPhos (5.0 mg, 0.011 mmol) and DABAL-Me₃ (27
 693 mg, 0.11 mmol) were charged. The reaction tube was sealed with a
 694 PTFE lined cap. The mixture was dissolved in THF (0.30 mL, 0.17
 695 M) and allowed to stir at 80 °C in an oil bath overnight. The reaction
 696 mixture was carefully quenched by H₂O (1.0 mL) and extracted with
 697 EtOAc (3 \times 1.0 mL). The combined organic extracts were washed
 698 with brine (1.0 mL), dried over Na₂SO₄, filtered, and concentrated in
 699 vacuo. The crude extract was purified by column chromatography
 700 (eluting with 5–10% EtOAc in hexanes) to provide **11** as a white
 701 solid (18 mg, 0.053 mmol, >99%); mp 180–181 °C; IR (thin film):
 702 3445, 2924, 2867, 1613, 1401, 1217, 802 cm⁻¹; ¹H NMR (600 MHz,
 703 CDCl₃) δ 7.76 (d, *J* = 8.5 Hz, 1H), 7.74 (br s, 1H), 7.70 (s, 1H),
 704 7.29–7.25 (m, 1H), 7.13 (d, *J* = 8.1 Hz, 1H), 6.74 (d, *J* = 8.5 Hz,
 705 1H), 3.45 (br s, 1H), 2.51 (s, 3H), 2.09 (br d, *J* = 13.7 Hz, 1H),
 706 1.98–1.91 (m, 2H), 1.65 (br d, *J* = 13.9 Hz, 1H), 1.61–1.52 (m, 1H),
 707 1.49–1.44 (m, 2H), 1.42 (s, 3H), 1.30 (d, *J* = 5.9 Hz, 3H), 1.20 (qd, *J*
 708 = 13.0, 4.4 Hz, 1H), 0.68 (d, *J* = 6.0 Hz, 3H); ¹³C{¹H} NMR (151
 709 MHz, CDCl₃) δ 155.8, 140.0, 137.5, 128.9, 125.3, 124.5, 119.4, 119.2,
 710 115.7, 110.0, 109.2, 106.1, 74.3, 50.0, 40.4, 37.4, 32.1, 29.8, 29.0, 22.9,
 711 22.8, 21.6, 20.2; HRMS (ESI/TOF) *m/z*: [M + H]⁺ calcd for
 712 C₂₃H₂₈NO 334.2165; found 334.2173.

713 **Synthesis of Dihydromurrayamine-H (10).** To an oven-dried
 714 reaction tube **26** (21 mg, 0.046 mmol), Cu(OAc)₂ (8.3 mg, 0.046
 715 mmol), DMAP (11 mg, 0.092 mmol), molecular sieves (4 Å, 0.11 g),
 716 and a magnetic stir bar were added. The resultant was dissolved in
 717 MeOH/DCM (1:1, 2.0 mL, 0.020 M) and heated to 40 °C overnight.
 718 The reaction mixture was filtered through a plug of MgSO₄, which
 719 was rinsed with EtOAc (2.0 mL) and then H₂O (2.0 mL), and the
 720 aqueous filtrates were extracted with EtOAc (3 \times 1.0 mL). The
 721 combined organic extracts were washed with brine (2.0 mL), dried
 722 over Na₂SO₄, filtered, and concentrated in vacuo. The crude extract
 723 was purified by column chromatography (eluting with 0–10% EtOAc
 724 in hexanes) to provide **10** as a colorless oil (8.9 mg, 0.025 mmol,
 725 53%); IR (thin film): 3483, 2927, 2867, 1626, 1147, 1258, 1091, 781,
 726 728 cm⁻¹; ¹H NMR (600 MHz, CDCl₃) δ 7.93 (br s, 1H), 7.63 (s,
 727 1H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.08 (t, *J* = 7.8 Hz, 1H), 6.79 (dd, *J* =
 728 7.8, 0.8 Hz, 1H), 4.00 (s, 3H), 3.49 (br s, 1H), 2.32 (d, *J* = 0.9 Hz,
 729 3H), 2.06 (br d, *J* = 13.2 Hz, 1H), 1.96–1.87 (m, 2H), 1.63 (br d, *J* =
 730 13.5 Hz, 1H), 1.60–1.52 (m, 1H), 1.49–1.41 (m, 2H), 1.41 (s, 3H),
 731 1.30 (d, *J* = 6.0 Hz, 3H), 1.15 (qd, *J* = 13.1, 4.4 Hz, 1H), 0.67 (d, *J* =
 732 6.1 Hz, 3H); ¹³C{¹H} NMR (151 MHz, CDCl₃) δ 154.1, 145.5,
 733 138.1, 129.2, 125.3, 119.7, 119.6, 118.0, 115.3, 112.0, 105.8, 104.4,
 734 74.1, 55.7, 50.1, 40.7, 37.3, 32.2, 29.7, 29.1, 22.9, 22.7, 20.3, 17.0;
 735 HRMS (ESI/TOF) *m/z*: [M + H]⁺ calcd for C₂₄H₃₀NO₂ 364.2271;
 736 found 364.2276.

737 **Synthesis of 7-Bromomurrayazolinine (30).** To an oven-dried
 738 reaction tube bromide **28** (10 mg, 0.024 mmol), Pd(MeCN)₂Cl₂
 739 (0.60 mg, 2.4 μ mol), DPEPhos (1.3 mg, 2.4 μ mol), 2-norbornene
 740 (4.6 mg, 0.049 mmol), *tert*-butyl acrylate (6.3 μ L, 0.044 mmol),
 741 benzoic anhydride (9.9 mg, 0.044 mmol), Cs₂CO₃ (26 mg, 0.078
 742 mmol), 1,4-dioxane (0.30 mL, 0.080 M), and a magnetic stir bar were
 743 added. The resultant mixture was heated at 100 °C in an oil bath
 744 overnight, then cooled to room temperature, and filtered through a
 745 plug of Celite, which was rinsed with EtOAc (5.0 mL). The combined
 746 organic filtrates were concentrated in vacuo and purified by

preparative thin-layer chromatography (20% EtOAc in hexanes) to 747 provide **30** as a yellow oil (2.9 mg, 0.0068 mmol, 28%); IR (thin 748 film): 3466, 3302, 2928, 2866, 1626, 1211, 891 cm⁻¹; ¹H NMR (600 749 MHz, CDCl₃) δ 9.66 (br s, 1H), 7.99 (d, *J* = 1.9 Hz, 1H), 7.59 (s, 750 1H), 7.33 (dd, *J* = 8.5, 1.9 Hz, 1H), 7.23 (d, *J* = 8.5 Hz, 1H), 3.78 (s, 751 1H), 2.32 (s, 3H), 2.10 (br d, *J* = 13.7 Hz, 1H), 1.95–1.81 (m, 4H), 752 1.63 (td, *J* = 13.3, 5.3 Hz, 1H), 1.43 (s, 4H), 1.40 (dd, *J* = 13.0, 4.4 753 Hz, 1H), 1.33 (s, 3H), 0.53 (s, 3H); ¹³C{¹H} NMR (151 MHz, 754 CDCl₃) δ 154.4, 139.6, 138.4, 126.4, 126.0, 121.9, 119.7, 118.3, 114.0, 755 112.0, 111.7, 106.0, 74.6, 74.5, 52.9, 40.5, 38.3, 33.5, 29.3, 29.0, 23.3, 756 23.0, 17.0; HRMS (ESI/TOF) *m/z*: [M + H]⁺ calcd for 757 C₂₃H₂₇⁷⁹BrNO₂ 428.1220; found 428.1224. 758

Synthesis of Murrayazolinine (4). To an oven-dried reaction 759 tube exozoline (**1**) (10 mg, 0.030 mmol), Pd(MeCN)₂Cl₂ (0.80 mg, 760 3.0 μ mol), DPEPhos (1.6 mg, 3.0 μ mol), 2-norbornene (5.6 mg, 761 0.060 mmol), ethyl acrylate (0.60 mg, 6.0 μ mol), benzoic anhydride 762 (12 mg, 0.054 mmol), Cs₂CO₃ (29 mg, 0.090 mmol), 1,4-dioxane 763 (0.30 mL, 0.10 M), and a magnetic stir bar were added. The resultant 764 mixture was heated to 100 °C in an oil bath overnight, then cooled to 765 room temperature, and filtered through a plug of Celite, which was 766 rinsed with EtOAc (5.0 mL). The combined organic filtrates were 767 concentrated in vacuo and purified by preparative thin-layer 768 chromatography (20% EtOAc in hexanes) to provide **4** as a pale 769 yellow solid (1.7 mg, 4.86 μ mol, 16%); IR (thin film): 3315, 2926, 770 2852, 1666, 1458, 1312, 1213, 1161, 1055, 745 cm⁻¹; ¹H NMR (600 771 MHz, CDCl₃) δ 9.58 (s, 1H), 7.90 (d, *J* = 7.7 Hz, 1H), 7.66 (s, 1H), 772 7.37 (d, *J* = 7.9 Hz, 1H), 7.26 (d, *J* = 15.3 Hz, 1H), 7.13 (t, *J* = 7.4 Hz, 773 1H), 3.81 (d, *J* = 3.2 Hz, 1H), 2.33 (s, 3H), 2.10 (d, *J* = 13.5 Hz, 1H), 774 2.01 (d, *J* = 6.6 Hz, 1H), 1.86 (dd, *J* = 8.2, 3.6 Hz, 2H), 1.71 (s, 1H), 775 1.65–1.59 (m, 1H), 1.46–1.42 (m, 1H), 1.43 (s, 3H), 1.33 (s, 3H), 776 1.31–1.28 (m, 1H), 0.55 (s, 3H); HRMS (ESI/TOF) *m/z*: [M + H]⁺ 777 calcd for C₂₃H₂₈NO₂ 350.2116. Spectroscopic data 778 for this compound were identical to those reported.² 779

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the 782 ACS Publications website at DOI: 10.1021/acs.joc.9b00631. 783

¹H and ¹³C NMR spectra for all new compounds (PDF) 784

AUTHOR INFORMATION

Corresponding Author

*E-mail: rsarpong@berkeley.edu.

ORCID

Richmond Sarpong: 0000-0002-0028-6323

Present Addresses

[†]Chulabhorn Graduate Institute, 54 Kamphaeng Phet 6 Road, 791 Laksi, Bangkok, 10210, Thailand. 792

[‡]Laboratorium für Organische Chemie, HCI G320, Eidgenössische 793 Technische Hochschule Zürich Vladimir-Prelog-Weg 3, 794 8093 Zürich, Switzerland. 795

Notes

The authors declare no competing financial interest. 797

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation 799 under the CCI Center for Selective C–H Functionalization 800 (CHE-1700982). K.N. thanks the Chulabhorn Graduate 801 Institute for financial support. We are grateful to Dr. Cedric 802 Hugelshofer and Mr. Vignesh Palani (UC Berkeley) for their 803 help in editing this manuscript. 804

805 ■ REFERENCES

- 806 (1) Ganguly, S. N.; Sarkar, A. Exozoline, A New Carbazole Alkaloid
807 from the Leaves of *Murraya exotica*. *Phytochemistry* **1978**, *17*, 1816–
808 1817.
- 809 (2) Hesse, R.; Gruner, K. K.; Kataeva, O.; Schmidt, A. W.; Knolker,
810 H. J. Efficient Construction of Pyrano[3,2-*a*]carbazoles: Application
811 to a Biomimetic Total Synthesis of Cyclized Monoterpeneoid
812 Pyrano[3,2-*a*]carbazole Alkaloids. *Chem. - Eur. J.* **2013**, *19*, 14098–
813 14111.
- 814 (3) Julich-Gruner, K. K.; Kataeva, O.; Schmidt, A. W.; Knolker, H. J.
815 Total Synthesis of 7- and 8-Oxygenated Pyrano[3,2-*a*]carbazole and
816 Pyrano[2,3-*a*]carbazole Alkaloids via Boronic Acid-Catalyzed Annula-
817 tion of the Pyran Ring. *Chem. - Eur. J.* **2014**, *20*, 8536–8540.
- 818 (4) Schmidt, A. W.; Reddy, K. R.; Knölker, H.-J. Occurrence,
819 Biogenesis, and Synthesis of Biologically Active Carbazole Alkaloids.
820 *Chem. Rev.* **2012**, *112*, 3193–3328.
- 821 (5) Barreiro, E. J.; Kümmerle, A. E.; Fraga, C. A. M. The
822 Methylation Effect in Medicinal Chemistry. *Chem. Rev.* **2011**, *111*,
823 5215–5246.
- 824 (6) Umezawa, Y.; Nishio, M. Thymine-Methyl/Pi Interaction
825 Implicated in the Sequence-Dependent Deformability of DNA.
826 *Nucleic Acids Res.* **2002**, *30*, 2183–2192.
- 827 (7) Noolu, B.; Gogulothu, R.; Bhat, M.; Qadri, S. S. Y. H.; Reddy, V.
828 S.; Reddy, G. B.; Ismail, A. In Vivo Inhibition of Proteasome Activity
829 and Tumour Growth by *Murraya koenigii* Leaf Extract in Breast
830 Cancer Xenografts and by Its Active Flavonoids in Breast Cancer
831 Cells. *Anti-Cancer Agents Med. Chem.* **2016**, *16*, 1605–1614.
- 832 (8) Roy, M. K.; Thalang, V. N.; Trakootivakorn, G.; Nakahara, K.
833 Mechanism of Mahanine-Induced Apoptosis in Human Leukemia
834 Cells (HL-60). *Biochem. Pharmacol.* **2004**, *67*, 41–51.
- 835 (9) Gahlawat, D. K.; Jakhar, S.; Dahiya, P. *Murraya koenigii* (L.)
836 Spreng: An Ethnobotanical, Phytochemical and Pharmacological
837 Review. *J. Pharmacogn. Phytochem.* **2014**, *3*, 109–119.
- 838 (10) Wu, T.-S.; Chan, Y.-Y.; Liou, M.-J.; Lin, F.-W.; Shi, L.-S.; Chen,
839 K.-T. Platelet Aggregation Inhibitor from *Murraya euchrestifolia*.
840 *Phytother. Res.* **1998**, *12*, S80–S82.
- 841 (11) Schonherr, H.; Cernak, T. Profound Methyl Effects in Drug
842 Discovery and a Call for New C-H Methylation Reactions. *Angew.*
843 *Chem., Int. Ed.* **2013**, *52*, 12256–12267.
- 844 (12) Chen, S.; Liu, Z. S.; Yang, T.; Hua, Y.; Zhou, Z.; Cheng, H. G.;
845 Zhou, Q. The Discovery of a Palladium(II)-Initiated Borono-Catellani
846 Reaction. *Angew. Chem., Int. Ed.* **2018**, *57*, 7161–7165.
- 847 (13) Gassner, C.; Hesse, R.; Schmidt, A. W.; Knolker, H. J. Total
848 Synthesis of the Cyclic Monoterpeneoid Pyrano[3,2-*a*]carbazole
849 Alkaloids Derived from 2-Hydroxy-6-Methylcarbazole. *Org. Biomol.*
850 *Chem.* **2014**, *12*, 6490–6499.
- 851 (14) See the [Experimental Section](#) for preparation of 13.
- 852 (15) Mukai, K.; de Sant'Ana, D. P.; Hirooka, Y.; Mercado-Marin, E.
853 V.; Stephens, D. E.; Kou, K. G. M.; Richter, S. C.; Kelley, N.; Sarpong,
854 R. Bioinspired Chemical Synthesis of Monomeric and Dimeric
855 Stephacidin A Congeners. *Nat. Chem.* **2018**, *10*, 38–44.
- 856 (16) Maibunkaew, T.; Thongsornkleeb, C.; Tummatorn, J.; Bunrit,
857 A.; Ruchirawat, S. Practical and Metal-Free Electrophilic Aromatic
858 Halogenation by Interhalogen Compounds Generated In Situ from
859 N-Halosuccinimide and Catalytic TMSCl. *Synlett* **2014**, *25*, 1769–
860 1775.
- 861 (17) Gray, M.; Andrews, I. P.; Hook, D. F.; Kitteringham, J.; Voyle,
862 M. Practical Methylation of Aryl Halides by Suzuki–Miyaura
863 Coupling. *Tetrahedron Lett.* **2000**, *41*, 6237–6240.
- 864 (18) Cooper, T.; Novak, A.; Humphreys, L. D.; Walker, M. D.;
865 Woodward, S. User-Friendly Methylation of Aryl and Vinyl Halides
866 and Pseudohalides with DABAL- Me_3 . *Adv. Synth. Catal.* **2006**, *348*,
867 686–690.
- 868 (19) Larsen, M. A.; Hartwig, J. F. Iridium-Catalyzed C–H
869 Borylation of Heteroarenes: Scope, Regioselectivity, Application to
870 Late-Stage Functionalization, and Mechanism. *J. Am. Chem. Soc.* **2014**,
871 *136*, 4287–4299.
- 872 (20) Paul, S.; Chotana, G. A.; Holmes, D.; Reichle, R. C.; Maleczka,
873 R. E.; Smith, M. R. Ir-Catalyzed Functionalization of 2-Substituted
Indoles at the 7-Position: Nitrogen-Directed Aromatic Borylation. *J. Am. Chem. Soc.* **2006**, *128*, 15552–15553.
- (21) Robbins, D. W.; Boebel, T. A.; Hartwig, J. F. Iridium-Catalyzed Silyl-Directed Borylation of Nitrogen-Containing Heterocycles. *J. Am. Chem. Soc.* **2010**, *132*, 4068–4069.
- (22) Eastabrook, A. S.; Sperry, J. Synthetic Access to 3,5,7-Trisubstituted Indoles Enabled by Iridium-Catalyzed C–H Borylation. *Synthesis* **2017**, *49*, 4731–4737.
- (23) Compound 28 was prepared by bromination of exozoline (1). See the [Experimental Section](#) for NBS bromination.
- (24) Wang, Y.; Wang, C.; Wang, Y.; Dong, L.; Sun, J. Total Synthesis of Sparstolonin B, A Potent Anti-Inflammatory Agent. *RSC Adv.* **2015**, *5*, 12354–12357.
- (25) Dong, Z.; Dong, G. Ortho vs Ipso: Site-Selective Pd and Norbornene-Catalyzed Arene C–H Amination Using Aryl Halides. *J. Am. Chem. Soc.* **2013**, *135*, 18350–18353.
- (26) Dong, Z.; Lu, G.; Wang, J.; Liu, P.; Dong, G. Modular Ipso/Ortho Difunctionalization of Aryl Bromides via Palladium/Norbornene Cooperative Catalysis. *J. Am. Chem. Soc.* **2018**, *140*, 8551–8562.
- (27) Wang, J.; Li, R.; Dong, Z.; Liu, P.; Dong, G. Complementary Site-Selectivity in Arene Functionalization Enabled by Overcoming the Ortho Constraint in Palladium/Norbornene Catalysis. *Nat. Chem.* **2018**, *10*, 866–872.
- (28) Compound 4 was observed in 16% yield. See the [Experimental Section](#) for the preparation of 4.
- (29) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities. *J. Org. Chem.* **1997**, *62*, 7512–7515.