
C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

R

T
A

S

*

Artifact *
 A

E
C

Energy-Efficient Real-Time Scheduling
of DAGs on Clustered Multi-Core Platforms

Zhishan Guo1∗, Ashikahmed Bhuiyan1∗, Di Liu2, Aamir Khan3, Abusayeed Saifullah4, Nan Guan5
1Department of Electrical and Computer Engineering, University of Central Florida

2National Pilot School of Software, Yunnan University
3Hardware Department, BrainCo

4Department of Computer Science, Wayne State University
5Department of Computing, Hong Kong Polytechnic University

Abstract—With the growth of computation-intensive real-time
applications on multi-core embedded systems, energy-efficient
real-time scheduling becomes crucial. Multi-core processors en-
able intra-task parallelism, and there has been much progress
on exploiting that, while there has been only a little progress
on energy-efficient multi-core real-time scheduling as yet. In
this work, we study energy-efficient real-time scheduling of
constrained deadline sporadic parallel tasks, where each task
is represented as a directed acyclic graph (DAG). We consider
a clustered multi-core platform where processors within the
same cluster run at the same speed at any given time. A new
concept named speed-profile is proposed to model per-task and
per-cluster energy-consumption variations during run-time to
minimize the expected long-term energy consumption. To our
knowledge, no existing work considers energy-aware real-time
scheduling of DAG tasks with constrained deadlines, nor on a
clustered multi-core platform. The proposed energy-aware real-
time scheduler is implemented upon an ODROID XU-3 board
to evaluate and demonstrate its feasibility and practicality. To
complement our system experiments in large-scale, we have also
conducted simulations that demonstrate a CPU energy saving of
up to 57% through our proposed approach compared to existing
methods.

Index Terms—Parallel task, Real-time scheduling, Energy
minimization, Cluster-based platform.

∗The authors made equal contribution.

I. INTRODUCTION

There is a trend in moving towards multi/many-core processors
for real-time systems—they appear as an enabling platform for
embedded systems applications that require real-time guar-
antees, energy efficiency, and high performance. To exploit
the capability of the multi-core platform, considering intra-
task parallelism, where an individual task can utilize multiple
cores simultaneously, is vital. Intra-task parallelism facilitates
a balanced distribution of the tasks among the processors,
which leads to energy efficiency [1]. One of the most general-
ized workload model for representing deterministic intra-task
parallelism is Directed Acyclic Graph (DAG) task [2]. Under
such method of abstraction, the nodes in a DAG represent
various threads of execution while the edges represent their
dependencies. In the past five years or so, quite some effort
has been spent on developing real-time scheduling strategies
and schedulability analysis of DAG tasks [2]–[9].

There are several real-world application that uses the DAG
model. For example, the work in [4] studies problems related
to scheduling parallel real-time tasks, modeled as DAG, on
multiprocessor architectures. A low-complexity compile-time
algorithm for scheduling tasks (represented as DAG) within
homogeneous computing environments is proposed in [10].
A sporadic task model seems to apply to a system that
manipulates live multimedia data, e.g., video conferencing
systems [11]. Another example would be systems that control
asynchronous devices, such as the local-area network adapters
that implement real-time communication protocols.

Since many of those applications are battery-powered,
considering energy-efficient approaches for designing such a
platform is crucial. Thanks to the fact that modern generation
processors support dynamic voltage and frequency scaling
(DVFS), where each processor can adjust the voltage and
frequency at runtime to minimize power consumption, per-
core energy minimization becomes possible during run-time.
Despite the hardness of the problem [12], a significant amount
of work has considered power minimization for non-parallel
tasks on a multi-core platform (refer to [13] for a survey).
Regarding parallel tasks, Guo et al. studied energy-efficient
real-time scheduling for DAG tasks as an early research
effort [14]. They adopted the federated scheduling and task
decomposition framework [2] for minimizing system energy
consumption via per-core speed modulation. As the only step
(that we are aware of) towards energy-aware scheduling of
real-time DAG tasks, they targeted an exciting problem and
laid some of the foundations of this work. However, the
attention of [14] is restricted to implicit deadline tasks with a
system model of per-core DVFS.

Unfortunately, per-core DVFS becomes inefficient as it
increases the hardware cost [15]. For balancing the energy
efficiency and the hardware cost, there is an ongoing trend
to group processors into islands, where processors in the
same island execute at the same speed. For example, a
big.LITTLE platform (e.g., ODROID XU-3 [16]) consists of
high performance (but power-hungry) cores integrated into
‘big’ clusters and low-power cores into ‘LITTLE’ clusters.
Such a platform executes several real-life applications with
heavy computational demands (e.g., video streaming [17])
in an energy-efficient manner. Apart from the energy con-

sumption issue, a multi-core platform enables task execution
with high-performance demand and tight deadlines, essential
for computation-intensive real-time systems, e.g., autonomous
vehicles [18].

Despite the urgent need, to the best of our knowledge,
little work has been done that considers both the intra-
task parallelism and power consumption issues in clustered
multi-core real-time systems, where cores form a group of
frequency/voltage clusters. Such kind of system balances the
energy efficiency and hardware cost compared to the tradi-
tional (with individual frequency scaling feature) multi-core
models. The scheduling problem becomes highly challenging
on such platforms because:

(i) The relationship between the execution time, frequency,
and energy consumption is nonlinear, making it highly chal-
lenging to minimize energy consumption while guaranteeing
real-time correctness.

(ii) Existing solution (e.g., [14]) relies on the assumption
that each processor can freely adjust its speed. That solution
performs poorly as the assumption is no longer valid under a
more realistic platform model considered in this paper.

(iii) The execution speed of a cluster becomes unpredictable
if it is shared by multiple tasks with sporadic release patterns.
Contribution. In this paper, we propose a novel technique
for energy-efficient scheduling of constrained deadline parallel
task in a cluster-based multi-core system. To the best of
our knowledge, no work has investigated the energy-efficient
scheduling of DAG tasks on such a cluster-based platform. It is
also the first work that has addressed the power awareness is-
sue considering constrained deadline DAG tasks. Specifically,
we make the following contributions:
• We consider a more practical cluster-based system model

where the cores must execute at the same speed at any time
instant within each cluster.
• To better handle constrained deadlines, one need to

capture the gaps between deadlines and upcoming releases,
as well as handling sporadic releases. We propose a novel
concept of speed-profile to present the energy-consumption
behavior for each DAG task as well as each cluster, such that
they could guide task partition/clustering in an energy-efficient
manner. An efficient greedy algorithm is proposed to partition
DAG tasks according to the constructed speed-profiles.
• To evaluate the effectiveness of our proposed technique,

we implement it on the ODROID XU-3 board, a representative
multi-core platform for embedded systems [16]. The experi-
ments report that our approach can save energy consumption
by 18% compared to a reference approach. For larger-scale
evaluation, we perform simulations using synthetic workloads
and compare our technique with two existing baselines [14],
[19]. The simulation results demonstrate that our method can
reduce energy consumption by up to 58% compared to the
existing ones under the cluster-based platform setting.
Organization. The rest of the paper is organized as follows.
Section II presents the workload, power, and platform models,
problem statement, and the essential background. In Section
III, we describe the importance of creating a speed-profile
for an individual task and the whole cluster. Section IV

discusses the approaches to create the speed-profile for each
task and propose a greedy algorithm to allocate multiple tasks
in the same cluster. Experimental and simulation results are
presented in Section V and VI. Section VII discusses the
assumptions and applicability of our model and evaluation
setup. Section VIII discusses related work including a detailed
comparison with our existing work [14], and Section IX
concludes this paper.

II. SYSTEM MODEL, PROBLEM STATEMENT AND
BACKGROUND

A. System Model and Problem Statement

Workload model. We consider a set of sporadic parallel
task denoted by τ = {τ1, · · · , τn}, where each τi ∈ τ
(1 ≤ i ≤ n) is represented as a DAG with a minimum inter-
arrival separation (i.e., period) of Ti time units, and a relative
deadline of Di(≤ Ti) time units. An implicit deadline task
has the same relative deadline and period, i.e., Di = Ti. As
a DAG task, the execution part of task τi contains a total of
Ni nodes, each denoted by N j

i (1 ≤ j ≤ Ni). A directed
edge from N j

i to N k
i (N j

i → N k
i) implies that execution of

N k
i can start if N j

i finishes for every instance (precedence
constraints). In this case, N j

i is called a parent of N k
i (N k

i is
a child of N j

i). A node may have multiple parents or children.
The degree of parallelism, Mi, of τi is the number of nodes
that can be simultaneously executed. cji denotes the execution
requirement of node N j

i . Ci :=
∑Ni

j=1 c
j
i denotes the worst

case execution requirement (WCET) of τi.
A critical path is a directed path with the maximum total

execution requirements among all other paths in a DAG. Li
is the sum of the execution requirements of all the nodes that
lie on a critical path. It is the minimum make-span of τi, i.e.,
in order to make τi schedulable, at least Li time units are
required even when number of cores is unlimited. Since at
least Li time units are required for τi, the condition Ti ≥ Li
(implicit deadline tasks) and Di ≥ Li (constrained deadline
tasks) must hold for τi to be schedulable. A schedule is said to
be feasible if upon satisfying the precedence constraints, all the
sub-tasks (nodes) receive enough execution from their arrival
times, i.e., Ci within Ti (implicit deadline) or Di (constrained
deadline) time units. These terms are illustrated in Figure 2(a).
Platform Model. We consider a clustered multi-core platform,
where processors within the same cluster run at the same
speed (frequency and supply voltage) at any given time.
Such additional restriction comparing to traditional multi-core
platform makes the model more realistic in many senarios. For
example, our experiment is conducted on the ODROID XU-3
platform with one ‘LITTLE’ cluster of four energy-efficient
ARM Cortex-A7 and one ‘big’ cluster of four performance-
efficient ARM Cortex-A15. Note that we do not restrict the
hardware-dependent energy parameters (e.g., α, β and γ in the
power model discussed below) to be identical across different
clusters—these parameters can be derived using any curve-
fitting method, e.g., [20].

Energy Model. Assuming frequency (speed) of a processor
at a specific instant t is s(t) (in short, denoted as s), then its
power consumption P (s) can be calculated as:

P (s) = Ps + Pd(s) = β + αsγ , (1)

Here, Ps and Pd(s) respectively denote the static and dynamic
power consumption. Whenever a processor remains on, it
introduces Ps in the system (due to leakage current). Switching
activities introduce Pd(s) which is frequency dependent and
represented as αsγ . Here, the α > 0 depends on the effective
switching capacitance [21]; γ ∈ [2, 3] is a fixed parameter
determined by the hardware; β > 0 represents the static
part of power consumption. From this model, the energy
consumption over any given period [b, f] is calculated as
E(b, f) =

∫ f
b
P (s(t)) dt.

Our motivation behind selecting this power model comes
from the fact that it complies with many existing works in the
community, few to mention [12], [14], [21]–[25]. Beside this,
recently this model was shown to be highly realistic by show-
ing its similarity with actual power consumption [22]. Figure
1 shows comparison between the original power consumption
results from [26] and the power model in Equation (1).
Assumptions. In this paper, we make the following assump-
tions: (i) frequency scaling is continuous on the theory side,
(ii) task-level energy heterogeneity is not considered, (iii) we
focus on CPU power consumption, and (iv) Dynamic power
management (DPM) is not considered. For those that are
interested, Section VII provides detailed discussions behind
these assumptions, their impacts, and some hints to overcome
the drawbacks.

Fig. 1. Comparison of the power model (Equation (1)) with experimental
results in [26]. Here, α = 1.76Watts/GHz3, γ = 3, and β = 0.5 Watts.
This figure is adopted from [21].

Problem Statement. Considering a set of constrained deadline
sporadic DAG tasks (to be scheduled) on a clustered multi-core
platform, we focus on finding a correct scheduling strategy
such that all tasks receive enough execution by their deadlines,
while the overall system power consumption is minimized.

B. Background and Existing Concepts
In this section, we describe some existing concepts and

techniques for handling real-time parallel task scheduling, and
that constitute an initial step for our proposed work.

Task Decomposition. The well-known task decomposition
technique [2] transforms a parallel task τi into a set of
sequential tasks as demonstrated in Figure 2(b). Upon task
decomposition, each node N l

i ∈ τi is converted into an
individual sub-task with its scheduling window (defined by
its own release time and deadline) and execution requirement

(cli). The allocation of release time and deadline respect all the
dependencies (represented by edges in the DAG). Considering
that a task is allowed to execute on an unlimited number of
cores, starting from the beginning, a vertical line is drawn
at every time instant where a node N l

i starts or ends. So
the DAG is partitioned into several segments which may
contain single/multiple thread(s). Threads assigned to the same
segment share equal amount of execution length; e.g.,N 3

i ,N 4
i ,

and N 5
i all have 2-time units assigned to the 3rd segment, as

demonstrated in Figure 2(b).
Segment Extension. The deadline for each node via task

decomposition may be unnecessarily restrictive, e.g., the de-
composition of the DAG in Figure 2(a) will restrict N 3

i within
the 2nd and 3rd segment. To systematically eliminate such
unnecessary restriction and allow N 3

i to execute in the 4th

segment, segment extension should be applied, e.g., the green
rectangle for node N 3

i in the 4th segment in Figure 2(b).

Ni1=4

Ni2=3 Ni3=3

Ni4=2 Ni6=4

Ni5=2

(a)

Ni1

Ni2

Ni1

Ni
3 Ni

3

Ni4 Ni
6

Ti = 12
ti1= 3 ti2= 1 ti4= 4ti3= 2

Ni5

(b)

Ni
3

Fig. 2. (a) A DAG, τi (b) transformed DAG τi after applying task
decomposition. Both of them are adopted from [14].

Intra-Task Processor Merging. After applying task de-
composition and segment extension upon a DAG task τi, some
of these cores (where τi is allocated) can be very lightly
loaded. Those core cause massive leakage power consumption
in the long run and should be avoided when necessary. Intra-
task merging [14] seeks to merge those cores to gain overall
energy efficiency by reducing the total number of active cores.
For example, in Figure 2(b), the third core (executing N 5

i) is
lightly loaded, and thus it is better to merge all the execution
into the second core and shut it off completely. Such a
reduction on the number of active cores minimizes leakage
power consumption (see Equation (1) and Figure 2 in [14]) as
well as the total number of clusters.

III. SPEED-PROFILE FOR TASK AND CLUSTER

This section discusses how different tasks share a cluster
where all processors in a cluster execute at the same speed.
When multiple tasks share a cluster, they may not align well
due to sporadic releases and different periods. In a cluster-
based platform, the processor having the maximum speed
dominates the others in the same cluster. Hence, existing
energy-saving techniques may perform poorly in a cluster-
based platform. To tackle this problem, we propose a new
concept called speed-profile. Subsection III-A highlights the
motivation of bringing this new concept and provides its
definition. Subsection III-B describes how speed-profiles are
handled when two tasks are partitioned into the same cluster.

A. Speed-Profile for Each DAG
Interesting energy-saving techniques (e.g., segment exten-

sion) have been proposed in [14] for the implicit deadline

DAG tasks. For the constrained deadline tasks, this technique
becomes incompetent because of the non-negligible idle gaps
between the task deadline and its next release. For example,
consider the task τi in Figure 2(b) with Di = 10 and Ti = 12.
Segment extension can stretch N 3

i to the end of the 4th

segment but cannot utilize the idle time of 2 units. Besides,
the sub-optimal solution provided in [14] becomes non-convex
(see Lemma 1) in a cluster-based platform.

Lemma 1. In a cluster-based platform, the convex optimiza-
tion problem constructed in [14] becomes non-convex.

Proof. The following set of constraints ensure the real-time
correctness for each node N l

i ∈ τi, i.e., N l
i receives enough

time to finish execution within its scheduling window.

∀l : N l
i ∈ τi ::

dli∑
j=bli

tcjsi,j ≥ c
N l

i
i . (2)

We introduce the following inequalities to bound the total
length for all segments in task τi:

Z∑
j=1

tcj ≤ Ti. (3)

Any value of execution speed and segment length ensures
real-time correctness if Equation (2) and (3) are respected.
However, unlike [14], the execution speed of a node is not
constant within its scheduling windows. It depends on the
execution speed of other nodes (of other tasks) in the same
cluster. As a result, we cannot substitute the variable si,j
as a function of nodes execution requirement, resulting in
quadratic inequality constraints (Equation (2)). This makes the
optimization problem non-convex. �

Due to the maximum-dominating nature in a clustered
platform, at each instant, all cores in a cluster must execute at
the speed of the fastest one. If these tasks are not well aligned
(concerning their execution speed), the cluster as a whole will
perform poorly regarding energy efficiency. Assigning tasks
with similar speed shape on the same cluster may not be an
energy efficient option (due to their sporadic releases pattern).
Figure 3 and Example 1 demonstrates one such scenario.

Example 1. In this example, we describe how the sporadic
arrival pattern of a task influences the energy efficiency of the
whole cluster. Consider two tasks τ1 and τ2 with the prede-
fined necessary speed of execution on two processors each,
to be partitioned on to the same cluster (of four processors).
Figure 3(a) shows the synchronous release case, where the
whole cluster could run at 0 speed between [3,4) and [7,8).
While Figure 3(b) shows the scenario when τ1’s initial release
is delayed by one-time unit, where the whole cluster will
need to run at a higher speed (of 0.8) most (75%) of the
time and thus consumes more energy. In this example, from
τ2’s perspective, direct energy reduction with existing per-task
WCET based techniques may not help much, as it may be
another task dominating the speed of the whole cluster most
of the time. The critical observation is that, due to the extra

3

8

7

(a) (b)

τ1

τ2

τ12

4 8

8

8

4

4

62

2 6

1 4 5

743

τ1

τ12

0.8

0.3

0.8

0.3

0.3

0.8

0.8

0.3

0.8

0.3

3 7

3 7

8

τ2

4 62

0.8

0.3

3 7

0

0

0

0

0 0
t t

t

t t

t

s

s

ss

s

s

Fig. 3. When two tasks τ1 and τ2 with fixed speed patterns each are
partitioned on to the same cluster, the resultant speed pattern (τ12) of the
cluster may vary when they experience different release offsets. Note that in
order to satisfy platform model restrictions while guaranteeing the correctness,
the processors (of the same cluster) must run at the maximum/larger of the
two individual speeds at each instant.

restriction of the more realistic platform model, the speed of
a cluster is determined by the heavier DAG running on it,
as well as how synchronous are the releases, which could be
entirely random. Moreover, even a task finishes its execution
early (say, τ2 requires no execution over [5,7)), we may not
be able to reduce the cluster speed at all.

To address this issue, we propose a novel concept of speed-
profile to capture the energy consumption behavior of all
possible alignment scenarios.

Definition 1. (Speed-Profile) The speed-profile of a task
describes the percentage/likelihood of all possible speeds that
the task may execute at over a period. It is a random variable
S with an associated probability function (PF) fS(s) = P(S =
s), where s is the finite set of possible speeds, and fS(s)
represents the portions of the time (likelihoods) when it is
running at those speeds respectively.

Example 2. Let us consider a task τi with Ti = 15 executing
at a speed of 0.6 for 5 time units (not necessarily to be
continual), and at a speed of 0.5 for the rest of the time. The

speed-profile of the task is thus Si =

(
0.6 0.5
0.33 0.67

)
. At any

specific time, t, there is about 33% probability that the cores
are running at the speed of 0.6 unit and about 67% probability
that the cores are running at the speed of 0.5 unit.

It is evident that from another task’s point of view, the
speed-profile provides probabilistic information on how the
task of interest would restrict the lower bound to the speed of
the cluster over time. As the alignment of releases between
any two tasks is unknown, we assume in the future analysis
that any phase difference is of equal chance over the long run.

Remark 1. The speed-profile Si of a given task τi remains
the same for an initial phase (release offset) φi > 0.

Remark 2. A similar concept, pWCET-profile, was created in
task modeling for probabilistic real-time scheduling, which is
for an entirely different purpose—see [27] for more details.

Subsection IV-A details the calculation for task speed-

profile. Here, we describe the calculation of the cluster speed-
profile when two tasks are combined on to the same cluster.

B. Speed-Profile for the Cluster
As stated earlier, the property of the clustered platform and

sporadic arrival pattern of a task makes the exact speed of the
cluster unpredictable at a specific time instant (see Figure 3
and Example 1). As a result, when two tasks τi and τj (with
speed-profiles) are being considered allocating to the same
cluster, we need to construct the merged speed-profile of the
cluster (executing them both). To perform such calculation, we
introduce a special � operator that takes the maximum of the
two profiles on a probability basis1.

Definition 2. The special operator � operates on two (or
more) random variables X and Y . During this operation,
each entry Xi ∈ X is compared with each entry Yj ∈ Y
and the value Zij is calculated as Zij = max(Xi,Yj),
with a combined (multiplied) probability. If there are multiple
occurrences of an entry, all of them are merged into a single
entry, and their associated probability are summed together.

Example 3. Let Si =

(
6 5

0.4 0.6

)
, Sj =

(
6 2

0.4 0.6

)
. Then

Si � Sj =

(
6 6 6 5

0.16 0.24 0.24 0.36

)
=

(
6 5

0.64 0.36

)
.

Note that we allocate two different DAGs (with
same/different periods) to the same cluster. The speed-profile
indicates how long a DAG executes at different speeds within
its deadline, i.e., the probability that a DAG executes at a
specific speed. The task’s period becomes irrelevant as speed-
profile is a probability-based measurement. Once τi and τj
are allocated to the same cluster, we use Sij to denote the
speed-profile of the cluster (see Example 3 for the details).

In summary, energy minimization in a cluster-based plat-
form is challenging because of sporadic release pattern and the
idle gaps between a task deadline and its period (constrained
deadline task). To tackle these problems, we have introduced
the concept of speed-profile for both an individual task and a
cluster where multiple tasks can be allocated.

IV. TASK PARTITIONING ALGORITHM

The ultimate goal of the paper is to partition all DAGs
into clusters, such that overall platform energy consumption is
minimized. Recall that on a clustered multiprocessor platform,
at a given instant, all processors in the same cluster must
execute at the same speed. Due to this property of a cluster-
based platform, if two tasks that are not well-aligned (in terms
of execution speed) are allocated to the same cluster, it will
result in reduced energy efficiency. So, we have proposed the
concept of speed-profiles (refer to Section III) which is a tool
to measure the potential long-term energy saving of a cluster
when partitioning any pair of DAGs into this cluster. So far we
have discussed the importance of the concept of speed-profile
but did not mention how to create them given a DAG task,

1Note that although the appearance of the proposed operator is identical to
the one in [27], the calculation is quite different. This is due to the “larger
value dominating” nature of the platform model considered in this paper.

which is the focus on Subsection IV-A. Then, Subsection IV-B
describes the task-to-cluster partitioning algorithm.
A. Creating the Speed-Profile of a Task

Given a DAG task τi, we provide two approaches to create
the speed-profile Si.
Approach A: Considering the Maximum Speed from all the
Cores. Upon applying the task decomposition, segment exten-
sion, and intra-task processor merging techniques (Section II),
some vital information (e.g., the speed of a core at a specific
time and number of cores required) becomes available. This
information plays a role to calculating the speed-profile Si of
task τi. At any time instant t, we consider the maximum speed
from all the cores available. It ensures the sufficient speed
so that even the heaviest node can finish execution within
its scheduling window (defined after task decomposition). We
consider constrained deadline (i.e., Di ≤ Ti), so the task must
have to finish by Di and rest of the time (Ti−Di) it remains
idle. For each segment j ∈ τi, (summation of the length of
these segments is equal to Di), we create a pair (si,j , pi,j). For
the jth segment, si,j and pi,j respectively denote the maximum
execution speed and the probability that the cluster will run at
this speed. Let, M cores are allocated to τi. At jth segment,
we calculate si,j and pi,j as follows:

si,j = max
k≤M
{si,j,k}, pi,j =

tcj
Ti
.

Here, si,j,k denotes the speed of kth core at jth segment and
tcj is the length of jth segment. The speed-profile Si will be:

Si =

(
si,1 si,2 · · · si,z 0
pi,1 pi,2 · · · pi,z (Ti −Di)/Ti

)
.

The last pair reflects the fact that the core remains idle for the
(Ti −Di) time units at the end of each period.

Example 4. Consider a task τi with Ti = 15, Di =
12 and Ci = 6.5. Now, it is executing at a speed of 0.6 for
5-time units (not necessarily to be continual), at a speed of
0.5 for 7-time units, and it remains idle for the rest of the 3
(Ti −Di) time units. The speed-profile is:

Si =

(
0.6 0.5 0
0.33 0.47 0.2

)
.

Note that, if a cluster contains a single task τi, then Si also
represents the cluster speed-profile. If τi and τj (or more tasks)
are executing on the same cluster, then the technique described
in Subsection III-B needs to be applied before making any
choices. The greedy choosing approach for task partition is
detailed in Subsection IV-B.
Approach B: A Single Speed Throughout. Theorem 4 of
[14] shares a valuable insight: The total energy consumption
(assuming processor remains on) is minimized in any schedul-
ing window when execution speed remains uniform (the same)
throughout the interval. Motivated by it2, we propose another

2Note that [14] considered that the speed remains constant within a
scheduling slot for each processor. Also, they assumed per core speed scaling
and calculated the speed within each scheduling slot through a convex
optimization method. This paper considers the clustered platform where the
objective function becomes non-convex (see Lemma 1) and thus the existing
approach is inefficient.

approach of selecting a single speed for a DAG task (job)
during the whole duration from its release until its deadline.

In this approach, we consider the maximum workload
(or the execution requirement) from all the cores available
and determine the aggregated workload. Upon dividing the
aggregated workload by the deadline, we get the desired single
speed. Let M cores be allocated to task τi. At jth segment,
the execution requirement of the kth core is denoted by wi,j,k,
which is calculated as follows:

wi,j,k = si,j,k × tcj .

We determine the maximum execution requirement as follows:

wi,j = max
k≤M
{wi,j,k}.

Let Z denotes the total number of segments in τi. The
maximum total workload wi and the desired single speed si
is calculated using the following equations:

wi =

Z∑
j=1

wi,j , si =
wi
Di
. (4)

Other than the idle pair (0, (Ti−Di)/Ti), we consider a single
speed throughout the deadline so only a single pair (si, pi) is
required, where si = wi/Di and pi = Di/Ti.

Example 5. Consider the task described in Example 4 (Ti =
15, Di = 12 and Ci = 6.5). It must finish 6.5 unit of
workloads within 12-time units. Using this approach its speed-
profile is:

Si =

(
0.54 0
0.8 0.2

)
.

An Efficient Approach for Implicit Deadline System. By
adopting simple modification in Equation (4), it is possible to
apply the process mentioned above for the implicit deadline
tasks also. The workload wi should be divided by the period
instead of the deadline. We consider the same speed through
the task period, so only a single pair (si, pi) is required, where
si = wi/Ti and pi = 1.

Example 6. Now we create the speed-profile for the task
described in Example 4 and Example 5. This time we consider
it is an implicit deadline task. So it has Ti = Di = 15 and
Ci = 6.5. Let’s assume that it is executed at a speed of 0.6 for
5-time units, at a speed of 0.35 for 10-time units. According
to Approach A, the speed-profile is:

Si =

(
0.6 0.35
0.33 0.67

)
,

and according to Approach B, the speed-profile is:

Si =

(
0.43

1

)
.

B. Task Partition: Greedy Merging with Speed-Profiles

We are now equipped with tools (speed-profiles) to measure
the potential long-term energy saving of a cluster when
partitioning any pair of DAG tasks into it. This subsection
describes the scheme for selecting pair by pair so that the
total number of clusters can be significantly smaller than the
total number of tasks.

To select a pair that will share the same cluster, we greedily
choose the pair that provides maximum power saving, as
depicted in Algorithm 1. We allow only the pairing of two
DAGs that are not part of any merging previously. Also, if
any task uses more cores than it is available in a cluster, that
task cannot be merged with that cluster.

Algorithm 1 Greedy Merging
1: Input: Task-set τ , with speed-profile Si for each task
2: Output: Speed-profile S̃ (with processor power saving).
3: S̄, S̃ ← ∅ . All the possible/selected speed-profiles
4: for i = 1 to n do
5: for j = i+ 1 to n do
6: Sij ← Si � Sj ; S̄ ← S̄ ∪ Sij ;
7: end for
8: end for
9: while ∃Sxy ∈ S̄ and Sxy provides non-zero power saving do

10: Sxy ← the pair from S̄ with maximum power saving
11: S̃ ← S̃ ∪ Sxy
12: for k = 1 to n do
13: S̄ ← S̄ − Skx − Sxk − Sky − Syk
14: end for
15: end while
16: return S̃.

The algorithm starts by creating two empty lists S̄ and S̃
that will contain all the possible and selected speed-profiles
(Line 3). Lines 4–8, calculates all the possible speed-profiles
and insert them into S̄ . We greedily select a pair of DAGs
that provide the maximum power saving and update the list S̄
by removing the pair from any further merging (Lines 9–15).
The list S̃ is also updated by adding the selected pair (Line
11). We conclude by returning the updated list S̃ (Line 16).

Lemma 2. If a task τi executes according to the speed-profile
Si, it guarantees real-time correctness.

Proof. It has been observed in [14] that the following con-
straint guarantees the real-time correctness:

∀l : N l
i ∈ τi ::

dli∑
k=bli

tckS
Ml

i

k ≥ cN
l
i

i . (5)

Here, bli and dli denotes the release time and deadline of
N l
i , Ml

i denotes the node-to-processor mapping and S
Ml

i

k is
the speed of the processor (where N l

i is allocated) at kth

segment. Unlike to [14], at any time instant t, we choose either
the maximum speed from all the cores running on the same
cluster (Approach A) or a single speed that can guarantee the
maximum execution requirement for the whole duration up to
τi’s deadline (Approach B). So, at any time instant, the cluster

speed is larger or equals to the speed of any individual core.
Considering Equation (2) and (5) we can deduce that:

∀l : N l
i ∈ τi ::

dli∑
k=bli

tcksi,k ≥
dli∑
k=bli

tckS
Ml

i

k ≥ cN
l
i

i .

So, we conclude that Executing a task with speed according
to the speed-profile Si guarantees real-time correctness. �

Theorem 1. Executing a task with a speed according to the
cluster speed-profile guarantees real-time correctness.

Proof. We have shown in Lemma 2 that a task τi will not
miss the deadline if executed according to its speed-profile
Si. If τi share a cluster with another task τj and executes
according to the merged (i.e., cluster) speed-profile Sij , then
it still guarantees the real-time correctness, because Sij ≥ Si
holds at any time instant. �

Remark 3. For n tasks, the time complexity to generate
all possible speed-profiles, S̄ , is O(n2Z), where Z is the
maximum number of segments of all DAGs in the set after
decomposition (related to the structure and size of the DAGs).
Algorithm 1 greedily choose a speed-profile by iterating
through S and then update, which takes O(n2) time as well.
Thus the total complexity of the proposed method is O(n2).

In summary, we have proposed two approaches (Subsection
IV-A) to create the speed-profile for any constrained-deadline
DAG task. We also show that if a task executes according to
the speed-profile, it ensures real-time correctness. According
to the techniques provided in Section III, we could evaluate
and compare all potential pairs of the combination by calculat-
ing the cluster speed-profile after merging. Finally, Subsection
IV-B discussed how to use these speed-profiles to find suitable
partners to share a cluster greedily.

V. SYSTEM EXPERIMENTS

In this section, we present experimental results conducted
on an ODROID XU-3 board. The platform runs on Ubuntu
16.04 LTS with Linux kernel 3.10.105. It is fabricated with
Samsung Exynos5422 Octa-core SoC, consisting of two quad-
core clusters, one ‘LITTLE’ cluster with four energy-efficient
ARM Cortex-A7 and one ‘big’ cluster with four performance-
efficient ARM Cortex-A15. Four TI INA231 power sensors
are integrated onto the board to provide real-time power
monitoring for the A-7 and A-15 clusters, GPU, and DRAM.
An energy monitoring script, emoxu3 [28], is used to log
energy consumption of the workloads.
DAG Generation. We use the widely used Erdos-Renyi [29]
method to generate a DAG. In this experiment, we generate
two task sets each with 300 DAGs. A parameter p is used to
denote the probability of having an edge between two nodes.
Recall that, ODROID XU-3 board has two quad-core clusters
and all these DAGs will be allocated on this two clusters. So
we generate DAGs with an uncomplicated structure and set p
to 0.25. This method may generate a disconnected DAG. If it
happens, we add the fewest number of edges to make it con-
nected. For experimentation, we have considered arbitrary task

0 50000 100000 150000 200000 250000
time (ms)

0

50

100

150

200

250

300

350

400

En
er

gy
 C

on
su

m
pt

io
n

(J)

big cluster LITTLE cluster total

600

800

1000

1200

1400

1600

1800

2000

Fr
eq

ue
nc

y
(M

Hz
)

big cluster frequency LITTLE cluster frequency

Fig. 4. The energy consumption and the frequency variation of our proposed
approach on ODROID XU-3.

0 50000 100000 150000 200000 250000
time (ms)

0

100

200

300

400

500

En
er

gy
 C

on
su

m
pt

io
n

(J)

big cluster LITTLE cluster total

600

800

1000

1200

1400

1600

1800

2000

Fr
eq

ue
nc

y
(M

Hz
)

big cluster frequency LITTLE cluster frequency

Fig. 5. The energy consumption and the frequency variation of the reference
approach on ODROID XU-3.

periods, and it is determined using Gamma distribution [30].
We set the periods with Ti = Li+2(Ci/m)(1+Γ(2, 1)/4) [2].
Here, Li is the critical path length of τi, calculated according
to the definition of Li (in Section II).

After generating the topology of each DAG task of a set,
we partition them into two subsets according to the proposed
approach, one to the big cluster and the other one to the
LITTLE cluster, and measure the energy consumption over
the hyper-period of all DAGs. We use rt-app [31] to
emulate the workload for each node. It is a test-application
to simulate a real-time periodic load and utilizes the POSIX
threads model to call and execute threads. For each thread,
an execution time needs to be assigned. In this experiment,
for each node, we randomly select an execution time ranged
between [300ms, 700ms]. rt-app itself has a latency that varies
randomly between 13− 150ms per thread. Therefore, we add
the maximum latency of rt-app, i.e., 150ms, to the execution
time of each thread from an analytical point of view.
DAG Scheduling. We use the Linux built-in real-time sched-
uler sched_FIFO to schedule the DAGs. Compared to the
other system tasks, DAGs are assigned with higher priorities
so that they can execute without interference. Our approach is
also applicable to other preemptive schedulers which feature
the work-conserving property.
Frequency Scaling. According to the frequency/speed-
profile (Section IV), we use cpufreq-set program from
cpufrequtils package to change the system’s frequency
online. We use the ODROID XU-3 board, where scaling-down
and scaling-up the frequency of the big cluster takes at most
60ms and 40ms, respectively. On the LITTLE cluster, both
the operation takes at most 15ms. Due to this delay, the hyper-

TABLE I
SUMMARY OF EXPERIMENTAL RESULTS.

Ours (J) Ref (J) Energy Saving (%)
big cluster 312 389 20
LITTLE cluster 32 38 16
Total 387 472 18

600 700 800 900 1000 1100 1200 1300 1400
Frequency (MHz)

0.00

0.05

0.10

0.15

0.20

O
cc

u
re

n
ce

 p
ro

b
a
b
ili

ty

LITTLE cluster

Ours
Ref

800 1000 1200 1400 1600 1800 2000
Frequency (MHz)

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

O
cc

u
re

n
ce

 p
ro

b
a
b
ili

ty

big cluster

Ours
Ref

Fig. 6. Frequency occurrence probabilities.

period of all DAGs becomes large (230s, in this experiment).
We detail the reasons behind this delay in Subsection VII-C.
The Reference Approach. Since no work has studied the
same problem considered in this paper, we do not have a
direct baseline for comparison. So, we propose a reference
approach based on the studies for energy-efficient scheduling
of sequential tasks [32]. They assigned an operational fre-
quency to each task, and at run-time, schedule them according
to their frequency. In this reference approach, we compute an
operational frequency for each DAG. This frequency stretches
out execution length of these DAGs as much as possible
without violating their deadlines. As stated earlier, the ref-
erence approach executes the DAGs with the same partition,
but without the merging techniques proposed in Section IV.
Results. The experimental results are plotted in Figure 4 and 5.
In these figures, we show (i) the energy consumption over the
hyper-period (230s), where the three lines show the energy
consumption of the big and LITTLE cluster, and the total
system; and (ii) frequency variation during the run-time, where
the diamond and star marks denote the operational frequency
of the big and the LITTLE cluster at a specific time instant,
respectively. Note that the GPU and DRAM also contribute
the energy consumption of the total system. Hence, the total
energy consumption is a bit higher than the summation of
the contribution of the big and the LITTLE cluster, but it is
observed that there is a negligible difference for the energy
consumption of GPU and DRAM between the two approaches.
Besides, it is worth noticing that this energy consumption also
accounts for energy consumption of the operating system.

Table I summarizes the comparison of the experimental
results, where the energy consumption of the two clusters
and the total system is presented, and the energy saving
from our approach is given. As can be seen, our approach
consumes 312J and 32J on the big and the LITTLE cluster,
respectively. Comparing to the reference approach, we save
energy consumption by 20% and 16%. In total, our approach

saves energy consumption by 18%.
The result can be justified as the reference approach changes

the frequency for each DAG, while ours have a more fine-
grained frequency adjustment at each segment (Subsection
IV-A). For each DAG, during scheduling, our approach could
scale down the frequency if required. Figure 6 presents the
frequency occurrence probability of two clusters which is
recorded at each second by emoxu3. We observe that within
the same time interval the reference approach has a higher
probability to execute at a higher frequency. On the other hand,
our approach is more likely to execute at the lower frequencies,
thus reducing the energy consumption.

Remark 4. ODROID XU-3 board contains four cores per
cluster. As each heavy DAG (Ci > Ti) is allocated to two or
more cores while executing, using this experimental setup, it
is not possible to execute more than four heavy DAGs at a
time. However, there is no such restriction for the light DAGs
(Ci ≤ Ti). In this work, we consider that a heavy DAG cannot
be allocated in multiple clusters.

VI. SIMULATIONS

For large-scale evaluation, we perform simulations and
compare the results with existing baselines. We generate DAGs
using the approach discussed in Section V. We consider two
types of task periods. For harmonic periods, Ti is enforced to
be an integral power of 2. We find the smallest value α such
that 2α ≥ Li, where Li is the critical path length of task τi and
then set Ti to be 2α. For arbitrary periods, Ti is determined
using Gamma distribution as described in Section V.

We compare our approaches with some existing baselines
studied in [14], [19]. Total power consumption by our ap-
proach and by these baselines are calculated using the power
model in Section II. As mentioned earlier, [14] considered
per-core DVFS, i.e., each core individually is an island of
the cluster-based platform. For a fair comparison, according
to the scheduling policy of [14], when a task is allocated on
some cores at any time instant t, we choose the maximum
speed among all these cores. We consider [14] as a baseline
because that work is closely related to ours. Although they
have considered per-core DVFS and restrict their attention only
to implicit deadline tasks, the task and the power model are
same. Besides, although this work and [14] propose different
approaches to power saving, the initial (preparation) steps of
both approaches are based on commonly known techniques
like task decomposition, task merging, etc.
The work in [19] studied a greedy slack stealing (GSS)
scheduling approach considering inter-dependent sequential
tasks. It considered the DAG model to represent dependencies
among the tasks. In GSS, the slack (unused time in actual
computation requirement of a task) is reclaimed by one task
by shifting others towards the deadline. They did not consider
repetitive tasks; hence it can be regarded as scheduling a
single task. Besides this, the power and graph model used
in [19] is different from ours. To ensure a fair comparison,
we execute the GSS algorithm using the power model in
Equation (1) and assume that once introduced in the system; a

processor remains active. We also consider a minimum inter-
arrival separation for a DAG. That work considered three
different kinds of nodes: AND, OR, and Computation nodes
(Subsection 2.1 in [19]). A computation node has both the
maximum and average computation requirement. To comply
with our work where the focus in energy reduction while
guaranteeing worst-case temporal correctness, we execute the
GSS algorithm considering only the computation nodes with
their maximum computation requirement. We made all the
changes in order to provide a fair comparison. Despite these
differences, [19] is chosen as a baseline because it studied a
GSS scheduling approach for energy minimization. It applies
to applications consisting of inter-dependent sequential tasks
and their dependencies was represented by a DAG, which is
similar to our task model.
We compare power consumption by varying two parameters
for each task: task periods (utilization) and the number of
nodes. We randomly generate 25 sets of DAG tasks and
compare the average power consumption.
Notations of Referenced Approaches. For the task parti-
tioning step, one may either randomly choose any two and
allocate them to the same cluster, or greedily choose the ones
with lowest current speed as proposed. Regarding speed-profile
calculation, there are also two options (Approaches A and B in
Subsection IV-A). Combining these options in two steps lead
to four baselines: MaxSpeed Greedy, SingleSpeed Greedy,
MaxSpeed Random, SingleSpeed Random. Also, two base-
lines mentioned above are included for comparison:
• Federated scheduling with intra-task processor merging

[14], denoted by Fed Guo;
• GSS algorithm [19], denoted by GSS Zhu.

A. Constrained Deadline Task
Here, we report the power consumption under the scheme

for constrained deadline tasks mentioned in Section IV. We
evaluate the efficiency of our proposed method by changing
two parameters; task period (utilization) and the number of
nodes in the task.
Effect of Varying Task Periods (utilization). Here we control
the average task utilization through varying the task period. In
order to make the task schedulable, the critical path length
Li of task τi should not exceed its deadline Di. We vary the
period in a range (Li ≤ Ti ≤ Ci). The parameter Li and
Ci are measured once the DAG is generated according to the
technique described in Section V. We also use the following
equation (according to [14]) to ensure that the value of Ti
satisfies the range (Li ≤ Ti ≤ Ci).

Ti = Li + (1− k)(Ci − Li) (6)

Here, k ∈ [0, 1] is task utilization. As we are considering the
constrained deadline tasks, Di is randomly picked from the
range (Li ≤ Di ≤ Ti). The results are presented in Figure
7. Note that when any parameter (e.g., number of nodes in
a DAG, task utilization) changes, savings in energy randomly
vary within a small range and we consider the minimum value
among them. The results indicate a proportional relationship

between the average power consumption and average task
utilization. It happens because a higher task utilization imposes
tighter real-time restrictions. It restricts (refer to Figure 2(b))
the space for the segment length optimization. Figure 7 shows
that SingleSpeed Greedy approach outperforms the others and
leads to a power savings of at least 16.67% and 56.24%
compared to the Fed Guo and GSS Zhu approaches. In Single-
Speed Greedy approach, a task executes with a single speed
throughout the deadline. During the task partitioning step, a
suitable partner (with similar speed-profile) leads to energy
efficiency. However, for the other approaches task speed may
vary throughout the deadline. In that case, evil alignment and
a significant variation in the speed may lead to reduced energy
efficiency. Refer to Figure 3 and Example 1 for details.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

6

8

10

12

14

16

 Average Task Utilization, k

 P
o

w
e

r
C

o
n

su
m

p
tio

n
 [

W
a

tt
]

MaxSpeed_Greedy

MaxSpeed_Random

SingleSpeed_Greedy

 SingleSpeed _Random

Fed_Guo

GSS_Zhu

Fig. 7. Under various utilization, this graph compares power consumption for
the constrained deadline tasks for different approaches with a fixed number
of nodes (30 in this experiment).

10 15 20 25 30 35 40 45 50 55
4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

Number of Nodes

 P
o

w
e

r
C

o
n

su
m

p
tio

n
 [

W
a

tt
]

MaxSpeed_Greedy

MaxSpeed_Random

SingleSpeed_Greedy

 SingleSpeed _Random

Fed_Guo

GSS_Zhu

Fig. 8. For the harmonic task period, this graph compares power consumption
for the constrained deadline tasks considering different approaches with a
various number of nodes.

Effect of Varying the Numbers of Nodes. Here we vary the
number of nodes (Ti remains fixed and Di ≤ Ti) and report
the average power consumption. We consider both harmonic
and arbitrary periods (reported in Figures 8 and 9). For both
of these settings, we randomly generate 100 tasks; and vary
the number of nodes in each task between 10 and 55.

Compared to the previous set of experiments (varying
task utilization with a fixed number of nodes), we observe
similar improvements in power consumption, i.e., choosing a

single speed over the whole deadline leads to more power
savings. Especially, when considering harmonic task periods
the SingleSpeed Greedy approach uses on average 22.25%
and 43.56% less power compared to Fed Guo and GSS Zhu
approaches, respectively. If we consider arbitrary task periods,
the savings become 12.39% and 54.57%, respectively.

10 15 20 25 30 35 40 45 50 55
5

6

7

8

9

10

11

12

13

14

Number of Nodes

 P
o

w
e

r
C

o
n

su
m

p
tio

n
 [

W
a

tt
]

MaxSpeed_Greedy

MaxSpeed_Random

SingleSpeed_Greedy

 SingleSpeed _Random

Fed_Guo

GSS_Zhu

Fig. 9. For the arbitrary task period, this graph compares power consumption
for the constrained deadline tasks considering different approaches with a
different number of nodes.

B. Implicit Deadline Task.

Now we consider the Implicit deadline tasks and show their
average power consumption by changing two parameters: task
period (or utilization) and the number of nodes.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5

6

7

8

9

10

11

12

13

14

15

 Average Task Utilization, k

 P
ow

er
 C

on
su

m
pt

io
n

[W
at

t]

MaxSpeed_Greedy

MaxSpeed_Random

SingleSpeed_Greedy

 SingleSpeed _Random

Fed_Guo

GSS_Zhu

Fig. 10. Under various utilizations, this graph compares power consumption
for the implicit deadline tasks for different approaches with a fixed number
of nodes (30 in this experiment).

Effect of Varying Task Periods (Utilization). In this
experiment, we fix the number of nodes to 30. We vary the
task period using Equation (6) and report the average power
consumption in Figure 10. Similar to the phenomenon we
observed in the last experiment, average energy consumption
for implicit deadline tasks is directly proportional to the
average task utilization. Figure 10 also shows that adopting
the SingleSpeed Greedy approach results in reduced power
consumption. On average, the SingleSpeed Greedy approach
leads to a power saving of at least 18.44% and 57.3%
compared to Fed Guo and GSS Zhu approaches, respectively.

10 15 20 25 30 35 40 45 50 55
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Number of Nodes

 P
ow

er
 C

on
su

m
pt

io
n

[W
at

t]

MaxSpeed_Greedy

MaxSpeed_Random

SingleSpeed_Greedy

 SingleSpeed _Random

Fed_Guo

GSS_Zhu

Fig. 11. For the harmonic task period, this graph compares power consump-
tion for the implicit deadline tasks considering different approaches with a
different number of nodes.

10 15 20 25 30 35 40 45 50 55

5

6

7

8

9

10

11

12

13

Number of Nodes

 P
ow

er
 C

on
su

m
pt

io
n

[W
at

t]

MaxSpeed_Greedy

MaxSpeed_Random

SingleSpeed_Greedy

 SingleSpeed _Random

Fed_Guo

GSS_Zhu

Fig. 12. For the arbitrary task period, this graph compares power consumption
for the implicit deadline tasks Considering different approaches with a
different number of nodes.

Effect of Varying the Numbers of Nodes. Now we mea-
sure the average power consumption by varying the number
of nodes (10 to 55) with fixed Ti. We randomly generate
100 tasks with harmonic and arbitrary deadline. We report the
average power consumption in Figure 11 and 12 for harmonic
and arbitrary deadline tasks, respectively. Again, we observe
similar improvements in power consumption, i.e., choosing
a single speed over the whole deadline outperforms other
approaches. Instead of task period, we use the term deadline
because we are considering constrained deadline tasks. Specif-
ically, under harmonic task periods, the SingleSpeed Greedy
incurs 14.05% and 40% less power on average compared
to Fed Guo and GSS Zhu; under arbitrary task periods, the
savings potential are 18.39% and 57.27%, respectively.

VII. DISCUSSIONS: ASSUMPTIONS AND APPLICABILITY

We have mentioned some assumptions we have made in
the paper. The first two subsections in this section discuss the
validity of these assumptions, their impacts and potential so-
lutions to overcome these impacts. Then, in Subsection VII-C
we detail the reasons behind the measurement overheads (see
Section V) and the applicability of our proposed approaches.

A. Assumptions Behind the Power Model

Continuous Frequency Scheme. In this paper, we consider
a continuous frequency scaling, and it can be rounded up
to achieve the discrete frequency level. So, compared to
the system with discrete frequency levels, the applicability
of our approach is not affected. Modern processors have a
relatively fine-grained step to scale frequency. For example,
the ODROID XU-3 board (used in the system experiment)
has a frequency range of 0.2 − 1.4GHz for LITTLE cores)
and 0.2− 2GHz for big cores, with a scale step of 0.1GHz.
With such fine-grained steps, the energy consumption with
continuous assumption becomes very close to actual scenario,
as reported in our system experiments.
Components Behind the Overall Power Consumption.
While some other factors such as cache miss, bus accesses,
context-switches, and I/O usage also affect the power con-
sumption, CPU power consumption is one of the major
contributors to the overall power consumption. Power con-
sumption may largely be dominated by any of these fac-
tors depending on the application/benchmark (e.g., power
consumption is dominated by the radio/network in some
communication-oriented applications [33], [34]). In this work,
we target to minimize the CPU power consumption only.
While minimizing the CPU power consumption, our approach
does not increase the power consumption that is influenced by
other factors, as our technique does not introduce additional
preemption/frame-related overhead compared to any existing
DAG schedulers (DAG decomposition based). It would build
the foundation for more complicated analysis that considers
all other factors of overall power consumption in the future.
Dynamic Power Management. DPM explores idle slot of
a processor and puts the processor to a low power mode to
reduce the static power consumption. Switching to low power
mode (and backward) incurs additional energy consumption
and is beneficial only when the idle slot is longer than a thresh-
old, known as the break-even time (BET) 3 [35], [36]. In this
paper, the available idle slot may not be longer than the BET
for two reasons. First, we focus on clustered multiprocessor
platform, where processors within each cluster must execute
at the same speed, i.e., the maximum speed necessary for the
demand on each processor at a given instant. As a result, unless
all processors within a cluster are idle, the cluster cannot be
switched into any sleep mode. For sporadic releases, idle slots
of each processor are unlikely to be synchronized. Moreover,
cluster-wide idle slots tend to be relatively short. Second,
while executing a task, a uniform execution speed significantly
reduces the overall energy consumption (Theorem 4 of [14]),
which is the goal of our proposed approaches—this leads to
further reduction of idle slots. For example, a study using Intel
Strong ARM SA-1100 processor has shown a transition time
of 160ms to switch from sleep mode back to run mode [37],
which can be larger than many task periods in avionics. As
triggering mode switches becomes more energy consuming in
general and may overwhelm the gain in energy savings, DPM

3BET is the minimum duration for the processor to stay at the sleep mode.

is considered out of the scope of this work. DPM could be a
valid option under certain scenario, and we leave the further
exploration along this direction as future work.

B. Heterogeneity

This section discusses a specific type of multi-core platform
with diverse computing abilities: heterogeneous multi-core
platform. We first discuss different types of heterogeneous
platforms, then explain the reason for not considering hetero-
geneity, and finally discuss how the proposed techniques can
be extended to handle heterogeneity.

In a heterogeneous platform, different cores have different
computational capabilities. In terms of speed, Funk defined a
widely-accepted classification of the heterogeneous platform
[38] as follows, where the speed of the processor denotes the
work completed (while executing a task) in a single-time unit
by this processor.

(i) Identical multiprocessors: On Identical multiprocessors,
all tasks are executed at the same speed on any processor;

(ii) Uniform multiprocessors: On Uniform multiprocessors,
all the tasks allocated on a given processor are executed at the
same speed, but at different speeds on different processors,
i.e., a tasks execution speed depends on the processor where
the task is allocated;

(iii) Unrelated multiprocessors: On Unrelated multiproces-
sors, execution speeds of different tasks may vary on the same
processor, i.e., a tasks execution speed depends on both the
task itself and the processor where it is allocated.

In a heterogeneous platform, each core is designed with
a different computational capability, and an efficient task to
core mapping improves the system resource efficiency. In the
context of energy efficiency, two major directions have been
mentioned in [39] for any type of heterogeneous platform:

(i) Find an appropriate core/cluster for task mapping to
reduce the overall power consumption of the whole platform.

(ii) Deploy energy-aware scheduling techniques on each
core/cluster to reduce power consumption.

The proposed approach (described in Sections III and IV)
covers both directions, where we first use speed profile to
identify efficient core/cluster to task mapping, and then try
to reduce the overall cluster speed as much as possible.
A moments thought should convince the reader that such
an approach works for an identical heterogeneous platform
(a.k.a., homogeneous multiprocessor) as task-core mapping
does not impact energy consumption much. Other benefits of
considering the identical multiprocessor platform are its re-
usability and simpler design [40].

Our approach can be extended to apply to the uniform het-
erogeneous platform by modifying the parameters in the power
model in Equation (1), i.e., setting different α, β, and γ values
for the ‘big’ and ‘LITTLE’ cluster. Under such consideration,
different clusters no longer share the same power model, and
the same task may have different execution requirements on
different processors. In the future, we will extend our approach
to adopt the unrelated heterogeneity.

C. A Note on the Overhead Delay

We have mentioned that the scaling-down (up) the frequency
of the big cluster takes at most 60 (40)ms, while both these
operations take at most 15ms on the LITTLE cluster (see
Section V). we use cpufreq-set module to change the sys-
tem’s frequency, and this module accounts for microsecond-
scale transition delay (usually 100-200µs), which is typically
incorporated into the WCET. In our case, the delay is much
higher because (i) we used a Python script to measure the
delay; and (ii) there is some user-level delay caused by I/O
operations and file logging, e.g., time-stamp storage before
and after each run. Time-stamp storage detects the arrival and
completion of nodes which could be avoided when one does
not need to track system behavior in a precise manner (which
is the normal scenario). Considering the potential overhead
issue, in Subsection IV-A, we proposed Approach-B, where
a task executes at a single speed (so, there is no frequency
changing overhead) for the whole duration from its release
to the deadline. Experimental study (Section VI) also shows
excellent performance of such approach when WCETs of
sub-jobs are short. Note that, we can not entirely avoid the
speed changing overhead for Approach-A in Subsection IV-A.
However, we can reduce the number of frequency changes by
partitioning the tasks (into a cluster) according to Algorithm
1. Thus, an efficient partitioning can reduce the frequency
changing overhead.

VIII. RELATED WORK

Much work has been done aimed at energy-efficient
scheduling of sequential tasks in a homogeneous multi-core
platform (see [13] for a survey). Considering the mixed-
criticality task model and varying-speed processors, the works
on [24], [41]–[44] proposed an approach to handle the energy
minimization problem. [45] and [46] presented an energy
efficient approach for the heterogeneous multi-core platform.
To minimize the energy consumption under timing constraint
and heterogeneous platform, [47] considered the problem of
allocating real-time tasks onto the cores.

Till date, considering both the intra-task parallelization and
power minimization has received less attention. A greedy
slack stealing algorithm is proposed in [19] that deals with
task represented by graphs but did not consider the periodic
DAGs. Assuming per-core DVFS, [36] provided the technique
to combine DVFS and DPM. [48] investigated the energy
awareness for cores that are grouped into blocks, and each
block shares the same power supply scaled by DVFS. Benefits
of (in terms of power saving) intra-task parallelism is proven
theoretically in [1]. Considering the fork-join model, [49]
reported an empirical evaluation of the power savings in a
real test-bed. Based on level-packing, [50] proposed an energy
efficient algorithm for implicit deadline tasks with same arrival
time and deadline.

None of these works allows intra-task processor sharing
considering the sporadic DAG task model. The recent work in
[14] is most related to ours. However, our work is significantly
different from [14] regarding the task model, platform, real-

time constraints (deadlines), solution techniques, and also
evaluation (real platform experiment instead of simulation).
First, the work in [14] considered a simplified model where
only one DAG task executes at a time, and the number of cores
was unlimited. Second, [14] assumed per-core speed scaling.
However, many of the existing platforms (e.g., ODROID XU-
3) do not support such speed scaling—speeds of processors
under the same cluster must execute at the same speed. As
the number of cores fabricated on a chip increases, per-core
speed scaling design is less likely to be supported due to
the inefficiency on hardware levels [15]. Third, the work in
[14] did not consider constrained deadline tasks (leaving the
non-negligible idle gaps between the task deadline and its
next release un-utilized) and focused only on implicit deadline
tasks. Finally, the evaluations in [14] were done based on
simulations without any implementation on a real platform.

IX. CONCLUSION

The evolution of multi-core embedded systems and the rapid
growth of computation-intensive time-sensitive applications
call for considerable attention for energy-efficient real-time
multi-core scheduling. In this paper, we have studied real-
time scheduling of a set of implicit and constrained deadline
sporadic DAG tasks which is considered as the most repre-
sentative model of a deterministic parallel task. We schedule
these tasks on the cluster-based multi-core platforms with the
goal of minimizing the overall system power consumption. In a
clustered multi-core platform, the cores within the same cluster
run at the same speed at any given time. Such design better
balances energy efficiency and hardware cost and appears in
many systems. However, from the resource management point
of view, this additional restriction leads to new challenges.
By leveraging a new concept named speed-profile, which
models energy consumption variations during run-time, we
can conduct scheduling and task-to-cluster partitioning while
minimizing the expected overall long-term CPU energy con-
sumption. To our knowledge, no work considers energy-aware
real-time scheduling of DAG tasks with constrained deadlines.
Also, this is the first work that has investigated energy-efficient
scheduling of DAGs on clustered multi-core platform.

We have implemented our result on an ODROID XU-3
board and have experimented to demonstrate its feasibility
and practicality. We have also complemented our system
experiments on a larger scale through realistic simulations
that demonstrate an energy saving of up to 57% through
our proposed approach compared to existing methods. In this
work, we have restricted our attention mainly to the CPU
power consumption which is one of the major contributors to
the total power draw. In the future, we plan to consider other
components that may affect the total power consumption, e.g.,
cache misses, bus accesses, context switches, and I/O usage.

ACKNOWLEDGMENT

We thank the shepherd for the kind efforts in helping us
improving the paper. This work is partially supported by
National Science Foundation CNS-1850851, CNS-1742985
and National Natural Science Foundation of China 61801418.

REFERENCES

[1] A. Paolillo, J. Goossens, P. M. Hettiarachchi, and N. Fisher, “Power
minimization for parallel real-time systems with malleable jobs and
homogeneous frequencies,” in RTCSA. IEEE, 2014.

[2] A. Saifullah, D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill,
“Parallel real-time scheduling of dags,” IEEE Transactions on Parallel
and Distributed Systems, vol. 25, no. 12, pp. 3242–3252, 2014.

[3] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional DAG tasks in
multiprocessor systems,” in ECRTS. IEEE, 2015.

[4] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet, “Global EDF
scheduling of directed acyclic graphs on multiprocessor systems,” in
RTNS. ACM, 2013.

[5] S. Baruah, V. Bonifaci, A. Marchetti-Spaccamela, L. Stougie, and
A. Wiese, “A generalized parallel task model for recurrent real-time
processes,” in RTSS. IEEE, 2012.

[6] J. Li, K. Agrawal, C. Lu, and C. Gill, “Analysis of global EDF for
parallel tasks,” in ECRTS. IEEE, 2013.

[7] V. Bonifaci, A. Marchetti-Spaccamela, S. Stiller, and A. Wiese, “Feasi-
bility analysis in the sporadic DAG task model,” in ECRTS, 2013.

[8] J. Li, J. J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah, “Analysis
of federated and global scheduling for parallel real-time tasks,” in
ECRTS. IEEE, 2014.

[9] S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela, “The global EDF
scheduling of systems of conditional sporadic DAG tasks,” in ECRTS,
2015.

[10] T. Hagras and J. Janecek, “A high performance, low complexity al-
gorithm for compile-time job scheduling in homogeneous computing
environments,” in Parallel Processing Workshops. IEEE, 2003.

[11] K. Jeffay, D. L. Stone, and F. D. Smith, “Kernel support for live digital
audio and video,” Computer communications, vol. 15, no. 6, pp. 388–
395, 1992.

[12] H. Aydin and Q. Yang, “Energy-aware partitioning for multiprocessor
real-time systems,” in IPDPS. IEEE, 2003.

[13] M. Bambagini, M. Marinoni, H. Aydin, and G. Buttazzo, “Energy-
aware scheduling for real-time systems: A survey,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 15, no. 1, p. 7, 2016.

[14] Z. Guo, A. Bhuiyan, A. Saifullah, N. Guan, and H. Xiong, “Energy-
efficient multi-core scheduling for real-time dag tasks,” in LIPIcs-Leibniz
International Proceedings in Informatics. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[15] S. Herbert and D. Marculescu, “Analysis of dynamic voltage/frequency
scaling in chip-multiprocessors,” in ISLPED. IEEE, 2007.

[16] 2017, http://www.hardkernel.com/.
[17] D. Liu, J. Spasic, G. Chen, and T. Stefanov, “Energy-efficient mapping

of real-time streaming applications on cluster heterogeneous mpsocs,”
in ESTIMedia. IEEE, 2015.

[18] J. Kim, H. Kim, K. Lakshmanan, and R. R. Rajkumar, “Parallel
scheduling for cyber-physical systems: Analysis and case study on a
self-driving car,” in ICCPS. ACM, 2013.

[19] D. Zhu, D. Mosse, and R. Melhem, “Power-aware scheduling for
and/or graphs in real-time systems,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 9, pp. 849–864, 2004.

[20] W. M. Kolb, Curve fitting for programmable calculators. Imtec, 1984.
[21] S. Pagani and J.-J. Chen, “Energy efficient task partitioning based on

the single frequency approximation scheme,” in RTSS. IEEE, 2013.
[22] ——, “Energy efficiency analysis for the single frequency approximation

(SFA) scheme,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 13, no. 5s, p. 158, 2014.

[23] P. Huang, P. Kumar, G. Giannopoulou, and L. Thiele, “Energy efficient
DVFS scheduling for mixed-criticality systems,” in EMSOFT. IEEE,
2014.

[24] S. Narayana, P. Huang, G. Giannopoulou, L. Thiele, and R. V. Prasad,
“Exploring energy saving for mixed-criticality systems on multi-cores,”
in RTAS. IEEE, 2016.

[25] A. Bhuiyan, Z. Guo, A. Saifullah, N. Guan, and H. Xiong, “Energy-
efficient real-time scheduling of dag tasks,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 17, no. 5, p. 84, 2018.

[26] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain,
V. Erraguntla, M. Konow, M. Riepen, M. Gries et al., “A 48-core ia-32
processor in 45 nm cmos using on-die message-passing and DVFS for
performance and power scaling,” IEEE Journal of Solid-State Circuits,
vol. 46, no. 1, pp. 173–183, 2011.

[27] D. Maxim and L. Cucu-Grosjean, “Response time analysis for fixed-
priority tasks with multiple probabilistic parameters,” in RTSS. IEEE,
2013.

[28] 2017, https://github.com/tuxamito/emoxu3.
[29] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent, and

F. Wagner, “Random graph generation for scheduling simulations,” in
ICST, 2010.

[30] 2017, http://en.wikipedia.org/wiki/Gamma distribution.
[31] 2017, https://github.com/scheduler-tools/rt-app/.
[32] J.-J. Chen and C.-F. Kuo, “Energy-efficient scheduling for real-time

systems on dynamic voltage scaling (DVS) platforms,” in RTCSA.
IEEE, 2007.

[33] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-based on-line
energy estimation for sensor nodes,” in Proceedings of the 4th workshop
on Embedded networked sensors. ACM, 2007, pp. 28–32.

[34] Y. Liu, W. Zhang, and K. Akkaya, “Static worst-case energy and lifetime
estimation of wireless sensor networks,” in IPCCC. IEEE, 2009.

[35] H. Cheng and S. Goddard, “Online energy-aware i/o device scheduling
for hard real-time systems,” in Proceedings of the conference on Design,
automation and test in Europe:. European Design and Automation
Association, 2006.

[36] G. Chen, K. Huang, and A. Knoll, “Energy optimization for real-time
multiprocessor system-on-chip with optimal DVFS and DPM combi-
nation,” ACM Transactions on Embedded Computing Systems (TECS),
vol. 13, no. 3s, p. 111, 2014.

[37] H.-Y. Zhou, D.-Y. Luo, Y. Gao, and D.-C. Zuo, “Modeling of node
energy consumption for wireless sensor networks,” Wireless Sensor
Network, vol. 3, no. 01, p. 18, 2011.

[38] S. H. Funk, EDF scheduling on heterogeneous multiprocessors. Uni-
versity of North Carolina at Chapel Hill, 2004.

[39] M. A. Awan, D. Masson, and E. Tovar, “Energy efficient mapping
of mixed criticality applications on unrelated heterogeneous multicore
platforms,” in SIES. IEEE, 2016.

[40] A. Sethi and H. Kushwah, “Multicore processor technology-advantages
and challenges,” International Journal of Research in Engineering and
Technology, vol. 4, no. 09, pp. 87–89, 2015.

[41] S. Baruah and Z. Guo, “Mixed-criticality scheduling upon varying-speed
processors,” in RTSS. IEEE, 2013.

[42] ——, “Scheduling mixed-criticality implicit-deadline sporadic task sys-
tems upon a varying-speed processor,” in RTSS. IEEE, 2014.

[43] Z. Guo and S. Baruah, “The concurrent consideration of uncertainty
in wcets and processor speeds in mixed-criticality systems,” in RTNS.
ACM, 2015.

[44] S. Sruti, A. A. Bhuiyan, and Z. Guo, “Work-in-progress: Precise
scheduling of mixed-criticality tasks by varying processor speed,” in
RTSS. IEEE, 2018.

[45] J.-J. Chen, A. Schranzhofer, and L. Thiele, “Energy minimization for
periodic real-time tasks on heterogeneous processing units,” in IPDPS.
IEEE, 2009.

[46] C. Liu, J. Li, W. Huang, J. Rubio, E. Speight, and X. Lin, “Power-
efficient time-sensitive mapping in heterogeneous systems,” in PACT.
ACM, 2012.

[47] A. Colin, A. Kandhalu, and R. Rajkumar, “Energy-efficient allocation of
real-time applications onto heterogeneous processors,” in RTCSA, 2014.

[48] X. Qi and D.-K. Zhu, “Energy efficient block-partitioned multicore
processors for parallel applications,” Journal of Computer Science and
Technology, vol. 26, no. 3, p. 418, 2011.

[49] A. Paolillo, P. Rodriguez, N. Veshchikov, J. Goossens, and B. Rodriguez,
“Quantifying energy consumption for practical fork-join parallelism on
an embedded real-time operating system,” in RTNS. ACM, 2016.

[50] H. Xu, F. Kong, and Q. Deng, “Energy minimizing for parallel real-time
tasks based on level-packing,” in RTCSA. IEEE, 2012.

