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Abstract—Energy-efficiency is a critical requirement for computation-intensive real-time applications on multi-core embedded systems.
Multi-core processors enable intra-task parallelism, and in this work, we study energy-efficient real-time scheduling of constrained
deadline sporadic parallel tasks, where each task is represented as a directed acyclic graph (DAG). We consider a clustered multi-core
platform where processors within the same cluster run at the same speed at any given time. A new concept named speed-profile is
proposed to model per-task and per-cluster energy-consumption variations during run-time to minimize the expected long-term energy
consumption. To our knowledge, no existing work considers energy-aware real-time scheduling of DAG tasks with constrained deadlines,
nor on a clustered multi-core platform. The proposed energy-aware real-time scheduler is implemented upon an ODROID XU-3 board to
evaluate and demonstrate its feasibility and practicality. To complement our system experiments in large-scale, we have also conducted
simulations that demonstrate a CPU energy saving of up to 67% through our proposed approach compared to existing methods.

Index Terms—Parallel task, Real-time scheduling, Energy minimization, Cluster-based platform, Heterogeneous platform.

1 INTRODUCTION

Multi-core processors appear as an enabling platform for
embedded systems applications that require real-time guar-
antees, energy efficiency, and high performance. Intra-task
parallelism (a task can be executed on multiple cores simul-
taneously) enables us to exploit the capability of the multi-
core platform, and facilitates a balanced distribution of the
tasks among the processors. Such a balanced distribution
leads to energy efficiency [1]. Directed Acyclic Graph (DAG)
task model [2] is one of the most generalized workload
model for representing deterministic intra-task parallelism.
Recently, quite some effort has been spent on developing
real-time scheduling strategies and schedulability analysis
of DAG tasks, few to mention [2], [3], [4], [5], [6], [7], [8].

There are several real-world application that uses the
DAG model. For example, the work in [3] studies problems
related to scheduling parallel real-time tasks, modeled as
DAG, on multiprocessor architectures. In a homogeneous
computing environment, a low-complexity compile-time al-
gorithm for scheduling DAG tasks is proposed in [9]. An-
other example would be systems that control asynchronous
devices, such as the local-area network adapters that imple-
ment real-time communication protocols.

Since many of those applications are battery-powered,
considering energy-efficient approaches for designing such
a platform is crucial. Thanks to the fact that modern gen-
eration processors support dynamic voltage and frequency
scaling (DVFS), where each processor can adjust the voltage
and frequency at runtime to minimize power consumption,
per-core energy minimization becomes possible during run-
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time. Despite the hardness of the problem [10], a significant
amount of work has considered power minimization for
non-parallel tasks on a multi-core platform (refer to [11] for a
survey). Regarding parallel tasks, Guo et al. studied energy-
efficient real-time scheduling for DAG tasks as an early
research effort [12]. They adopted the federated schedul-
ing and task decomposition framework [2] for minimizing
system energy consumption via per-core speed modulation.
As the only step (that we are aware of) towards energy-
aware scheduling of real-time DAG tasks, they targeted an
exciting problem and laid some of the foundations of this
work. However, the attention of [12] is restricted to implicit
deadline tasks with a system model of per-core DVFS.

Unfortunately, per-core DVFS becomes inefficient as it
increases the hardware cost [13]. For balancing the energy
efficiency and the hardware cost, there is an ongoing trend
to group processors into islands, where processors in the
same island execute at the same speed. For example, a
big.LITTLE platform (e.g., ODROID XU-3 [14]) consists of
high performance (but power-hungry) cores integrated into
‘big’ clusters and low-power cores into ‘LITTLE’ clusters.
Such a platform executes several real-life applications with
heavy computational demands (e.g., video streaming [15])
in an energy-efficient manner. Apart from the energy con-
sumption issue, a multi-core platform enables task execu-
tion with high-performance demand and tight deadlines,
essential for computation-intensive real-time systems, e.g.,
autonomous vehicles [16].

Despite the urgent need, to our knowledge, no work has
been done that considered the energy-efficient scheduling
of DAG tasks in clustered multi-core platforms, where cores
form a group of frequency/voltage clusters. Such kind of
system balances the energy efficiency and hardware cost
compared to the traditional (with individual frequency
scaling feature) multi-core models. The scheduling problem
becomes highly challenging on such platforms because:

(i) The relationship between the execution time, fre-
quency, and the energy consumption is nonlinear, making it



highly challenging to minimize energy consumption while
guaranteeing real-time correctness, i.e., none of the tasks
miss their deadline.

(ii) Existing solution (e.g., [12]) relies on the assumption
that each processor can freely adjust its speed. That solution
performs poorly as the assumption is no longer valid under
a more realistic platform model considered in this paper.

(iii) The speed of a cluster becomes unpredictable when
shared by multiple tasks with sporadic release patterns.
Contribution. In this paper, we propose a novel technique
for energy-efficient scheduling of constrained deadline DAG
tasks in a cluster-based multi-core system. To the best of our
knowledge, no work has investigated the energy-efficient
scheduling of DAG tasks on such a cluster-based platform.
It is also the first work that has addressed the power aware-
ness issue considering constrained deadline DAG tasks.
Specifically, we make the following contributions:

e We consider a more practical cluster-based system model
where the cores must execute at the same speed at any time
instant within each cluster.

e To better handle constrained deadlines, one need to
capture the gaps between deadlines and upcoming releases,
as well as handling sporadic releases. Considering a contin-
uous frequency scheme, we first propose a novel concept
of speed-profile to present the energy-consumption behavior
for each task as well as each cluster, such that they could
guide task partitioning in an energy-efficient manner. An
efficient greedy algorithm is proposed to partition DAG tasks
according to the constructed speed-profiles.

e We propose an approach to creating the speed-profile
to adapt to the discrete frequency scheme. Also, we extend
our approach to apply to the heterogeneous platform.

o To evaluate the effectiveness of our proposed tech-

nique, we implement it on the ODROID XU-3 board, a rep-
resentative multi-core platform for embedded systems [14].
The experiments report that our approach can save energy
consumption by 18% compared to a reference approach.
For larger-scale evaluation, we perform simulations using
synthetic workloads and compare our technique with two
existing baselines [12], [17]. The simulation results demon-
strate that our method can reduce energy consumption by
up to 66% compared to the existing ones under the cluster-
based platform setting.
Organization. The rest of the paper is organized as follows.
Section 2 presents the workload, power, and platform mod-
els, , and the problem statement. Section 3, describes the
importance of creating a speed-profile for an individual task
and the whole cluster. Section 4 discusses the approaches
to create the speed-profile (considering both the continuous
and discrete frequency mode) for each task. In this section,
we also propose a greedy algorithm to allocate multiple
tasks in the same cluster. Section 5 and 6 presents the exper-
imental and simulation results. Section 7 discusses related
work including a detailed comparison with our existing
work [12], [18]. Section 8 concludes this paper.

2 SYSTEM MODEL, PROBLEM STATEMENT AND
BACKGROUND

2.1 System Model and Problem Statement

Workload model. We consider a set of sporadic parallel task
denoted by 7 = {7y,--- ,7,}, whereeach 7; € 7 (1 <i < n)
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is represented as a DAG with a minimum inter-arrival
separation (i.e., period) of T; time units, and a relative
deadline of D;(< T;) time units. An implicit deadline task
has the same relative deadline and period, i.e., D; = T;. As
a DAG task, the execution part of task 7; contains a total
of Nj nodes, each denoted by N/ (1 < j < N;). A directed
edge from N/ to NF(N/ — NF) implies that execution of
N can start if N} finishes for every instance (precedence
constraints). In this case, N is called a parent of N (N}
is a child of /). A node may have multiple parents or
children. The degree of parallelism, M, of ; is the number of
nodes that can be simultaneously executed. ¢] denotes the
execution requirement of node /\/f LCii=3 j:il C’Z denotes
the worst case execution requirement (WCET) of 7;.

A critical path is a directed path with the maximum total
execution requirements among all other paths in a DAG. L;
is the sum of the execution requirements of all the nodes that
lie on a critical path. It is the minimum make-span of 7;, i.e.,
in order to make 7; schedulable, at least L; time units are
required even when number of cores is unlimited. Since at
least L; time units are required for 7;, the condition T; > L;
(implicit deadline tasks) and D; > L; (constrained deadline
tasks) must hold for 7; to be schedulable. A schedule is said
to be feasible if upon satisfying the precedence constraints,
all the sub-tasks (nodes) receive enough execution from
their arrival times, i.e., C; within 7; (implicit deadline)
or D; (constrained deadline) time units. These terms are
illustrated in Figure 2(a).

Platform Model. We consider a clustered multi-core plat-
form, where processors within the same cluster run at the
same speed (frequency and supply voltage) at any given
time. Such additional restriction comparing to traditional
multi-core platform makes the model more realistic in many
senarios. For example, our experiment is conducted on the
ODROID XU-3 platform with one ‘LITTLE’ cluster of four
energy-efficient ARM Cortex-A7 and one ‘big’ cluster of
four performance-efficient ARM Cortex-A15. Note that we
do not restrict the hardware-dependent energy parameters
(e.g., o, B and 7y in the power model discussed below) to be
identical across different clusters—these parameters can be
derived using any curve-fitting method, e.g., [19].

Energy Model. Assuming frequency (speed) of a processor
at a specific instant ¢ is s(t) (in short, denoted as s), then its
power consumption P(s) can be calculated as:

P(s) = P, + Pa(s) = B + as", (1)

Here, P; and Py(s) respectively denote the static and dy-
namic power consumption. Whenever a processor remains
on, it introduces P; in the system (due to leakage current).
Switching activities introduce Py(s) which is frequency
dependent and represented as as”. Here, the o > 0 depends
on the effective switching capacitance [20]; v € [2,3] is
a fixed parameter determined by the hardware; 5 > 0
represents the static part of power consumption. From this
model, the energy consumption over any given period [b, f]
is calculated as E(b, f) = fbf P(s(t)) dt.

Our motivation behind selecting this power model
comes from the fact that it complies with many existing
works in the community, few to mention [10], [12], [18],
[20], [21], [22], [23]. Beside this, recently this model was
shown to be highly realistic by showing its similarity with
actual power consumption [21]. Figure 1 shows comparison



between the original power consumption results from [24]
and the power model in Equation (1).

textbf Assumptions. In this paper, we make the following
assumptions: (i) we focus on CPU power consumption, and
(ii) Dynamic power management (DPM) is not considered.
Appendix B provides the details behind these assumptions,
their impacts, and some hints to overcome the drawbacks.
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Fig. 1: Comparison of the power model (Equation (1)) with

experimental results in [24]. Here, « = 1.76Watts/GH 23,

v =3, and 8 = 0.5 Watts. This figure is adopted from [20].

Problem Statement. Considering a constrained deadline
sporadic DAG task-set on a clustered multi-core platform,
we focus on finding a correct scheduling strategy, while the
CPU power consumption is minimized.

2.2 Background and Existing Concepts

In this section, we describe some existing concepts and
techniques for handling real-time parallel task scheduling,
and that constitute an initial step for our proposed work.
Task Decomposition. The well-known task decomposition
technique [2] transforms a parallel task 7; into a set of
sequential tasks as demonstrated in Figure 2(b). Upon task
decomposition, each node N} € T; is converted into an indi-
vidual sub-task with its scheduling window (defined by its
own release time and deadline) and execution requirement
(c}). The allocation of release time and deadline respect all
the dependencies (represented by edges in the DAG). Con-
sidering that a task is allowed to execute on an unlimited
number of cores, starting from the beginning, a vertical line
is drawn at every time instant where a node A starts or
ends. So the DAG is partitioned into several segments which
may contain single/multiple thread(s). Threads assigned to
the same segment share equal amount of execution length;
e.g, N2, N}, and N} all have 2-time units assigned to the
371 segment, as demonstrated in Figure 2(b).

Segment Extension. The deadline for each node via task
decomposition may be unnecessarily restrictive, e.g., the
decomposition of the DAG in Figure 2(a) will restrict A
within the 2"¢ and 3" segment. To eliminate such un-
necessary restriction and allow N to execute in the 4"
segment, segment extension should be applied, e.g., the
green rectangle for N in the 4! segment in Figure 2(b).
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Fig. 2: (a) A DAG, 7; (b) transformed DAG 7; after applying
task decomposition. Both of them are adopted from [12].

Intra-Task Processor Merging. After applying task decom-
position and segment extension upon a DAG task 7;, some
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of these cores (where 7; is allocated) can be very lightly
loaded. Those core cause massive leakage power consump-
tion in the long run and should be avoided when necessary.
Intra-task merging [12] seeks to merge those cores to gain
overall energy efficiency by reducing the total number of
active cores. For example, in Figure 2(b), the third core
(executing A?) is lightly loaded, and thus it is better to
merge all the execution into the second core and shut it off
completely. Such a reduction on the number of active cores
minimizes leakage power consumption (see Equation (1)
and Figure 2 in [12]) as well as the total number of clusters.

3 SPEED-PROFILE FOR TASK AND CLUSTER

This section discusses how different tasks share a cluster
where all processors in a cluster execute at the same speed.
When multiple tasks share a cluster, they may not align well
due to sporadic releases and different periods. In a cluster-
based platform, the processor having the maximum speed
dominates the others in the same cluster. Hence, existing
energy-saving techniques may perform poorly in a cluster-
based platform. To tackle this problem, we propose a new
concept called speed-profile. We provide the definition of
speed-profile and its motivation in Subsection 3.1. Subsec-
tion 3.2 describes how speed-profiles are handled when two
tasks are partitioned into the same cluster.

3.1 Speed-Profile for Each DAG

Interesting energy-saving techniques (e.g., segment exten-
sion) have been proposed in [12] for the implicit deadline
tasks. For the constrained deadline tasks, this technique be-
comes incompetent because of the non-negligible idle gaps
between the task deadline and its next release. For example,
consider the task 7; in Figure 2(b) with D; = 10 and T; = 12.
Segment extension can stretch A2 to the end of the 4'" seg-
ment but cannot utilize the idle time of 2 units. Besides, the
sub-optimal solution provided in [12] becomes non-convex
(in a convex function, we can find the global maximum
or minimum, for some variables of this function, which
does not hold for a non-convex function) in a cluster-based
platform (see Lemma 1).

Lemma 1. In a cluster-based platform, the convex optimization
problem constructed in [12] becomes non-convex.

Proof. The following set of constraints ensure the real-time
correctness for each node N} € 7;, i.e., N} receives enough
time to finish execution within its scheduling window.

d!
~ e N
VN €rin Y t5si5 > ¢ 2)
j=b

We introduce the following inequalities to bound the total
length for all segments in task 7;:

Z
<. (3)
j=1

Any value of execution speed and segment length ensures
real-time correctness if Equation (2) and (3) are respected.
However, the work in [12] considered that the execution
speed of a node, Ml, is constant within its scheduling win-
dow (from b! to d!), and can be represented by a function



of nodes execution requirement and its scheduling window.
Also, the work in [12] considered that a single DAG executes
at a time, and, hence the execution speed of a node is not
affected by the execution speed of other nodes (of other
tasks). In this work, we consider the cluster-based platform,
and the execution speed of a node depends on the execution
speed of other nodes (of other tasks) in the same cluster.
As a result, we cannot express the execution speed of a
node as a function of its execution requirement, resulting in
quadratic inequality constraints (Equation (2)). This makes
the optimization problem non-convex.

Due to the characteristics of a clustered platform, at each
instant, all cores in a cluster must execute at the speed of the
fastest one. If these tasks are not well aligned (concerning
their execution speed), the cluster as a whole will perform
poorly (w.r.t. energy efficiency). Assigning tasks with similar
speed shape on the same cluster may not be an energy
efficient option (due to their sporadic releases pattern).
Figure 3 and Example 1 demonstrates one such scenario.

Example 1. In this example, we describe how the sporadic arrival
pattern of a task influences the energy efficiency of the whole clus-
ter. Consider two tasks 11 and T with the predefined necessary
speed of execution on two processors each, to be partitioned on
to the same cluster (of four processors). Figure 3(a) shows the
synchronous release case, where the whole cluster could run at
0 speed between [3,4) and [7,8). While Figure 3(b) shows the
scenario when T1’s initial release is delayed by one-time unit,
where the whole cluster will need to run at a higher speed (of
0.8) most (75%) of the time and thus consumes more energy. In
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Fig. 3: When two tasks 71 and 72 with fixed speed patterns
each are partitioned on to the same cluster, the resultant
speed pattern (712) of the cluster may vary for their (7;
and 77) different release offsets. In order to satisfy platform
model restrictions while guaranteeing the correctness, the
processors (of the same cluster) must run at the maxi-
mum/larger of the two individual speeds at each instant.

this example, from T5's perspective, direct energy reduction with
existing per-task WCET based techniques may not help much, as
it may be another task dominating the speed of the whole cluster
most of the time. The critical observation is that, due to the extra
restriction of the more realistic platform model, the speed of a
cluster is determined by the heavier DAG running on it, as well as
how synchronous are the releases, which could be entirely random.
Moreover, even a task finishes its execution early (say, T requires
no execution over [5,7)), we may not be able to reduce the cluster
speed at all.
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To address this issue, we propose a novel concept of
speed-profile to capture the energy consumption behavior
of all possible alignment scenarios.

Definition 1. The Speed-profile of a task describes the per-
centage/likelihood of all possible speeds that the task may execute
at over a period. It is a random variable S with an associated
probability function (PF) fs(s) = P(S = s), where s is a speed
from the finite set of possible speeds, and fs(s) represents the
portions of the time (likelihoods) when it is running at speed s.

Example 2. Let us consider a task T; with T; = 15 executing at
a speed of 0.6 for 5 time units (not necessarily to be continual),
and at a speed of 0.5 for the rest of the time. The speed-profile of
the task is thus S; = 5(}'165 , g /‘? -) = 00_363 00_'657 At
any specific time, t, there is about 33% probability that the cores
are running at the speed of 0.6 unit and about 67% probability
that the cores are running at the speed of 0.5 unit.

It is evident that from another task’s point of view,
the speed-profile provides probabilistic information on how
the task of interest would restrict the lower bound to the
speed of the cluster over time. As the alignment of releases
between any two tasks is unknown, we assume in the future
analysis that any phase difference is of equal chance over the
long run.

Remark 1. The speed-profile S; of a given task 1; remains the
same for an initial phase (release offset) ¢; > 0. Regarding inter-
task combinations, we assume uniform distribution for the phase
of any task; i.e., p; ~ U[0,T;).

Subsection 4.1 details the calculation for task speed-
profile. Here, we describe the calculation of the cluster
speed-profile when two tasks are combined on to the same
cluster.

3.2 Speed-Profile for the Cluster

As stated earlier, the property of the clustered platform and
sporadic arrival pattern of a task makes the exact speed of
the cluster unpredictable at a specific time instant (see Fig-
ure 3 and Example 1). As a result, when two tasks 7; and 7;
(with speed-profiles) are being considered allocating to the
same cluster, we need to construct the merged speed-profile
of the cluster (executing them both). To perform such cal-
culation, we introduce a special ® operator that takes the
maximum of the two profiles on a probability basis'.

Definition 2. The special operator © operates on two (or more)
random variables X and ). During this operation, each entry
X; € X is compared with each entry ); € Y and the value Z;; is
calculated as Z;; = max(X;,Y;), with a combined (multiplied)
probability. If there are multiple occurrences of an entry, all
of them are merged into a single entry, and their associated
probability are summed together.

6 5 S — ( 6 2

04 06/ 77 \04 06

6 6 6 5Y\_( 6 5
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Example 3. Let S; = ) Then

S;® Sj = <
1. Although the appearance of the proposed operator is identical

to [25], the calculation is quite different. This is due to the “larger value
dominating” nature of the platform model considered in this paper.



Note that we allocate two different DAGs (with
same/different periods) to the same cluster. The speed-
profile indicates how long a DAG executes at different
speeds within its deadline, i.e., the probability that a DAG
executes at a specific speed. The task’s period becomes irrel-
evant as speed-profile is a probability-based measurement.
Once 7; and 7; are allocated to the same cluster, we use S;;
to denote the speed-profile of the cluster (see Example 3).

In summary, energy minimization in a cluster-based
platform is challenging because of sporadic release pattern
and the idle gaps between a task deadline and its period.
To tackle these problems, we have introduced the concept
of speed-profile for both an individual task and a cluster
where multiple tasks can be allocated.

4 TASK PARTITIONING ALGORITHM

The ultimate goal of the paper is to partition all DAGs into
clusters, such that overall platform energy consumption is
minimized. Recall that on a clustered multiprocessor plat-
form, at a given instant, all processors in the same cluster
must execute at the same speed. Due to this property of a
cluster-based platform, if two tasks that are not well-aligned
(in terms of execution speed) are allocated to the same
cluster, it will result in reduced energy efficiency. So, we
have proposed the concept of speed-profiles (refer to Section
3) which is a tool to measure the potential long-term energy
saving of a cluster when partitioning any pair of DAGs
into this cluster. So far we have discussed the importance
of the concept of speed-profile but did not mention how
to create them given a DAG task, which is the focus on
Subsection 4.1. Then, Subsection 4.4 describes the task-to-
cluster partitioning algorithm.

4.1 Creating the Speed-Profile of a Task

Given a DAG task 7;, we provide two approaches to create
the speed-profile S;.

Approach A: Considering the Maximum Speed from all
the Cores. Upon applying the task decomposition, segment
extension, and intra-task processor merging techniques (Sec-
tion 2), some vital information (e.g., the speed of a core
at a specific time and number of cores required) becomes
available. This information plays a role to calculating the
speed-profile S; of task 7;. At any time instant ¢, we consider
the maximum speed from all the cores available. It ensures
the sufficient speed so that even the heaviest node can
finish execution within its scheduling window (defined after
task decomposition). We consider constrained deadline (i.e.,
D; < T;), so the task must have to finish by D, and rest of
the time (1; — D;) it remains idle. For each segment j € 7;,
(summation of the length of these segments is equal to D;),
we create a pair (s; j, p;,;). For the j'* segment, s; ; and p; ;
respectively denote the maximum execution speed and the
probability that the cluster will run at this speed. Let, M
cores are allocated to 7;. At j** segment, we calculate s; ;
and p; ; as follows:

$;.; = max{s; i =
i, kgM{ ik b Pij

C
-y
T;
Here, s; ; ; denotes the speed of k'" core at j!" segment and
t5 is the length of j th segment. The speed-profile S; will be:
S — Si,1 0 Si,2
! Di1

Si,z 0
Di,2 pi. (Ti—Dy)/T;)"
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The last pair reflects the fact that the core remains idle for
the (T; — D;) time units at the end of each period.

Example 4. Consider a task 7, with T, = 15,D; =
12 and C; = 6.5. Let, the task is partitioned into three segments
of length 5, 7 and 3 time units respectively, where the processor is
executing at a (maximum) speed of 0.6 in the first segment, speed
of 0.5 in the second segment, and remain idle in the third segment
The speed-profile is:

s _ (06 05 0
= \033 047 02)

Note that, if a cluster contains a single task 7;, then §;
also represents the cluster speed-profile. If 7; and 7; (or
more tasks) are executing on the same cluster, then the
technique described in Subsection 3.2 needs to be applied
before making any choices. The greedy choosing approach
for task partition is detailed in Subsection 4.4.

Approach B: A Single Speed Throughout. Theorem 4 of
[12] shares a valuable insight: The total energy consumption
(assuming processor remains on) is minimized in any schedul-
ing window when execution speed remains uniform (the same)
throughout the interval. Motivated by it?, we propose another
approach of selecting a single speed for a DAG task (job)
during the whole duration from its release until its deadline.

In this approach, we consider the maximum workload
(or the execution requirement) from all the cores available
and determine the aggregated workload. Upon dividing the
aggregated workload by the deadline, we get the desired
single speed. Let M cores be allocated to task 7;. At j th seg-
ment, the execution requirement of the k' core is denoted
by w; ; 1, which is calculated as follows:

C
Wik = Sijk X t;.

We determine the maximum execution requirement as fol-
lows:

wi,j = max{wg,; i }.

Let Z denotes the total number of segments in 7;. The
maximum total workload w; and the desired single speed
s; is calculated using the following equations:

Z W
i

w; = E Wi,j, Si= H (4)
=1 !

Other than the idle pair (0,(7; — D;)/T;), we consider a
single speed throughout the deadline so only a single pair
(84, p;) is required, where s; = w;/D; and p; = D;/T;.

Example 5. Consider the task described in Example 4 (T; =
15, D; = 12 and C; = 6.5). It must finish 6.5 unit of workloads
within 12-time units. Using this approach its speed-profile is:

054 0
Si:(o.S o.2>'

Lemma 2. If a task 7; executes according to the speed-profile S;,
it guarantees real-time correctness.

2. Note that [12] considered that the speed remains constant within a
scheduling slot for each processor. Also, they assumed per core speed
scaling and calculated the speed within each scheduling slot through
a convex optimization method. This paper considers the clustered
platform where the objective function becomes non-convex (see Lemma
1) and thus the existing approach is inefficient.



Proof. It has been observed in [12] that the following con-
straint guarantees the real-time correctness:

dt
L 1 1
VN e Z th,ﬁAi > cﬁv )
k=bt

Here, b. and d. denotes the release time and deadline of
L

N}, ML denotes the node-to-processor mapping and S,?A
is the speed of the processor (where N is allocated) at k*"
segment. Unlike to [12], at any time instant ¢, we choose
either the maximum speed from all the cores running on the
same cluster (Approach A) or a single speed that can guar-
antee the maximum execution requirement for the whole
duration up to 7;’s deadline (Approach B). So, at any time
instant, the cluster speed is larger or equals to the speed of
any individual core. Considering Equation (2) and (5) we
can deduce that:

dt dl
K2 T 1 1
VN €min > tisin > > tZS,?Ai 2 C?/i-
k=b! ke=bt

So, we conclude that Executing a task with speed according
to the speed-profile S; guarantees real-time correctness. W

An Efficient Approach for Implicit Deadline System. By
adopting simple modification in Equation (4), it is possi-
ble to apply the process mentioned above for the implicit
deadline tasks also. The workload w; should be divided by
the period instead of the deadline. We consider the same
speed through the task period, so only a single pair (s;, p;)
is required, where s; = w;/T; and p; = 1.

Example 6. Now we create the speed-profile for the task described
in Example 4 and 5 considering implicit deadline. So it has T; =
D; = 15 and C; = 6.5. Let’s assume that it is executed at a
speed of 0.6 for 5-time units, at a speed of 0.35 for 10-time units.
According to Approach A, the speed-profile is:

0.6 0.35
5i:(0.33 0.67)’

and according to Approach B, the speed-profile is:
0.43
5= (49).

4.2 Discretization of the Speed-Profile

In Section 4.1, we have described two approaches to create
the speed-profile for an individual task. While creating
the speed-profiles, those approaches assume a continuous
frequency scheme. From a practical point of view, discrete
frequency mode should be preferred over the continuous
frequency mode, because a real platform supports only a set
of frequencies. Now, we describe the technique to discretize
all the speeds available in a speed-profile (assuming that the
speed-profile is already created).

Suppose, we execute a task 7; (and its speed-profile is S;)
in a real-platform, and this platform supports only those
speeds available on a speed-set Z. Note that the content
of Z is dependent on the platform. For example, ODROID
XU-3 supports a frequency range of 200-1400 M H z (LITTLE
cluster) and 200-2000 M Hz (big cluster) with scale steps
of 100 M Hz). Now, for each entry s; ; € S;, we find the
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minimum speed Z;, € Z, where Z;, > s; ;. Once, we find
an appropriate Zj; we set the value of s; ; as s; ; = Z.

Example 7. Consider a task T; with the same speed-profile from
Example 4. Let us assume that we will execute 7; in a platform
where Z = {0,0.2,0.4,0.55,0.75, and 1}, i.e., this platform
supports only six discrete speeds, and all the speeds are normalized
w.r.t. the maximum speed supported by this platform. Considering
the speed-profile S; (from Example 4) and the speed-set Z, we find
that:

(a) s;1 < {25 and Zs}

(b) 54,2 S {21747 25 and Zg}, and

(c) si3 < {21, 22, 23, 24, Z5 and Zg}.

Now, we choose the minimum 23, € Z such that Zj, > s; ;.
So, we assign Zs to s; 1, Z4 t0 8;2, and 2, to s; 3. Now, the
updated (i.e., discretized) speed-profile becomes

s _ (075 055 0
= \033 047 02)

Theorem 1. When a task executes with its discretized speed-
profile, it guarantees that the task will not miss the deadline.

Proof. We have shown in Lemma 2 that a task 7; will
not miss the deadline if executed according to its speed-
profile S;. If we discretize 7;’s speed-profile and execute 7;
according to this speed-profile, then the task still guarantees
the real-time correctness. This is because any speed s; ; of
the discretized speed-profile is greater than or equal to s; ;
when it was continuous. u

4.3 Handling Platform Heterogeneity

In this section, we discuss a specific type of multi-core
platform with diverse computing abilities: heterogeneous
multi-core platform. We first discuss different types of het-
erogeneous platforms, and then explain how our proposed
techniques can be extended to handle heterogeneity. In
a heterogeneous platform, different cores have different
computational capabilities. In terms of speed, Funk defined
a widely-accepted classification of the heterogeneous plat-
form [26] as follows, where the speed of the processor
denotes the work completed (while executing a task) in a
single-time unit by this processor.

(i) Identical multiprocessors: On Identical multiprocessors,
all tasks are executed at the same speed on any processor;

(if) Uniform multiprocessors: On Uniform multiprocessors,
all the tasks execute at the same speed if allocated on
the same processor, but at a different speed on different
processors. So, the execution speed of a task depends on
the processor where the task is allocated.

(iii) Unrelated multiprocessors: On Unrelated multiproces-
sors, execution speeds of different tasks may vary on the
same processor, i.e., a tasks execution speed depends on
both the task itself and the processor where it is allocated.

In a heterogeneous platform, each core is designed with

a different computational capability, and an efficient task-
to-core mapping improves the system resource efficiency. In
the context of energy efficiency, two major directions have
been mentioned in [27] for any heterogeneous platform:
(i) Find an appropriate core/cluster for task mapping to re-
duce the overall power consumption of the whole platform.
(ii) Deploy energy-aware scheduling techniques on each
core/cluster to reduce power consumption.



Our proposed approach covers both directions. First, we
use speed profile to identify efficient core/cluster to task
mapping and then try to reduce the overall cluster speed as
much as possible. It works for an identical heterogeneous
platform (a.k.a., homogeneous multiprocessor) as task-to-
core mapping does not impact energy consumption much.

TABLE 1: Estimated parameters for different cluster of an
ODROID XU-3 board. This table is adopted from [15].

Cluster Type | (W) | a«(W/MHz") vy
big 0.155 3.03x10~7 2.621
LITTLE 0.028 2.62x107Y 2.12

Now, we extend our approach to apply to the uniform
heterogeneous platform by modifying the parameters in
the power model in Equation (1), ie., setting different
o, B, and +y values for the ‘big’ and ‘LITTLE’ cluster. Under
such consideration, different clusters no longer share the
same power model, and the same task may have different
execution requirements on different clusters. We report the
estimated values of o, 8, and + in Table 1. These parameters
are adopted from [15]. The work in [15] estimated these
parameters for the ODROID XU-3 board using the real
power measurements along with a curve fitting method.
They have also assumed that there is another contributor to
the total power consumption of a cluster, i.e., the “uncore”
power consumption (reported in Table 2). The “uncore”
power consumption introduced in the system from some
components other than a processor, e.g., a shared cache.
Similar to the dynamic power consumption, the “uncore”
power consumption also depends on the processor fre-
quency. However, unlike the dynamic power consumption,
there is always some “uncore” power consumption as long
as the cluster remains on (even if there is no workload on a
processor). Considering all the parameters from Table 1 and

TABLE 2: The "uncore” power consumption for different
cluster of an ODROID XU-3 board. This table is adopted
from [15].

Freq(GHz) 2 1.8 1.6 14 1.2 1.0
big cluster(W) 0.8 | 0528 | 0.39 | 0.309 | 0.244 | 0.182
Freq(GHz) 14 1.2 1.0 0.8 0.6 0.4
LITTLE cluster(W) | 0.04 | 0.04 | 0.04 | 0.04 0.04 0.04

Table 2, we bring the following modification in Equation (1):
P(s) = NpfB + as™ + Py(f), )

Here, N,, denotes the number of cores per cluster, and P ( f)
denotes the “uncore” power consumption.

We have a different power model for the “big” and the
"LITTLE” cluster, but we still don’t know what the basis
of assigning a task to a cluster is. Recall that, while creating
the speed-profile, some vital information (e.g., the speed of
a core at a specific time) were known to us (Subsection 4.1).
If the execution speed of a task is greater than a certain
threshold at any point from its release to its deadline, then
we assign this task to the big cluster. Else, we assign this
task to the LITTLE cluster. For the platform we consider
(ODROID XU-3), we set the threshold to 0.7. It is the ratio
of the maximum speed supported by the big cluster and the
LITTLE cluster (see Table 2).
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4.4 Task Partition: Greedy Merging with Speed-Profiles

We are now equipped with tools (speed-profiles) to measure
the potential long-term energy saving of a cluster when
partitioning any pair of DAG tasks into it. This subsection
describes the scheme for selecting pair by pair so that the
total number of clusters can be significantly smaller than
the total number of tasks.

Let, we decide for each task whether it should be al-
located on a LITTLE or a big cluster using the technique
described in Subsection 4.3. To select a (task) pair that will
share the same cluster, we greedily choose the pair that
provides maximum power saving, as depicted in Algorithm
1. Note that we allow the pairing of two DAGs that are not
merged previously. Also, if any task uses more cores than
what is available in a cluster, that task cannot be merged
with that cluster.

Algorithm 1 Greedy Merging

1: Input: Task-set 7, with speed-profile S; (computed using
approach A or approach B) for each task
: Output: Speed-profile S (with processor power saving).
S, S+ 0 > All the possible/selected speed-profiles
fori=1ton do
forj=i+1tondo
Si]‘ (*87;@53'; S %SUSU;
end for
: end for B
: while 3S;, € S and S, provides non-zero power saving
do
10:  Suy < the pair from § with maximum power saving
11: S+ SUSy
122 fork=1tondo
13: S+ S-Sk —
14:  end for
15: end while
16: return S.

O PN TN

Algorithm 1 creates two empty lists S and S that will
contain all the possible and selected speed-profiles (Line 3).
Lines 4-8, calculate all the possible speed-profiles and insert
them into S. We greedily select a pair of DAGs that provide
the maximum power saving (calculated using Equation (6)
and Equation (10) from [12]) and update the list S by
removing the pair from any further merging (Lines 9-15).
The list S is also updated by adding the selected pair (Line
11). We conclude by returning the updated list S (Line 16).

Theorem 2. Executing a task with a speed according to the
cluster speed-profile guarantees real-time correctness.

Proof. We have shown in Lemma 2 that a task 7; will not
miss the deadline if executed according to its speed-profile
S;. If 7; share a cluster with another task 7; and executes
according to the merged (i.e., cluster) speed-profile S;;, then
it still guarantees the real-time correctness, because S;; > S;
holds at any time instant. |

Remark 2. For n tasks, the time complexity to generate all
possible speed-profiles, S, is O(n?Z), where Z is the maximum
number of segments of all DAGs in the set after decomposition
(related to the structure and size of the DAGs). Algorithm 1
greedily choose a speed-profile by iterating through S and then
update, which takes O(n?) time as well. Thus the total complexity
of the proposed method is O(n?).



In summary, we have proposed two methods (Sub-
section 4.1) to create the speed-profile for a constrained-
deadline DAG. We also show that if a task executes ac-
cording to the speed-profile, it ensures real-time correctness.
According to the techniques provided in Section 3, we could
evaluate and compare all potential pairs of the combina-
tion by calculating the cluster speed-profile after merging.
Finally, Subsection 4.4 discussed how to use these speed-
profiles to find suitable partners to share a cluster greedily.

5 SYSTEM EXPERIMENTS

In this section, we present experimental results conducted
on an ODROID XU-3 board. The platform runs on Ubuntu
16.04 LTS with Linux kernel 3.10.105. It is fabricated with
Samsung Exynos5422 Octa-core SoC, consisting of two
quad-core clusters, one ‘LITTLE’ cluster with four energy-
efficient ARM Cortex-A7 and one ‘big’ cluster with four
performance-efficient ARM Cortex-A15. Four TI INA231
power sensors are integrated onto the board to provide real-
time power monitoring for the A-7 and A-15 clusters, GPU,
and DRAM. An energy monitoring script, emoxu3 [28], is
used to log energy consumption of the workloads.

DAG Generation. In this experiment, we generate two
task sets each with 300 DAGs, and use the widely used
Erdos-Renyi [29] method to generate a DAG. We tune a
parameter p, that denotes the probability of having an
edge between two nodes. In this experiment, we set p to
0.25 generate DAGs with an uncomplicated structure. If a
disconnected DAG is generated, we add the fewest number
of edges to make it connected. For experimentation, we
have considered arbitrary task periods, and it is determined
using Gamma distribution [30]. We set the periods with
T, = Li+2(C;/m)(1+T(2,1)/4) [2]. Here, L; is the critical
path length of 7;, calculated according to the definition of L;
(refer to Section 2).

After generating the topology of each DAG of a set, we
partition them into two subsets according to the proposed
approach, one to the "big” and the other one to the “LIT-
TLE” cluster, and measure the energy consumption over the
hyper-period of all DAGs. We use rt-app [31] to emulate
the workload for each node. rt-app simulates a real-time pe-
riodic load and utilizes the POSIX threads model to call and
execute threads. For each thread, an execution time needs to
be assigned. In this experiment, for each node, we randomly
select an execution time ranged between [300ms, 700ms].
rt-app itself has a latency that varies randomly between
13 — 150ms per thread. Therefore, we add the maximum
latency of rt-app, i.e., 150ms, to the execution time of each
thread from an analytical point of view.

DAG Scheduling. We use the Linux built-in real-time
scheduler sched_FIFO to schedule the DAGs. Compared
to the other system tasks, DAGs are assigned with higher
priorities so that they can execute without interference. Our
approach is also applicable to other preemptive schedulers
which feature the work-conserving property.

Frequency Scaling. According to the frequency/speed-
profile (Section 4), we use cpufreg-set program (from
cpufrequtils package) to change the system’s frequency
online. We use the ODROID XU-3 board, where scaling-
down (up) the frequency of the big cluster takes at most
60 (40)ms, respectively. On the LITTLE cluster, both the
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Fig. 4: The energy consumption and the frequency variation
of our proposed approach on ODROID XU-3.
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Fig. 5: The energy consumption and the frequency variation
of the reference approach on ODROID XU-3.

operation takes at most 15ms. Due to this delay, the hyper-
period of all DAGs becomes large (230s, in this experiment).
We detail the reasons behind this delay in Appendix B.2.
The Reference Approach. Since no work has studied the
same problem considered in this paper, we do not have a
direct baseline for comparison. So, we propose a reference
approach based on the studies for energy-efficient schedul-
ing of sequential tasks [32]. They assigned an operational
frequency to each task, and at run-time, schedule them
according to their frequency. In this reference approach,
we compute an operational frequency for each DAG. This
frequency stretches out execution length of these DAGs
as much as possible without violating their deadlines. As
stated earlier, the reference approach executes the DAGs
with the same partition, but without the merging techniques
proposed in Section 4.
Results. The experimental results are plotted in Figure 4
and 5. In these figures, we show (i) the energy consumption
over the hyper-period (230s), where the three lines show
the energy consumption of the big and LITTLE cluster, and
the total system; and (ii) frequency variation during the
run-time, where the diamond and star marks denote the
operational frequency of the big and the LITTLE cluster
at a specific time instant, respectively. Note that the GPU
and DRAM also contribute the energy consumption of the
total system. Hence, the total energy consumption is a bit
higher than the summation of the contribution of the big
and the LITTLE cluster, but it is observed that there is a
negligible difference for the energy consumption of GPU
and DRAM between the two approaches. Besides, it is worth
noticing that this energy consumption also accounts for
energy consumption of the operating system.

Table 3 summarizes the comparison of the experimental
results, where the energy consumption of the two clusters
and the total system is presented, and the energy saving



TABLE 3: Summary of experimental results.

Ours (J) | Ref(J) | Energy Saving (%)
big cluster 312 389 20
LITTLE cluster | 32 38 16
Total 387 472 18
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from our approach is given. As can be seen, our approach
consumes 312.J and 32.J on the big and the LITTLE cluster,
respectively. Comparing to the reference approach, we save
energy consumption by 20% and 16%. In total, our approach
saves energy consumption by 18%.

The result can be justified as the reference approach
changes the frequency for each DAG, while ours have a fine-
grained frequency adjustment at each segment (Section 4.1),
and could scale down the frequency if required. Figure 6
presents the frequency occurrence probability of two clus-
ters which is recorded per second by emoxu3. We observe
that within the same time interval the reference approach
has a higher probability to execute at a higher frequency,
while our approach is more likely to execute at the lower
frequencies, thus reducing the energy consumption.

Remark 3. Each heavy DAG (C; > T;) needs two or more
cores while executing and the ODROID XU-3 board contains
four cores per cluster. So, in this experimental setup, we can not
execute more than four heavy DAGs at a time. Such a restriction
is not applicable to the light DAGs (C; < T;). We also consider
that a heavy DAG cannot be allocated in multiple clusters.

6 SIMULATIONS

For large-scale evaluation, we perform simulations and
compare the results with existing baselines. We generate
DAGs using the Erdos-Renyi method (Section 5). We con-
sider two types of task periods; (a) harmonic periods, where
the task period T; is enforced to be an integral power of 2.
We define T} as T; = 2%, where « is the minimum value
such that 2¢ > L;, where L; is the critical path length
of 7; (b) arbitrary periods, T; is determined using Gamma
distribution (see Section 5).

We compare our approaches with some existing base-
lines studied in [12], [17], [33]. Total power consumption by
our approach and by these baselines are calculated using
Equation (6). As mentioned earlier, [12] considered per-core
DVES, i.e., each core individually is an island of the cluster-
based platform. For a fair comparison, according to the
scheduling policy of [12], when a task is allocated on some
cores at any time instant ¢, we choose the maximum speed
among all these cores. We consider [12] as a baseline because
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that work is closely related to ours. Although they have
considered per-core DVFS and restrict their attention only
to implicit deadline tasks, the task and the power model
are same. Besides, although this work and [12] propose dif-
ferent approaches to power saving, the initial (preparation)
steps of both approaches are based on commonly known
techniques like task decomposition, task merging, etc.

The work in [17] studied a greedy slack stealing (GSS)
scheduling approach considering inter-dependent sequen-
tial tasks. It considered the DAG model to represent depen-
dencies among the tasks. In GSS, the slack (unused time in
actual computation requirement of a task) is reclaimed by
one task by shifting others towards the deadline. They did
not consider repetitive tasks; hence it can be regarded as
scheduling a single task. Besides this, the power and graph
model used in [17] is different from ours. To ensure a fair
comparison, we execute the GSS algorithm using the power
model in Equation (1) and assume that once introduced in
the system; a processor remains active. We also consider
a minimum inter-arrival separation for a DAG. That work
considered three different kinds of nodes: AND, OR, and
Computation nodes (Subsection 2.1 in [17]). A computation
node has both the maximum and average computation
requirement. To comply with our work where the focus in
energy reduction while guaranteeing worst-case temporal
correctness, we execute the GSS algorithm considering only
the computation nodes with their maximum computation
requirement. We made all the changes in order to provide
a fair comparison. Despite these differences, we chose [17]
as a baseline because they studied a GSS approach for
energy minimization. They considered the inter-dependent
sequential tasks and their dependencies was represented by
a DAG, which is similar to our task model.

We also consider [33] as a baseline because this work
considered scheduling a set of independent periodic appli-
cations, where each application is modeled as a DAG. They
proposed an approach for energy minimization combining
the DVFS and the DPM policy. Similar to [12] and [17], the
work in [33] considered per-core DVFS.

We compare power consumption by varying two param-
eters for each task: task periods (utilization) and the number
of nodes. We randomly generate 25 sets of DAG tasks and
compare the average power consumption.

Notations of Referenced Approaches. For the task par-
titioning step, either we randomly choose any two and
allocate them to the same cluster, or greedily choose the ones
with lowest speed as proposed. Regarding speed-profile
calculation, there are also two options (Approaches A and
B in Section 4.1). Combining these options in two steps
lead to four baselines: MaxSpeed_Greedy, SingleSpeed_Greedy,
MaxSpeed_Random, SingleSpeed_Random. Also, three base-
lines mentioned above are included for comparison:

o Federated scheduling with intra-task processor merging
[12], denoted by Fed_Guo;

o GSS algorithm [17], denoted by GSS_Zhu.

e DVFS and DPM combination [33], denoted by com_Chen.

6.1 Uniform Heterogeneous Platform with a Continu-
ous Frequency Scheme

In this section, considering the uniform heterogeneous plat-
form and a continuous frequency scheme, we report the
power consumption comparison for different approaches
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Fig. 7: Power consumption comparison between different approaches for the constrained deadline tasks considering a
continuous frequency scheme on the uniform heterogeneous platform.

mentioned earlier. Under such a platform, different clusters
no longer share the same power model and we use the
power model described in Equation (6). We present the
power comparison results in an identical heterogeneous
platform (from [34]) in Appendix A.

6.1.1 Constrained Deadline Task

Here, we report the power consumption under the scheme
for constrained deadline tasks mentioned in Section 4. We
evaluate the efficiency of our proposed method by changing
two parameters; task period (utilization) and the number of
nodes in the task.

Effect of Varying Task Periods (Utilization). Here we
control the average task utilization through varying the task
period. In order to make the task schedulable, the critical
path length L; of task 7; should not exceed its deadline
D;. We vary the period in a range (L; < T; < ().
The parameter L; and C; are measured once the DAG is
generated according to the technique described in Section
5. We also use the following equation (according to [12]) to
ensure that the value of T; satisfies the range (L; < T; < C)).

T;=Li +(1—-k)(C; — Ly) ()

Here, k € [0, 1] is task utilization. As we are considering the
constrained deadline tasks, D; is randomly picked from the
range (L; < D; < T;). The results are presented in Figure
7(a). Note that when any parameter (e.g., number of nodes
in a DAG, task utilization) changes, savings in energy ran-
domly vary within a small range and we consider the mini-
mum value among them. The results indicate a proportional
relationship between the average power consumption and
average task utilization. It happens because a higher task
utilization imposes tighter real-time restrictions. It restricts
(refer to Figure 2(b)) the space for the segment length opti-
mization. In this experiment, the number of nodes is fixed to
30. Figure 7(a) shows that SingleSpeed_Greedy approach per-
forms better for a higher utilization value. On average, the
SingleSpeed_Greedy approach leads to a power saving of at
least 30.23% and 60.2% compared to Fed_Guo and GSS_Zhu
approaches, respectively. In SingleSpeed_Greedy approach, a
task executes with a single speed throughout the deadline.
During the task partitioning step, a suitable partner (with
similar speed-profile) leads to energy efficiency. However,
for the other approaches task speed may vary throughout

the deadline. In that case, evil alignment and a significant
variation in the speed may reduce energy efficiency (see
Figure 3 and Example 1).

Effect of Varying the Numbers of Nodes. Now we vary
the number of nodes (10 to 55) (I; is fixed) and report
the average power consumption. We report the average
power consumption for harmonic deadline tasks in Figure
7(b) and arbitrary deadline tasks in Figure 7(c). We observe
that the power consumption pattern does not change that
much, i.e., SingleSpeed_Greedy approach outperforms other
approaches especially when the number of nodes (in each
DAG) are high, 35 or higher. Specifically, under harmonic
task periods, the SingleSpeed_Greedy incurs 40.19% and
65.9% less power on average compared to Fed_Guo and
GSS_Zhu; under arbitrary task periods, the savings poten-
tial are 33.43% and 61.96%, respectively.

6.1.2 Implicit Deadline Task

Effect of Varying Task Periods (Utilization). Using pre-
vious setup (Section 6.1.1), We observe that the average
energy consumption is directly proportional to the average
task utilization. Figure 8(a) shows that SingleSpeed_Greedy
approach performs better for a higher utilization value and
on average, saves at least 35.21% and 62.52% compared to
Fed_Guo and GSS_Zhu approaches, respectively.

Effect of Varying the Numbers of Nodes. Figure 8(b) and
8(c) report the average power consumption for the harmonic
and arbitrary deadline tasks, respectively. We observe that
the SingleSpeed_Greedy approach outperforms other ap-
proaches when the number of nodes (in each DAG) are high.
Under harmonic task periods, the SingleSpeed_Greedy in-
curs 44.84% and 67.55% less power on average compared
to Fed_Guo and GSS_Zhu; under arbitrary task periods, the
savings potential are 42.33% and 67.19%, respectively.

6.2 Uniform Heterogeneous Platform With a Discrete
Frequency Scheme

In this section, we report the power consumption com-
parison for the (previously mentioned) approaches consid-
ering the uniform heterogeneous platform and a discrete
frequency scheme. Under such a platform, we discretize the
frequency using the technique described in Section 4.2.
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Fig. 8: Power consumption comparison between different approaches for the implicit deadline tasks considering a
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Fig. 9: Power consumption comparison between different approaches for the constrained deadline tasks considering a
discrete frequency scheme on the uniform heterogeneous platform.

6.2.1 Constrained Deadline Task

Here, we consider the constrained deadline tasks and report
their average power consumption by changing two param-
eters: task period (or utilization) and the number of nodes.
Effect of Varying Task Periods (Utilization). Similar to the
Figure 7(a), and 8(a), we observe that the (i) average energy
consumption is directly proportional to the average task
utilization. (ii) SingleSpeed_Greedy approach consumes less
power than other approaches (see Figure 9(a)).

Effect of Varying the Numbers of Nodes. We vary the
number of nodes (10 to 55) and report the average power
consumption for harmonic (arbitrary) deadline tasks in Fig-
ure 9(b) (Figure 9(c)). Similar to the Figure 7 and 8, we ob-
serve that the (i) Performance of SingleSpeed_Random, Single-
Speed_Greedy, MaxSpeed_Greedy, and MaxSpeed_Random does
not vary that much for a small number of nodes (typically 10
to 25) per DAG. (ii) SingleSpeed_Greedy approach performs
better (i.e.,, consume less power) than other approaches
when the number of nodes per DAG is high.

6.2.2 Implicit Deadline Task

Now, we report the average power consumption using the
same setup as described in Section 6.2.1, i.e., (a) for a fixed
number of nodes (30) per task, change their utilization
value, and (b) vary the number of nodes (10 to 55) per task,
while keeping T; fixed. We report the average power con-
sumption in Figure 10. From this figure, we observe that the

(i) Performance of SingleSpeed_Random, SingleSpeed_Greedy,
MaxSpeed_Greedy, and MaxSpeed_Random does not vary that
much for a smaller task utilization or when the number
of nodes per DAG is small (typically 10 to 35). (ii) Single-
Speed_Greedy approach performs better (i.e., consume less
power) compared to the other approaches when the number
of nodes per DAG is high.

7 RELATED WORK

Much work has been done aimed at energy-efficient
scheduling of sequential tasks in a homogeneous multi-core
platform (see [11] for a survey). Considering the mixed-
criticality task model and varying-speed processors, the
works on [23], [35], [36], [37], [38] proposed an approach
to handle the energy minimization problem. The work in
[27], [39], [40], [41], [42], [43] presented an energy-efficient
approach for the heterogeneous platform. Considering the
real-time tasks in clustered heterogeneous platforms, the
work in [39] studied the partitioned EDF scheduling policy,
while [42] proposed an optimal task-core mapping tech-
nique that is fully-migrative. Considering the heterogeneous
multi-core platform, a two-phase algorithm was proposed
by [27]. In the first phase, they proposed a tasks-core al-
location approach with the aim of reducing the dynamic
energy consumption, while the second phase seeks for a
better sleep state to reduce the leakage power consumption.
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Fig. 10: Power consumption comparison between different approaches for the implicit deadline tasks considering a discrete

frequency scheme on the uniform heterogeneous platform.

A low overhead, DVFS-cum-DPM enabled energy-aware
approach, HEALERS, was proposed by [43]. However, none
of them considered the intra-task parallelism. Considering
a clustered heterogeneous MPSoC platform, a migrative
cluster scheduling approach was proposed by [15]. In this
approach, run-time migration (within different cores in the
same cluster) for a task is allowed to improve resource
utilization. The work in [44] studied the technique to utilize
the parallelism in a hard real-time streaming application
(represented as a Synchronous Data Flow (SDF) graph) in
a clustered heterogeneous platform.

Till date, considering both the intra-task parallelization
and power minimization has received less attention. A
greedy slack stealing algorithm is proposed in [17] that
deals with task represented by graphs but did not consider
the periodic DAGs. Assuming per-core DVFES, [33] provided
the technique to combine DVFS and DPM. Considering the
real-time jobs (represented as a DAG) in cloud computing
systems and in a heterogeneous multi-core platform, the
work in [45], [46] studied a QoS-aware and energy-efficient
scheduling strategy. They proposed a scheduling policy that
utilizes per-core DVFS. With the aim of improving energy-
efficiency in a heterogeneous real-time platform, [47] pro-
posed a combined approach considering the approximate
computation and bin packing strategy. [48] investigated the
energy awareness for cores that are grouped into blocks,
and each block shares the same power supply scaled by
DVES. Benefits of (in terms of power saving) intra-task
parallelism is proven theoretically in [1]. Considering the
fork-join model, [49] reported an empirical evaluation of the
power savings in a real test-bed. Based on level-packing, [50]
proposed an energy efficient algorithm for implicit deadline
tasks with same arrival time and deadline.

None of these works allows intra-task processor sharing
considering the sporadic DAG task model. The recent work
in [12], [18] is most related to ours. However, these works are
significantly different from ours w.r.t the task model, plat-
form, real-time constraints (deadlines), solution techniques,
and the evaluation. First, the work in [12] considered a
simplified model where only one DAG task executes at a
time, while the work in [18] extends this work by allowing
inter-task processor sharing. However, both of these works
assumed that the number of cores are unlimited. Second,
Both the works in [12], [18] assumed per-core speed scaling.

However, many of the existing platforms (e.g.,, ODROID
XU-3) do not support such speed scaling—speeds of proces-
sors under the same cluster must execute at the same speed.
As the number of cores fabricated on a chip increases, per-
core speed scaling design is less likely to be supported due
to the inefficiency on hardware levels [13]. Third, Both of
these works have studied only the implicit deadline tasks
and did not consider the constrained deadline tasks. Hence,
the non-negligible idle gaps between the task deadline and
its next release remain un-utilized. Finally, the evaluations
in [12], [18] were done based on simulations without any
implementation on a real platform.

8 CONCLUSION

In this paper, we have studied real-time scheduling of a set
of implicit and constrained deadline sporadic DAG tasks.
We schedule these tasks on the cluster-based multi-core
platforms with the goal of minimizing the CPU power
consumption. In a clustered multi-core platform, the cores
within the same cluster run at the same speed at any
given time. Such design better balances energy efficiency
and hardware cost and appears in many systems. However,
from the resource management point of view, this additional
restriction leads to new challenges. By leveraging a new
concept, i.e., speed-profile, which models energy consump-
tion variations during run-time, we can conduct schedul-
ing and task-to-cluster partitioning while minimizing the
expected overall long-term CPU energy consumption. To
our knowledge, this is the first work that has investigated
energy-efficient scheduling of DAGs on clustered multi-core
platform. Also, no work considered energy-aware real-time
scheduling of constrained deadline DAG tasks.

We have implemented our result on an ODROID XU-3
board to demonstrate its feasibility and practicality. We have
also complemented our system experiments on a larger scale
through realistic simulations that demonstrate an energy
saving of up to 57% through our proposed approach com-
pared to existing methods. In this work, we have restricted
our attention mainly to the CPU power consumption. In
the future, we plan to consider other components that
may affect the total power consumption, e.g., cache misses,
context switches, I/O usage, etc. We also plan to study the
effect of tasks sporadic release patterns (to the overall power
consumption) and propose a task reallocation scheme.
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APPENDIX A
IDENTICAL HETEROGENEOUS PLATFORM WITH A
CONTINUOUS FREQUENCY SCHEME

In this section, we report the power consumption compari-
son considering the identical heterogeneous platform and a
continuous frequency scheme. Under the identical heteroge-
neous platform, both the ("big” and the "LITTLE"”) clusters
share the same power model as described in Equation (1).

A.1 Constrained Deadline Task

Similar to the settings described in Section 6.1.1, we consider
the constrained deadline tasks and report their average
power consumption under varying task period (or utiliza-
tion) and the number of nodes.

Effect of Varying Task Periods (utilization). Here, the
number of nodes is fixed to 30. We observe the similar trend,
i.e., average energy consumption is directly proportional to
the average task utilization. Figure 11(a) shows that Single-
Speed_Greedy approach outperforms the others and leads to
a power savings of at least 16.67% and 56.24% compared to
the Fed_Guo and GSS_Zhu approaches.

Effect of Varying the Numbers of Nodes. Here we vary
the number of nodes (7; remains fixed) and report the
average power consumption. We consider both harmonic
and arbitrary periods (reported in Figures 11(b) and 11(c)).
For both of these settings, we randomly generate 100 tasks;
and vary the number of nodes in each task between 10 and
55. Compared to the previous set of experiments (varying
task utilization with a fixed number of nodes), we observe
similar improvements in power consumption, i.e., choosing
a single speed over the whole deadline leads to more power
savings. Especially, when considering harmonic task peri-
ods the SingleSpeed_Greedy approach uses on average 22.25%
and 43.56% less power compared to Fed_Guo and GSS_Zhu
approaches, respectively. If we consider arbitrary task peri-
ods, the savings become 12.39% and 54.57%, respectively.

A.2 Implicit Deadline Task.

Now we consider the Implicit deadline tasks and show their
average power consumption by changing two parameters:
task period (or utilization) and the number of nodes.

Effect of Varying Task Periods (Utilization). In this
experiment, we fix the number of nodes to 30. We vary
the task period using Equation (7) and report the aver-
age power consumption in Figure 12(a). Similar to the
phenomenon we observed in the last experiment, average
energy consumption for implicit deadline tasks is directly
proportional to the average task utilization. Figure 12(a)
also shows that adopting the SingleSpeed_Greedy approach
results in reduced power consumption. On average, the
SingleSpeed_Greedy approach leads to a power saving of at
least 18.44% and 57.3% compared to Fed_Guo and GSS_Zhu
approaches, respectively.

Effect of Varying the Numbers of Nodes. Now we
measure the average power consumption by varying the
number of nodes with fixed 7;. We randomly generate
100 tasks with harmonic and arbitrary deadline. We report
the average power consumption in Figure 12(b) (12(c)) for
harmonic (arbitrary) deadline tasks. Again, we observe sim-
ilar improvements in power consumption, i.e., choosing a
single speed over the whole deadline outperforms other

1

approaches. Instead of period, we use the term deadline be-
cause we are considering constrained deadline tasks. Specif-
ically, under harmonic task periods, the SingleSpeed_Greedy
incurs 14.05% and 40% less power on average compared
to Fed_Guo and GSS_Zhu; under arbitrary task periods, the
savings potential are 18.39% and 57.27%, respectively.

APPENDIX B
DISCUSSIONS: ASSUMPTIONS AND APPLICABILITY

We have mentioned the assumptions adopted in this paper.
The first two subsections in this section discuss the validity
of these assumptions, their impacts and potential solutions
to overcome these impacts. Then, in Subsection B.2 we detail
the reasons behind the measurement overheads (see Section
5) and the applicability of our proposed approaches.

B.1 Assumptions Behind the Power Model

Components Behind the Overall Power Consumption.
While some other factors such as cache miss, bus accesses,
context-switches, and I/0 usage also affect the power con-
sumption, CPU power consumption is one of the major
contributors to the overall power consumption. Power con-
sumption may largely be dominated by any of these fac-
tors depending on the application/benchmark (e.g., power
consumption is dominated by the radio/network in some
communication-oriented applications [51]). In this work, we
target to minimize the CPU power consumption only. While
minimizing the CPU power consumption, our approach
does not increase the power consumption that is influ-
enced by other factors, as our technique does not introduce
additional existing DAG schedulers (DAG decomposition
based). It would build the foundation for more complicated
analysis that considers all other factors of overall power
consumption in the future.

Dynamic Power Management. DPM explores idle slot of
a processor and puts the processor to a low power mode
to reduce the static power consumption. Switching to low
power mode (and backward) incurs additional energy con-
sumption and is beneficial only when the idle slot is longer
than a threshold, known as the break-even time (BET) 3 [33].
In this paper, the available idle slot may not be longer than
the BET for two reasons. First, we focus on clustered mul-
tiprocessor platform, where processors within each cluster
must execute at the same speed, i.e., the maximum speed
necessary for the demand on each processor at a given
instant. As a result, unless all processors within a cluster are
idle, the cluster cannot be switched into any sleep mode. For
sporadic releases, idle slots of each processor are unlikely
to be synchronized. Moreover, cluster-wide idle slots tend
to be relatively short. Second, while executing a task, a
uniform execution speed significantly reduces the overall
energy consumption (Theorem 4 of [12]), which is the goal
of our proposed approaches—this leads to further reduction
of idle slots. For example, a study using Intel Strong ARM
SA-1100 processor has shown a transition time of 160ms to
switch from sleep mode back to run mode [52], which can
be larger than many task periods in avionics. As triggering
mode switches becomes more energy consuming in general

3. BET is the minimum duration for the processor to stay at the sleep
mode.
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Fig. 11: Power consumption comparison between different approaches for the constrained deadline tasks considering a
continuous frequency scheme on the identical heterogeneous platform.
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Fig. 12: Power consumption comparison between different approaches for the implicit deadline tasks considering a
continuous frequency scheme on the identical heterogeneous platform.

and may overwhelm the gain in energy savings, DPM is
considered out of the scope of this work. DPM could be a
valid option under certain scenario, and we leave the further
exploration along this direction as future work.

B.2 A Note on the Overhead Delay

We have mentioned that the scaling-down (up) the fre-
quency of the big cluster takes at most 60 (40)ms, while
both these operations take at most 15ms on the LIT-
TLE cluster (see Section 5). we use cpufreq-set module to
change the system’s frequency, and this module accounts
for microsecond-scale transition delay (usually 100-200us),
which is typically incorporated into the WCET. In our case,
the delay is much higher because (i) we used a Python
script to measure the delay; and (ii) there is some user-
level delay caused by I/O operations and file logging, e.g.,
time-stamp storage before and after each run. Time-stamp
storage detects the arrival and completion of nodes which
could be avoided when one does not need to track system
behavior in a precise manner (which is the normal scenario).
Considering the potential overhead issue, in Subsection 4.1,
we proposed Approach-B, where a task executes at a single
speed (so, there is no frequency changing overhead) for the
whole duration from its release to the deadline. Experimen-
tal study (Section 6) also shows excellent performance of
such approach when WCETs of sub-jobs are short. Note

that, we can not entirely avoid the speed changing overhead
for Approach-A in Subsection 4.1. However, we can reduce
the number of frequency changes by partitioning the tasks
(into a cluster) according to Algorithm 1. Thus, an efficient
partitioning can reduce the frequency changing overhead.



