
On the Volume Calculation for Conditional DAG
Tasks: Hardness and Algorithms*

Jinghao Sun1, Yaoyao Chi1, Tianfei Xu1, Lei Cao1, Nan Guan 2, † , Zhishan Guo3, and Wang Yi4
1. Northeastern University, China; 2. The Hong Kong Polytechnic University, China

3. University of Central Florida, USA; 4. Uppsala University, Sweden

Abstract—The hardness of analyzing conditional directed
acyclic graph (DAG) tasks remains unknown so far. For example,
previous researches asserted that the conditional DAG’s volume
can be solved in polynomial time. However, these researches
all assume well-nested structures that are recursively composed
by single-source-single-sink parallel and conditional components.
For conditional DAGs in general that do not comply with this
assumption, the hardness and algorithms of volume computation
are still open. In this paper, we construct counterexamples to
show that previous work cannot provide a safe upper bound of
the conditional DAG’s volume in general. Moreover, we prove
that the volume computation problem for conditional DAGs is
strongly NP-hard. Finally, we propose an exact algorithm for
computing the conditional DAG’s volume. Experiments show
that our method can significantly improve the accuracy of the
conditional DAG’s volume estimation.

Index Terms—DAG, Conditional branches, Volume, NP-hard

I. INTRODUCTION

Nowadays, multicores are becoming mainstream hardware
platforms for embedded and real-time systems. To fully utilize
the processing capacity of multicores, programs are paral-
lelized. Directed acyclic graph (DAG), a natural model to for-
mulate parallel programs, recently has gained a lot of attention
in real-time communities, and motivates much theoretical work
on real-time scheduling and analysis of DAG models [1]–[10].

However, the standard DAG model cannot fully capture the
characteristics of parallel programs. One important difference
is that the program code has not only intra-task parallelism,
but also conditional structures (such as if-else statements).
Inspired by this, the conditional DAG modeling both intra-task
parallelism and conditional branches has been proposed and
analyzed [11]–[15].

Conditional DAGs are more difficult to analyze, i.e., tra-
ditional problems on non-conditional DAGs are polynomial-
time solvable, but many of them become NP-hard on condi-
tional DAGs. Nevertheless, many researchers still devote to
propose polynomial-time algorithms for conditional DAGs,
even though the problem on conditional DAGs is inherently
NP-hard. Consider the task volume computation1 problem
as an example, in non-conditional DAGs, since every vertex

*This work is supported by NSFC (61972076, 61772123, 61532007,
61602104), GRF (15213818, 15204917) and NSF(CNS-1850851).
†Corresponding Author:Nan Guan,nan.guan@polyu.edu.hk
1The volume of DAG is a very important parameter for the DAG task’s

response time analysis. Generally speaking, computing volume is the first step
for analyzing DAG task’s response time.

must be executed exactly one time, the volume of DAG
equals the summation of all vertices’ execution time. How-
ever, when if-else structures are brought into DAGs, the
number of possible execution flows on the conditional DAG
is exponential. The volume of conditional DAGs, which is the
maximum total execution time among all possible execution
flows, is more complicated to be solved. Although Baruah
[13] and Melani et.al [15] propose polynomial-time algorithms
for computing the conditional DAG’s volume, their DAG task
models assume well-nested structures recursively composed by
single-source-single-sink parallel and conditional components.
For the non-well-nested conditional DAGs that do not comply
with this assumption, the hardness of computing volume is
still open.

In this paper, we investigate the hardness of the conditional
DAG’s volume computation. First, we construct counterexam-
ples to show that the algorithm in previous work cannot exactly
derive the volume of the non-well-nested conditional DAGs in
general, and even cannot provide a safe upper bound (of its
volume). Then we formally prove that the volume computation
problem for conditional DAGs in general is stronglyNP-hard,
indicating that there is no (pseudo)-polynomial time algorithm
for calculating (precisely) a conditional DAG’s volume. Fi-
nally, we propose an exact algorithm for the conditional DAG’s
volume computation. Although the algorithm in general runs
in exponential time, we show that under some special cases,
the time complexity can be polynomial. Experimental work
shows that our algorithm dramatically improves the accuracy
of the conditional DAG’s volume estimation.

The rest of this paper is organized as follows. Sec. II
presents related work. Sec. III formally defines conditional
DAG models and relevant notations. Sec. IV reveals the
drawbacks of existing work. Sec. V analyzes the complexity of
conditional DAG’s volume computation. Sec. VI proposes the
exact algorithm, and Sec. VII reports our experimental results.
Sec. VIII concludes this paper.

II. RELATED WORK

Conditional DAG models are investigated in [11]–[15]. To
compute the conditional DAG’s volume, [12], [13] trans-
form conditional DAGs to equivalent non-conditional DAGs,
and then the volume computation method designed for non-
conditional DAGs can be applied. [14], [15] develop a dynamic
program to compute the conditional DAG’s volume directly.

Although the previous methods have polynomial time com-
plexity, they are all restricted to well-nested DAGs. In [12],
[13], the transformation is applied from innermost conditional
components to outermost components, ensuring that the trans-
formations for conditional components are independent with
each other. The dynamic programming in [14], [15] always
chooses the branch with the maximum volume from each
conditional component. It may bring inaccuracy if non-well-
nested DAGs are considered (See in Sec. IV for details).
Therefore, these existing techniques cannot deal with non-
well-nested DAGs. Sun et.al [16] solves the response time
of non-well-nested DAGs, but their method is restricted to
OpenMP programs.

III. SYSTEM MODEL

In this section, we formally define the conditional DAG
model and its execution semantics. We also introduce the rel-
evant notations of the conditional DAG’s volume computation.

A. Conditional DAG Model

We define the conditional DAG as G = (V,E), where
V is the set of vertices, and E is the set of edges. Each
vertex vi of V is associated with the worst-case execution
time (WCET) c(vi). Each edge (vi, vj) of E represents the
dependency between vertices vi and vj , indicating that vi
must complete execution before vertex vj can begin execution.
A vertex vi is the predecessor of vertex vj if there is an
edge from vi to vj , and in this case, vertex vj is called the
successor of vi. Moreover, a vertex vj is the descendant of
vi if vj is a successor of vi or a successor of the descendant
of vi. For each vertex vi, we use Pred(vi) to denote the set
of vi’s predecessors, and use Succ(vi) to denote the set of
vi’s successors, and use Desc(vi) to denote the set of vi’s
descendants. A vertex vi is called the source vertex of G if it
has no predecessor. A vertex vi is called the sink vertex of G
if it has no successor. Without loss of generality, we assume
that each conditional DAG has exactly one source vertex vsrc
and one sink vertex vsnk2.

Fig. 1. An example of the conditional DAG.

Conditional DAGs distinguish two types of vertices: (1) reg-
ular vertices, represented as circles, formulate the sequential
chunk of execution (or “sub-task”); (2) conditional vertices,
coming in pairs and denoted by diamonds and triangles,
represent the entry and the exit of a conditional component
respectively. A vertex vl belongs to a conditional component
P if vl is in a path from P’s entry vertex to P’s exit vertex.
Fig. 1 shows an example conditional DAG, where vertices v2

2If this is not the case, a dummy source/sink vertex with zero WCET is
added to G with arcs to/from all the source/sink vertices.

and v7 are the entry and the exit of a conditional component
including three regular vertices v3, v4 and v5.

A conditional DAG G is well nested if for any conditional
component P of G, there is no edge from the regular vertex
of P to the vertex outside P . The DAG in Fig. 1 is non-well
nested since there is an edge from v5 (inside a conditional
component) to v9 (outside the conditional component).

B. Execution Semantics

The execution of conditional DAG G starts with the source
vertex vsrc and ends at the sink vertex vsnk. During the
execution, at any time once a vertex vi is completed,

a1. If vi is the entry vertex of a condition component, exactly
one of its successors should be executed. For example, in
Fig. 1, once the conditional entry vertex v2 is executed,
either v3 or v4 is executed.

a2. Otherwise, all of vi’s successors should be executed. For
example, in Fig. 1, once vertex v1 is executed, then vertices
v2 and v6 are both executed.

When encountering a vertex vi that should be executed,
b1. If vi is the exit vertex of a conditional component, vi

is eligible to be executed once one of its predecessors is
completed. For example, in Fig. 1, once one of the vertices
v3 and v5 is completed, then the vertex v7 is executed.

b2. Otherwise, vi is eligible to be executed only when all of
its predecessors are completed. For example, in Fig. 1,
once vertices v8 and v9 are completed, then vertex v10
is executed.

Definition 1. An execution flow E of conditional DAG G is
the subgraph of G that contains all the vertices executed in
an execution of G satisfying (a1),(a2), (b1) and (b2) above.

An execution flow is marked in red in Fig. 1.

Definition 2. The volume vol(G) of G is the maximum total
execution time (workload) among all the execution flows of G,
i.e.,

vol(G) = max
E∈G

∑
vi∈E

c(vi) (1)

where E is the execution flow of G.

IV. PROBLEMS IN EXISTING WORK

A straightforward way to solve the volume vol(G) of G
is to enumerate all possible execution flows of G, and then
choose the one maximizing the volume. However, this is
computationally intractable since the number of possible exe-
cution flows is exponential of if-else component numbers.
Instead of explicit enumeration of execution flows, previous
work (e.g., [15]) proposes a dynamic program (DP) to solve
the conditional DAG’s volume in polynomial time3. But we

3In the literature, [12], [13] also propose a polynomial-time method to
solve the conditional DAG’s volume, which first transforms the conditional
DAG into an equivalent non-conditional DAG, and then compute the non-
conditional DAG’s volume. The transformation method is rather complicate,
and moreover it results in the same value of conditional DAG’s volume as the
DP method does. Therefore, we only discuss the DP method in this paper.

observe that the DP algorithm may not lead to the correct
volume vol(G) of the conditional DAG G discussed in Sec. III.
In the following, we first briefly introduce the DP algorithm
in [15], and then we construct a counterexample to reveal
drawbacks of the DP algorithm.

Revisit of Melani’s DP Algorithm [15]. The pseudo-
code of the DP algorithm is given in Alg. 1, which has the
complexity in time quadratic in the conditional DAG’s size.

Algorithm 1: Volume computation in [15].
1 σ ← TopologicalOrder(G)
2 S (vsnk)← {vsnk}
3 for vi ∈ σ from sink to source do
4 if Succ(vi) 6= ∅ then
5 if vi is the entry of a conditional component then
6 v∗ ← argmaxvj∈Succ(vi)

C (S (vj))

7 S (vi)← {vi} ∪ S (v∗)

8 else
9 S (vi)← {vi} ∪

⋃
vj∈Succ(vi)

S (vj)

10 return C(S(vsrc))

The algorithm exploits the (reverse) topological order σ =
TopologicalOrder(G) of the conditional DAG G (Line 1),
and computes for each vertex the accumulated workload
corresponding to the portion of the graph already examined.
More precisely, for each vertex vi, Alg. 1 uses S(vi) to denote
the set of vi and vi’s descendants that achieves the maximum
workload of the subgraph D(vi) that contains vi and vi’s
descendants (as well as their associated edges). Moreover,
Alg. 1 uses C(S(vi)) to denote the total WCET of the
vertices in S(vi). For each vertex vi under analysis, Alg. 1
distinguishes the following two cases:
• If vi is the entry vertex of a conditional component, we

select the successor v∗ of vi, i.e., v∗ ∈ Succ(vi), such that v∗

achieves the maximum accumulated workload among vi’s
all successors (Line 6), and then we merge S(v∗) and vi
into the set S(vi) of vi (Line 7).

• Otherwise, the workload contributions of all successors of
vi must be merged into S(vi) (Line 9).
The following example shows that Alg. 1 cannot solve the

conditional DAG’s volume exactly, and moreover, it fails to
bring a safe upper bound of the conditional DAG’s volume.

Example 1. The conditional DAG G in Fig. 2 consists of two
conditional components. The first conditional component has
an entry vertex v3, an exit vertex v10 and regular vertices
v6 and v7. The second conditional component has an entry
vertex v2, an exit vertex v8 and regular vertices v4 and
v5. It is noting that the vertices v5 and v6 from different
conditional components point to the same regular vertex v9
that is outside the conditional components. The execution time
of v9 is 15. The execution time of v7 and v4 is 10. Other
vertices have unit execution time. According to Lines 5 to 7
of Alg. 1, for the entry vertex of a conditional component,
the branch with the maximum volume is always selected for
the further computation. Therefore, the vertex set S(v2) of the
conditional entry vertex v2 includes v2, v5, v8, v9 and v11,

and moreover, the vertex set S(v3) of the conditional entry
vertex v3 contains v3, v6, v9, v10 and v11. As shown in Line 9
of Alg. 1, the vertex sets S(v2) and S(v3) are further merged
to compute the vertex set S(v1) of the vertex v1, i.e., S(v1) =
{v1} ∪ S(v2) ∪ S(v3) = {v1, v2, v3, v5.v6, v8, v9, v10, v11},
and thus, the volume vol(G) computed by Alg. 1 equals
23. Actually, the execution flow with the maximum volume
is {v1, v2, v3, v4, v7, v8, v10, v11}, which has the volume 26.
Clearly, the volume computed by Alg. 1 is much smaller than
the actual one.

Fig. 2. The counterexample of Alg. 1.

The example above shows that the DP algorithm of [15]
cannot correctly estimate the conditional DAG’s volume, and
even cannot exhibit a safe bound for the volume. Actually,
Alg. 1 is restricted to well-nested DAGs. For non-well-nested
conditional DAGs, we prove that the volume computation
problem is strongly NP-hard as shown in the next section.

V. STRONG NP -HARDNESS

In order to show NP-hardness in the strong sense of the
volume computation problem for conditional DAG models,
we provide a reduction from the classical 3SAT problem [17]
described as follows.

INSTANCE: Given a boolean expression E in conjunctive
normal form (CNF) that is the conjunction of clauses, each of
which is the disjunction of three distinct literals.

QUESTION: Is E satisfiable?

Proposition 1 ([17]). 3SAT is strongly NP-Complete.

The reduction from 3SAT to the volume computation for a
conditional DAG G is as follows. Given an instance of 3SAT
E that is the conjunction of n clauses, i.e., E = C1 ∧ C2 ∧
· · · ∧ Cn. Each clause Ci of E is the disjunction of three
distinct literals, i.e., Ci = ci1 ∨ ci2 ∨ ci3, where each literal
cik is either a variable or the negation of a variable in the set
X of m variables {x1, · · · , xm} taking values in the boolean
set {0,1}. We construct the conditional DAG G (as shown in
Fig. 3) with the following properties.
1) A witness of the truth of the condition vol(G) ≥ n will

give a satisfying assignment for E , and vice versa.
2) The number of vertices of G and all involved values need

to be polynomially bounded in the size of E .
The first requirement above is sufficient to assert that the con-
ditional DAG’s volume computation is NP-hard. The second
requirement above is necessary to establish NP-hardness in
the strong sense.

As shown in Fig. 3, the conditional DAG G constructed in
the reduction contains the follow two parts.

The first part forks m conditional components C = {C1,
· · · , Cm} from the source vertex vsrc, and then joins all the

components of C into the vertex vmid. Each component Ci of
C has two branches Bi and B̄i, which respectively correspond
to the variable xi of X and the negation x̄i of xi.

The second part forks n conditional components C ′ =
{C′1, · · · , C′n} from vertex vmid, and then joins the components
of C ′ into the sink vertex vsnk. Each component C′i of C ′

has three branches Bi1, Bi2 and Bi3, which respectively
correspond to literals ci1, ci2 and ci3 of Ci.

For each variable xi of X , for each clause Cj of E and for
each literal cjk of Cj , if cjk = xi, we add an edge from Bi

to Bjk. If cjk = x̄i, we add an edge from B̄i to Bjk. These
edges are marked red in Fig. 3.

For each component C′i of C , we set its conditional exit
vertex with unit execution time. The other vertices of G all
have zero execution time. (See in Fig. 3)

Fig. 3. An example of the conditional DAG constructed in the reduction which
corresponds to the 3SAT instance such as E = (x1∨x2∨x3)∧(x1∨x2∨x3).

We now check the two properties from above. In the
following we first prove that the second property above is
satisfied as shown in Lem. 1.

Lemma 1. The number of vertices of G and all involved values
are polynomially bounded in the size of E .

Proof. There are 4m + 5n + 3 vertices and no more than
(4m + 5n + 3)2 edges in G. Moreover, each vertex has 0/1
execution time.

In the following we prove the first property’s satisfaction.
First we show that each assignment of X corresponds to an
execution flow E of G:
i. For each Ci of C , if xi = 1, the branch Bi of Ci is visited

in E . Otherwise, the branch B̄i of Ci is visited.
ii. For each C′j of C ′, without loss of generality, let cjk = xi

(1 ≤ k ≤ 3), which indicates that there is an edge from
Bi outside C′j to the branch Bjk inside C′j . According to
Semantic (b2), the branch Bjk of C′j is visited in E only if
Bi is visited.

Lemma 2. Cj = 1 if and only if the branch of C′j is visited.

Proof. Without loss of generality, we assume that the literal
cjk of Cj is associated with the variable xi of X , i.e., cjk = xi.
In this case, there is an edge from Bi to Bjk in G.

Sufficiency. If a branch Bjk of C′j is visited, according to
Semantic (b2), the predecessor Bi of Bjk must be visited.
According to (i) above, we know that xi = 1. Since cjk = xi,
we have Cj =

∨3
k=1 cjk is true, i.e., Cj = 1.

Necessity. If Cj = 1, and without loss of generality, we
assume that cjk = 1. Since cjk = xi, we have xi = 1.
According to (i) above, we know that Bi must be visited in E .

Moreover, according to (ii) above, we know that the branch
Bjk of C′j is visited in E . This completes the proof.

Based on Lem. 2, we show the first property’s satisfaction
in the following lemma.

Lemma 3. vol(G) ≥ n if and only if E is satisfiable.

Proof. Sufficiency. If there is an assignment of X such that
E is satisfied, i.e., each clause Cj of E is true. According to
Lem. 2, there is an execution flow E such that at least one
branch of every component C′j of C ′ is successfully visited.
From Semantic (b1), the exit vertex (with unit execution time)
of each component C′j of C ′ must be visited (exactly once) in
E . Thus, the volume of E is n.

Necessity. If E is unsatisfiable, i.e., given any assignment of
X , at least one clause Cj of E is false. According to Lem. 2,
the execution flow E cannot visit the branch of C′j , and from
Semantic (b1), the exit vertex of C′j cannot be visited in E .
Therefore, the volume of E must be less than n.

Finally, we summarize our main result in the following
theorem.

Theorem 1. The volume computation problem for conditional
DAGs is NP-hard in the strong sense.

Proof. The theorem is correct since the two properties from
above for a proper reduction are satisfied by Lem. 1 and 3.

VI. EXACT ALGORITHM

For the general conditional DAG G, we propose an exact
algorithm for its volume computation. Similar to Alg. 1, we
also use a simple dynamic program exploring the topological
order of G. The main difference is that when storing a
vertex vi, we check whether the execution of vi relies on the
execution of vertices in the portion of the graph that has not
been examined. The pseudo-code is shown in Alg. 2.

In Alg. 2, for each vertex vi, we use Ω(vi) to collect
the vertex set S that contains vi and vi’s descendants, and
moreover, all the vertices of S must be in the same execution
flow, i.e., there is an execution flow E on G such that S ⊆ E .
First, at Line 1, the topological sorting of the vertices of
G is computed and stored in the permutation σ. Then, the
permutation σ is scanned in the reverse order, i.e., from the
sink vertex vsnk to the source vertex vsrc of G (Line 2). For
each vertex vi, its associated Ω(vi) is initialized at Line 3.
There are two possibilities. If vi has no successors (e.g., vi is
the sink vertex), the vertex set containing the single vertex vi is
added into Ω(vi) (Lines 18 to 19). Otherwise, vi has (multiple)
successors (Succ(vi) 6= ∅ at Line 4), the computation of Ω(vi)
considers the following two cases.

Case 1. If vi is the entry vertex of a conditional component,
for any successor vj of vi, and for any vertex set S′ of Ω(vj)∪
{∅}, we construct the vertex set S by using S′ as shown in
Lines 8 to 10, and then add S into Ω(vi). At Line 8, the
operation “]” is denoted as follows. For any two vertex sets
S1 and S2, S1]S2 = S1 ∪S2 if there is an execution flow E
on G such that S1 ∪ S2 ⊆ E , and otherwise, S1] S2 = ∅.

Case 2. Otherwise, vi is not the entry vertex of a con-
ditional component. In this case, we construct the prod-
uct Π(Succ(vi)) as follows. Without loss of generality, let
Succ(vi) = {vj1 , · · · , vjk}, where vjl is the l-th successor
of vi (1 ≤ l ≤ k). The product Π(Succ(vi)) = Ω(vj1) ×
Ω(vj2) × · · · × Ω(vjk). For each P = (Sj1 , Sj2 , · · · , Sjk) ∈
Π(Succ(vi)) with Sjl ∈ Ω(vjl) ∪ {∅}, we compute ∪P as
Sj1 ∪ Sj2 ∪ · · · ∪ Sjk . At Lines 14 to 16, we construct the
vertex set S by using ∪P , and then add S into Ω(vi).
Algorithm 2: Exact volume computation.

1 σ ← TopologicalOrder(G)
2 for vi ∈ σ from sink to source do
3 Ω(vi) = ∅
4 if Succ(vi) 6= ∅ then
5 if vi is the entry of a conditional component then
6 for any vj ∈ Succ(vi) do
7 for any S′ ∈ Ω(vj) ∪ {∅} do
8 S ← S′] {vi}
9 if S = ∅ then

10 S ← {vi}
11 Ω(vi)← Ω(vi) ∪ {S}

12 else
13 for any P ∈ Π(Succ(vi)) do
14 S ← (∪P)] {vi}
15 if S = ∅ then
16 S ← {vi}
17 Ω(vi)← Ω(vi) ∪ {S}

18 else
19 Ω(vi)← Ω(vi) ∪ {{vi}}
20 compress Ω(vi) by Alg. 3

21 return max{C(S)|S ∈ Ω(vsrc)}

Collection Compression. For each vertex vi, its collection
Ω(vi) is compressed by Alg. 3 to remove the vertex set that
does not contribute to the maximum volume.
Algorithm 3: Compressing the collection Ω(vi).

1 for any vertex set S′ ∈ Ω(vi) do
2 if there is a vertex set S ∈ Ω(vi)− {S′} such that

A(S) ⊆ A(S′) and C(S) ≥ C(S′) then
3 remove S′ from Ω(vi)

Alg. 3 removes S′ from Ω(vi) if the condition of the if
clause at Line 2 holds. At Line 2, for any S ∈ Ω(vi), A(S)
is denoted as follows.

A(S) =
⋃

vj∈S−{vi}

Pred(vj)−D(vi) (2)

where D(vi) is the subgraph of G that contains vi and
vi’s descendants, i.e., D(vi) = Desc(vi) ∪ {vi}. Intuitively,
A(S) stores the vertices that are outside S but can affect the
execution of S. More precisely, S is successfully executed
only if all the vertices in A(S) are executed. The parameter
C(S) at Line 2 denotes the total execution time (workload)
of the vertices in S. The if condition at Line 2 indicates that
compared with S, the vertex set S′ achieves smaller workload
and is affected by more vertices in the portion of the graph

that has not been examined. Therefore, S is the candidate to
contribute to the maximum volume rather than S′, i.e., S′

should be removed.
By applying Alg. 2 on the conditional DAG G in Fig. 2,

more than one vertex set is stored in the collection Ω(v2) of
the conditional entry vertex v2, e.g., S1 = {v2, v5, v8, v9, v11}
and S2 = {v2, v4, v8, v11}. By (2), we have A(S1) = {v6, v10}
and A(S2) = {v10}. Since A(S2) ⊆ A(S1) and C(S2) <
C(S1), i.e., the condition of if at Line 2 of Alg. 3 is
violated, neither S1 nor S2 is removed from Ω(v2) after
compression. With similar reasons, the collection Ω(v3) of
v3 contains more than one vertex set after compression, e.g.,
S3 = {v3, v7, v10, v11} and S4 = {v3, v6, v9, v10, v11}. To
compute the collection Ω(v1) of v1, we construct the product
Π(Succ(v1)) as Ω(v2)×Ω(v3), and according to Lines 13 to
17 of Alg. 2, we obtain Ω(v1) including S5 = {v1, v2, v3, v4,
v7, v8, v10, v11} and S6 = {v1, v2, v3, v5, v6, v8, v9, v10, v11}.
Since A(S5) = A(S6) = ∅ and C(S5) > C(S6), i.e., the
condition of if at Line 2 of Alg. 3 holds, the collection Ω(v1)
is further compressed as Ω(v1) = {S5}. According to Line 21
of Alg. 2, the volume vol(G) is eventually computed as 26.
Clearly, our algorithms can exactly compute the conditional
DAG’s volume.

Complexity. Lem. 4 shows the complexity of Alg. 2. Before
going into details, we first introduce an useful notation below.

Definition 3 (maximum predecessor cut). For any vertex vi
of G, its predecessor cut (PC) is the set of vertices below.

Cut(vi) =
⋃

vj∈Desc(vi)

Pred(vj)−D(vi) (3)

The maximum PC of G is Cut(G) = arg maxvi∈G |Cut(vi)|.

For example, in Fig. 1, the PC of v5 is Cut(v5) = {v3, v6}.

Lemma 4. The runtime of Alg. 2 is polynomially bounded by
the vertex number n if the maximum predecessor cut Cut(G)
of G has a constant cardinality K = |Cut(G)|.

Proof. In Alg. 2, we store a collection Ω(vi) of vertex sets
for each vertex of G. According to Line 20 of Alg. 2,
the collection Ω(vi) is compressed before used for further
computation. After compression, any set S of Ω corresponds
to a unique A(S) according to Alg. 3. Moreover, since A(S)
is a subset of Cut(vi), the cardinality of Ω(vi) is bounded
by the number of subsets of Cut(vi), i.e., |Ω(vi)| ≤ 2|Cut(vi)|.
Therefore, the total number of stored vertex sets is bounded
by

∑
vi∈G 2|Cut(vi)| ≤ n2K , where K = |Cut(G)|.

Furthermore, as shown in Lines 8 to 11 and Lines 14 to 17
of Alg. 2, each stored set S is computed within polynomial
time. This completes the proof.

VII. EVALUATION

This section evaluates our algorithm using randomly gen-
erated task graphs. For each task instance, we compare the
volume V1 computed by Melani’s algorithm (Alg. 1) and the
volume V2 computed by our algorithm (Alg. 2). Moreover, we
also show the computation time of Alg. 2, where the algorithm

is coded in python 3.7, and the code runs on a PC with Intel
core i5-6300U CPU at 2.4GHz with 8G RAM.

We randomly generate conditional DAGs using TGFF tool
[18], a DAG generator developed to facilitate standardized
random benchmarks for scheduling research. More precisely,
we construct the DAG G by using the series-parallel algorithm
of TGFF described as follows. We generate a root vertex that
is connected to a set of chains of vertices4. The number of
chains and the length of each chain are in the ranges [2, 5]
and [1, 3] respectively. The chains that connect to the same
root will rejoin at an extra (end) vertex by the probability
prjn. A root vertex connected to a set of chains along with
the corresponding end vertex (if it is generated) is called a
series-parallel unit (SPU) [18].

The algorithm is performed recursively: we first generate
one SPU, and assume that G contains at most n vertices. If
the graph has less than the required number n of vertices,
one vertex inside the SPU is designated as the root of a new
SPU. This process is repeated until the graph has the requested
number n of vertices. After the DAG G generation, we
randomly set a SPU of G to be conditional by the probability
pcnd. Moreover, to make the DAG G more flexible, for any
vertex vi that is inside a conditional SPU and vi’s descendant
vj that is outside the conditional SPU, we randomly generate
the edge from vi to vj by the probability pjmp. The execution
time of each vertex is in the range [10, 100].

Fig. 4. Evaluation results for different configurations.

We conduct experiments with different combinations of
parameters in Fig. 4. The values of configurations are written
in the figure caption. For each data point, 1000 random
experiments have been run. We observe that the volumes V1
and V2 have the same trend under different configurations.
V2 is smaller than V1 since Alg. 2 eliminates the infeasible
execution flows which are incorrectly accepted by Alg. 1.

4A chain of vertices is one or more vertices that are linked together in
series to form a chain.

Alg. 1 can solve each instance within 1s, while the com-
putation time of Alg. 2 is much larger, i.e., The average
computation time of Alg. 2 is 27.7s. In some special cases,
computing the volume of a DAG with 60 vertices and 150
edges may cost more than 2000s. Nearly 92% instances in
our experiments can be solved by Alg. 2 within 2s, and we
only exhibit the computation time of these instances by using
the box plot5 of Fig. 4.

In Fig. 4(a), the gap between volumes V1 and V2 (the
volume gap for short) becomes larger as the number of vertices
increases, and so does the computation time of Alg. 2. In
Fig. 4(b), the volume gap and the computation time both
become larger as the probability pjmp increases. In Fig. 4(c),
the volume gap becomes larger, and the computation time
increases and then slightly decreases when the probability pcnd
increases. In Fig. 4(d), the volume gap and the computation
time both become larger as the probability prjn increases.

VIII. CONCLUSION

In the real-time community, many DAG models have been
proposed, but few of them consider conditional branches
and analyze the non-well-nested conditionals. In this paper,
we investigate the non-well-nested conditional DAGs, and
prove that the volume computation for conditional DAGs is
strongly NP-hard. Moreover, we propose an exact algorithm
for computing the conditional DAG’s volume. Experiments
show the effectiveness of our method.

REFERENCES

[1] A Saifullah et al. Multi-core real-time scheduling for generalized parallel
task models. RTS, 2013.

[2] J Li et al. Global EDF scheduling for parallel real-time tasks. RTS, 2015.
[3] D Ferry et al. A real-time scheduling service for parallel tasks. In RTAS,

2013.
[4] A Saifullah et al. Parallel real-time scheduling of DAGs. IEEE Trans on

PDS, 2014.
[5] S Baruah. Improved multiprocessor global schedulability analysis of

sporadic DAG task systems. In ECRTS, 2014.
[6] M Qamhieh et al. Global EDF scheduling of directed acyclic graphs on

multiprocessor systems. In RTNS, 2013.
[7] M Qamhieh et al. A stretching algorithm for parallel real-time DAG

tasks on multiprocessor systems. In RTNS, 2014.
[8] M Serrano et al. Timing characterization of OpenMP4 tasking model.

In CASES, 2015.
[9] R Vargas et al. OpenMP and timing predictability: a possible union? In

DATE, 2015.
[10] J Sun et al. Real-time scheduling and analysis of OpenMP task systems

with tied tasks. In RTSS, 2017.
[11] J Fonseca et al. A multi-DAG model for real-time parallel applications

with conditional execution. In SAC, 2015.
[12] S Baruah et al. The global EDF scheduling of systems of conditional

sporadic DAG tasks. In ECRTS, 2015.
[13] S Baruah. The federated scheduling of systems of conditional sporadic

DAG tasks. In Emsoft, 2015.
[14] A Melaniet et al. Response-time analysis of conditional DAG tasks in

multiprocessor systems. In ECRTS, 2015.
[15] A Melani et al. Schedulability analysis of conditional parallel task graphs

in multicore systems. IEEE Trans on Computers, 2017.
[16] J Sun et al. Calculating response-time bounds for openmp task systems

with conditional branches. In RTAS, 2019.
[17] S Cook. The complexity of theorem-proving procedures. In SOTC, 1971.
[18] R Dick et al. TGFF task graphs for free. In IWHC, 1998.

5In a box plot, the top and the bottom of the box respectively represent
the first and third quartiles of data. The middle line of the box represents the
median of data. The whiskers extended from the box show the range of data.

