See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/320013901

Multi-Party Sparse Discriminant Learning

Conference Paper - November 2017

DOI: 10.1109/ICDM.2017.86

CITATIONS
3

6 authors, including:

Jiang Bian
Missouri University of Science and Technology

11 PUBLICATIONS 22 CITATIONS

SEE PROFILE

Wei Cheng
University of North Carolina at Chapel Hill

56 PUBLICATIONS 630 CITATIONS

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot Diffusion processes and asymptotic analysis of PDEs. View project

ot Discriminant Learning for Human Behavior Understanding View project

All content following this page was uploaded by Haoyi Xiong on 25 September 2017.

The user has requested enhancement of the downloaded file.

READS
198

Haoyi Xiong
Baidu Online Network Technology

93 PUBLICATIONS 1,425 CITATIONS

SEE PROFILE

Yanjie Fu
Missouri University of Science and Technology

73 PUBLICATIONS 1,067 CITATIONS

SEE PROFILE

ResearchGate

https://www.researchgate.net/publication/320013901_Multi-Party_Sparse_Discriminant_Learning?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/320013901_Multi-Party_Sparse_Discriminant_Learning?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Diffusion-processes-and-asymptotic-analysis-of-PDEs?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Discriminant-Learning-for-Human-Behavior-Understanding?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jiang_Bian8?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jiang_Bian8?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Missouri_University_of_Science_and_Technology?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jiang_Bian8?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haoyi_Xiong?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haoyi_Xiong?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Baidu_Online_Network_Technology?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haoyi_Xiong?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei_Cheng31?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei_Cheng31?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_North_Carolina_at_Chapel_Hill?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Wei_Cheng31?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yanjie_Fu?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yanjie_Fu?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Missouri_University_of_Science_and_Technology?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yanjie_Fu?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Haoyi_Xiong?enrichId=rgreq-bf775a3c41bad501d436e14d1be5daf1-XXX&enrichSource=Y292ZXJQYWdlOzMyMDAxMzkwMTtBUzo1NDIyOTcxODQyNjAwOTZAMTUwNjMwNTEzMjM1NQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Multi-Party Sparse Discriminant Learning

Jiang Bian!, Haoyi Xiong!*, Wei Cheng?, Yanjie Fu!, Wenqing Hu'! and Zhishan Guo'!
"Missouri University Science and Technology, USA, 2NEC Laboratories America, USA

Abstract—Sparse Discriminant Analysis (SDA) has been widely
used to improve the performance of classical Fisher’s Linear
Discriminant Analysis in supervised metric learning, feature se-
lection and classification. With the increasing needs of distributed
data collection, storage and processing, enabling the Sparse
Discriminant Learning to embrace the Multi-Party distributed
computing environments becomes an emerging research topic.
This paper proposes a novel Multi-Party SDA algorithm, which
can learn SDA models effectively without sharing any raw data
and basic statistics among machines. The proposed algorithm 1)
leverages the direct estimation of SDA [1] to derive a distributed
loss function for the discriminant learning, 2) parameterizes
the distributed loss function with local/global estimates through
bootstrapping, and 3) approximates a global estimation of linear
discriminant projection vector by optimizing the “distributed
bootstrapping loss function” with gossip-based stochastic gradi-
ent descent. Experimental results on both synthetic and real-
world benchmark datasets show that our algorithm can compete
with the centralized SDA with similar performance, and signifi-
cantly outperforms the most recent distributed SDA [2] in terms
of accuracy and F1-score.

I. INTRODUCTION

The Fisher’s Linear Discriminant Analysis (LDA) [3] is
widely used in supervised learning and feature extraction. Given
a set of training data, LDA can find the optimal discriminant
projection that can project the high-dimensional data points
to low dimensional space, and achieve optimal classification
performances by minimizing the overlaps between difference
classes in the low-dimensional space. To further improve the
performances of LDA, Sparse Discriminant Analysis (SDA) [1]
has been proposed to “recover” discriminant projection with
sparsity pursuit. While a wide range of methods [1], [4]-[6]
have been proposed, Cai et al. [1] studied a direct estimator
that can estimate SDA straightforwardly from labeled data with
provable guarantee in asymptotic property and classification
accuracy.

On the other hand, with the increasing needs of distributed
data collection, storage and processing, Multi-Party comput-
ing [7] becomes an emerging computing paradigm that enables
big data applications in a privacy-preserved manner. In a multi-
party computing platform with no “raw data sharing” allowed,
a machine learning model should be trained using all data
stored in distributed machines (i.e., parties) without any cross-
machine raw data sharing. Generally speaking, such multi-party
distributed machine learning algorithms can be divided into two
categories — data-centric and model-centric methods [8]-[11].
On each machine, the data centric algorithm first estimates the
same set of parameters (of the model) using the local data,
then aggregates the estimated parameters via model-averaging
for global estimation. The model with aggregated parameters

is considered as the trained model based on the overall data
(from multiple parties). Meanwhile, model-centric algorithms
require multiple machines to share the same loss function with
“updatable parameters”, and allow each machine to update the
parameters in the loss function using the local data so as to
minimize the loss. Compared with the data-centric, the model-
centric methods usually can achieve better performances, as
it minimizes the risk of the model [8], [11]. To advance the
distributed performance of classical SDA, recently, Tian and Gu
et al. [2] proposed a data-centric SDA algorithm. However, in
literature, few researches have been carried out on the model-
centric counterpart for SDA, which intuitively may receive
better performance.

To fill the gap, we are motivated to propose a novel model-
centric SDA learning algorithm for multi-party discriminant
learning. In this paper, we propose Multi-Party SDA (namely
MPSDA) that enables the direct estimation of SDA [1] to
embrace the multi-party computing environment for sparse
discriminant learning. Specifically, MPSDA first allocates the
mean and covariance matrix estimation tasks to each machine
and allows each machine to estimate its local mean vectors
and covariance matrices based on the local data. Then, MPSDA
estimates the global mean over all the data using the local
means via the gossip-based stochastic gradient descent. Further,
MPSDA proposes a distributed bootstrapping loss function
and model the loss function using the global mean and local
covariance matrices. Finally, a gossip-based stochastic gradient
descent algorithm is employed to minimize the distributed
bootstrapping loss function and estimate the global discriminant
projection vector. Compared with the approach in [1], which
aggregates all data on a single machine to learn the model,
MPSDA can effectively approximate to the optimal solution
without sharing any raw data. Compared with [2], which
aggregates the locally learned models through model-averaging
and hard-thresholding, MPSDA models and minimizes a
distributed loss function based on SDA, parameterized with
global/local estimates, straightforwardly.

The contributions of the proposed MPSDA algorithm are as
follows:

o We study and formulate the problem of sparse discriminant
learning on the top of multi-party computing platform,
while assuming the raw data distributed on machines
(parties) are not sharable. To the best of our knowledge,
this is the first study on sparse discriminant analysis, by
addressing 1) multi-party computing platform without
sharing raw data, 2) model-centric learning with shared
loss function, and 3) distributed optimization issues.
Note that Multi-Party computing settings [12], usually

leverage the secured communication and computation
to keep the local data, on each party, private, while our
work assumes the local raw data and basic statistics (on
each machine) are not accessible by others. Thus we do
not make further assumption on cryptography issue.

o To achieve the above goals, we design the MPSDA
algorithm which leverages the direct estimation of SDA
to derive a distributed loss function of the discriminant
learning, parameterizes the distributed loss function with
local/global estimates through bootstrapping, and approxi-
mates a global estimation of linear discriminant projection
vector by optimizing the “distributed bootstrapping loss
function”.

o We evaluate MPSDA on both pseudo-random simulation
and real-world benchmark datasets for binary classification.
The results show that MPSDA can compete with the cen-
tralized SDA with similar performances, and significantly
outperform the state-of-the-art distributed SDA [2].

The rest of the paper is organized as follows. In Section
II, we review Fisher’s Linear Discriminant Analysis and
present the details of MPSDA algorithm. In Section III, we
evaluate the proposed algorithms on synthetic datasets and
benchmark datasets. In addition, we compare MPSDA with
baseline centralized algorithms. Finally, we conclude the paper
in Section IV.

II. MODELS AND PROPOSED ALGORITHMS

In this section, we present the algorithm design of MPSDA,
where we first review the model of Fisher’s Linear Discriminant
Analysis, then we cover the key algorithms used in MPSDA.

A. Model Overview: Fisher’s Linear Discriminant Analysis

Linear Discriminant Analysis (LDA), which leverages a
linear combination of features that characterize or separate two
or more classes of objects or events. LDA has been shown
to perform well and enjoy certain optimality as the sample
size tends to infinity while the dimension is fixed [1]. Given
the LDA classifier ¢)r(Z) based on the given p-dimensional
data vector Z that is drawn from one of two distributions
N(uy,2) and N (p—,) with equal prior probabilities, the
binary classification problem can be solved by

Yr(Z) = sign{(Z —) O(uy — uf)}7

where p = (py +p—)/2; © = X1 is the inverse covariance
matrix; p4 and p_ are the mean vectors of the positive samples
and negative samples respectively; ¢¥r(Z) classifies Z into
positive class if and only if ¥ r(Z) = 1. In practice, pi4, p—
and © are unknown, we need to estimate p4, ¢— and © from
observations. Specifically, we assume the data Z is randomly
drawn from N (p4, %) and N (p—, %) with equal priors.

A simple way to estimate py, u— and © is to use their
sample estimator: ji, i, © = 7!, where ¥ is pooled sample
covariance matrix estimatlon [13] with respect to the two
classes. Note that, under the High Dimensional Low Sample
Size (HDLSS) settings, ¥ is often singular [14] and ©~!

ey

usually does not exist [15]. Thus, to train LDA, researchers [1],
[5] proposed to estimate the linear discriminate projection
vector § = ©O(uy —p—), instead of estimating © and py — pu—
separately.

B. The Three-Stage Algorithm for MPSDA Training

To facilitate ©(uy — p—) estimation under the Multi-
Party computing settings which have been defined previously,
MPSDA first estimates the projection vector S* that approx-
imates O(u4 — p—) over Gossip-based stochastic gradient
descent, so as to avoid the singularity issue of the sample
covariance matrix. Then, for any new data vector Z arriving
at any machine, MPSDA outputs the classification result (i.e.,
+1) as the computing result of sign ((Z — ﬁ)TB*

1) Stage I — Global Mean Estimation: Given the local
training samples 7% 7 and 77 on each machine j, MPSDA first
estimates the local mean vectors ji?, ji’, ’ and i’ Then MPSDA
randomly picks up a starting machine (e.g., the ;" machine)
and sends (0, 0, 0, 1) to the Algorithm. 1 on the machine, where
0 refers to a p-dimensional vector with all zero elements and
1 refers to the first update of the algorithm. Algorithm. 1 is a
gossip-based stochastic gradient decent algorithm that intends
to approximate the global means using the estimators listed in
Eq. 2.

fargmm*zm .
peRtxp 1M

2)

SO as to iy, fi—. Specifically, the Algorithm. 1 first receives
the input mean vectors (initialed as O in the first run), then
it updates the input mean vectors using the local means,
and randomly picks up the next machine and sends the
updated mean vectors for further updating. Algorithm. 1
keeps picking up the next machine for the updating, until
(1) the total number of updates ¢ exceeds the maximal
number of updates, or (2) the updating process converges (i.e.,
ﬁJr) ﬁ, - /j7 < Amanﬁ)
Once the updatlng process conciopletes Algonthm 1 broadcasts
all m machines with the final global mean estimations [z, fi
and i for Algorithm. 2 computation. Note that the notation
V|ji — ji | refers to the gradient of function |fi — ji’ |, over
71 and can be implemented as:

maa:{|u ,uJ’

sign((i— i)x)s if [(7 — @)
is the maximal for 1 <k <p

(Vi =), =
0, else
3)
where (), refers to the k" element in the input vector.

2) Stage Il — Local Covariance Matrix Estimation: Given
the global mean vectors fi4 and ji_, MPSDA runs Algorithm. 2
in parallel on each machine without any inter-machine commu-
nication requirement. Specifically, this stage first estimates the
sample covariance matrix Y’ using the global mean vectors.
Then, to handle the High-Dimensional Low Sample Size
settings, the algorithm leverages the de-sparsified Graphical
Lasso estimator [16] (D7) to improve the estimation of inverse

Algorithm 1: Global Mean Vectors Estimation Algo-

Algorithm 2: Local Covariance Matrix Estimation

rithm on ;" machine (with Global Mean) on the j** Machine
Data: Data:
i’ u+, and p — the local mean vectors based on training T? — training sample on j = 1,2, ..., m machine
samples on j** machine Input
Parameter: u+ — global positive mean vector
n — step size ji— — global negative mean vector

A ez — maximumly allowed perturbation
tmaz — maximum number of allowed updates
begin
/* On receiving the message from the previous
machine x/

RECEIVE (i, iy, fi—, t)

/* Updating mean vectors on the jth machine x/

frepp—n-VIi— e

~ ~ PN _j

Bt 4 Hp =0 Vi — @ oo

—~ ~ ~ _3

f - —n- V|- — il [

t—t+1

/* Checking convergence conditions x/
_ S5l I = 5 =7

A=mae{|f-| ., [Ar - B |- - L

if A > Anmaz AND t < tq. then
/* Not converged, continuing the algorithm */

JInext < Draw a random number from 1 to m;
SEND (fi, i+, [i—,t) to the 55" , machine;

else
/+ Converged, sharing the estimates to all
machines */

BROADCAST (i, fi+, i—) to All machines;

end

end

covariance matrix. Fmally, matrix inverse is used to estimate
the covariance matrix %7 on the 5" machine.

3) Stage Il — Sparse Discriminant Projection Vector Esti-
mation: Given the local covariance matrix ¥ on each machine
j and the global mean vectors fii, fi—, this stage intends
to approximate the global estimation of 5* via gossip-based
stochastic gradient decent. Specifically, MPSDA randomly picks
up a starting machine (e.g., the j** machine) and sends (0, 1) to
Algorithm. 3 on the machine, where 0 refers to a p-dimensional
vector with all zero elements and 1 refers to the first update of
the algorithm. Algorithm. 3 indeed minimizes the following loss
function over the m machines through gossip-based stochastic
gradient decent:

B argmin M-8l + - S [$6 - (1 —A)|_ . @)

BERP nzj:1 0o
where A is a regularization parameter. Specifically, Algorithm. 2
first receives the input ,8* for updating (initialed as O in the
first run), then it updates the inputed S* vector using $7 and
nali_, and randomly picks up the next machine and sends the
updated 3* for further updating. Algorithm. 2 keeps picking
up the next machine for the updating, until (1) the times of
updates ¢ exceeds the maximal number of updates, or (2)
the updating process converges. Once the updating process
completes, Algorithm. 3 broadcasts all m machines with the
final global estimation of 3*. To this end, each machine already
receives 8* and [1 as the trained SDA model. Note that in
Algorithm. 1, the parameter settings are t,,q, = 105, n = 1072
and A,,;;, = 1078, In Algorithm. 3, the parameter settings are

Aglasso — Graphical Lasso regularization parameter

Output:

%7, — the local covariance matrix (with global mean) on the jth
machine

begin
/* Sample covariance matrix estimation */
I J ~ J n
¥+ = (T+ - M+)(T M+)
R s)(T7 —fin)”
— 2(2] + E])
/* Precision matrix estimation through Graphical
Lasso [17] */
©7 « glasso(¥X7)
/* De-sparsify precision matrix x/
D (200 - 07599)
/* Obtain the de-sparsified covariance matrix x/
S (D)
/% Continuing on next machine */
end

tmaz = 104, 7 = 107% and A,,;, = 10~*. The experiments
follow these key parameter settings as well.

C. Remark on the Algorithm

Suppose the size of training set on each machine n is
sufficiently large and all these samples are drawn i.i.d. from
Gaussian distributions N(p4, %) and N(u_,X). We can
assume that the local sample covariance matrix %7 estimated
from local raw data on each (the jth) machine should follow
an inverse wishart distribution W~1(X, v(n)), where v(n) is a
function on n for the degree of freedom. With infinite number
of machines m — oo and infinite number of gossip message
passing (i.e., ¢ — 00), the algorithm can converge to the
minimum of R(3) (as the loss function R is convex [1]),
where

R(8) = Eg oy 10y (A 181 + S8 = (e = 7-)|).

(&)
According to the definition of Bayes estimator [18] and
KKT conditions, R(3) indeed approximates the following loss
function,

argmin{ﬂh st)E8 — (Hg — =) oo < 5}, (6)
BeRp

through sampling the Wishart Distribution, where ¥ refers to
the (unknown) true covariance matrix and fiy, ji_ refer to the
estimated mean vectors. Note that the solution Eq. 6 is actually
the Direct Estimator of Sparse LDA proposed by Cat et al. [1].

III. EXPERIMENT

In this section, we use both synthetic data and real-world data
to evaluate the performance of MPSDA algorithm. Specifically,

Algorithm 3: 3* Estimation on the j** machine

Data:

37 — the local covariance matrix on the j** machine

Parameter:

7 — step size

Apin — minimum allowed perturbation

tmaz — maximum number of allowed updates

A — regularization parameter

begin

/* On receiving the message from the previous
machine */

RECEIVE (5%, t)

/+ Selecting the k'™ row of vector (89B* — (iy — 7))

with the maximal absolute value x/
k + argmazx ‘ (EJ,B* — (g+ — ﬁ_)>
1<k’<p k!
/* Updating each row of 3% on the jth machine x/
/ T
B« (0,0,...,0)
/* initializing B with a p-dimensional 0 vector */

foreach 1 <[<p do
/* Note: 7%l is the scaler on the k*® row and
the I*" column of the matrix 57 %/

g1+ sign(Bi) - A+ sign(T*B" — (s —p-)) - M
/% Update each row of local B based on B* */

’ ¢ .
By« B —n- g
end
t+—t+1
/* Checking convergence conditions */
A= B -p
/* Update E* after calculating the A */
B+ B
if A > Az AND t < ta. then
/* Not converged, continuing the algorithm */

Jnest < Draw a random number from 1 to m;
SEND (5*,1) to the j%",, machine;

else
/* Converged, sharing the estimates to all
machines */

BROADCAST B* to All machines;

end

end

we compare our algorithm with distributed SDA algorithm and
centralized SDA algorithm. For centralized SDA, all samples
are collected on one machine based on the algorithm proposed
by [1]. For distributed SDA, we adopt the algorithm proposed
by [2] which estimate the global estimator by aggregating local
unbiased estimators through averaging with hard threshold.

A. Synthetic Data Experiments

Experiment Setup: To validate our algorithm, we evaluate
our algorithm on a synthesized dataset, which are obtained
through a pseudo-random simulation. The synthetic data are
generated by two predefined Gaussian distributions N (1%, X*)
and N (p*,X*) with equal priors. The settings of %, pu*
and X* are as follows: X* is a p X p symmetric and positive-
definite matrix, where p = 200, each element ¥ ; = 0.8li=dl,
1<i<pand1<j<p. p} and pu* are both p-dimensional
vectors, where p% = (1,1,...,1,0,0,...,0)" (the first 10
elements are all 1’s, while the rest p — 10 elements are 0’s)
and p* = 0. While noting that the number of samples from

two Gaussian distributions are equal on each machine.(Settings
of the two Gaussian distributions first appear in [2].) In order
to evaluate the performance of algorithms for comparison,
we obtain the accuracy, Fl-score, ROC curve and AUC from
the classification results. Specifically, accuracy and F1-score
are calculated by maximizing the accuracy/F1-score across all
possible cutoffs in ROC curve and AUC stands for the area
under the ROC curve. Usually, a higher AUC means the model
has a better fit on the datasets.

We report the best results based on fine-tuned parameters
for all methods. Also we fix the testing samples at 400 for all
the following experiments.

Setting 1 - Fix the total training sample size and vary the
number of machines: To investigate the effect of number of
machines m, we fix the total training sample size N = 20000
and vary the number of machines. Figure 1 shows how the
accuracy, Fl-score and AUC of MPSDA, centralized SDA and
distributed SDA change as the number of machine grows. For
each m, we repeat each algorithm for 10 times and report
the average value. From Figure 1, we can find that MPSDA
algorithm outperforms distributed SDA algorithm on accuracy,
Fl-score and AUC. It is unsurprising that centralized SDA
outperforms both MPSDA and distributed SDA on accuracy,
F1-score and AUC.

Setting 2 — Fix the training sample size on each machine
and vary the number of machines: We alter the settings
to evaluate the effect of averaging. We increase the number
of machines m linearly as the total training sample size N,
that is, the sample size on each machine n is fixed. More
specifically, we choose n = 400. Fig. 2 displays the accuracy,
Fl-score and AUC of the three algorithms. The result shows
that the performance of MPSDA still outperforms distributed
SDA algorithm on accuracy, Fl-score and AUC. Similarly,
centralized SDA outperforms both MPSDA and distributed
SDA algorithm. We notice that the performance of MPSDA
is close to the performance (accuracy, Fl-score and AUC) of
centralized SDA when the number of machines is equal to or
less than 20. The same situation occurs when the number of
machines is equal to or greater than 100.

Summary: In synthetic data experiments, we compare the
performance of MPSDA with distributed SDA and centralized
SDA in two settings. At most circumstance, centralized SDA
has the best performance compared to other two algorithms.
Typically, the performance of MPSDA can approach the perfor-
mance of centralized SDA in Setting 2 with the sample size on
each machine increased (= 100) or stayed relatively low (< 20).
Note that, in both settings, MPSDA outperforms distributed
SDA significantly. The Receiver Operating Characteristic
(ROC) of both settings are also attached in Fig. 1 and Fig. 2,
respectively, which further validate our findings.

B. Benchmark Data Experiments

Experiment Setup: To verify the effectiveness of MPSDA
algorithm on real datasets, we use Phishing datasets [19] to
conduct the comparison. Specifically, we set the size of total
training samples varied from 200 to 2000 with 400 testing

0.9 0.9 1 1
0.85 e 085 % e S
e e JE 9 . 08
o8] ——0 __— " 08 " Z0s ;Q\“ =
Z Te- ——— o . O B e T ° 8 b P e % 0.6
g -- S g 2 RN . 20
3 0.75 3075 2os 2
< L 5 204
0.7 0.7 2 S
o]
-=-MPSDA ~=~MPSDA © 0.7 - MPSDA . 02 - —MPSDA
0.65 -+ SDA(Centralized) 0.65 —~SDA(Centralized) g — 4 - SDA(Centralized) i s — SDA(Centralized)
o SDA(Distributed) —o--SDA(Distributed) — o~ SDA(Distributed) 7 — SDA(Distributed)
0.6 0.6 06 0k
20 40 60 80 100 20 40 60 80 10020 40 60 80 100 0 02 04 06 08 1

Number of Machines

Number of Machines

Number of Machines

False Positive Rate

Fig. 1: Performance Comparison among MPSDA, SDA(Centralized) and SDA(Distributed) on synthetic datasets. We compare
the Accuracy, F1-Score, AUC and ROC curve of each algorithm when the total training sample size is fixed as 20000.
(Note that the ROC curve is drawn when the number of machines is 100)

0.9 0.9 1 1
085[e D o 0BSF e DI _— g 08
. W <09~ T TR S e
038 08 e i TT—— e — ' &
e e @ mmmm—mm o= s T T
R R e
3075 ?0.75 Los g
O ol =
< L 5 204
07 07 2]
5 =
—=— MPSDA —=— MPSDA 507 —=— MPSDA 02 . —— MPSDA
0.65 — - SDA(Centralized) 0.65 - +--SDA(Centralized) | % - -+ - SDA(Centralized)) - —— SDA(Centralized)
- - - SDA(Distributed) ~-o-- SDA(Distributed) — - SDA(Distributed) o —— SDA(Distributed)
0.6 0.6 06 0
20 40 60 80 10C 20 40 60 80 10C 20 40 60 80 10¢ 0 0.2 0.4 0.6 0.8 1

Number of Machines Number of Machines

Number of Machines False Positive Rate

Fig. 2: Performance Comparison among MPSDA, SDA(Centralized) and SDA(Distributed) on synthetic datasets. We compare
the Accuracy, F1-Score, AUC and ROC curve of each algorithm when the training sample size on each machine is set as
400. (Note that the ROC curve is drawn when the number of machines is 100)

TABLE I: Accuracy Comparison among MPSDA, SDA(Centralized) and SDA(Distributed) on Phishing Datasets. Noting that,
MPSDA’ values are bold since it outperforms SDA (distributed).

Total Training Set Size

Algorithm 200 400 600 800 1000 1200 1400 1600 1800 2000
Distributed Algorithm (number of machines, m = 4)
MPSDA 0.91840.001 0.918+0.001 0.918-+0.000 0.918+0.000 0.919+0.002 0.918+0.000 0.918+0.000 0.918+0.002 0.918-+0.000 0.918+0.000
SDA (Distributed) 0.88540.000 0.885+0.000 0.888+0.000 0.878+0.000 0.885+0.000 0.885+0.000 0.888+0.000 0.885+0.000 0.885+0.000 0.88540.000
Centralized Algorithm
SDA (Centralized) 0.89840.000 0.890-+0.000 0.908-+0.000 0.91040.000 0.918+0.000 0.915+0.000 0.91540.000 0.915+0.000 0.913+0.000 0.9134+0.000
Ye-LDA 0.9324+0.024 0.949+0.017 0.947+0.020 0.95440.016 0.954+0.018 0.948+0.019 0.951+0.015 0.945+0.020 0.953+0.016 0.950+0.017
Linear SVM 0.98440.010 0.998+0.002 0.998+0.002 0.99940.001 0.999£0.001 0.99940.001 0.99940.001 0.999£0.001 0.999+0.001 0.99940.001
Kernel SVM 0.96940.025 0.995-+0.004 0.996+0.004 0.99840.002 0.999-+0.001 0.999+0.001 0.99940.001 0.999+0.001 0.999+0.001 0.99940.001
Random Forest 0.94740.027 0.962+0.017 0.984+0.012 0.96240.020 0.991-£0.007 0.987-0.008 0.98540.007 0.960+0.018 0.993+0.005 0.9954+0.004
Decision Tree 0.9811+0.016 0.994+0.006 0.998+0.002 0.99740.003 0.99740.003 0.999+0.001 0.998+0.002 0.998+0.002 0.998+0.002 0.99940.001
samples, while the numbers of dimensions p are p = 54 than 250, MPSDA is still comparable to centralized SDA and

respectively. The number of machines is fixed at 4. We repeat
each algorithm for 10 times and report the average value.

In this experiment, we compare the classification accuracy
and Fl-score of MPSDA with distributed SDA and centralized
SDA on each benchmark datasets. Figure. 3(a)(b) presents
the performance of each algorithms on Phishing datasets. We
can observe that MPSDA obviously outperforms distributed
SDA and centralized SDA when the training sample size is
smaller than 250, even when the training sample size is greater

obviously superior to distributed SDA.

Further, we compare MPSDA algorithm with other central-
ized baseline algorithms in the same setting. For compari-
son, we categorize MPSDA and the baseline algorithms into
groups of distributed algorithms and centralized algorithms.
The distributed algorithms include MPSDA and distributed
SDA. The centralized algorithms include centralized SDA,
centralized two-stage LDA (Ye-LDA), centralized Linear SVM,
centralized Kernel SVM, centralized Random Forest and

Accuracy

089 N 0.89

0.885¢---~ -

088 N 088 N LA

0.875 0.875
50 100 150 200 250 300 350 400 450 5C 50

Traning Data per Machine (# Mach. = 4)

100 150 200 250 300 350 400 450 500
Traning Data per Machine (# Mach. = 4)

(a) Accuracy on Phishing Datasets (b) F1-Score on Phishing Datasets

(400 Testing Samples) (400 Testing Samples)

Fig. 3: Performance Comparison among MPSDA,
SDA(Centralized) and SDA(Distributed) with Phishing
Datasets (Testing Sample Size = 400 and Machine Number =
4).

centralized Decision Tree. All the algorithms are fine-tuned.
Table. I presents the accuracy with standard deviation of
each algorithm in varying total training sample size. We
notice that for two groups, the centralized algorithms have
overall better performance compared to distributed algorithms.
For comparison in distributed group, MPSDA significantly
outperforms distributed SDA on Phishing datasets.
Summary: In benchmark data experiments, we first com-
pare the performance of MPSDA with distributed SDA and
centralized SDA on real-world benchmark datasets. In most
instances, MPSDA can compete with centralized SDA, even
outperform centralized SDA on Mushrooms and Phishing
datasets. Like the results on synthetic datasets, MPSDA overall
outperforms distributed SDA on three benchmark datasets.
Then, we additionally compare MPSDA with other centralized
baseline algorithms. The result shows that these well-tuned
centralized baseline algorithms dominantly outperform MPSDA
and distributed SDA. While in distributed algorithm group,
MPSDA still outperforms distributed SDA. Also we compare
the time consumption of MPSDA algorithm (1.13 x 10? seconds)
with centralized SDA algorithm (3.97 seconds) on Mushrooms
datasets (4 machines with 2000 total training samples). Note
that the communication time between each machine account
for large proportion in the total time consumption of MPSDA.
Actually, on each machine, MPSDA only takes 0.93 seconds
which is much less than the centralized SDA algorithm. (The
experiment platform is Windows OS with 2.8GHz CPU)

IV. CONCLUSION

In this paper, we proposed MPSDA - a set of novel Multi-
Party SDA algorithms. Specifically, MPSDA is designed to
enable sparse discriminant learning effectively without sharing
any raw data and basic statistics (means and covariance
matrix estimated using the data on specific machine) between
machines. MPSDA proposed three-stage training procedure for
SDA estimation on top of Multi-Party computing platform,
where gossip-based stochastic gradient descent algorithms are
used to minimize a bootstrapping loss function derived from Cai
et al. [1]. Note that, during the optimization procedures, only

the gradients of loss function are exchanged between machines
in a gossip manner and no raw data or basic statistics are
shared directly. The experimental results on synthetic datasets
and real-world benchmark datasets for classification show that
that MPSDA is comparable to the centralized SDA with similar
performance. Furthermore, MPSDA significantly outperforms
state-of-the-art distributed SDA algorithm based on model
average in most cases.

REFERENCES
[

—

Tony Cai and Weidong Liu. A direct estimation approach to sparse linear
discriminant analysis. Journal of the American Statistical Association,
106(496):1566-1577, 2011.

Lu Tian and Quanquan Gu. Communication-efficient distributed sparse
linear discriminant analysis. arXiv preprint arXiv:1610.04798, 2016.
Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification
(2nd Ed). Wiley, 2001.

Line Clemmensen, Trevor Hastie, Daniela Witten, and Bjarne Ersbgll.
Sparse discriminant analysis. Technometrics, 53(4), 2011.

Jun Shao, Yazhen Wang, Xinwei Deng, Sijian Wang, et al. Sparse linear
discriminant analysis by thresholding for high dimensional data. The
Annals of Statistics, 39(2):1241-1265, 2011.

Daniela M Witten and Robert Tibshirani. Covariance-regularized
regression and classification for high dimensional problems. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 71(3):615—
636, 20009.

Hao Chen and Ronald Cramer. Algebraic geometric secret sharing
schemes and secure multi-party computations over small fields. In
Annual International Cryptology Conference, pages 521-536. Springer,
2006.

Eric P Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak
Lee, Xun Zheng, Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu.
Petuum: A new platform for distributed machine learning on big data.
IEEE Transactions on Big Data, 1(2):49-67, 2015.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
Large scale distributed deep networks. In Advances in neural information
processing systems, pages 1223-1231, 2012.

Konstantinos I Tsianos, Sean Lawlor, and Michael G Rabbat. Consensus-
based distributed optimization: Practical issues and applications in large-
scale machine learning. In Communication, Control, and Computing
(Allerton), 2012 50th Annual Allerton Conference on, pages 1543-1550.
IEEE, 2012.

Rébert Ormandi, Istvan Hegedds, and Mark Jelasity. Gossip learning with
linear models on fully distributed data. Concurrency and Computation:
Practice and Experience, 25(4):556-571, 2013.

Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-
performance secure multi-party computation for data mining applications.
International Journal of Information Security, 11(6):403-418, 2012.

M Hashem Pesaran, Yongcheol Shin, and Ron P Smith. Pooled mean
group estimation of dynamic heterogeneous panels. Journal of the
American Statistical Association, 94(446):621-634, 1999.

Finbarr O’Sullivan. A statistical perspective on ill-posed inverse problems.
Statistical science, pages 502-518, 1986.

Sarunas Raudys and Robert PW Duin. Expected classification error of
the fisher linear classifier with pseudo-inverse covariance matrix. Pattern
Recognition Letters, 19(5):385-392, 1998.

Jana Jankova, Sara van de Geer, et al. Confidence intervals for
high-dimensional inverse covariance estimation. Electronic Journal of
Statistics, 9(1):1205-1229, 2015.

Daniela M Witten, Jerome H Friedman, and Noah Simon. New insights
and faster computations for the graphical lasso. Journal of Computational
and Graphical Statistics, 20(4):892-900, 2011.

James O Berger. Statistical decision theory and Bayesian analysis.
Springer Science & Business Media, 2013.

John C Platt. 12 fast training of support vector machines using sequential
minimal optimization. Advances in kernel methods, pages 185-208, 1999.

[2

—

[3

[4

=

[5

=

[6

=

[7]

[8

=

[9

—

[10]

[11]

[12]

[13]

[14]

[15

[16]

[17]

[18]

[19

https://www.researchgate.net/publication/320013901

	Introduction
	Models and Proposed Algorithms
	Model Overview: Fisher's Linear Discriminant Analysis
	The Three-Stage Algorithm for MPSDA Training
	Stage I – Global Mean Estimation
	Stage II – Local Covariance Matrix Estimation
	Stage III – Sparse Discriminant Projection Vector Estimation

	Remark on the Algorithm

	Experiment
	Synthetic Data Experiments
	Benchmark Data Experiments

	Conclusion
	References

