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Abstract—Federated Learning is a technique for learning AI
models through the collaboration of a large number of resource-
constrained mobile devices, while preserving data privacy. In-
stead of aggregating the training data from devices, Federated
Learning uses multiple rounds of parameter aggregation to train
a model, wherein the participating devices are coordinated to
incrementally update a shared model with their own param-
eters locally learned. To efficiently deploy Federated Learning
system over mobile devices, several critical issues including real-
timeliness and energy efficiency should be well addressed.

This paper proposes SmartPC, a hierarchical online pace
control framework for Federated Learning that balances the
training time and model accuracy in an energy-efficient manner.
SmartPC consists of two layers of pace control: global and local.
Prior to every training round, the global controller first oversees
the status (e.g., connectivity, availability, and energy/resource
remained) of every participating device, then selects qualified
devices and assigns them a well-estimated virtual deadline for
task completion. Within such virtual deadline, a statistically
significant proportion (e.g., ≥60%) of the devices are expected
to complete one round of their local training and model updates,
while the overall progress of multi-round training procedure is
kept up adaptively. On each device, a local pace controller then
dynamically adjusts device settings such as CPU frequency so
that the learning task is able to meet the deadline with the
least amount of energy consumption. We performed extensive
experiments to evaluate SmartPC on both Android smartphones
and simulation platforms using well-known datasets. The exper-
iment results show that SmartPC reduces up to 32.8% energy
consumption on mobile devices and achieves a speedup of 2.27
in training time without model accuracy degradation.

I. INTRODUCTION

With rapid development of real-time embedded systems,
mobile devices (e.g., smartphone and wearable devices) have
been widely used to provide ubiquitous services together
with computation-intensive artificial intelligence (AI) tasks. As
these devices are carried about everyday and everywhere, they
could collect a huge amount of private data about the mobile
users using the embedded sensors (e.g., camera, microphone,
GPS, accelerometer). With the collected data, learning pre-
dictive models to adapt users’ behaviors/contexts becomes a
promising way to improve user experience [1]–[3]. However,
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the sensitive nature of the user data means there are serious
issues collecting and storing them in a centralized location [4].

To ensure data privacy in the learning procedure, Federated
Learning systems have been proposed to enable a large number
of mobile devices to train a shared model collaboratively
without sharing local private data [5], [6]. To achieve the goal,
a Federated Learning system usually organizes all participating
mobile devices around a central server for model/parameter
sharing (instead of data sharing). Training is started at the
same time from a common initialization and will continue in
multiple training rounds. During each round of the learning
procedure, every mobile device computes its own updates
based on the current shared model using its local training
data, then forwards the local updates to the central server. On
the other hand, once the central server receives the updates
from these mobile devices, it improves the shared model
and sends the updated one to the participating devices. This
process iterates until an accuracy level of the learning model
is reached. In this way, the accurate predictive model can
be obtained while the user data privacy is well protected, as
the local training data are not shared directly. Thus, different
kinds of data-sensitive applications can be well supported by
Federated Learning systems, such as face detection [7], next-
word prediction, on-device item ranking, content suggestions
for on-device keyboards, next word prediction [8] and human
activity recognition.

Despite all the promising benefits, several obstacles exist for
Federated Learning to be viable. When conducting training on
mobile devices, federated learning can be costly because the
whole learning process requires multiple rounds of communi-
cation between the central server and the devices before the
model converges. From the perspective of energy consumption,
on-device training is highly energy demanding and hurts the
battery lifetime of mobile devices. Previous research simply
assumes that the training program is only carried out when the
smartphone is being charged [7]. Yet, such strong assumption
contradicts the original purpose of analyzing data on mobile
devices, i.e., understanding the collected data ubiquitously and
timely. Conducting machine learning in real-time is becoming
more and more important in time-critical applications and fast
changing environments, such as autonomous vehicles, military



applications, health-care informatics, and business analytics
[9]. Moreover, a lot of time-sensitive applications can also
benefit from real-time mobile-based federated learning. For
instance, the renowned ride-share service provider Uber uses
machine learning through clients’ smartphones to analyze the
demand of vehicles in real time for their pricing model [10].

From the perspective of training completion time, the het-
erogeneity in a Federated Learning system can also greatly
impact the efficiency of the training process. Mobile devices
in a Federated Learning system often have different hard-
ware configurations and computing capacities. Moreover, the
training data on different mobile devices are usually highly
unbalanced. Heterogeneous hardware configurations coupled
with unbalanced training data lead to large variations in
completion time in each training round. Current Federated
Learning system adopts the synchronous model averaging
approach [11], which means that the system does not enter the
next training round until the central server receives the updated
weights from all the participating devices. The progress of
the overall training process is thus bottle-necked by the less-
powerful devices that require more time to complete the
training rounds. Thus, a framework that can effectively
balance the training progress, model accuracy and energy
consumption in real time is urgently required for Federated
Learning systems.

In this paper, we explore the possibility of enabling Feder-
ated Learning on multiple battery-powered devices. In order to
make Federated Learning practical, we propose SmartPC, a hi-
erarchical pace control framework that efficiently coordinates
the training progress of the whole Federated Learning system
and optimizes the energy consumption of the participating
mobile devices with heterogeneous hardware configurations.
Specifically, SmartPC contains two main layers, 1) a global
control layer and 2) a local control layer. The global pace con-
troller intelligently determines the global training deadline for
each training round according to the hardware configuration
and runtime behavior collected from the participating mobile
devices. A proper training deadline is important for training
pace control. If the deadline is too tight, most of the participat-
ing devices can not catch the deadline and successfully submit
their weight updates, and the model accuracy can be severely
affected. On the other hand, if the deadline is too loose, it takes
a large amount of time to complete the training for each com-
munication round and prolongs the overall training progress.
In this work, we design a feedback-based deadline assignment
mechanism that dynamically determines the training deadline
based on actual training progress information as well as the
computing capacity of the devices to guarantee that a specific
percentage of participants can successfully submit the weight
updates to achieve the predefined model accuracy level.

After receiving the training deadline, the local pace con-
troller dynamically adjusts the system configuration of the
participating device so that the participant can meet the
training deadline while minimizing the energy consumption.
Our experiments show that the default governor on Android
system is not energy optimal for Federated Learning system;

it always selects unnecessarily high system configurations.
The designed energy minimization approach overrides the
default governor and dynamically selects the optimal system
configuration according to the local training progress in order
to complete the local training in an energy efficient way.

We compare SmartPC with a state-of-the-art Federated
Learning control system and show that SmartPC achieves
up to 32.8% less energy consumption and accelerates the
overall training progress up to 2.27 times. We also test the
performance of SmartPC with different apps concurrently
running in the foreground. Our results show that SmartPC can
intelligently control the local training progress with negligible
impact on the performance of the foreground app. To our
best knowledge, SmartPC is the first work that studies the
trade-off between training progress and energy efficiency in
real-time Federated Learning systems. Specifically, our major
contributions are as follows:

• We propose SmartPC, a hierarchical pace control frame-
work that intelligently coordinates the overall training
progress in a Federated Learning system.

• We make the observation that only a proportion of up-
dates from the devices is required to achieve high model
accuracy. Consequently, we design a deadline assignment
mechanism to determine the training deadline in each
training round in order to intelligently trade off model
accuracy and training completion time.

• We design an energy optimizer to minimize the energy
consumption of the participating devices during the train-
ing process while catching each training deadline.

• We prototype SmartPC on a Federated Learning system
consisting of commercial mobile devices with heteroge-
neous hardware configurations.

• We demonstrate that Federated Learning can be success-
fully performed even when the participating devices have
foreground apps running.

The rest of the paper is organized as follows. Section II
introduces the background about Federated Learning and the
key observations that motivate the design of SmartPC. Section
III discusses the design of the global layer and the local layer,
respectively. Section IV presents the system implementation
and evaluation of SmartPC. Then Section V discusses prior
research that is closely related to SmartPC. Finally, Section
VI concludes the paper.

II. BACKGROUND AND OBSERVATION

In this section, we first briefly introduce the related back-
ground about Federated Learning. After that, we discuss the
three key observations that motivate our design of SmartPC.

A. Background about Federated Learning system

A Federated Learning system usually consists of two main
components: 1) a central server and 2) multiple mobile devices
that participate in the training process. Figure 1 represents the
workflow of a Federated Learning system which contains the
following main steps:
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Fig. 1: A typical architecture of federated learning over cloud-
edge infrastructures.

1) At the beginning of each training round, the central
server selects a set of online devices to participate in
the training process.

2) The selected devices download the current global model
state (e.g., current model parameters(wt)).

3) Each mobile device performs local training based on
the global model state and its local training dataset for
a specific number of training epochs.

4) After completing the local training process, each mobile
device sends the model updates (e.g., ∆w) back to the
central server.

5) After receiving the model updates from all the mobile
devices, the central server aggregates these gradient
updates and generates the updated global model. Then,
the system enters a new training round.

6) The whole process iterates until the global model con-
verges.

We can note that, at no point in time in the entire training
process does the central server directly or indirectly access
the local training data (e.g., raw data generated during user
interaction with mobile devices). Data privacy is therefore well
preserved-a key advantage of Federated Learning.

A number of important technical issues must be addressed
for a Federated Learning system to be viable. Previous re-
search in this area focus on such problems as: 1) reducing the
communication cost [11], 2) guaranteeing the system security
[12] and 3) analyzing the convergence bound [13]. However, in
this paper, we aim at addressing a critical problem for efficient
deployment of federated learning on mobile devices (e.g., pace
control in a Federated Learning system to effectively trade off
the energy efficiency, model accuracy and training progress).

B. Motivation

With the above background on Federated Learning, we now
discuss a few key observations that motivate this work.

Observation1: A certain percentage of successful weight
updates is enough to guarantee the predictive accuracy. A
Federated Learning system usually includes mobile devices of
diverse hardware configurations. Therefore, in each training
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Fig. 2: Runtime information and model accuracy. ((a) training
completion time on different mobile devices: 1-RedMi2, 2-
Samsung Galaxy S4, 3-Huawei Honor 8, 4-Honor V9. (b)
Impact of percentage of participants on model accuracy.)

round, the completion time of the devices can have great
variations. We have conducted a Federated Learning task
to train the image classification model Lenet5 [14] on four
different smartphones, i.e., RedMi2, Samsung Galaxy S4,
Huawei Honor 8, and Honor V9, respectively, and collected the
local training completion time during the training process. We
can see from the results in Figure 2a that the completion time
of the same training process with the same size of data set,
differs greatly – RedMi 2 spends 12× more time compared
to Honor V9. This is largely due to difference in hardware
configurations. For instance, the RedMi2 is powered by a 4-
core 1.2GHz ARM Cortex-A53 CPU while Huawei Honor V9
has an 8-core CPU with 4 2.36GHz ARM Cortex-A73 and
4 1.84GHz Cortex-A53. Therefore, if the central server in a
Federated Learning system has to wait for all the participating
devices to send their updates before entering the next round, it
is likely to be bottle-necked by the slowest devices. To reduce
the overall training time, it is necessary not to wait for all
devices to complete their round.

Figure 2b shows the impact of the proportion of weight
updates on the model accuracy in a Federated Learning sys-
tem. In this experiment, we train different models, including
2 Layer CNN, Lenet-5, AlexNet [15], with the Mnist [16]
data set. The training data are evenly distributed among 200
participants. The x-axis shows the percentage of participants
whose weight updates are successfully received by the central
server. The y-axis shows the corresponding model accuracy.
We can find that the model accuracy does not increase linearly
with the fraction of participants that successfully send their
weight updates. Above a certain threshold (e.g., 0.8 in this
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Fig. 3: Runtime information during local training process on
a Galaxy S4 smartphone ((a) CPU frequency selected by
the default governor, (b) energy consumption and training
completion time under different CPU frequency level).

case), the accuracy improvement is negligible. Thus, weight
updates from all the participated device are not required. A
certain percentage of successful weight updates is enough in
order to guarantee the model accuracy.

Observation2: Default DVFS governor does not well
balance the training progress and energy in a Federated
Learning system. In order to further understand the system
behavior during the local training process, we collect the
CPU frequency selected by the default governor (e.g., the
interactive governor on Android system). Figure 3a
shows the results on Samsung Galaxy S4 as an example. We
can find that the system spends more than 98% of the time on
the highest CPU frequency (1.6GHz in this case) during the
local training. This is because, on a typical Android device,
the default governor determines the CPU frequency solely
based on CPU load. If the CPU load is higher than a certain
threshold, the governor would select the high frequencies.
Therefore, for CPU-intensive tasks such as on-device training,
the highest frequency will often be selected. Although this
allows the task to be completed in the shortest possible time,
it is generally not energy optimal on a mobile device. Figure
3b shows the completion time and energy consumption (the
whole smartphone, based energy + training energy) at different
fixed CPU frequencies on the Galaxy S4. As expected, the
training time decreases monotonically as frequency increases.
However, energy consumption does not share that trend. In
fact, beyond a certain point (0.6GHz) energy increases mono-
tonically as frequency increases. Moreover, in a Federated
Learning system, though the highest frequency can complete
the training in a short time, the whole system still needs to
wait for weight updates from other devices in order to enter

the next round.
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Fig. 4: Impact of different concurrent running foreground
tasks on the background local training process (S1-Reading,
S2-Typing, S3-Gaming1 (2D-AngryBirds), S4-Gaming2 (3D-
Basketball), S5-Video Playing).

Observation 3: The concurrent running foreground
apps can highly impact the background local training
process. Figure 4 shows the runtime information when the
local training process runs concurrently with foreground apps
in different common scenarios (e.g., S1-Reading, S2-Typing,
S3-Gaming1 (2D-AngryBirds), S4-Gaming2(3D BasketBall),
S5-Video Playing). Specifically, Figure 4a, 4b, 4c, 4d show
the local training completion time, Instructions Per Second
(IPS) of the local training process, CPU load of the foreground
app and performance degradation of the foreground app based
on a Nexus 6 smartphone, respectively. We can find that
user interaction with the foreground app can highly impact
the background training process. For instance, the training
completion time of a minibatch is 2.368s (IPS 4.91GHz) with
the reading scenario (CPU Load = 0%), while it increases
up to 5.02s (IPS 1.75GHz) with the 3D gaming scenario
(CPU Load = 31%). The concurrently running foreground
apps can compete for the computing resources in different
ways and thus impact the local training process. Moreover,
mobile system usually assign higher priority to foreground
apps and during this process the performance degradation of
the foreground app is negligible as shown in Figure 4d.

III. SYSTEM DESIGN

In this section, we discuss the system design of SmartPC,
a pace control framework that effectively balances model
accuracy and training time and at the same time optimizes en-
ergy efficiency for mobile-based Federated Learning systems.
Specifically, we first briefly introduce the system overview and
then present the two-layer (i.e., global layer and local layer)
design in detail.

A. System Overview

Figure 5 shows the system architecture of SmartPC which
mainly contains two layers, the global layer and the local layer.
The central server hosts the global pace controller while each



Fig. 5: System Architecture of SmartPC.

participating device has a local pace controller. The job of the
global pace controller is to intelligently balance the progress
of each training round and the model accuracy, whereas the
local pace controller is responsible for trading off the pace
and energy consumption of the local training process for its
hosting device. Together, the two layers strive to dynamically
achieve optimal balance among training time, model accuracy,
and energy efficiency for the Federated Learning system.

The system workflow of SmartPC can be represented as the
following main steps:

1) At the initialization step, the global controller first
oversees the status (e.g., connectivity, availability, and
energy/resource remained) of every participating device,
then selects qualified devices. After that, each selected
mobile device sends the following local information
to the central server: 1) hardware information (e.g.,
available CPU frequency range) and 2) size of local
training data.

2) After receiving the local information from the selected
participants, the global pace controller estimates a virtual
deadline of the upcoming training round to balance
the overall training progress and model accuracy. The
controller then broadcasts the virtual deadline to all the
participants.

3) The local pace controller performs the local optimiza-
tion to determine the optimal scheduling of hardware
resources (e.g., CPU frequency) in order to minimize
the energy consumption of local training while meeting
the virtual deadline.

4) When the virtual deadline arrives, the global controller
checks the progress of the current training round (i.e.,
percentage of model updates the server has received
from all the participants). If the central server has
already received enough weight updates to guarantee
the model accuracy, the system directly enters the next
training round. Otherwise, the controller notifies the par-
ticipating mobile devices the synchronization deadline
(timely secure the synchronization of local parameter
updates for gradients aggregation in the central server
per round) which is configured based on the requirement

of the specific application.
5) The participants that have not completed the local

training adjust their hardware configuration based on
the received synchronization deadline (performed by the
local pace controller) and try to complete their remaining
training job.

6) When the synchronization deadline arrives, the global
pace controller determines whether this round of training
is successful or not based the percentage of model
updates received by the central server. If the current
training round is successful, the central server performs
model averaging and the system enters the next training
round. Otherwise, the current training round restarts to
avoid waiting indefinitely.

It is important to note that SmartPC is mainly limited to
soft real-time applications. Moreover, the training process on
mobile devices can be highly dynamic. Different uncertainties
(e.g., mobile devices may experience delay or even failure in
sending back updates due to connectivity or battery issues)
can take place during this process. The following mechanisms
are designed to handle the uncertainties during the training
process in each training round. First, SmartPC does not require
all the devices to successfully upload their local updates to the
central server, but only requires the central server to receive
updates from a certain percentage of participating devices in
order to guarantee the model accuracy. This effectively reduces
the impact of random uncertainties that could occur on the
participating mobile devices. Moreover, the synchronization
deadline is designed to prevent the system from waiting
indefinitely in a certain round in order to effectively handle the
uncertainties. Figure 6 shows the deadline assignment (global
pace control) and local training process (local pace control) in
each training round. It is a challenging problem to efficiently
trade off the training progress, model accuracy and energy
consumption in such a heterogeneous system. In the following
sections, we discuss the design of the global and local pace
control in detail.
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Fig. 6: Deadline assignment and local training.

B. Global Pace Control

The Global Pace Control assigns the training deadline for
each training round in order to balance model accuracy and



training progress. However, determining the right deadline is
not trivial. If the deadline is too tight, many of the mobile
devices may fail to complete the local training in time and
to submit their model updates. This negatively impacts the
model accuracy. If the deadline is too loose, the overall training
progress is slowed down. Thus, determining the amount of
weight updates required to guarantee the model accuracy and
accurately estimating the local completion time is critical for
deadline determination.

Inital Time 
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Comp Time 
Prediction

Deadline 
Determination

Hardware 
Config
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Size

Virtual 
Deadline

Global Pace Control

Runtime Training Speed

Fig. 7: Workflow of Global Pace Control.

Global Pace Control Overview. Figure 7 shows the
workflow of global pace control. In the initialization step,
after receiving the hardware configuration information and
the local training data size, the global pace control estimates
the local completion time of each participating device. Then,
with the completion information and the required weight
update percentage value, the Deadline Determination compo-
nent determines the global training deadline and broadcasts
it as input to the local pace controllers. At the end of each
training round, the global pace control receives the feedback
of the local training speed from the local pace controllers for
completion time prediction in order to effectively estimate the
new deadline for the next round.

Completion Time Model. With the received hardware
configuration information and the size of local training data,
the time required by device i to complete the local training
process can be modeled [6] as:

ti =
ciDi

fi
(1)

where, ci represents the number of CPU cycles required to
process one data object on mobile device i, which can be
obtained through offline profiling, Di represents the number of
data objects in the local training data set, and fi is a particular
CPU frequency available on device i. Because the data objects
(e.g., pictures) in a training set usually have the same size,
the number of CPU cycles required for device i to run a local
iteration can be modeled as ciDi.

Given this model, if fi max is the maximum CPU frequency
on device i, the shortest training completion time is:

Ti min =
ciDi

fi max
(2)

Completion Time Prediction. When a mobile device has
no foreground app running, using Eqn. 1 to predict local train-
ing completion time can be sufficiently accurate. However, as
discussed above, we intend to have mobile devices participate
in Federated Learning even when they are in use. As Figure 4

shows, foreground apps can affect the performance of the
background training process. This has to be accommodated
in order to accurately predict training time. In SmartPC, we
adopt an exponential moving average (EMA) formula for
the completion time prediction as follows. For each training
round j, the local pace control located on each mobile device
monitors the starting time tji start and the ending time tji end

of the training process. Moreover, it monitors the number of
data objects Sj

i that have been processed in each round. We
define the training speed of mobile device i in round j as
follows:

rji =
Sj
i

tji end − t
j
i start

(3)

With this definition, the training speed of the upcoming
training round k, Rk

i can be predicted as follows:

Rk
i =

{
r1i , k = 1

α ∗ rk−1
i + (1− α) ∗Rk−1

i , k > 1
(4)

where Rk
i (k > 1) is the new predicted value, Rk−1

i is the last
predicted value, rk−1

i is the latest measured training speed on
device i, and α is a constant attenuation factor in the range
between 0 to 1. The parameter α controls the relative weight of
recent and past history in the prediction– when α > 0.5, more
weight is given to the most recent sample, and vice versa.
In our implementation, we use the the real user interaction
trace from LiveLab [17], which records the user interaction
from different users, to select the best value of α in order
to achieve the best prediction accuracy. With the predicted
training speed Rk

i , the completion time of the upcoming round
k can be estimated as

tki =
Di

Rk
i

, k > 1 (5)

For the very first round, we use Ti min in Eqn. 2 as the
estimation.

Deadline Determination. As shown in Figure 2b, a cer-
tain percentage (not 100%) of successful weight updates
is sufficient for achieving a high level of model accuracy.
Thus, the training deadline is determined as the shortest time
within which a specific percentage (Urequired) of participating
devices can send back their weight updates to the central
server. Using Urequired (< 100%) has two main advantages:
1) it makes the system more robust considering mobile devices
can be offline due to various reasons (e.g., out of battery,
user shutdown, system failure), and 2) it accelerates the
overall training process – the Federated Learning system will
not be bottle-necked by the low-end devices and/or those
experiencing performance issues at the moment. We formulate
the deadline determination problem for training round k as
follows:

Min{dk} (6)

subject to
∑i=N

i=1 I(tki )

N
≥ Urequired (7)



where tki is the estimated completion time (Eqn. 5), and the
indicator function I(tki ) is defined as follows:

I(tki ) =

{
0 tki > dk

1 tki ≤ dk
(8)

After that, the determined deadline dk is sent out as input
to the local pace controllers.
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Fig. 8: Local pace control in SmartPC.

C. Local Pace Control

After receiving the global deadline dk from the inter-
device layer, the local pace control aims to meet the deadline
while minimizing the energy consumption of the local training
process. Figure 8 shows the workflow of the local pace
control. First, the Speed Determination component calculates
the optimal speed (in terms of IPS) for the local training
process that allows the deadline to be met with minimal
energy. After that, the Resource Scheduler, guided by the
optimal speed, computes a resource schedule for the device
to balance the power and performance for the local training
process. Additionally, the Local Speed Monitor monitors the
average training speed and sends back to the global pace
control for deadline determination of the next training round.

1) Speed Determination: As discussed in Section II-B, due
to its compute-intensive nature, the local training process on
an Android system is executed in a race-to-idle manner, i.e.,
the highest CPU frequencies are used for the entire duration
of the task, which may not be energy optimal. In SmartPC, we
find a suitable speed for the local training process such that
the deadline is met while energy consumption is minimized.

We model the energy consumption of a device in one
training round as follows:

E = ptrain ∗ ttrain + pidle ∗ tidle (9)

where pidle represents the base power when the smartphone
is powered on but not actively used, ptrain represents the
power consumed while the training process is running, and
tidle and ttrain are the time spent in the idle and training
state, respectively.

Given a deadline and assuming that the training round can
finish before the deadline, running the training process at a
higher CPU frequency means it can be completed sooner
(i.e., smaller ttrain), but with a higher ptrain. We therefore
formulate the training speed determination as a constrained
optimization problem, as explained below.

Training Power Model. The idle power pidle in Eqn. 9 can
be easily obtained through measurement. The training power,
on the other hand, can be modeled as follows [13]:

ptrain = β ∗ f3 (10)

where β is the effective capacitance coefficient of the comput-
ing chipset of the mobile device which can be obtained through
the profiled power data at different frequency levels, and f
represents the CPU frequency adopted during the training
process.

Problem Formulation. With the power model in Eqn. 10
and the completion time model in Eqn. 1, we formulate the
local speed determination problem as a constrained optimiza-
tion problem. For a specific global training round with training
deadline dk, we aim to minimize the energy consumption of
the mobile device under the condition that the training round
be completed before dk is reached. Denote by Ei(fi) the
energy consumption of device i in a particular training round
when the training process is run with CPU frequency fi. The
problem therefore is to find:

argmin
fi

Ei(fi), fmin
i ≤ fi ≤ fmax

i (11)

s.t. tidlei + ttraini (fi) = dk, 0 ≤ tidle, ttrain(fi) ≤ dk (12)

where Ei(fi) is the energy consumption in Eqn. 9 when the
CPU frequency is fi.

In the above, Eqn. 11 indicates that the optimization prob-
lem is to find the CPU frequency in the available range on the
device that results in the least amount of energy consumption.
Equation 12 requires that the training completion time meet
the deadline dk set for the training round.

The solution to Eqn. 11 and 12 gives the energy-optimal
completion time ttraini . Based on this, we can compute the IPS
target as ii ∗Di/t

train
i , where ii is the number of instructions

for processing one data object and Di is the size of the data set.
This target is then passed as input to the Resource Scheduler.
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Fig. 9: Resource Scheduler feedback loop.

2) Resource Scheduler: As discussed, the Speed Determi-
nation component computes a training time target that allows
the training deadline to be met with the least amount of energy,
which can be converted to IPS. The Resource Scheduler
then takes the IPS target as input and dynamically computes
schedules for the device hardware resources in order to achieve
the target in an energy efficient way. In this paper, we limit
the resources to CPU frequencies.

We adopt a two-component design for the Scheduler that
consists of an integral controller and an energy optimizer in a
feedback loop, as shown in Figure 9.



The Resource Scheduler operates in a cyclic manner. The
workflow of one cycle of the scheduling process is as follows:
(1) The performance of the training process, y(n), is measured
and the control error e(n) = r − y(n) is calculated, where r
is the static target IPS for the round. (2) Using e(n) as input,
the controller, taking into account historical errors, calculates
a dynamic performance as speedup s(n) that minimizes the
accumulated error. (3) The energy optimizer takes s(n) as
input and based on the performance model in Eqn. 1 and
power model in Eqn. 10 computes a CPU frequency schedule
that can achieve s(n) with the least amount of energy. (4) The
schedule is applied, and the process is repeated.

Integral Controller. To minimize the accumulated error∑
e(n) between the static target performance r and the

measured performance y(n), we utilize an integral controller
[18]. The input to the controller is the control error e(n),
i.e., the difference between the target performance r and the
actual performance y(n), and the output is the dynamic target
performance in the form of a speedup s(n) as described below.

First, the dynamic target performance u(n) considering
accumulated error is formulated as follows:

u(n) = u(n− 1) + g · e(n− 1), (13)

where u(0) = r, and the constant g, 0 < g < 1, is the
controller gain that is introduced for stability reasons. In
practice, a value around 0.5 is a reasonable choice.

The performance model in Eqn. 1 is a simple model. To
address the inevitable modeling errors, we decompose the
performance into a base speed b(n) and a dimensionless
speedup s(n), as follows:

u(n) = s(n) · b(n) (14)

the base speed b(n) is the speed of the local training process
when it runs with the minimal CPU frequency. Note that b(n)
is a variable and is estimated every cycle using a Kalman filter
as detailed in [19]. With this formulation of the performance,
the actual output of the controller is the desired speedup as
follows:

s(n) = s(n− 1) + g · e(n− 1)

b(n− 1)
(15)

Energy Optimizer. Once the required speedup s(n) is
calculated by the integral controller, the energy optimizer
determines the energy-optimal CPU frequency schedule that
achieves s(n). This schedule is then applied for the next
control cycle of T time units. As in [19], this optimization
problem can be formulated as a linear programming problem.

Each mobile device has a set of CPU frequencies. Assuming
that for a device we have a selected list of N CPU frequency
values {v1, v2, ..., vN}, Corresponding to each vi, there is
a training process performance si in the form of speedup
as described above, as well as a power consumption pi.
The task of the energy optimizer is to determine a schedule
τ = [τ1, τ2, ...τN ], where τi means applying frequency vi
for τi time units. Thus, the optimization problem can be
formulated as follows:

minimize
N∑
i=1

τi · pi (16)

subject to
N∑
i=1

τi · si = s(n) (17)

and
N∑
i=1

τi = T, 0 ≤ τi ≤ T (18)

where T is the control period of the Resource Scheduler.
Eqn. 16 is the optimization goal that minimizes the energy
consumption in the control cycle. Eqn. 17 represents the
performance constraint, while Eqn. 18 shows the constraints
on the time horizon.

The solution to the optimization problem determines a set
of CPU frequencies and their corresponding applied duration,
such that it minimizes the energy consumed by the system
for a time period of T units while maintaining a performance
(speedup) of s(n). Based on the theory of linear programming,
there exists an optimal solution to Equation 16 with at most
two non-zero values for τi in the solution. This means for the
frequency schedule τ we simply need to find a pair of values
τi and τj that satisfies Equations 16 – 18.

3) Speed Monitor: The Speed Monitor monitors the pro-
cessed data objects between the starting and ending points
through instrumenting the local training process. As discussed,
this information is sent back to the global controller at the end
of each round so that it can update the prediction model for
completion time.

IV. EVALUATION

SmartPC is designed to efficiently balance the training
performance and energy consumption for on-device Federated
Learning. We evaluate the performance of SmartPC using
both simulation and physical testbed. We use this hybrid
testbed to cross validate the effectiveness and correctness of
corresponding models and system design. In this section, we
first introduce the experimental methodology and baselines,
and then discuss the corresponding experiments.

A. Experimental Setup

We build a prototype on-device Federated Learning sys-
tem using Android smartphones with heterogeneous hardware
configurations, as listed in Table I. The devices have different
Android versions (i.e., 5.0.5-8.0), different number of CPU
cores (i.e., 4, 6, 8) and different sets of CPU frequencies.
The local training process is implemented based on the DL4J
[20] with a PaddlePaddle based the parameter server. It runs
as an asynctask in the background and has no user interface.
Communications between the devices and the central server
are based on the client-server model as shown in Figure 1.

In the local pace controller, we dynamically adjust the CPU
frequency of a mobile device to provide the performance-
energy trade-off. Setting CPU frequency to a specific level is
achieved by writing to pertinent files in the sysfs to first set the
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Fig. 10: Comparison of schemes in global pace control.

TABLE I: Device Profiles

Device Android Version #Core Frequency
Honor 8.0 8 1.40 - 2.11GHz
Lenovo 5.0.2 4 0.29 - 1.04GHz

ZTE 5.1.1 4 0.20 - 1.09GHz
Mi 5.1.1 6 0.46 - 1.44GHz

Nexus 6.0 4 0.30 - 2.65GHz

governor to userspace, and then to set the CPU frequency. We
use the SimplePerf tool to collect runtime performance data
such as instruction count, and for all power measurements a
Monsoon power monitor is physically connected to the device.

Baselines. We evaluate the effectiveness of SmartPC against
the following baselines.

• Default represents the state-of-the-practice Federated
Learning system in which each mobile device completes
the local training process with the default CPU governor
and the central server performs model averaging after
receiving all the local updates from the mobile devices.

• Train-with-all represents the Federated Learning ap-

proach in which the central server must receive local
updates from all the mobile devices. On the device
side, each device performs the same energy optimization
process as SmartPC does.

• Fixed-deadline represents the scheme in which the train-
ing deadlines are fixed for all the training rounds.

B. Evaluation of Global Pace Control

In this section, we evaluate the effectiveness of the global
pace control from different perspectives. We construct a sim-
ulation testbed consisting of 100 smartphones with hardware
configurations randomly selected from Table I. We evaluate
SmartPC in the more general situation where learning is
performed with concurrently running foreground apps. To that
end smartphone usage traces from LiveLab [17] are adopted
that emulate the user interactions with different foreground
apps. We train the Lenet5 [14] model with the Mnist [16]
data set. The training data are evenly distributed among the
mobile devices. In this experiment, we use 80% as the target
of percentage of weight updates the server has to receive at the
end of each training round, which in practice can be configured
by the Federated Learning service provider. It is important
to note that SmartPC focuses on the system perspective of
Federated Learning (e.g., balance the training progress, model
accuracy and energy consumption). We use the well-known
image classification task (e.g., Lenet5) as an example to
demonstrate the effectiveness of SmartPC. However, SmartPC
can be generally applied to different federated learning tasks
(e.g., face detection, next-word prediction, on-device item
ranking, content suggestions for on-device keyboards, next
word prediction and human activity recognition).

Figure 10a shows the percentage of local weight updates
successfully received by the central server with different
schemes. We can see that Fixed-Deadline can not achieve the
predefined completion percentage (i.e., 80%). This is because
Fixed-Deadline only considers the hardware configurations
(e.g., available CPU frequencies) during the deadline deter-
mination process and does not consider the impact of user
interactions on the completion time of the local training pro-
cess. For instance, the low-end devices, e.g., Lenovo and ZTE
in this case, need to run with the highest CPU frequency in
order to meet the training deadline. However, due to resource
contention with the foreground app as shown in Figure 4, the
local training completion time can be extended significantly,
causing them to miss the pre-assigned deadlines. With the pre-
configured acceptance rate of 80%, the average acceptance rate
with Fixed-Deadline is 70% with the worst case being 62%,
which means the Federated Learning system has to restart the
training every time. With SmartPC, in the very first round
the acceptance rate is the same as that with Fixed-Deadline,
since SmartPC also determines the deadline of the first round
based on the hardware configurations. However, in the next
few training rounds, the acceptance rate gradually converges
to the pre-defined target. This is because the training deadline
is adaptively determined based on the predicted training speed
of each participating device. With the Default and Train-with-
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(c) Local pace control performance on a Nexus 6 smartphone.

Fig. 11: Local pace control performance on a Nexus 6.

All schemes, the acceptance rates are close to 100%, since they
do not enter the next training round until the central server has
received the weight updates from all the participants.

As shown in Figure 10a, SmartPC, Default and Train-with-
All can all successfully achieve the pre-set acceptance rate
of the weight updates in each training round. In Figure 10b
we compare training completion time (first measured in sec-
onds and then normalized to the smallest value) of different
schemes. We can find that Default and Train-with-All have
similar local training completion time, which is 2.27 times of
that with SmartPC on average. Because these two schemes
always wait for the weight updates from all the participants,
the overall training completion time is bounded by the low-end
devices, particularly those with the highest interference from
the foreground app. SmartPC, on the other hand, proves to be
more robust because it only requires a certain percentage of
accepted weight updates that is statistically significant. This

essentially removes the outlier participants from consideration
without significantly affecting the model accuracy. For large
scale Federated Learning this is especially important because
the probability of having outliers is high. For instance, a
mobile device can be offline due to a number of reasons
(e.g., networking issue, out of battery). When this happens,
the overall training process of either Default or Train-with-All
can be slowed down considerably.

We also evaluate the model accuracy achieved with
SmartPC. Table II compares the model accuracy obtained
with SmartPC and with Default when training three different
models. We can see that SmartPC produces the same level of
model accuracy despite the fact that it only uses updates from
a portion of the participants. Because the training algorithm
itself (e.g., model averaging, stochastic gradient descent) is
not modified in anyway, the only difference from the training
algorithm’s standpoint is the amount of parameter updates.
These results show that, in a Federated Learning system, using
a high enough percentage of inputs can give similar model
accuracy to using all inputs. For the reason that, the Dalvik
Virtual Machine in Android system has a limit for the heap
size (e.g., 512MB on Nexus 6), we select the models and
dataset with less memory requirement for evaluation. However,
SmartPC can be generally applied to other models and data
set.

TABLE II: Model Accuracy

2D CNN Lenet-5 AlexNet

Default 97.61% 97.49% 97.5%
SmartPC 97.46% 97.24% 97.35%

Finally, Figure 10c shows the energy consumption (first
measured in mAh and then normalized to the smallest value) of
each training round. The Default scheme consumes the highest
energy during the training process. Compared with the Default
scheme, SmartPC achieves 28.4% energy savings on average,
due to the intelligent pace control in the local layer, which is
discussed in the following section. We can find that the scheme
All has the lowest energy consumption. This is because the All
scheme expects all the participated device to successfully send
their weight updates, which gives the local layer more time
range to conduct energy optimization. However, the training
completion time of the All scheme is highly extended.

C. Evaluation of Local Pace Control

In this section, we dive into the mobile device to evaluate
the effectiveness of local pace control. In the experiment, we
construct a Federated Learning system consisting of 5 devices,
one each of the models listed in Table I. We first present results
obtained with no foreground apps, and then discuss the impact
of foreground apps in the next section. Figure 11 shows the
results in one training round on a Nexus 6 smartphone. The
global pace controller sets the deadline to 724s, and within this
deadline, 20 training epochs (configured by service provider)
should be completed.



Figure 11a shows the power consumption of the local
training process. We can see that with the default governor
the local training process completes as soon as possible and
then the CPU goes into idle. The average power consumption
of the local training process, ptrain, is 3517.57mW, for a
duration ttrain of 90.2s. The idle power pidle is measured
at 27mW and the idle time tidle is 633.8s. Thus, the total
energy consumption of the training round on this device is
334.4J. On the other hand, with SmartPC, with the deadline
of 724s, the Speed Determination component determines that
it is energy optimal to run the training process for the entire
duration of 724s. Under the Resource Scheduler, the local
training process runs for the entire 689s (during the real
local training process) with an average power consumption of
324.74mW. The energy consumption is 224.6J, representing a
32.8% reduction compared to the Default scheme. To better
understand the energy savings, in Figure 11b we compare
the CPU frequencies selected by SmartPC vs. Default during
the local training process. The x-axis represents the 18 CPU
frequency levels available on the Nexus 6 smartphone. The
y-axis represents the percentage of time the CPU is at a
certain frequency level. We can find that the default governor
always uses the relatively high frequency levels to complete
the local training process in a short time but with high
power consumption at the same time. Specifically, the default
governor spends 51.8% of the time at level 18 (the highest
frequency level) and 24.3% of the time at level 17 (the second
highest frequency level). By contrast, with SmartPC, the local
pace controller spends 87% of the time at level 1 (the lowest
frequency level) in order to complete the local training process
in an energy efficient way while catching the training deadline.

Figure 11c shows the training completion time during
the training process. The x-axis represents different training
epochs and the y-axis represents the completion time of each
training epoch. We can see that the local pace controller can
effectively achieve the training completion time target.

D. Impact of Different Foreground Apps

One important feature of SmartPC is its ability to run
training while the device is being used for other purposes,
as opposed to limiting the training task to running only when
the device is being charged. In this section, we evaluate the
effectiveness of the local pace control with different apps
running in the foreground. We use two apps (i.e., AngryBirds
and BasketBall as discussed in Figure 4) as examples. Figure
12a shows the completion time of each training epoch with
different apps running in the foreground. The x-axis repre-
sents different training epochs and the y-axis represents the
corresponding training completion time. Most of the training
epochs do not miss the deadline. This is because the controller
is able to obtain the IPS (instruction per second) value for the
training process alone and can adjust the CPU frequency to
meet the target IPS. Therefore, the local pace control is able
to effectively perform its task when there is a foreground app
running concurrently.
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Fig. 12: Intra-Device Control with Different Foreground Apps.
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Fig. 13: App performance and energy consumption of
intra-device control with different foreground apps. (S1-
AngryBird only, S2-AngryBird+Training, S3-BasketBall only,
S4-BasketBall+Training).

Figure 12b shows the CPU frequency selected by SmartPC
with different apps running in the foreground. When Angry-
Birds is running in the foreground, the CPU spends 51%
of the time on frequency level 1 and 45% of the time on
frequency level 3. Whereas, when BasketBall is running in
the foreground, 37% of the time is spent on level 1 and 59%
of the time is spent on level 3. We can find that the controller
selects higher frequency level during the local training process
in these two cases than when there is no app running in the
foreground. This is because the foreground app can compete
for CPU time with the background training process. Thus, in
order to achieve the training performance target, the local pace
controller spends more time on the higher frequency level.
The reason that the local pace controller spends more time on
higher frequency level when the Basketball app is running in
the foreground is that the BasketBall app has higher CPU load
(30%) than that of AngryBirds (22%).



Figure 13a shows the impact of the background training
process on the performance of the foreground app. S1 repre-
sents the scenario where AngryBirds runs in the foreground
without the training process running in the background. S2
represents the scenario where AngryBirds runs with the back-
ground training process concurrently. S3 and S4 represent the
corresponding scenarios for the Basketball app, respectively.
In the experiment, we use FPS (Frames Per Second) as the
performance metric. For S1, the average FPS is 59.41. For S2,
the average FPS is 59.23. For S3, the average FPS is 56.14 and
for S4, it is 52.21. We can see that the impact of user-perceived
performance of the foreground app is negligible. Figure 13b
shows the energy consumption of the whole smartphone
under the four scenarios. Compared with the default scheme,
SmartPC achieves 17.1% energy saving when AngryBirds
is concurrently running in the foreground and 14.3% when
Basketball is on the foreground, respectively. It is important
to note that the consistent results obtained from our hardware
deployment and simulated testbed verify the efficiency and
correctness of the corresponding mechanism and models.

E. System Overhead

In SmartPC, the global pace controller runs on the central
server and the local pace controller runs on each mobile
device. Thus, the system overhead of the local pace controller
is the main concern for SmartPC. As described in Sec. III-C,
what the local pace controller does is to periodically compute
a resource schedule so that the training process can meet
the deadline with the lowest amount of energy. Since the
computation involved is very limited, most of the time the
controller is in sleep mode. On a Nexus 6 smartphone, with
a control cycle of 2s, each cycle the controller takes less
than 10ms to compute the frequency schedule. Consequently,
the power consumption of the local pace controller itself is
measured at 44mW, which is negligible.

V. RELATED WORK

Our work is closely related to two major research topics,
distributed learning and federated learning.

Distributed Learning. In order to leverage large amount
of data located at different places to train various kinds of
deep learning models, distributed learning has attracted a lot
of attention [6], [21]–[29]. Zhang et al. [21] design a cluster
scheduling system to approximate machine learning training
jobs in order to maximize the overall job quality. So et al.
[22] propose an approach to make efficient parallelization
of the distributed training process and keep the training
information (e.g., training data and model) private in order
to guarantee a secure training process. Li et al. [6] propose a
parameter server framework for distributed learning in order
to manage asynchronous data communication between nodes
and support flexible consistency models, elastic scalability
and continuous fault tolerance. Bao et al. [25] propose a
deep learning-driven ML cluster scheduler to place different
jobs in corresponding machines to minimize the interference
and maximize performance. Though these approaches can

efficiently improve the performance of distributed learning
system, they cannot be directly applied on Federated Learning
system which has its own characteristics. The training data are
placed and the training process is usually performed on central
data centers (e.g., large amount of servers) in a distributed
system, however in a Federated Learning system, the process
is mainly completed on mobile devices which has much higher
limitation on battery lifetime (e.g., energy consumption) and
system heterogeneity.

Federated Learning. Federated Learning is then proposed
to efficiently leverage the data generated from mobile devices
to support intelligent applications [4], [5], [8], [11]–[13],
[30]–[32]. Lalitha et al. [30] propose a distributed learning
algorithm to train a machine learning model over a network
of users in a fully decentralized framework. Konecny et al. [5]
focus on the communication efficiency in a federated learning
system and propose two schemes (e.g., sketched update and
structured update) to reduce the uplink communication costs.
Smith et al. [4] propose a system-aware optimization approach
to consider issues of high communication cost, stragglers, and
fault tolerance for distributed multi-task learning. McMahan
et al. [11] design a practical approach for the federated
learning of deep networks based on iterative model averaging.
Existing research about federated learning mainly focuses on
the following perspectives: 1) reducing the communication
cost, 2) improving the security during the training process and
3) analyzing the convergence. However, the trade-off among
the energy efficiency, training progress and model accuracy
is ignored by pervious study. In this paper, we try to solve
the problems in a federated learning system from a new
perspective.

VI. CONCLUSION

This paper has proposed SmartPC, a hierarchical pace
control framework for Federated Learning that intelligently
balances the training time and model accuracy in an energy-
efficient manner, through incorporating with two major com-
ponents: a Global pace controller and a Local pace controller.
At the start of every training round, the global controller
first collects the status of every participating devices, then
estimates a virtual deadline for all qualified devices per
selection. More specific, such virtual deadline is selected to
allow a statistically significant proportion (e.g., ≥60%) of the
devices to complete their work and upload model updates,
which guarantees the model accuracy for every round of model
update and ensure the timeliness of the overall progress for
the multi-round training procedure. On each device, a local
pace controller then dynamically adjusts device settings such
as CPU frequency so that the learning task is able to meet
the deadline with the least amount of energy consumption. We
performed extensive experiments to evaluate SmartPC on both
Android smartphones and simulation platforms using well-
known datasets. The experiment results show that SmartPC can
reduce 32.8% energy consumption without model accuracy
degradation. At the same time, SmartPC can achieve a speedup
of 2.27x in training time.
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