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Abstract—In this paper, we consider the two-player non-zero-
sum games problem for continuous-time linear dynamic systems.
It is shown that the non-zero-sum games problem results in solv-
ing the coupled algebraic Riccati equations, which are nonlinear
algebraic matrix equations. Compared with the algebraic Riccati
equation of the linear dynamic systems with only one player,
the coupled algebraic Riccati equations of non-zero-sum games
with multi-player are more difficult to be solved directly. First,
the policy iteration algorithm is introduced to find the Nash
equilibrium of the non-zero-sum games, which is the sufficient
and necessary condition to solve the coupled algebraic Riccati
equations. However, the policy iteration algorithm is offline and
requires the complete knowledge of the system dynamics. To
overcome the above issues, a novel online iterative algorithm,
named integral temporal difference learning algorithm, is de-
veloped. Moreover, an equivalent compact form of the integral
temporal difference learning algorithm is also presented. It is
shown that the integral temporal difference learning algorithm
can be implemented in an online fashion and requires only
partial knowledge of the system dynamics. In addition, in each
iteration step, the closed-loop stability using the integral temporal
difference learning algorithm is analyzed. Finally, the simulation
study shows the effectiveness of the presented algorithm.

Index Terms—integral temporal difference learning, value
iteration, non-zero-sum games, Nash equilibrium

I. INTRODUCTION

In game theory, multiple decision makers or players interact
with each other and try to maximize their own interests [1].
It can be divided into two categories: zero-sum (ZS) games
and non-zero-sum (NZS) games [2]. In ZS games, the sum of
the interests of all players remains to be zero, so the increase
in the interests of one player will lead to the reduction of the
remaining players, which is essentially competitive game; In
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contrast, for NZS games, the relationship among players can
be either competitive or cooperative. Recently, game theory
has been widely used in control application [3], [4], economics
management [5], [6], power systems [7] and wireless sensor
networks [8].

For the systems with only one player, the optimal con-
trol problem requires solving the algebraic Riccati equation
(ARE) for linear systems or the Hamilton-Jacobi-Bellman
(HJB) equation for nonlinear systems, which is difficult to be
solved analytically [9]. The NZS games with multiple players
usually results in solving the coupled AREs for linear systems
[10] and the coupled Hamilton-Jacobi equations (HJEs) for
nonlinear systems [11]-[13]. The coupled HJEs/AREs are
more challenge to be solved. Dynamic programming is a
well-known method for solving the dynamic optimization
problem. However, ’the curse of dimensionality’ exists due
to the essence of backward-in-time [2]. In order to overcome
this issue, the forward-in-time method is desired [9], [14].

As a powerful and effective tool, adaptive dynamic program-
ming (ADP) plays an important role in finding the optimal con-
trol polices of various problems, such as multi-agent consensus
problems [15], [16], input constrained problems [17], [18],
tracking problem [19], robust control [20] of system with un-
certainty [21]. The offline ADP method generates a sequence
of value functions satisfying the Lyapunov equations [17],
which requires a well-defined region to apply the least-squares
(LS) method. In addition, two iterative ADP algorithms, policy
iteration (PI) algorithm and value iteration (VI) algorithm have
been extensively studied. [22] proposes an online PI algorithm
with two iterative steps to solve the optimal control policies.
On the other hand, VI algorithms are presented in [23] to
solve the coupled AREs for continuous-time linear systems.
In this paper, we present the integral temporal difference (TD)
learning method to approximate the solution to the coupled
AREs in the NZS games for continuous-time linear systems
with two-player.



The remainders of this paper are arranged as follows. Sec-
tion II provides the problem statement and gives the coupled
AREs of the NZS games. Section III gives an offline policy
iteration algorithm. Section IV presents an online integral TD
learning algorithm and an equivalent form of this algorithm,
the stability proof of closed-loop systems is completed. The
simulation with forth-order systems in Section V supports the
theory. Finally, a conclusion is given in Section VI

II. PROBLEM FORMULATION

We consider the continuous-time linear dynamical system
@ (t) = Az + Biuy + Baug, (D

where x € R" is the system state with initial state xg. u; €
R™1 is the player one and uy € R™? is the player two.

For each player, the NZS differential game on an infinite
time horizon is to minimize the following performance func-
tions defined as

o0

Vi (1'()) = f ((ETQll' + U{Rllul + U5R12U2) dr )
0

o0

(:ZZTQQI’ + unglul + ugRQQUQ) dr (3)

Va (o) = J
0

where @);,7 = 1,2 is positive definiteness matrix, R;;, ¢,j =

1,2 is also positive definiteness matrix.

The following assumption and definitions are required for
the subsequent discussions.

Definition 1: (Admissible Control) Feedback control poli-
cies u; = p; (z) are called as admissible with respect to (2)
and (3) on a set {2 € R™, denoted by p; € ¢ (), if p; (x) is
continuous on €, u; () = 0, u; (z) stabilizes (1) on €2, and
(2) and (3) are finite for Vo € 2.

Definition 2: (Nash Egquilibrium) For NZS games with
two players, (5, %), is a Nash equilibrium solution, if the
following inequality is satisfied for V) € Q;, 1 = 1,2

vEAy, (i, 1) < Vi (pa, pd) “)
ViRV, (i, p15) < Vo (uf, pa) o)

Assumption 1: The matrix pair (A,[ By B ]) is stabi-
lizable.

In this paper, the problem of interest can be formulated as
follows.

Problem 1: (Two-Player NZS games) Consider the system
(1), find a Nash equilibrium solution defined by Definition 2,
(¥, %), such that the performance functions described by (2)
and (3) are minimized.

In the next, we will give an equivalent condition to solve
Problem 1, named the coupled algebraic Riccati equation.

Lemma 1: [10] Under Assumption 1, consider the system
(1) with the performance functions defined by (2) and (3).
Then, (K, K5), defined as Kf = R;lBiTPi*, i = 1,2,
is a feedback Nash equilibrium if and only if (Pj*, Py) is

a symmetric stabilizing solution of the coupled AREs (6) and
).
0=ATP} + P}A+ Q, — P§ByR;,; BY P}
— P} ByRy B Pf — PYB\R;,' BY P}
+P5 BaRyy Ri2R;, By Py (6)
0=A"Pf + PFA+ Qy — PFB1R;| B Py
—Py B\ Ry, B{ P — P{ By Ry, By P}
+PfB1 R} Roy Ry} B Pff )
Note that the coupled AREs is quadratic in Pj* and PJ,
where Pj* and Pj are also coupled. This makes the coupled

ARE:s difficult to solve. Therefore, in the next section, iterative
methods are presented to solve the coupled AREs.

ITI. OFFLINE POLICY ITERATION FOR SOLVING COUPLED
ARES
In this section, the offline algorithm based on policy itera-
tion will be given to solve the NZS games with two-player.
Definition 3: (Riccati Operator) For each player, define the
Riccati operator Ric; (X1, X5) as

Ricy (X1, X2) = ATX, + XA + Q) — XoByRy) B X
—X1BoRyy BY Xy — X1 B R B X,
+ X5 By Ry Ria Ry BY Xo, (8)
Ricy (X1, X2) = AT Xy + XoA + Qo — X1 B1 R B X
—XoB R'BF X, — X2ByR;; BT X,
+X1B1 Ry} Ro1 Ry{ B X;. )
Note that the operator Ric; has an important role in evaluat-
ing the performance defined by (2) and (3). Ric; (X1, Xs) =

0 means that the performance functions (2) and (3) are
minimized and system (1) has reached optimal. If 0 <
Ric (X, x{"V) < Rie; (X7, X{7) holds, it indi-
cates that the performance of step
solution than that of step k.

The coupled AREs (6) and (7) can be solved iteratively by
using the policy iteration algorithm, as shown in Algorithm
1. Also, the corresponding Bellman equations can be obtained
as:

+1 is closer to the optimal

Vl(k) (z¢) + 11 (mt,u§k),uék)) =0 (10)

V;k) () + 72 (mt,ugk),uék)) =0 (11)

where Vi(k) (zy) = a:fPi(k)xt, r; xt,ugk),ugk)) =2TQizx +

(ugk))TR“ugk) + (ugk))TRigugk). The above Bellman equa-
tions can be further expressed as Lyapunov equations as

_ T ) _
0= (A®) PM + PMAM + @,
T T
+(K) Ruk? + (K0) Rk a2)
_ T _
0= (A(k)) PP 4+ pMA® 4 @,

n (K{’”)TRQlK{’“) n (K§k>)TRQQK§’“> (13)



where A®) = A — BiK® — B k(P

Algorithm 1 Offline Policy Iteration Algorithm

1: Given a pair of initial admissible control (u§0>, ugo)), such
that the system (1) is a stable closed loop system.
2: Policy Evaluation: solve (12) and (13) for Pl(k), Pz(k).
3: Policy Improvement:
K = il BT Y
K = BT

4: Stop at convergence, otherwise, set k = k + 1 and go to
Step 2

The offline algorithm 1 needs to know the complete system
model in advance, i.e., both A and B;, Bs. Moreover, the
algorithm will be invalid when the system changes, or distur-
bance exists. In the next section, a novel online method will
be developed.

IV. MAIN RESULTS
A. Integral TD learning

This section presents the main algorithm, i.e., the integral
TD learning, to solve the NZS games with two players in an
online fashion. In addition, instead of the complete system
knowledge, only partial knowledge of the system dynamics is
required.

Consider the system (1) and its value function (2) and (3),
the value function can be rewritten as

t+T B o0
Vi (xy) = f 2T Qudr + J
t

t+T

2T Qxdr

T
= f SCTQi.’de + Vi (Tea1), (14)
t

where

Qi = Qi + (K1) Ra Ky + (K»)" Rio K

and (u1, us) guarantee the stability of the closed-loop system.

Therefore, for a pair of given policy (ug ) (k)) the integral

TD error 5t( ") (k) ué),T)

5 (0,09, o0 1) — [
t

V¥ (),

is defined as
T

ITQEk)l’dT + Vi(k) (Tes1)
(15)

T
where Q) = @, + (K(k)) Rk + (K$Y) Rio k(Y.
Then update method of value function can be expressed as

V;(kﬂ) () = V( )(l‘t) + ;5 ( (k) (k),T> (16)
The policy update can be further determined as

K&V = gABIPMTY =12, (17)

In the next, the least squares (LS) method is employed to
implement the integral TD algorithm. To describe the LS

method, we introduce the concept of the Kronecker product
[24] as follows

Vi(k) (z¢) = actTPi(k)xt = (actT ® xtT) vec (Pi(k))
where
.CL'%T ®(L‘; = [ 11 T1T9 T2
TnTn—1 TnTn ] 5
vec (B(k)) = [ PP 1,1y PM(1,2) P® (2,1)

~1) P (n,n) ]T.

3

Pi(k) (n,n
Then, update rule (16) can be expressed as:

R N

oy (VO ul,uf?, T) (18)
Therefore, the update rule (16) can be rewritten as
(zf ®z]) vec (Pi(kﬂ)) =d; (19)

with

& =V @)+ (V) (@) = VO (@)

T
+ f IETQEk){L'dT
t

To ensure the uniqueness and existence of solutions in (19),
the condition that N > n? is satisfied during the LS method.

Algorithm 2 Online Integral TD Learning Algorithm
1: Let £ = 0. Start with a pair of initial matrices
'gPl(O), P2(0)> such that (1) is stable and select a suitable

2: For k > 0, at first, collect N sample state data, then
use the LS method to solve matrices P(kH) P(kH) that
satisfy (19).

3: Update the control polices such that

Y (@) =

—K}a = —R;'B P = 1,2

4: Stop the value function update if the following criterion
is satisfied for a specified value of e:
V) <

mazr (HPl(kH) -

otherwise, set k = k£ + 1 and go to step 2.

B. Equivalent integral TD learning

In this subsection, we give an equivalent formulation with a
compact form of the integral TD learning algorithm developed
in the previous subsection.



Before moving on, inserting (15) into (16), one has

t+T
thPi(k-H)xt =1 lj xTQEk)xdT + IZ+TPi(k)It+T1
t

+(1—n) 2l PP, (20)

Consider the system (1) with the feedback control u; =
—kzgk)x, one can obtain x, = eA(k)(T*t):z:t. Then, inserting
x, into (20) yields

T
P — (=) PV
0

(A(k))TTPi(k)eA(k)T

e(AD) TG AVt gy

+mn;e

T
:Pi(k)+77ij
0

T
d (AWt p(k) AR
+771J0 %(e P e >dt
T _
=Pi(k)+mf LAYt ( pk) P(k))ewtdt
0
1)
A0 4 QW

(A0 T e AWt

where Ric; (P, P{") = (A®)" P 4 p®

Algorithm 3 Compact Form of Integral TD Algorithm

1: Start with initial matrices (Pl(o) , PQ(O) such that the
closed-loop system is stable and select a suitable T.
2: Value Update: solve (21) for Pl(k+1), P2(k+1).
3: Stop the equivalent algorithm when the following criterion
is satisfied for a specified value of e:
)<

Otherwise, set k = k£ + 1 and go to step 2.

k+1 k k+1
[pien - P [piees -

max (

In algorithm 3, one can know that the update of P(kH)

only depends on Pz( ) from (21). That is, the compact form of
integral TD algorithm is essentially a one-step update iteration
algorithm.

C. Stability Discussion

In this subsection, the stability analysis of the closed loop
system (1) will be given.

Lemma 2: For a symmetric matrix G € M™", and
any nonzero matrices A7 € C™*" Ny € C™" My €
C™* " My € C™ ™, it follows that G + NNy + NN +
MiMy + MTMT < 0 if there exists a constant ¢ > 0 such
that G+ e MNT + e ININg +eMMT + e TMI My <0
holds.

Proof. The proof of the this lemma follows from that of [25,
Lemma 2.4] and is omitted here. |

The next theorem discusses the stability of the closed-loop
system when applying the integral TD learning algorithm.
Theorem 1: Assume that A(®) is Hurwitz. Let YFi=1,2

be the solution of Lyapunov equation (14_1(0))TY1-’C +YFAO =

—1I. If ; satisfies (22) for each k € Z, then A®) is Hurwitz
forall ke Z,.

0 < Nmax < 1/2x%

©2)
2 2
¢ (e As H ) (Jasf = o)
where Mi(k) = So (AkN)* i(Pl(k)7P2(k) eA(k>tdt,
Ric; (P{", P{") ((A®)"P® 4 PR A0 1 Q)

Nmax = max {n,n2} and H; = B;R;;'BY, i = 1,2.

Proof. We will prove this theorem by deduction. First, suppose
that A(®) is Hurwitz. Suppose also that A®*) is Hurwitz. Then,
there exists a positive definite matrix denoted by Y € cyxn
such that ([l(k) Y(k) + Y A(k) = —JI. Next, we need
to show the Hurwitzness of the matrix A**1) . In the fol-
lows we will find the sufficient condition (/i(k“))TY(k)

() A(k+1) < 0 that guarantees the Hurwitzness of the matrix
A(k+1

Rewriting A *+1) using the fact that Pi(kﬂ) = Pi(k) +
mM™ in (21) yields
A+l _ g BlekH) _ BzKékH)
= AW —p MY — e Ha MY (23)

Based on (23), (A kﬂ))TYi(k) + Yi(k)/i(k“) < 0 can be
rearranged as:

Ty

3

- (anlMl(k) + nQHQMZSk))
—y® (mHlMl(k) n nQHgMQ(k)) <0 (24

Based on Lemma 2, the next inequality holds for any nonzero
vector x € R"

L2 2
() o

2 2
+ (nfquk)x‘ S > <0 25)

Because H(H1 + H>) Yi(k)xH > 0, (25) is obviously quadratic
in g;. In this case, the existence condition for ¢; € R can be
obtained by solving D; > 0

2 2
Di=||* — 4 (anlyi(k):c( i nSHHQYi(k)xH ) X

2 2
(Jaroa] -+ Jarga]")
2
o)+

2
1al' — e (|0 O]+ [
2 2
(el + [aaia]) > o
that is, (22) holds. Note that, (22) ensures the existence of
g; > 0 in (25). Thus, the above analysis guarantees the fact
that A(*+1) is Hurwitz. This completes the proof. [ |
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Fig. 1. Learning process of the elements in Pl(k) for player 1

V. SIMULATION STUDY

In this section, we show the efficacy of the propc
integral TD method using the simulation with forth-o
systems. Consider the following two-player continuous-i
linear system [23]:

—0.0366  0.0271 0.0188  —0.4555
A 0.0482 —1.0100 0.0024 —4.0208
0.1002  0.2855 —0.7070  1.3229

0 0 1 0

By = 04422 3.0447 552 0],
By = 01761 —7.5922 4.99 0 ] .

Define

Vl = SOO (xTQl.’,C + U{Rllul + ugR12u2) dt
Vo= So (CUTQW + ui Royuq + ugTR22U2) dt

where Ql = di&g([3.5,2,4,5]), R11 = 1, R12 = 0.25
QQ = diag([1.5,6,3, 1]), R21 = 06, R22 = 2, m =
N2 = 0.9.

The initial state is selected as x (0) = [0;0;0;1] and the
initial matrices Pl(o) and PQ(O) are selected as zero matrices.
The data information of the system is collected at intervals of
0.5 s. After a set of 15 data samples is acquired, that is, 7.5
s, a least squares solution is performed, the iterative method
stops until it is satisfied that ¢ less than 10~8. After 20 steps,
Pl(k) and P2(k) for player one and two are stable as shown
in figure 1 and 2. As is shown in figure 3 and 4, after 20

0.7,

steps, both sz'(k) - PF Land Riccati operator are close to zero.

Therefore, the integral TD method converges to the solution
of the coupled AREs.

VI. CONCLUSIONS

In this paper, an integral temporal difference learning
method is proposed to find the Nash equilibrium of two-
player non-zero-sum games in an online manner. Only partial

P2(1,1)
2P2(1,2) |
2*P2(1,3) b
2P2(1,4) | |
P2(2,2)

2*P2(2,3)
2*P2(2,4)
P2(3,3)

2P2(3,4)
P2(4,4)

O‘\AY“A‘A’NN I

o 0O 0O
o0 0O

o
2F .
3 .
0]
O0—60—6—066060660609
_4 Il Il Il Il Il Il Il Il Il

0 2 4 6 8 10 12 14 16 18 20

Fig. 2. Learning process of the elements in P2<k) for player 2

12 T T 6 T T
[P1-P1° [IP2-P2"|

0 5 10 15 20 0 5 10 15 20

Fig. 3. Convergence of Pl(k) and P2(k) to their optimal values Pl* and P2*
during the learning process

knowledge of system dynamics is required for the integral TD
learning. The sufficient condition that guarantees the closed-
loop stability during the iterative learning phase is discussed.
Finally, the simulation study demonstrates the effectiveness of
the presented algorithm in this paper.
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