
JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 201X 1

Intra-Task Priority Assignment in Real-Time
Scheduling of DAG Tasks on Multi-cores

Qingqiang He, Xu Jiang*, Nan Guan, Zhishan Guo

Abstract—Real-time scheduling and analysis of parallel tasks modeled as directed acyclic graphs (DAG) have been intensively studied
in recent years. However, no existing work has explored the execution order of eligible vertices within a DAG task. In this paper, we show
that this intra-task vertex execution order has a large impact on system schedulability and propose to control the execution order by
vertex-level priority assignment. We develop analysis techniques to bound the worst-case response time for the proposed scheduling
strategy and design heuristics for proper priority assignment to improve system schedulability as much as possible. We further extend the
proposed approach to the general setting of multiple recurrent DAG tasks. Experiments with both realistic parallel benchmark applications
and randomly generated workload show that our method consistently outperforms state-of-the-art methods with different task graph
structures and parameter configurations.

Index Terms—intra-task priority assignment, response time analysis, parallel real-time tasks, multi-cores

F

1 INTRODUCTION

MULTI-CORE platforms are more and more widely used
in real-time systems, to meet their rapidly increasing

requirements in performance and energy efficiency. To fully
utilize the power of multi-cores, software must be properly
parallelized. The migration from sequential software on
single-core platforms to parallel software on multi-core plat-
form poses many challenges to the real-time system design,
which make it necessary for new scheduling algorithms and
analysis techniques.

Scheduling algorithms on multi-core platforms can be
divided into two categories: static and dynamic scheduling.
In static scheduling, subtasks are statically assigned to cores
during the design phase [1], which may fundamentally
underutilize computing resources because the execution time
of some subtasks may be less than its worst-case execution
time (WCET). Dynamic scheduling can improve resource
utilization. However, it may suffer from timing anomalies
[2], [3], [4], in the sense that the response time may become
longer if the execution time of some subtasks is shorter
than its WCET. Due to timing anomalies, safe (yet usually
pessimistic) response time bound must be provided for
dynamic scheduling algorithms for real-time systems.

The classic response time bound developed by Graham
[2] was widely used in literatures [5], [6], [7]. However, this
bound assumes that the vertices which are not in the longest
path cannot execute in parallel with the vertices in the longest
path, making this bound overly pessimistic.

This paper aims at developing real-time scheduling
algorithms and analysis techniques for parallel tasks char-
acterized as directed acyclic graphs (DAG) running on a

• Q. He, N. Guan and X. Jiang are with the Department of Computing, The
Hong Kong Polytechnic University, Hong Kong.
E-mail: {qianghe, nan.guan}@polyu.edu.hk, jiangxu617@163.com.

• Z. Guo is with Department of Electrical and Computer Engineering,
University of Central Florida, USA.
E-mail: zsguo@ucf.edu.

• *Corresponding author: Xu Jiang.

Manuscript received XX XX, 201X; revised XX XX, 201X.

multi-core platform by utilizing intra-task vertex execution
order. While scheduling a parallel DAG task, it is possible
that at some time point many vertices of this task are eligible
for execution, and the number of eligible vertices is more
than the number of available cores. Existing scheduling
algorithms, such as [5], [6], [7], [8], do not specify the
execution order of these vertices in this situation (or assume
a non-deterministic execution order). Scheduling algorithms,
such as list scheduling [2], specify the scheduling order of
these vertices, but do not utilize this order information in
the analysis of its timing behavior. Some existing works
[9], [10] considered priority assignment for static scheduling
algorithms for DAGs. These priority assignment strategies
are also applicable to dynamic scheduling algorithms which
are the focus of this paper. However, their performance is
not competitive with our proposed approach (as they are
not designed for the purpose of optimizing the worst-case
response time bound), as shown by the experiment results in
Section 8.

In this paper, we show that this intra-task vertex exe-
cution order, if properly utilized, can greatly benefit the
schedulability of the task. We propose to use intra-task vertex-
level priority assignment to control their execution order. The
technical contribution of this paper can be summarized as
follows:

• By utilizing the priorities of vertices, we derive a new
response time bound for a single DAG task, which
dominates the state-of-the-art bound in [2].

• We propose an efficient algorithm with polynomial
time complexity to compute the above-mentioned
response time bound.

• We propose a priority assignment algorithm to assign
priorities to vertices, such that the response time
bound is reduced as much as possible.

• We extend our result to the real-time scheduling
of multiple recurrent DAG tasks, and give a new
schedulability test, which dominates the state-of-the-

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 201X 2

art test [6] both theoretically and empirically.

We conduct simulation experiments with both realistic
parallel benchmark applications and randomly generated
workload. Experiment results show that our method consis-
tently outperforms the state-of-the-art methods with different
task graph structures and parameter configurations.

The rest of this paper is organized as follows. Section
2 defines the DAG model for parallel tasks and gives
some definitions and prior results. Section 3 presents our
motivation and the scheduling algorithm used in this paper.
Section 4 presents our response time analysis framework
for one parallel task. Section 5 introduces the dynamic
programming algorithm to compute response time bound
and proves its correctness. Section 6 presents the priority
assignment algorithm. In Section 7, we extend our method to
the scheduling of multiple tasks. Evaluation and experiments
results are presented in Section 8. Section 9 discusses related
work and Section 10 concludes this paper.

2 PRELIMINARY

2.1 System Model

We consider a multi-core platform with M identical cores.
The parallel real-time task is modeled as a directed acyclic
graph (DAG) G = (V,E), where V is the set of vertices
and E ⊂ V × V is the set of directed edges of the graph.
Each vertex vi ∈ V represents a piece of sequential workload
with worst-case execution time (WCET) C(vi) (for brevity,
also denoted as Ci). An edge (vi, vj) ∈ E represents the
precedence relation between vi and vj , i.e., vj can only start
execution after vertex vi completes.

A vertex with no incoming (outgoing) edges is called a
source (sink). Without loss of generality, we assume that G has
exactly one source (denoted as vsrc) and one sink (denoted
as vsink). A DAG with multiple source (sink) vertices can be
easily transferred to the required form by adding dummy
vertices with zero WCET.

We distinguish a path and a complete path of a DAG.
A path λ starting from vertex π0 and ending at vertex πk
is a sequence of vertices (π0, · · · , πk) such that ∀i ∈ [0, k),
(πi, πi+1) ∈ E. We also use λ to denote the set of vertices
which are in the path λ. The length of a path λ is defined as
len(λ), i.e.,

∑
vi∈λ Ci, which is the sum of the WCET of all

vertices in this path. A complete path is a path (π0, · · · , πk)
such that π0 = vsrc and πk = vsink, i.e., a complete path is a
path starting from the single source vertex and ending at the
single sink vertex. We define a longest path to be a path with
the longest length among all paths of the DAG. The length
of the longest path of DAG G is denoted as len(G).

For any vertex set V ′ ⊂ V , we define vol(V ′) =∑
vi∈V ′ Ci. The volume of a DAG G denoted as vol(G) is

defined as vol(V), i.e.,
∑
vi∈V Ci, which is the total WCET

of all vertices of the DAG task.
If there is an edge (u, v) ∈ E, u is a predecessor of v,

and v is a successor of u. If there is a path in G from u to
v, u is an ancestor of v and v is a descendant of u. We use
pred(v), succ(v), ance(v) and desc(v) to denote the set of
predecessors, successors, ancestors and descendants of v,
respectively. These sets can be computed in linear time in the
size of DAG.

As long as the graph is a DAG, our model does not
impose other restrictions on the dependencies (edges) be-
tween vertices. If there is no dependency between vertices
in a task graph, this task has high parallelism. If there
are dependencies between vertices, this task can still have
high parallelism. Dependencies between vertices reduce
parallelism, do not invalidate our results.

1 1 1 1

2

1

3

v0 v2

v1

v3

v4 v5 v6

vol(G)=10
len(G)=7

Fig. 1: A DAG task example

Figure 1 shows a DAG task with 7 vertices. The number
inside the cycles (representing vertices) is the WCET of
vertices. We can compute vol(G) = 10 and len(G) = 7.
The longest path is (v0, v1, v4, v5, v6). v0, v6 are the single
source vertex and the single sink vertex respectively.

2.2 Runtime Behavior
At runtime, vertices of G execute at certain time points on
certain cores under the decision of a scheduling algorithm.
An execution sequence of G describes at every time point t
which vertex executes on which core.

With respect to an execution sequence, we say a vertex v
is eligible at a certain time point if all its predecessors in the
execution sequence have finished its execution and thus v
can immediately execute if there are available cores.

In an execution sequence, the start time s(v) and the finish
time f(v) of a vertex v are defined to be the time point
when vertex v starts its execution on a certain core and the
time point when vertex v finishes its execution respectively.
Without loss of generality, we assume the source vertex of G
starts execution at time 0.

We define the response time of G to be f(vsink). For a path
λ = (π0, · · · , πk), the response time of λ is defined to be
f(πk). This paper focuses on deriving a safe upper bound of
response time of G.

We use an example to illustrate concepts introduced here.
Figure 2 shows an execution sequence of the DAG in Figure
1 (v1’s WCET is 3 but only executes for 2 in this execution
sequence). At time point t = 1, vertices v1, v2, v3 are all
eligible. In this execution sequence, s(v1) = 1, f(v1) =
3, s(v2) = 3, f(v2) = 4, f(vsink) = f(v6) = 7, and the
response time of the DAG is 7.

P1

P0
time0 1 2 3 4 5 6 7

v0 v2 v4 v5 v6v3

v1

Fig. 2: An example illustrating execution sequence

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 201X 3

2.3 Work-Conserving Scheduling

Much previous work (such as [5], [6], [7], [8]) use
work-conserving scheduling algorithms. In work-conserving
scheduling, an eligible vertex must be executed if there are
available cores. For example, list scheduling [2] is an instance
of work-conserving scheduling. Our work is based on the
classic result in [2], stated in the following theorem.

Theorem 1 (Classic Bound [2]). The response time R of a DAG
task G with a constrained deadline scheduled by a work-conserving
algorithm on a platform with M cores can be bounded by:

R ≤ len(G) +
vol(G)− len(G)

M
(1)

3 METHOD OVERVIEW

3.1 Motivational Example

At runtime, it is possible that at some time point the number
of eligible vertices is larger thanM (the number of cores). The
work-conserving scheduling constraint introduced in Section
2.3 does not specify which vertices should be executed in
this circumstance. Different instances of work-conserving
scheduling may have different strategies to choose eligible
vertices for execution. The response time bound in Theorem 1
is valid for all possible instances of work-conserving schedul-
ing. Therefore, conceptually we can view the response
time bound as derived for a work-conserving scheduling
algorithm that arbitrarily chooses eligible vertices to execute
on available cores at runtime.

In the following, we will use an example to show that by
using a proper strategy to choose among eligible vertices for
execution, the response time of the DAG task can be reduced
compared with the arbitrary choice.

Suppose the DAG task G shown in Figure 3a executes
on M = 2 cores. Therefore, by Equation 1, we can compute
its response time bound of an arbitrary work-conserving
execution sequence:

len(G) +
vol(G)− len(G)

M
= 6 +

10− 6

2
= 8

There is indeed a possible scheduling sequence that
reaches this response time bound, as shown in Figure 3b. In
this scheduling sequence, each vertex executes to its WCET.
At time 1, when v0 is finished, v1, v2 and v3 are all eligible
for execution, but only two of them can start execution as
M = 2. Suppose the scheduler selects to first execute v2 and
v3, then v1 can start execution at time 3 and the whole DAG
finishes execution at time 8.

However, if the scheduler chooses to execute v1 at time 1
(and the other core is used to execute one of v2 and v3), the
response time of the DAG is 6, as shown in Figure 3c. From
this example, we can see that the choice of eligible vertices for
execution affects the actual response time. Among the three
paths from v0 to v4, the one via v1 is the longest. Intuitively,
one should prioritize vertices along the longest path for
execution in order to get a smaller response time.

3.2 Priority-Based Scheduling

Inspired by the above example, we propose to assign
priorities to the vertices and at runtime schedule the eligible

1 1

4

2

v0
v2

v4

v1

2 v3

(a) example

P1

P0
time0 1 2 3 4 5 6 7

v0 v1v2

v3

v4

8

(b) classic

P1

P0
time0 1 2 3 4 5 6 7

v0 v1

v2

v4

8

v3

(c) priority

Fig. 3: An motivational example

vertices strictly according to their priorities. Given a total
priority order of all vertices, at any time instant at runtime,
the scheduler always chooses at most M highest-priority
eligible vertices for execution.

Formally, we assign a priority p(vi) to each vertex vi of
the DAG. We say vertex vi has higher priority than vertex vj ,
if p(vi) < p(vj).

We propose prioritized list scheduling, which satisfies the
following properties:

• Work-conserving. Stated in Section 2.3.
• Preemptive. A higher-priority eligible vertex can

preempt the execution of a lower-priority one. The
preempted lower-priority vertex will resume execu-
tion later when there are available cores.

The result derived in the paper is valid for any specific
scheduling algorithm satisfying these two properties.

4 RESPONSE TIME ANALYSIS

In this section, we introduce how to derive the response
time bound of a DAG G scheduled by prioritized list
scheduling, given an arbitrary order of vertex priorities. The
only assumption we make here is that the priority order
of vertices does not conflict with the topology order of the
graph, i.e., a vertex’s priority is not higher than any of its
predecessors. There are exponentially many possible priority
assignments complying with our assumption. If a priority
assignment satisfies this assumption, we say priorities are
assigned in descending order or a priority assignment with
descending order. Later in Section 6 we will discuss how to
assign priorities such that the response time bound of G can
be reduced as much as possible.

Without loss of generality, we assume the whole DAG is
released at time 0. Similar to [6], we define the concept of
critical path.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 201X 4

Definition 1 (Critical Path). A critical path λ = (π0, · · · , πk)
of an execution sequence of a DAG task is a complete path satisfying
the following property:

∀πi ∈ λ \ {π0} : f(πi−1) = max
u∈pred(πi)

{f(u)} (2)

Notice that the critical path is not necessarily the longest
path of the DAG. The critical path depends on how the DAG
is actually scheduled, i.e., the critical path of a DAG may
be different in different execution sequences of the DAG.
For example, in Figure 2, the critical path of this execution
sequence by our definition is (v0, v2, v4, v5, v6), while the
longest path of the DAG is (v0, v1, v4, v5, v6).

Definition 2 (Interference). For a critical path λ =
(π0, · · · , πk), we say that a vertex v ∈ V interferes with vertex
πi ∈ λ if and only if vertex v executes in a time interval satisfying
both of the following conditions:

• the time interval is in [f(πi−1), f(πi)), and
• πi does not execute in this time interval.

We say a vertex v interferes with critical path λ if and only
if v interferes with a vertex πi ∈ λ.

1()if   ()if 
time

P0

P2

P1
1i  ii

Fig. 4: An example illustrating interference

For example, in Figure 4, suppose πi−1 and πi are two
vertices in the critical path. If vertex v has execution during
the grey intervals as shown in Figure 4, we say vertex v
interferes with πi (and thus interferes with this critical path).

The following lemma gives the necessary condition for a
vertex v to interfere with a vertex πi in a critical path.

Lemma 1. Given a critical path λ = (π0, · · · , πi, · · · , πk), v ∈
V \{πi}. If v interferes with πi, then the following three conditions
must all be true

• v /∈ ance(πi)
• v /∈ desc(πi)
• p(v) ≤ p(πi)

Proof. If v interferes with πi, then v has execution in the
interval [f(πi−1), f(πi)), which means f(v) > f(πi−1). If
v ∈ ance(πi), then πi−1 cannot satisfy Equation 2, which
contradicts that πi−1 is in λ. We have v /∈ ance(πi).

Again, if v interferes with πi, then v has execution in the
interval [f(πi−1), f(πi)), which means s(v) < f(πi). If v ∈
desc(πi), this fact contradicts the definition of DAG where
a descendant cannot start execution before its ancestors. We
have v /∈ desc(πi).

Also, if v interferes with πi, then v has execution in the
interval during which vertex πi does not execute. Note that
according to the definition of critical path, during the interval
[f(πi−1), f(πi)), all predecessors of πi have completed their
execution. The only reason why vertex πi cannot execute

is that all the cores are busy with vertices having priorities
higher than or equal to p(πi). We have p(v) ≤ p(πi).

Definition 3 (Interference Set). The interference set of a vertex
πi ∈ V is defined as

I(πi) = {v ∈ V \ {πi}|v /∈ ance(πi) ∧ v /∈ desc(πi)
∧ p(v) ≤ p(πi)}

The interference set of a path λ is defined as

I(λ) =
⋃
πi∈λ

I(πi)

Lemma 2. For a critical path λ, ∀v ∈ V \I(λ), v cannot interfere
with λ.

Proof. If v interferes with critical path λ, there exists a vertex
πi ∈ λ such that vertex v interferes with vertex πi. According
to Lemma 1, we have v ∈ I(πi). Subsequently, v ∈ I(λ).
The contrapositive of the lemma follows and the lemma is
true.

Definition 4. For a path λ, we define

R(λ) = len(λ) +
vol(I(λ))

M
(3)

We can think of R(λ) as the response time bound of path λ.

Theorem 2. The response time R of a DAG task with a
constrained deadline scheduled by prioritized list scheduling on a
platform with M cores can be bounded by:

R ≤ max
λ∈Π(G)

{R(λ)} (4)

where Π(G) is the set of all complete paths of the DAG G.

Proof. We define Λ(G) as the set of all critical paths of the
DAG G. For a critical path λ, according to Lemma 2, the
workload which can interfere with λ is bounded by vol(I(λ)).
And according to Definition 1 and Definition 2, when vertices
in a critical path cannot execute, all cores must be busy with
vertices in I(λ). So the response time of critical path λ is
bounded by

R(λ) = len(λ) +
vol(I(λ))

M

And the response time of the DAG task is bounded by

max
λ∈Λ(G)

{R(λ)}

It is hard to know which complete path is a critical path prior
to the completion of execution of the DAG task, and since
Λ(G) ⊂ Π(G), the theorem follows.

Our bound in Equation 4 dominates the classic bound in
Equation 1, i.e., for any DAG task G

max
λ∈Π(G)

{R(λ)} ≤ len(G) +
vol(G)− len(G)

M

In fact, let the complete path which gives our bound be
λ∗. By Definition 3, ∀λ ∈ Π(G), ∀v ∈ V , v ∈ λ ⇒ v /∈
I(λ). We have v ∈ I(λ) ⇒ v ∈ V \ λ, which means
vol(I(λ)) ≤ vol(G) − len(λ). We have max

λ∈Π(G)
{R(λ)} =

R(λ∗) ≤ len(λ∗) + vol(G)−len(λ∗)
M ≤ len(G) + vol(G)−len(G)

M

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 201X 5

5 COMPUTING RESPONSE TIME BOUND

In this section, we present how to calculate the response time
bound given by Equation 4.

It is easy to see that in a DAG, the number of paths can
be exponential in the size of the DAG. So it is impractical to
enumerate all the paths to compute the response time bound.
In this paper, we use dynamic programming to solve this
problem.

First, we define some useful notations. For a path λ =
(π0, · · · , πk), we use a tuple 〈πk, λ,R(λ)〉 that corresponds
to path λ.

For a tuple 〈u, λ,R(λ)〉, and an edge (u, v) ∈ E, a new
tuple 〈v, λ′, R(λ′)〉 can be computed, where λ′ = λ ∪ {v}.
We say that 〈u, λ,R(λ)〉 generates 〈v, λ′, R(λ′)〉, denoted by

〈u, λ,R(λ)〉 〈v, λ′, R(λ′)〉
The relation generation means if an edge between vertex

u and vertex v exists, and u is the predecessor of v, a new
tuple of v can be computed from the tuple of u.

Given two tuples 〈v, λ1, R(λ1)〉, 〈v, λ2, R(λ2)〉, we say
〈v, λ1, R(λ1)〉 dominates 〈v, λ2, R(λ2)〉, denoted by

〈v, λ1, R(λ1)〉 < 〈v, λ2, R(λ2)〉

if and only if R(λ1) ≥ R(λ2).
The relation domination means if two paths λ1 and λ2 end

at the same vertex v, if the tuple of λ1 dominates the tuple
of λ2, then the response time bound R(λ1) of λ1 is larger
than the response time bound R(λ2) of λ2. Note that the
domination between tuples of λ1 and λ2 requires that these
two paths end at the same vertex.

It is obvious that for domination, transitivity holds, i.e., if

〈v, λ1, R(λ1)〉 < 〈v, λ2, R(λ2)〉

and
〈v, λ2, R(λ2)〉 < 〈v, λ3, R(λ3)〉

then
〈v, λ1, R(λ1)〉 < 〈v, λ3, R(λ3)〉

The following lemma gives an important property con-
cerning generation and domination between tuples.

Lemma 3. Given 〈u, λ1, R(λ1)〉 〈v, λ′1, R(λ′1)〉,
〈u, λ2, R(λ2)〉 〈v, λ′2, R(λ′2)〉, and 〈u, λ1, R(λ1)〉 <
〈u, λ2, R(λ2)〉, if

I(λ1) ∩ I(v) = I(λ2) ∩ I(v)

then
〈v, λ′1, R(λ′1)〉 < 〈v, λ′2, R(λ′2)〉

Proof. We define A1 = I(λ1) ∩ I(v), and A2 = I(λ2) ∩ I(v).

I(λ1) ∩ I(v) = I(λ2) ∩ I(v)

⇒ I(v) \A2 ⊂ I(v) \A1

We have
vol(I(v) \A2)

M
≤ vol(I(v) \A1)

M

Since R(λ2) ≤ R(λ1), we have

⇒ len(λ2) +
vol(I(λ2)) + vol(I(v) \A2)

M
≤

len(λ1) +
vol(I(λ1)) + vol(I(v) \A1)

M

It is obvious that

vol(I(λ2)) + vol(I(v) \A2) = vol(I(λ2) ∪ I(v))

vol(I(λ1)) + vol(I(v) \A1) = vol(I(λ1) ∪ I(v))

We have

len(λ2) +
vol(I(λ2) ∪ I(v))

M
≤ len(λ1) +

vol(I(λ1) ∪ I(v))

M

⇒ R(λ′2) ≤ R(λ′1)

That is
〈v, λ′1, R(λ′1)〉 < 〈v, λ′2, R(λ′2)〉

We reach the conclusion.

Lemma 3 means if (1) vertex v is a successor of u, and
(2) path λ1 and λ2 end at the same vertex u, and (3) the
response time bound of λ1 is larger than the response time
bound of λ2, and (4) the interference set I(λ1) and I(λ2) has
the same vertices with the interference set of vertex v, then
the response time bound of λ′1 is larger than the response
time bound of λ′2.

Lemma 4. For a priority assignment with descending order,
given 〈u, λ1, R(λ1)〉 〈v, λ′1, R(λ′1)〉 and 〈u, λ2, R(λ2)〉
〈v, λ′2, R(λ′2)〉, if

〈u, λ1, R(λ1)〉 < 〈u, λ2, R(λ2)〉

then
〈v, λ′1, R(λ′1)〉 < 〈v, λ′2, R(λ′2)〉

Proof. We use Lemma 3 to prove this lemma. For ∀w ∈
I(λ1) ∩ I(v).
First, u ∈ ance(v)⇒ u 6∈ I(v), and since w ∈ I(v), we have

w 6= u⇒ w ∈ V \ {u}

Second, w ∈ I(λ1) ⇒ w 6∈ desc(u), because if w ∈ desc(u),
for ∀vi ∈ λ1, w ∈ desc(vi) ⇒ w 6∈ I(vi) ⇒ w 6∈ I(λ1). This
contradicts w ∈ I(λ1). So we have

w 6∈ desc(u)

Third, w ∈ I(v) ⇒ w 6∈ ance(u), because if w ∈ ance(u),
since u ∈ pred(v), we have w ∈ ance(v) ⇒ w 6∈ I(v). This
contradicts w ∈ I(v). So we have

w 6∈ ance(u)

Finally, w ∈ I(λ1) ⇒ ∃πi ∈ λ1 such that w ∈ I(πi) ⇒
p(w) ≤ p(πi). By descending order, in path λ1, p(πi) ≤ p(u).
We have

p(w) ≤ p(u)

In summary, we reach the conclusion that w ∈ I(u).
Since u ∈ λ2, we have

I(u) ⊂ I(λ2)⇒ v ∈ I(λ2)

In conclusion, for ∀w ∈ I(λ1) ∩ I(v),

w ∈ I(λ2)⇒ I(λ1) ∩ I(v) ⊂ I(λ2)

By similar reasons, we have

I(λ2) ∩ I(v) ⊂ I(λ1)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 201X 6

which means

I(λ1) ∩ I(v) = I(λ2) ∩ I(v)

By Lemma 3, the lemma follows.

Intuitively, Lemma 3, 4 state that with descending order,
if two paths λ1, λ2 end at the same vertex u, R(λ1) ≥ R(λ2),
and (u, v) is an edge, then R(λ1 ∪ {v}) ≥ R(λ2 ∪ {v}).

Definition 5. ∀v ∈ V ,

λv =

{
{vsrc} v = vsrc
λu∗ ∪ {v} v 6= vsrc

(5)

where

u∗ = arg max
u∈pred(v)

{len(λu)+C(v)+
vol(I(λu) ∪ I(v))

M
} (6)

∀v ∈ V , we define G(v) = (V ′, E′), where

V ′ = ance(v) ∪ {v}

E′ = {(u1, u2)|(u1, u2) ∈ E ∧ u1 ∈ V ′ ∧ u2 ∈ V ′}

By definition, G(v) is a subgraph of G consisting of vertex v
and its ancestors.

For brevity, let Π(v) = Π(G(v)). It is evident that
G(vsink) = G, Π(vsink) = Π(G).

The following lemma shows that λv can be used to
compute the response time bound of G.

Lemma 5. For a priority assignment with descending order, ∀v ∈
V ,

R(λv) = max
λ∈Π(v)

{R(λ)}

Proof. We prove it by induction. Let σ = (π0, · · · , πi, · · · , πn)
be a topological order of G. It is obvious that π0 = vsrc,
πn = vsink.

For i = 0, we have πi = vsrc, by Definition 5, λv = (vsrc),
Π(v) = {(vsrc)}. The lemma holds trivially.

For i 6= 0, suppose ∀j < i, the claim holds. Since σ is
a topological order, ∀u ∈ pred(πi), the claim holds. Since
λπi
∈ Π(πi), R(λπi

) ≤ max
λ∈Π(πi)

{R(λ)}.

∀λ ∈ Π(πi). Since λ is a complete path in G(πi),
∃u ∈ pred(πi) such that λ = (vsrc, · · · , u, πi). Let λ′ =
(vsrc, · · · , u). Since λ′ ∈ Π(u), by inductive assumption, we
have

R(λ′) ≤ R(λu)

So 〈u, λu, R(λu)〉 < 〈u, λ′, R(λ′)〉. Let λ1 = λu ∪ {πi}. We
have

〈u, λu, R(λu)〉 〈v, λ1, R(λ1)〉

〈u, λ′, R(λ′)〉 〈v, λ,R(λ)〉

By Lemma 4,

〈πi, λ1, R(λ1)〉 < 〈πi, λ,R(λ)〉

By Equation 6, we have

R(λπi) ≥ R(λ1)

so 〈πi, λπi
, R(λπi

)〉 < 〈πi, λ1, R(λ1)〉.
We have

〈πi, λπi , R(λπi)〉 < 〈πi, λ,R(λ)〉

which means
R(λπi

) ≥ R(λ)

We have ∀λ ∈ Π(πi),

R(λπi
) ≥ R(λ)

which means

R(λπi
) ≥ max

λ∈Π(πi)
{R(λ)}

Finally, we have R(λπi
) = max

λ∈Π(πi)
{R(λ)}. The lemma

follows.

Theorem 3. For a priority assignment with descending order,

R(λvsink
) = max

λ∈Π(G)
{R(λ)}

Proof. By Lemma 5, the theorem follows.

With Theorem 2, 3, according to Definition 5, we give the
following algorithm.

Algorithm 1 Computing response time bound

1: Input: DAG G = (V,E); every vertex vi ∈ V is with its
WCET Ci and its priority p(vi); the number of cores M

2: Output: the response time bound
3: σ ← TOPOLOGICAL ORDER(G)
4: λvsrc ← {vsrc}
5: for vi ∈ σ from vsrc to vsink do
6: if vi 6= vsrc then
7: u∗ ← arg maxu∈pred(vi){len(λu) + Ci +

vol(I(λu)∪I(vi))
M }

8: λvi ← λu∗ ∪ {vi}
9: end if

10: end for
11: return R(λvsink

)

In Algorithm 1, we first compute a topological order of
the DAG (line 3). Then, we start to compute the response
time bound of every vertex in the DAG. Due to topological
order, at every vertex vi, the response time bounds of its
predecessors must have been computed. In line 7-8, we use
Equation 5 to compute λvi . The response time bound of the
DAG is given by the response time bound of the sink vertex.
The complexity of the algorithm is O(|V |+ |E|).

6 PRIORITY ASSIGNMENT

The policy of assigning priorities is of critical importance.
Different policies can lead to very different response time
bounds. In this section, we present our priority assignment
algorithm.

Algorithm 2 Assigning priorities

1: Input: DAG G = (V,E); every vertex vi ∈ V is with its
WCET Ci

2: Output: the priority p(vi) of every vertex vi ∈ V
3: COMPUTE LENGTH(G)
4: p← 0
5: ASSIGN PRIORITY (G, p)

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 201X 7

Algorithm 3 Procedure COMPUTE LENGTH([in] G)

1: Input: DAG G = (V,E); every vertex vi ∈ V is with its
WCET Ci

2: Output: the lf(vi), lb(vi), l(vi) of every vertex vi ∈ V
3: σ ← TOPOLOGICAL ORDER(G)
4: lf(vsrc)← Csrc
5: for vi ∈ σ from vsrc to vsink do
6: if vi 6= vsrc then
7: lf(vi)← Ci + maxu∈pred(vi){lf(u)}
8: end if
9: end for

10: lb(vsink)← Csink
11: for vi ∈ σ from vsink to vsrc do
12: if vi 6= vsink then
13: lb(vi)← Ci + maxu∈succ(vi){lb(u)}
14: end if
15: end for
16: for vi ∈ V do
17: l(vi)← lf(vi) + lb(vi)− Ci
18: end for

Algorithm 4 Procedure
ASSIGN PRIORITY ([in] G, [inout] p)

1: Input: DAG G = (V,E); every vertex vi ∈ V is with its
WCET Ci and lf(vi), lb(vi), l(vi) defined in Algorithm 3;
p: the next available priority

2: Output: the priority p(vi) of every vertex vi ∈ V
3: while V 6= ∅ do
4: v ← vertex vi ∈ V which has no predecessor and is

with maximum l(vi) (ties broken arbitrarily)
5: p(v)← p; p← p+ 1; A← succ(v)
6: G←the graph obtained by removing v and its related

edges
7: while A 6= ∅ do
8: v ← vertex vi ∈ A which is with maximum l(vi)

(in case of ties, with maximum lb(vi), ties broken
arbitrarily)

9: if pred(v) 6= ∅ then
10: G′ ← the graph composed of vertices in ance(v)

and their related edges
11: ASSIGN PRIORITY (G′, p)
12: G← the graph obtained by removing vertices in

ance(v) and their related edges
13: end if
14: p(v)← p; p← p+ 1; A← succ(v)
15: G ←the graph obtained by removing v and its

related edges
16: end while
17: end while

Algorithm 2 first computes some heuristic information
in line 3 and, does priority assignment in line 5. Algorithm
3 runs a straight dynamic programming to compute the
length of the longest path through each vertex. In line 4 -
9, we traverse the DAG forward in the topological order,
computing the length of the path 1) starting from vsrc; 2)
ending at any vertex vi ∈ V ; 3) and with the maximum
length. This length is stored in lf(vi). Similarly, in line 10 -
15, we traverse the DAG backward in the reverse topological

order, computing the length of the path 1) starting from
at any vertex vi ∈ V ; 2) ending at vsink; 3) and with the
maximum length. This length is stored in lb(vi). In line 16
- 18, for each vertex vi ∈ V , we compute the length of the
path 1) with vi in this path; 2) with the maximum length.
This length is stored in l(vi).

Algorithm 4 assigns priorities to vertices recursively. The
parameter p has the direction type of inout, which means
the procedure both receives p from the caller procedure
and returns p to the caller procedure. In Algorithm 4, first,
priorities are assigned to vertices in the topological order,
which means a vertex cannot be assigned a priority until all of
its ancestors have been assigned priorities. Second, priorities
are assigned to vertices according to l(vi) as computed in
Algorithm 3, which means vertices with larger l(vi) can be
assigned with higher priorities.

The complexity of Algorithm 2 isO(|V |+|E|). We still use
the example in Figure 1 to illustrate the priority assignment
algorithm, as shown in Figure 5. In Figure 5, the l(vi) as
computed in Algorithm 2 is denoted beside the vertex, and
priorities are also labeled beside the vertex.

1 1 1 1

2

1

3

v0 v2

v1

v3

v4 v5 v6

(0) 7l v  (2) 5l v  (4) 7l v  (5) 7l v  (6) 7l v 

(3) 4l v 

(1) 7l v 

(0) 0p v 

1

2 3 4

5

6

Fig. 5: An example illustrating priority assignment

The priority assignment policy shown in Algorithm 2 has
the following properties:

• Property 1. Priorities are assigned in descending
order.

• Property 2. l(vi) is the length of the longest path
through each vertex vi.

• Property 3. One of the longest paths has the highest
priorities. Formally, there exists a path λ ∈ Π(G) such
that (len(λ) = maxλi∈Π(G){len(λi)}) ∧ (I(λ) = ∅).

Property 1 holds, because priorities are assigned in the
topological order and a vertex getting a priority at an earlier
time always gets a higher priority (i.e., the numeric value of
the priority is small).

Property 2 corresponds to our motivation shown in
Section 3.1 and acts as a heuristic for our priority assignment.
We always want to assign higher priorities to vertices in a
longer complete path. The quantity l(vi), which means the
length of the longest path through vertex vi, is a suitable
heuristic.

Property 3 holds, because when a vertex v is assigned a
priority, the next vertex vi to be selected to assign a priority
is always chosen from its successors and with the maximum
l(vi) (in Algorithm 4, line 8) unless there are predecessors of
vi which have not been assigned priorities. So there exists

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 201X 8

a longest path λ ∈ Π(G) such that ∀vi ∈ λ, I(vi) = ∅. We
have I(λ) = ∅. We mention that the heuristic of assigning
higher priorities to vertices in a longer complete path is not
formally defined, and it can be hard to achieve this heuristic
perfectly. Our algorithm only guarantees that one of the
longest paths has the highest priorities as stated in Property
3.

7 EXTENSION TO MULTIPLE DAG TASKS

In this section, we apply our scheduling algorithm and
analysis techniques to the global scheduling of multiple
DAG tasks.

We first define some notations. We consider a task set τ of
n tasks {τ1, τ2, · · · , τn}, scheduled on a multi-core platform
of M identical cores. Each DAG task τi ∈ τ is modeled
as a tuple (Gi, Di, Ti), where Di is the deadline and Ti is
the period. In the following, we only consider task set with
constraint deadlines, i.e., Di ≤ Ti.

For any global work-conserving scheduler, a schedulabil-
ity test is presented in [6]. We restate it in our notations as
follows:

Theorem 4 ([6]). For a DAG task set τ globally scheduled by
any work-conserving scheduler on a platform with M cores, a
bound Rk on the response time of a task τk can be derived by
the fixed-point iteration of the following expression, starting with
Rk = len(Gk):

Rk = len(Gk) +
vol(Gk)− len(Gk)

M
+

∑
∀i6=k I

i
k(Rk)

M
(7)

where Iik(Rk) is the upper bound of the interference of task τi to
τk during an interval of length Rk.

The result in [6] was developed for a more general DAG
model with conditional branches, but can be directly applied
to the DAG model of this paper, which is a special case of
[6]. For details of Theorem 4, please refer to [6].

In the following, we extend our method to multiple DAG
tasks. We first present the scheduling algorithm called global
prioritized list scheduling. The scheduling algorithm is with
two levels: task level and vertex level. In the task level,
the scheduling algorithm is the same as [6], which can be
any global work-conserving scheduler, such as EDF, RM. In
the vertex level, the vertices inside a task are scheduled by
prioritized list scheduling presented in this paper.

Theorem 5. For a DAG task set τ scheduled by global prioritized
list scheduling on a platform with M cores, a bound Rk on the
response time of a task τk can be derived by the fixed-point iteration
of the following expression, starting with Rk = Lk:

Rk = max
λ∈Π(Gk)

{len(λ) +
vol(I(λ))

M
}+

∑
∀i6=k I

i
k(Rk)

M
(8)

Theorem 5 is a straightforward extension of Theorem 2
and Theorem 4.

8 PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
prioritized list scheduling algorithm and response time
analysis technique. We both evaluate the performance of
scheduling one task and scheduling multiple tasks. In our

evaluation, we use both task graph models derived from
realistic OpenMP benchmark applications and randomly
generated task graphs.

8.1 Evaluation of Scheduling One Task

We first present the evaluation results with benchmark appli-
cations. The detailed information of benchmark applications
used in our evaluation is provided in Table 1.

TABLE 1: Summary of OpenMP benchmark applications

Applications Source Vertices Edges Volume
alignment bots [11] 400 399 469879
fft bots 227 304 268
fib bots 353 528 353
sort bots 130 193 4369
lu for bots 280 279 95806
lu single bots 301 435 95238
strassen bots 122 177 7890
botsspar spec2012 [12] 290 424 381683
nbody dash [13] 320 469 38113
overlap openmpmpi [14] 408 604 431
pingpong openmpmpi 408 604 424
taskbench openmpbench [15] 216 311 1272

We transform these benchmark applications into task
graphs by inserting instructions (stubs) into their source
codes. These stubs serve for two purposes: generating task
graphs and measuring the execution time of each vertex
in graphs. The methodology to generate task graphs from
the source codes is introduced in [16]. We run benchmark
applications with stubs to measure the execution time of ver-
tices on a machine with Intel i7-4770 CPU with 3.5GHZ and
8192KB cache size, 4GB RAM size. Although safe WCET of
benchmark applications cannot be obtained by this method,
these execution time values give a rough approximation
of the workload of vertices. Note that our analysis is not
directly conducted on benchmark applications, but on task
graphs obtained by transforming these benchmarks. This is
because this paper focuses on the timing behavior of parallel
tasks, not their functionalities. Our schedulability analysis is
applied to the workload models of the applications (i.e., the
task graphs) derived from their source codes, rather than to
their source codes directly.

We first compare the response time bound (denoted as
Rpriority) computed by Equation 4 and the response time
bound (denoted as Rclassic) computed in Equation 1. We
use a metric called bound ratio defined as Rpriority/Rclassic
to evaluate their performance. The result is presented in
Figure 6, where the horizontal axis is benchmarks listed in
Table 1 and the vertical axis is the bound ratio. We conduct
experiments with different core numbers and for each core
number, we compute Rpriority , Rclassic and bound ratio
of each benchmark application. Experiments show that the
response time bound of our scheduling algorithm is always
smaller than the classic bound computed in Equation 1.

Second, we compare the required core number when
changing the period of the benchmark applications. The
result is presented in Figure 7. The horizontal axis is the ratio
T/L, where T is the period of benchmark applications and
L is the length of the longest path of the DAG generated by
benchmark applications. Here, we assume implicit deadline
and use T as the deadline of the application. The vertical axis

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 201X 9

ali
gn

men
t fft fib so

rt
lu_

for

lu_
sin

gle

str
as

se
n

bo
tss

pa
r

nb
od

y

ov
erl

ap

pin
gp

on
g

tas
kb

en
ch

Benchmark Application

0.5

0.6

0.7

0.8

0.9

1
Bo

un
d

R
at

io

M=2
M=4
M=8
M=16
M=32

Fig. 6: Bound ratio with benchmark applications

is core number ratio, which is defined as Mpriority/Mclassic.
For our scheduling algorithm, we conduct a binary search to
find the minimum core number (denoted as Mpriority) such
that the response time bound is less than the deadline. We
compare it with the core number (denoted as Mclassic) com-
puted by the following equation, which is a reformulation of
Equation 1.

Mclassic ≤
⌈
vol(G)− len(G)

T − len(G)

⌉
(9)

ali
gn

men
t fft fib so

rt
lu_

for

lu_
sin

gle

str
as

se
n

bo
tss

pa
r

nb
od

y

ov
erl

ap

pin
gp

on
g

tas
kb

en
ch

Benchmark Application

0

0.2

0.4

0.6

0.8

1

C
or

e
N

um
be

r R
at

io

T/L=1.2
T/L=1.5
T/L=2
T/L=2.5

Fig. 7: Required core number with benchmark applications

Figure 7 shows that our method always outperforms the
result in Equation 9 in terms of the required core number,
especially in the case of tight deadlines. However, we also
remark that when the deadline is much larger than the length
of the longest path, the required core numbers of the two
scheduling algorithms are almost the same.

Since the benchmark applications only represent limited
types of DAG, we also evaluate our scheduling algorithm by
using randomly generated tasks. The task sets are generated
using the Erdos-Renyi method G(n, p) [17]. We still use the
bound ratio to evaluate the performance.

We conduct experiments with different p in G(n, p). The
range of p is [0.02, 0.98]. For each p, we randomly choose n
(the number of vertices in the DAG task) in [50, 250], and
randomly choose Ci (the WCET of vertices in the DAG task)
in [50, 100]. We compute Rpriority and Rclassic with core
number 2, 4, 8. Under each configuration, we conduct 500
experiments to compute the average bound ratio. The results
are presented in Figure 8. In Figure 8, since the bound ratio
is always smaller than one, our method always outperforms

0 0.2 0.4 0.6 0.8 1
p

0.8

0.85

0.9

0.95

1

Bo
un

d
R

at
io

M=2
M=4
M=8

Fig. 8: Bound ratio with random tasks

the classic bound in Equation 1. The bound ratio increases as
p increases and finally reaches 1 when p approaches 1. This
is because the larger p, the more sequential are the generated
task graphs (the more precedence constraints in the task
graph). In the extreme case, there is a precedence constraint
between any pair of vertices when p = 1, so there is no room
to adjust the intra-task vertex priority order to improve the
response time bound.

In summary, for the scheduling of one parallel task on
a multi-core platform, our proposed scheduling algorithm
consistently outperforms the classic result in Equation 1.

As we mentioned in Section 1, there are existing works on
priority assignment for static scheduling of DAGs (while this
paper focuses on dynamic scheduling of DAGs). These exist-
ing priority assignment strategies, although not designed for
our target problem, are also applicable to our problem model.
In the following, we compare the performance of priority
assignment algorithm presented in Section 6 (denoted as
OUR) with these existing priority assignment algorithms,
including

• LFET (Highest Level First with Estimated Times) [9],
• HLFNET (Highest Levels First with No Estimated

Times) [9],
• SCFET (Smallest Co-levels First with Estimated Times)

[9],
• SCFNET (Smallest Co-levels First with No Estimated

Times) [9],
• CPMISF (Critical Path/Most Immediate Successors

First) [10].

These priority assignment strategies all satisfy the property
that the generated priority order among vertices does not
conflict with their topology order, so Theorem 3 can be
applied to compute the response time bounds. The settings
in Figure 9 are the same as settings in Figure 8.

Figure 9 shows the bound ratio (with respect to Graham’s
bound without exploring the intra-task priority order) be-
tween our priority assignment strategy and the compared
existing priority assignment strategies. From the experiment
results, we can see that our priority assignment strategy
significantly outperforms all the others. In particular, some
bound ratio of the existing priority assignment strategy is
almost always 1 (i.e., they do not bring any benefit for
reducing the response time bound). The bound ratio of all
the priority assignment strategies (including ours) increases
as p increases and finally converges to 1 when p is close
to 1. As we mentioned above, this is because the larger p,
the more sequential are the generated task graphs (the more

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 201X 10

precedence constraints in the task graph), and thus the less
room to adjust the intra-task vertex priority order to improve
the response time bound.

8.2 Evaluation of Scheduling Multiple Tasks

In this section, we evaluate the performance of scheduling
multiple DAG tasks by using benchmark task set and ran-
domly generated task set. We use the metric acceptance ratio
to compare the results presented in Theorem 4 and Theorem
5 when applied to two global scheduling algorithms: EDF
and RM. In detail, Theorem 4 with global EDF (denoted
as EDF-RTA) and Theorem 5 (denoted as EDF-PRIORITY)
with global EDF are compared; Theorem 4 with global
RM (denoted as RM-RTA) and Theorem 5 with global RM
(denoted as RM-PRIORITY) are compared.

The DAG of benchmark and the randomly generated
DAG task are generated using the same method as Section
8.1. The period T (which is also the deadline) is randomly
chosen from the interval [L, 6L], where L is the length of
the longest path. And for random task sets, the range of n
and p in G(n, p) is [50, 250] and [0.02, 0.2], respectively. The
range of Ci (the WCET of vertices in DAG tasks) is [50, 100].
Benchmark applications that we use are listed in Table 1. To
generate a benchmark task set with a specific utilization, we
randomly choose benchmark applications in Table 1 until
the total utilization reaches the required value. Similarly, to
generate a random task set with a specific utilization, we
randomly generate a DAG task and add it to the task set
until the total utilization reaches the required value. For
every parameter configuration, we generate 500 task sets
to compute the average acceptance ratio. The results are
presented in Figure 10 and Figure 11. Experiments show that
with respect to acceptance ratio, our method is better than
the method presented in [6], especially for benchmark task
sets with high utilization. Note that there are differences
between the results of benchmark and random task sets. This
is because the benchmark applications usually have higher
vol(G)/len(G) than randomly generated tasks, which leads
to a smaller number of tasks in benchmark task sets.

We also conduct experiments with different p in G(n, p).
The range of p is (0, 1). For each p, we set the core number
to be 16, randomly choose n (the number of vertices in the
DAG task) in [50, 250], randomly choose Ci (the WCET of
vertices in the DAG task) in [50, 100], and randomly choose
normalized utilization in [0.1, 1] to generate task sets. Under
each configuration, we generate 1000 task sets to compute the
average acceptance ratio. The results are presented in Figure
12, which shows that with respect to acceptance ratio, our
method outperforms the method presented in [6], especially
for tasks with small p, which means these tasks have a higher
degree of parallelism.

In the following, we conduct experiments to evaluate the
effects of overhead concerning sorting vertices with different
priorities. Theoretically, our method performs better than [6].
However, our method requires a priority queue to store the
eligible vertices (while one can use FIFO queues if the intra-
task priority order is not exploited). The operations with
priority queues typically incur higher overhead than FIFO
queues. Therefore, it is possible that the benefit of our method
will fade in the presence of large extra runtime overhead

0 0.2 0.4 0.6 0.8 1
p

0

0.2

0.4

0.6

0.8

1

Ac
ce

pt
an

ce
 R

at
io

EDF-RTA
EDF-PRIORITY
RM-RTA
RM-PRIORITY

Fig. 12: Acceptance ratio with different p

incurred by the priority queues. In general, the larger extra
overhead incurred by the priority queues (relative to the
original execution time of the task graph), the less effective
is our proposed method. In the following, we discuss the
extra overhead incurred by the priority queues and conduct
experiments with different degrees of extra overheads.

The worst-case overhead for operating the priority queues
depends on the maximal number of eligible vertices at any
time point (instead of the total number of vertices of the task
graph). The maximal number of eligible vertices is bounded
by the parallelism of the task graph, which is typically much
smaller than the total number of task graphs. Therefore, we
could argue that the extra overhead incurred by using the
priority queues typically should be very small.

Nevertheless, the extra overhead incurred by the priority
queues still negatively affect the performance of our pro-
posed approach. In the following, we conduct experiments
to quantitatively evaluate the gain and loss of our approach
when the extra overhead is counted. The performance loss
of our approach depends on the ratio between the runtime
overhead and the original execution time of the task graph,
instead of the absolute value of the runtime overhead.
Therefore, we conduct experiments with changing values
of this ratio, as shown in Figure 13 (the x-axis is the ratio
between the runtime overhead and maximal execution time
among all vertices in the task graph). The experiment results
show that our proposed approach is still rather effective
when this ratio is below 10%.

9 RELATED WORK

In this section, we review closely related work on real-time
scheduling, concentrating primarily on parallel tasks.

For the response time bound of a parallel task, the classic
bound in [2] is widely used in many literatures, including
response time analysis of parallel task set, such as [6], [18]
and federated scheduling, such as [5], [19], [7]. Besides
the classic result, Ozaktas et al. [1] proposed techniques
to compute an upper bound on the stall time due to synchro-
nization. [20] proposed a timing-anomaly free scheduling
algorithm, and by simulating this algorithm, a response time
bound can be obtained. However, this algorithm requires
too much modification to the existing systems, which is
generally unacceptable. Besides, the response time bound
is obtained by simulating the scheduling algorithm, which
is not flexible and cannot be widely integrated into other
analytical techniques, such as those in [6].

For response time analysis of parallel task set, Chwa
et al. [21] proposed an RTA-based schedulability test for

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 201X 11

0 0.2 0.4 0.6 0.8 1
p

0.8

0.85

0.9

0.95

1
Bo

un
d

R
at

io

OUR
HLFET
HLFNET
SCFET
SCFNET
CPMISF

(a) M=2

0 0.2 0.4 0.6 0.8 1
p

0.8

0.85

0.9

0.95

1

Bo
un

d
R

at
io

OUR
HLFET
HLFNET
SCFET
SCFNET
CPMISF

(b) M=4

0 0.2 0.4 0.6 0.8 1
p

0.8

0.85

0.9

0.95

1

Bo
un

d
R

at
io

OUR
HLFET
HLFNET
SCFET
SCFNET
CPMISF

(c) M=8

Fig. 9: Bound ratio with random tasks

0 0.2 0.4 0.6 0.8 1
Normalized Utilization

0

0.2

0.4

0.6

0.8

1

Ac
ce

pt
an

ce
 R

at
io

EDF-RTA
EDF-PRIORITY
RM-RTA
RM-PRIORITY

(a) M=8

0 0.2 0.4 0.6 0.8 1
Normalized Utilization

0

0.2

0.4

0.6

0.8

1
Ac

ce
pt

an
ce

 R
at

io

EDF-RTA
EDF-PRIORITY
RM-RTA
RM-PRIORITY

(b) M=16

0 0.2 0.4 0.6 0.8 1
Normalized Utilization

0

0.2

0.4

0.6

0.8

1

Ac
ce

pt
an

ce
 R

at
io

EDF-RTA
EDF-PRIORITY
RM-RTA
RM-PRIORITY

(c) M=32

Fig. 10: Acceptance ratio with benchmark task sets

0 0.2 0.4 0.6 0.8 1
Normalized Utilization

0

0.2

0.4

0.6

0.8

1

Ac
ce

pt
an

ce
 R

at
io

EDF-RTA
EDF-PRIORITY
RM-RTA
RM-PRIORITY

(a) M=8

0 0.2 0.4 0.6 0.8 1
Normalized Utilization

0

0.2

0.4

0.6

0.8

1

Ac
ce

pt
an

ce
 R

at
io

EDF-RTA
EDF-PRIORITY
RM-RTA
RM-PRIORITY

(b) M=16

0 0.2 0.4 0.6 0.8 1
Normalized Utilization

0

0.2

0.4

0.6

0.8

1

Ac
ce

pt
an

ce
 R

at
io

EDF-RTA
EDF-PRIORITY
RM-RTA
RM-PRIORITY

(c) M=32

Fig. 11: Acceptance ratio with random task sets

global EDF scheduling of synchronous tasks with constrained
deadlines. Axer et al. [22] proposed an RTA-based schedu-
lability analysis for fork-join tasks with arbitrary deadlines.
Qamhieh et al. [23] proposed a schedulability test for global
EDF scheduling of DAG task set with constrained deadlines.
Maia et al. [24] proposed an RTA-based schedulability
analysis for global fixed-priority scheduling of synchronous
tasks with constrained deadlines. Melani et al. [6] proposed
an RTA-based schedulability test for the general sporadic
conditional DAG task set, and Fonseca et al. [18] improved
the schedulability test in [6] by reducing the carry-in and
carry-out interfering workload.

Besides research work from real time community, there
are plenty of techniques concerning scheduling task graphs
on multiprocessor platform. Some existing work [9], [10] con-
sidered priority assignment for static scheduling algorithms
for DAGs. These priority assignment algorithms can also

be applied to dynamic scheduling algorithms which is the
focus of this paper. However, as they are not designed for the
purpose of optimizing the worst-case response time bound,
their performance is not competitive with our proposed
approach as shown by the experiment results in Section 8.
Kwok and Ahmad proposed a static scheduling algorithm
for allocating task graphs to fully connected multiprocessor
based on the critical path of task graphs [25]. This model con-
siders communication cost and supposes processor number
is not given before scheduling, which is different from the
model discussed in this paper. Sheikh and Ahmad proposed
a task scheduling method for simultaneous optimization of
performance, energy, and temperature [26], which did not
involve techniques of statically assigning priorities to vertices
of task graph.

Plenty of parallel benchmarks are published over years.
Typical parallel applications, such as Laplace equation solver

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 201X 12

0 2 4 6 8 10 12 14 16%
Overhead

0.4

0.5

0.6

0.7

0.8

0.9
Ac

ce
pt

an
ce

 R
at

io

EDF-RTA
EDF-PRIORITY
RM-RTA
RM-PRIORITY

(a) M=8

0 2 4 6 8 10 12 14%
Overhead

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
ce

pt
an

ce
 R

at
io

EDF-RTA
EDF-PRIORITY
RM-RTA
RM-PRIORITY

(b) M=16

0 2 4 6 8 10%
Overhead

0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
ce

pt
an

ce
 R

at
io

EDF-RTA
EDF-PRIORITY
RM-RTA
RM-PRIORITY

(c) M=32

Fig. 13: Acceptance ratio with random task sets counting overheads

[27], fast Fourier transform (FFT) [28], LU-decomposition [29],
are commonly used in evaluating parallel platforms. NAS
Parallel Benchmarks [30] was developed for the performance
evaluation of highly parallel supercomputers. Its Fortran-
MPI version [31] and OpenMP version [32] are also widely
used. SPEComp [33] targets mid-size parallel servers and in-
cludes a number of science, engineering and data processing
applications. Barcelona OpenMP Task Suite (BOTS) [11] is
a task-parallel benchmark suite with the purpose of testing
different implementations of OpenMP tasks on multicore
architectures. SPEC2012 [12] includes a set of scientific and
engineering applications. The openmpmpi [14] benchmark
is a set of microbenchmarks for mixed-mode programming.
The openmpbench [15] contains a set of tests which measure
the overhead of various OpenMP constructs. Dash [13] is a
benchmark suite for hybrid dataflow and shared memory
programming models. In this paper, we collect some of these
benchmarks and transform them into task graphs to evaluate
our schedulability method.

10 CONCLUSION

In this paper, by assigning priorities to vertices of the
DAG, we derive a tighter response time bound of a parallel
task. We propose a dynamic programming algorithm to
compute this bound, and a priority assignment algorithm
to assign priorities to vertices of the DAG. Besides, we
extend our result to the scheduling of multiple DAG tasks.
Experiments with realistic benchmark applications and
randomly generated tasks show that our method consistently
outperforms the state-of-the-art methods under different
parameter configurations. In the future, we would like to
investigate the relation between efficiently computing the
response time bound derived in this paper and priority
assignment policy to provide a tighter response time bound.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable
suggestions to our work. This work is supported by the
Research Grants Council of Hong Kong (GRF 15204917
and GRF 15213818), NSF grant CNS-1850851, NSFC grant
61532007 and 61672140 and the Ministry of Education
Joint Foundation for Equipment Pre-Research under grant
6141A020333, and in the Fundamental Research Funds for
the Central Universities under grant N172304025.

REFERENCES

[1] H. Ozaktas, C. Rochange, and P. Sainrat, “Automatic wcet analysis
of real-time parallel applications,” in 13th International Workshop on
Worst-Case Execution Time Analysis, 2013, p. 11.

[2] R. L. Graham, “Bounds on multiprocessing timing anomalies,”
SIAM journal on Applied Mathematics, vol. 17, no. 2, pp. 416–429,
1969.

[3] T. Lundqvist and P. Stenstrom, “Timing anomalies in dynamically
scheduled microprocessors,” in Real-time systems symposium, 1999.
Proceedings. The 20th IEEE. IEEE, 1999, pp. 12–21.

[4] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian, J. Eisinger,
and B. Becker, “A definition and classification of timing anomalies,”
in OASIcs-OpenAccess Series in Informatics, vol. 4. Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2006.

[5] J. Li, J.-J. Chen, K. Agrawal, C. Lu, C. Gill, and A. Saifullah,
“Analysis of federated and global scheduling for parallel real-time
tasks.”

[6] A. Melani, M. Bertogna, V. Bonifaci, A. Marchetti-Spaccamela, and
G. C. Buttazzo, “Response-time analysis of conditional dag tasks in
multiprocessor systems,” in Real-Time Systems (ECRTS), 2015 27th
Euromicro Conference on. IEEE, 2015, pp. 211–221.

[7] X. Jiang, N. Guan, X. Long, and W. Yi, “Semi-federated scheduling
of parallel real-time tasks on multiprocessors,” arXiv preprint
arXiv:1705.03245, 2017.

[8] S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela, “The global
edf scheduling of systems of conditional sporadic dag tasks,” in
Real-Time Systems (ECRTS), 2015 27th Euromicro Conference on. IEEE,
2015, pp. 222–231.

[9] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allo-
cating directed task graphs to multiprocessors,” ACM Computing
Surveys (CSUR), vol. 31, no. 4, pp. 406–471, 1999.

[10] H. Kasahara and S. Narita, “Practical multiprocessor scheduling
algorithms for efficient parallel processing,” IEEE Transactions on
Computers, no. 11, pp. 1023–1029, 1984.

[11] A. Duran, X. Teruel, R. Ferrer, X. Martorell, and E. Ayguade,
“Barcelona openmp tasks suite: A set of benchmarks targeting the
exploitation of task parallelism in openmp,” in Parallel Processing,
2009. ICPP’09. International Conference on. IEEE, 2009, pp. 124–131.

[12] M. S. Müller, J. Baron, W. C. Brantley, H. Feng, D. Hackenberg,
R. Henschel, G. Jost, D. Molka, C. Parrott, J. Robichaux et al., “Spec
omp2012xan application benchmark suite for parallel systems using
openmp,” in International Workshop on OpenMP. Springer, 2012,
pp. 223–236.

[13] V. Gajinov, S. Stipić, I. Erić, O. S. Unsal, E. Ayguadé, and A. Cristal,
“Dash: a benchmark suite for hybrid dataflow and shared memory
programming models: with comparative evaluation of three hybrid
dataflow models,” in Proceedings of the 11th ACM conference on
computing frontiers. ACM, 2014, p. 4.

[14] J. M. Bull, J. P. Enright, and N. Ameer, “A microbenchmark suite for
mixed-mode openmp/mpi,” in International Workshop on OpenMP.
Springer, 2009, pp. 118–131.

[15] J. M. Bull, F. Reid, and N. McDonnell, “A microbenchmark suite
for openmp tasks,” in International Workshop on OpenMP. Springer,
2012, pp. 271–274.

[16] Y. Wang, N. Guan, J. Sun, M. Lv, Q. He, T. He, and W. Yi,
“Benchmarking openmp programs for real-time scheduling,” in
Embedded and Real-Time Computing Systems and Applications (RTCSA),
2017 IEEE 23rd International Conference on. IEEE, 2017, pp. 1–10.

JOURNAL OF LATEX CLASS FILES, VOL. XX, NO. XX, XX 201X 13

[17] D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J.-M. Vincent,
and F. Wagner, “Random graph generation for scheduling sim-
ulations,” in Proceedings of the 3rd international ICST conference
on simulation tools and techniques. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering),
2010, p. 60.

[18] J. Fonseca, G. Nelissen, and V. Nélis, “Improved response time
analysis of sporadic dag tasks for global fp scheduling,” in
Proceedings of the 25th International Conference on Real-Time Networks
and Systems. ACM, 2017, pp. 28–37.

[19] S. Baruah, “The federated scheduling of systems of conditional
sporadic dag tasks,” in Proceedings of the 12th International Conference
on Embedded Software. IEEE Press, 2015, pp. 1–10.

[20] P. Voudouris, P. Stenström, and R. Pathan, “Timing-anomaly free
dynamic scheduling of task-based parallel applications,” in Real-
Time and Embedded Technology and Applications Symposium (RTAS),
2017 IEEE. IEEE, 2017, pp. 365–376.

[21] H. S. Chwa, J. Lee, K.-M. Phan, A. Easwaran, and I. Shin, “Global
edf schedulability analysis for synchronous parallel tasks on
multicore platforms,” in Real-Time Systems (ECRTS), 2013 25th
Euromicro Conference on. IEEE, 2013, pp. 25–34.

[22] P. Axer, S. Quinton, M. Neukirchner, R. Ernst, B. Döbel, and
H. Härtig, “Response-time analysis of parallel fork-join workloads
with real-time constraints,” in Real-Time Systems (ECRTS), 2013 25th
Euromicro Conference on. IEEE, 2013, pp. 215–224.

[23] M. Qamhieh, F. Fauberteau, L. George, and S. Midonnet, “Global
edf scheduling of directed acyclic graphs on multiprocessor sys-
tems,” in Proceedings of the 21st International conference on Real-Time
Networks and Systems. ACM, 2013, pp. 287–296.

[24] C. Maia, M. Bertogna, L. Nogueira, and L. M. Pinho, “Response-
time analysis of synchronous parallel tasks in multiprocessor
systems,” in Proceedings of the 22Nd International Conference on Real-
Time Networks and Systems. ACM, 2014, p. 3.

[25] Y.-K. Kwok and I. Ahmad, “Dynamic critical-path scheduling: An
effective technique for allocating task graphs to multiprocessors,”
IEEE transactions on parallel and distributed systems, vol. 7, no. 5, pp.
506–521, 1996.

[26] H. F. Sheikh and I. Ahmad, “Dynamic task graph scheduling on
multicore processors for performance, energy, and temperature
optimization,” in Green Computing Conference (IGCC), 2013 Interna-
tional. IEEE, 2013, pp. 1–6.

[27] M.-Y. Wu and D. D. Gajski, “Hypertool: A programming aid
for message-passing systems,” IEEE transactions on parallel and
distributed systems, vol. 1, no. 3, pp. 330–343, 1990.

[28] V. A. Almeida, I. Vasconcelos, J. N. C. Arabe, and D. A. Menascé,
“Using random task graphs to investigate the potential benefits of
heterogeneity in parallel systems,” in Supercomputing’92: Proceedings
of the 1992 ACM/IEEE Conference on Supercomputing. IEEE, 1992,
pp. 683–691.

[29] R. E. Lord, J. Kowalik, and S. Kumar, “Solving linear algebraic
equations on an mimd computer,” Journal of the ACM (JACM),
vol. 30, no. 1, pp. 103–117, 1983.

[30] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter,
L. Dagum, R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S.
Schreiber et al., “The nas parallel benchmarks summary and
preliminary results,” in Supercomputing’91: Proceedings of the 1991
ACM/IEEE conference on Supercomputing. IEEE, 1991, pp. 158–165.

[31] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and
M. Yarrow, “The nas parallel benchmarks 2.0,” Technical Report
NAS-95-020, NASA Ames Research Center, Tech. Rep., 1995.

[32] H.-Q. Jin, M. Frumkin, and J. Yan, “The openmp implementation
of nas parallel benchmarks and its performance,” 1999.

[33] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones,
and B. Parady, “Specomp: A new benchmark suite for measuring
parallel computer performance,” in International Workshop on
OpenMP Applications and Tools. Springer, 2001, pp. 1–10.

Qingqiang He received the BS degree in com-
puter science and technology from Northeastern
University, China, in 2014, and the MS degree in
computer software and theory from Northeastern
University, China, in 2017. Now he is a PhD
student in Hong Kong Polytechnic University.
His research interests include embedded real-
time system, real-time scheduling theory, and
distributed ledger.

Xu Jiang received his BS degree in computer
science from Northwestern Polytechnical Univer-
sity, China in 2009, the MS degree in computer
architecture from Graduate School of the Second
Research Institute of China Aerospace Science
and Industry Corporation, China in 2012, and
the PhD degree in computer architecture from
Beihang University, China in 2018. His research
interests include real-time systems, parallel and
distributed systems and embedded systems.

Nan Guan is currently an assistant professor at
the Department of Computing, The Hong Kong
Polytechnic University. Dr Guan received his BE
and MS from Northeastern University, China in
2003 and 2006 respectively, and a PhD from Up-
psala University, Sweden in 2013. Before joining
PolyU in 2015, he worked as a faculty member
in Northeastern University, China. His research
interests include real-time embedded systems
and cyber-physical systems. He received the
EDAA Outstanding Dissertation Award in 2014,

the Best Paper Award of IEEE Real-time Systems Symposium (RTSS) in
2009, the Best Paper Award of Conference on Design Automation and
Test in Europe (DATE) in 2013.

Zhishan Guo is an assistant professor in the De-
partment of Electrical and Computer Engineering
at the University of Central Florida. He received
his Ph.D. degree from the University of North
Carolina at Chapel Hill in 2016. His research and
teaching interests include real-time scheduling,
machine learning, and their applications in cyber-
physical systems.

