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The semiconductor Bloch equations (SBEs) are routinely used for simulations of strong-field laser-matter
interactions in condensed matter. In systems without inversion or time-reversal symmetries, the Berry connec-
tions and transition dipole phases (TDPs) must be included in the SBEs, which in turn requires the construction
of a smooth and periodic structure gauge for the Bloch states. Here, we illustrate a general approach for such
a structure-gauge construction for topologically trivial systems. Furthermore, we investigate the SBEs in the
length and velocity gauges and discuss their respective advantages and shortcomings for the high-harmonic
generation (HHG) process. We find that in cases where we require dephasing or separation of the currents into
interband and intraband contributions, the length-gauge SBEs are computationally more efficient. In calculations
without dephasing and where only the total current is needed, the velocity-gauge SBEs are structure-gauge
independent and are computationally more efficient. We employ two systems as numerical examples to highlight
our findings: a one-dimensional model of ZnO and the two-dimensional monolayer hexagonal boron nitride
(hBN). The omittance of Berry connections or TDPs in the SBEs for hBN results in nonphysical HHG spectra.
The structure- and laser-gauge considerations in the current work are not restricted to the HHG process and are

applicable to all strong-field matter simulations with SBEs.
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I. INTRODUCTION

In the past decade, high-harmonic generation (HHG) in
solids irradiated by strong laser pulses has attracted con-
siderable attention [1—6]. Solid-state harmonics provide a
potential avenue towards new attosecond light-source tech-
nologies and the engineering of compact attosecond light
sources [7-12], as well as a probe of fundamental proper-
ties in a solid such as the band structure [13], the Berry
curvatures [14,15], and topological phase transitions [16—18].
Several different theoretical simulation frameworks have been
applied to gain insight into the HHG process in solids, includ-
ing the time-dependent density-functional theory [19-22],
the time-dependent Schrodinger equation [23-26], and the
semiconductor Bloch equations (SBEs) [27,28]. The SBEs are
attractive because they provide a many-body framework that
allows the inclusion of excitonic effects [5,29], treatment of
dephasing and population decay [28,30], as well as a natural
separation of the total current into an intraband contribution
due to electron and hole motion in their respective bands and
an interband contribution due to the coupling between the
bands.

Several challenges remain in the efficient and accurate
simulation of the HHG process using the SBEs. First, in the
absence of external fields, the generally complex-valued cell-
periodic functions u’,j(r) from Bloch’s theorem can be subject
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to an arbitrary gauge transformation,

|ﬁf§) = ¢ |ukn>, (qo:l‘ real), (1)
without changing the physical properties of the system. We
will henceforth refer to such a gauge as a structure gauge.
Since the u’,j(r) normally are obtained from some diago-
nalization procedure performed separately for each crystal
momentum k in the Brillouin zone (BZ), the phases go,’j in
Eq. (1) are random-valued and generally discontinuous and
nonperiodic over the BZ boundaries. Quantities required by
the SBEs as input, like the generally complex-valued transi-
tion dipole or momentum matrix elements, will be affected
by such a particular structure-gauge choice. Quantities in-
volving k derivatives such as the Berry connections and the
Berry curvatures require a smooth and periodic gauge. Due
to the complexities involved in the construction of such a
structure gauge, numerous crude approximations are often
made in the SBE calculations where, e.g., the transition dipole
phases (TDPs) and Berry connections are omitted, often with-
out explicitly stating that an approximation has been made
(see, e.g., Refs. [30-34]). Since the Berry connections and
Berry curvatures are generally nonzero in systems without
parity or time-reversal symmetry [35,36], the repercussions
of such approximations still remain unexplored. Recently,
however, there has been increased interest in the construction
of periodic structure gauges in the HHG community [37,38].
For example, Jiang et al. [33,34] realized the importance
of the TDPs on the generation of even-order high harmon-
ics in gapped graphene and ZnO. The structure-gauge in-
variance of the SBEs was discussed in Ref. [32], with a
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periodic-gauge construction shown for a one-dimensional
model system. The Wannier gauge [39], where maximally
localized Wannier functions are used as a basis, has also
been discussed recently in the context of simulating HHG in
solids with SBEs [40]. The explicit construction of a periodic
gauge for a D-dimensional topologically trivial solid and its
implications for HHG simulations using SBEs, has not yet
been extensively discussed in the context of HHG in solids.

In addition to the structure-gauge considerations, the
choice of the laser gauge [e.g., length gauge versus velocity
gauge] warrants both practical and numerical considerations,
see, e.g., Refs. [41-43]. In a truncated basis involving a finite
number of bands, the nonlinear response of semiconductors is
known to depend on the laser-gauge choice, with the length
gauge (LG) pertaining numerous advantages over the velocity
gauge (VG) [44—46]: a smaller number of bands can be used
in the LG compared to the VG; no unphysical divergences
arise in the LG in the DC limit, in contrast to the VG; and the
dephasing and separation of the total current into an intraband
and an interband contribution is naturally treated in the LG.
Earlier studies were mostly concentrated on the low-order
nonlinearities, e.g., first- to third-order responses [44,46,47],
and since the underlying physics of HHG in semiconductors
above the band-gap energy is radically different from the low-
order nonlinearities, the convergence of the harmonic spec-
trum with respect to the number of bands, in the different laser
gauges, still remains to be investigated. In addition, since the
laser-matter coupling in the LG involves the position operator
7, which can be treated in reciprocal space by rewritting it
into terms involving Vg, construction of a smooth and periodic
structure gauge is required.

In this work, we investigate how structure-gauge and laser-
gauge choices affect the HHG process in solids simulated with
SBE:s in a truncated basis. For this purpose, we give an explicit
procedure on how to construct a smooth and periodic structure
gauge, the so-called twisted parallel transport (TPT) gauge,
for a D-dimensional topologically trivial solid and show how
the Berry connections and TDPs are naturally calculated in
such a gauge. We discuss how to correctly include dephasing
and separation of the total current into intraband and interband
parts in the two laser gauges. We find that in terms of com-
putational complexity, if dephasing and separation of current
are desirable, the LG SBEs scale favorably compared to the
VG SBEs, while if dephasing and separation of current is not
needed, the LG SBEs scale unfavorably compared to the VG
SBEs. We test our computational schemes on two examples: a
one-dimensional (1D) Mathieu model system mimicking the
band structure of ZnO and the monolayer two-dimensional
(2D) material hexagonal boron nitride (hBN). The LG SBEs
are found to require the smooth and periodic structure gauge,
while the VG SBEs (without dephasing and separation of
current) are independent of the structure gauge. While the VG
SBEs require more bands for the convergence of the HHG
spectrum, we find in the case of hBN that the high-order
harmonics above the band gap converge faster than the low-
order harmonics. Finally, we show that the inclusion of the
Berry connections and TDPs in hBN is crucial for the correct
treatment of HHG with LG SBEs.

This paper is organized as follows. Section II contains all
the theoretical frameworks pertinent to this work; Sec. ITA

details the construction of different structure gauges in a
general D-dimensional material; Secs. IIB and IIC cover
the LG and VG SBEs, respectively; and Sec. IID discusses
the computational complexity for the LG and VG SBEs. In
Sec. 111, the structure-gauge construction and the HHG with
the two laser gauges are considered for the example of a 1D
Mathieu model. In Sec. IV, the structure and laser gauges
are considered for the more realistic system of monolayer
hBN. Appendix contains numerical details on the gauge con-
struction. Atomic units are used throughout this work unless
indicated otherwise.

II. THEORETICAL METHODS

A solution of the SBEs usually proceeds in three steps:
(a) solve the time-independent Schrodinger equation (TISE)
to find the Bloch band energies E¥ and Bloch functions
@k (r) = uk(r)e™; (b) construct a relevant structure gauge for
the Bloch states such that key quantities like the transition
dipole and Berry connections can be calculated; and (c) solve
the SBEs in the desired laser gauge.

For step (a), some form of diagonalization procedure is
required. Indeed, many commercial solid-state structure codes
are highly optimized toward this purpose, e.g., by employing
density-functional theory [48,49]. In this work, we diagonal-
ize the TISE in reciprocal space

1
> [5 k +G|* + VGG]uj;G, = ENik,, (2)
G!

where G are the reciprocal lattice vectors, and Vg and ik, are
respectively the Fourier components of a pseudopotential and
uk (r).

Step (b) is detailed in Sec. I A, where the construction of
different structure gauges in a general D-dimensional crystal
is presented, and the calculation of key quantities such as
the transition dipoles and Berry connections are discussed.
Sections II B-II D are about step (c), where the SBEs in the
two different gauges are presented and their computational
complexities compared.

A. Structure gauges and calculations

In a solid, the position operator 7 in the Bloch basis can be
treated by the identity

k|
(o l#[¢)
where the subscript “crys” refers to integration over the whole

crystal, and the dipole matrix elements are given by

dy, = il | Vi), “)

mn

rys = Okq[ 18 Vic + s, (3)

where the inner product (-] - |-) denotes integration over a unit
cell. The Berry connections [35,36] are defined as the diagonal
elements [50]
k_ gk
A, =d,,. 5)

=
Due to the gradient in Eq. (4), to calculate quantities such
as the Berry connections Aﬁ [Eq. (5)] or propagate the LG
SBEs [see Sec. II B], the construction of a smooth and pe-
riodic structure gauge [see Eq. (1)] for the Bloch functions
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TABLE 1. Expressions for the Berry connections and phases in the continuous (column 1) and discrete (columns 2—4) cases. Columns 3
and 4 list the expressions in the PT and TPT structure gauges. For readability, the real variable A is a placeholder for the k, variable in the
main text, and the crystal momenta k and band indices are omitted in the notations for the Berry connections A’I:,K‘([ and Berry phases (p,f iy 118
assumed that A runs over the BZ with length L discretized on an equidistant grid with the last point omitted and spacing AA. N is the number

of discretization points and A/ is the jth discretization point.

Continuous Discrete (Discrete) parallel transport (Discrete) twisted parallel transport
A= (w3 1i03uy) Ayj = — (AN TmIn(uy i (U4 a0) A= (A):)*l8j‘N_1<pB A, =£pBL’l
¢* = § Audi O =AMLY A ¢ = A1 AL ¢* = AL

is thus required. We note that many of the published SBE
calculations of solid-state HHG have employed a variety of
approximations such as the usage of constant dipole cou-
plings (e.g. [30-32,51]), neglect of the Berry connections
(e.g., [33,34,52]), and neglect of the transition dipole phases
altogether. Here we illuminate a method for the construction
of a smooth and periodic structure gauge, namely, the TPT
gauge [36], that allows the calculations of the Berry connec-
tions and TDPs.

For a general D-dimensional crystal, we reformulate the
D-dimensional problem into a series of one-dimensional
scalar problems. Suppose that the first BZ is spanned by the
(generally nonorthogonal) primitive reciprocal lattice vectors
{bd}g:l such that all points in the first BZ can be written

D
A byl |bgl
k= b ) A A |’ 6
Xd:"d d, Ka € [ 2o ] (6)

with b, the unit vector along b,. Our desired periodic-gauge
condition reads explicitly

| ) = |oh). (7

Using the expression for the gradient in a nonorthogonal basis,
the Berry connections can be written

D
A= > A

"’K’Il
dy,dxy=1

&1 %b,,, (8)

with g1 the inverse metric tensor, and A¥ «, the scalar Berry
connections along the reduced coordinates «,

Ak = i(uk |8, [uk). )

n,Kq
We construct a smooth and periodic gauge by adopting the
approach discussed in the work of Vanderbilt (see Ref. [36]
and references therein). This is done in two steps: first a
smooth gauge is constructed without periodic boundaries, and
then using this gauge, the smooth and BZ-periodic gauge is
constructed.

Starting from |u*) obtained from a diagonalization pro-
cedure with random phases, we first construct the parallel
transport (PT) gauge by imposing on the transformed states
|i*) the constraints

Ak = ild|a,,

n,Kq

#) =0

In such a gauge, the adjacent states |i#¥) and |ik+%) are
“maximally aligned,” in the sense that their overlap is taken
to be strictly real and positive. This alignment is most easily

seen from the discrete form of the Berry connection AX o

n,Kq
Im In(i#k| ik +3%) (see Table I and Appendix).

for all d. (10)

Operator matrix elements such as d,,, in the PT gauge
are smooth inside the BZ but do not satisfy the periodic-
gauge condition given by Eq. (7). The gauge constraints in
Eq. (10) are too restrictive, and when wrapping around the BZ
boundaries, a Berry phase is accumulated,

A dicy. (11)
BZ

B _
Py =

The TPT gauge consists of distributing this Berry phase
evenly onto the |JZ{§) obtained from the PT gauge, thereby
imposing a phase twist of the maximally aligned states in the
PT gauge, such that

|ik) = ¢ e/ 0al | ), (12)

The newly constructed Bloch functions in TPT, ¢¥(r) =
e"k"ﬁﬁ(r), are now both smooth in k and BZ periodic.

For the actual discrete numerical procedure to construct the
PT and TPT gauges, we refer the reader to Appendix. Here
we only stress a crucial point: even though the TPT gauge is
constructed using the cell-periodic functions |uf), it is actually
the constructed Bloch functions |¢,’1‘ ) that are BZ periodic [see
Eq. (7)1, so the relation

|L—£];+bd) — e—ib,z-r|l/—{kn> (13)

needs to be kept in mind when constructing the gauges and
taking the overlaps across BZ boundaries. In Table I we
summarize the formulas for the Berry connection and Berry
phases in the continuous and discrete cases, as well as in the
TP and TPT gauges for the discrete case.

For two- and three-dimensional solids, if the TPT gauge is
chosen along x4, a subsequent construction of the TPT along
another direction «p, with b # d would change the gauge along
kg4, but the resulting gauge would still be periodic along x.

It should be noted that presently we have constructed the
gauges only for situations where the considered manifolds
of energy bands are ‘“separate”, in the sense that they are
nondegenerate over the entire BZ. In the case of degenerate
manifolds, we refer the reader to the discussion in Ref. [36].

B. Semiconductor Bloch equations in length gauge

The SBEs governing a solid driven by a strong laser field
in the LG read [30,53]

) : i(1— &)
P (1) = — I[E§+A(t) _ pkean _ — mn ],Onlf,, o
2
— iF ()Y [dn AV pf) — d} 0 i),
)

(14)
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with K the crystal momenta in a reciprocal reference frame
moving with A(r) = — [' F(¢')dt’, where F(r) is the electric
field, p*  the density matrix elements, and 7> the dephasing
time. Note that in Eq. (14), the Berry connections are included
[see Eq. (5)]. We have also tested evaluation of the LG SBEs
in the fixed reference frame [27,28,54] and found that it
requires more k-discretization points in order to converge. All
LG results presented in this work are obtained with Eq. (14).
The interband and intraband currents read

Jer®) = — / dK Y~ o oA, (15a)
m#n

Jualt) = / K'Y pK peaw), (15b)
n

with pf;m = (¢/I;| ﬁl(b,’f ) the momentum matrix elements which
are related to the dipole matrix elements in Eq. (4) by

k — ip{‘nn

m = TE gk for m # n. (16)
m n

The HHG spectrum is taken as the modulus squares of the
Fourier transforms of the currents (after weighting by a win-
dow function). For the 2D example treated in Sec. IV, we
distinguish between the parallel- and perpendicular-polarized
harmonics with respect to the laser polarization direction
(LPD), which are respectively calculated by taking the Fourier
transform of the parallel and perpendicular components of the
currents in Eq. (15).

C. Semiconductor Bloch equations in the velocity gauge

In the VG, and in the dipole approximation, and the ab-
sence of electron scattering and correlation, the different k’s
are uncoupled and the SBEs read

g’;m(t) = - l[ErIZ - E:]g’:’m([)
— iAW) Y [phdh, ) = Pl @], A
1

with gk the density matrix elements and pX, = (¢F|p|@¥) the

momentum matrix elements. The total current is

J(t) =- /dkzg];m[p{;m + (SmnA(t)]. (18)

mn

Dephasing and separation of the total current

To correctly include the dephasing and separation of the to-
tal current into an interband and an intraband contribution, we
note that an operator transforms between length and velocity
gauges as O = ¢47OV0e=AT [4]1 42], with matrix elements

ALGk+A _ ki« AVGk
Omn - Z Qm*;m Om’n’ Qn’n’ (19a)
m'n’

Oy = (i |u6).

In the VG, our procedure to include the dephasing and
separation of the current is as follows: for every ns time
steps (ng, > 1 for computational efficiency), we transform the
density matrix elements to the LG, at which point we apply
p,’;m — p,’;ne’"“"”/ T for m # n and calculate the interband

(19b)

and intraband currents according to Eq. (15), whereafter we
transform back to the VG. The present procedure to obtain
gauge-invariant interband and intraband currents in VG has
been previously described in Ref. [42] in the case of a 1D
model solid without dephasing, with a single electron initially
at k =0, and with k 4+ A(t) never exceeding the first BZ
boundaries. If the valence band is initially fully populated,
k + A(t) can always exceed the first BZ boundaries, and as
a consequence, to calculate the overlaps ijm in (19), Eq. (13)

needs to be taken into account as well as the property u’fGEb" =
ulr‘z:G:l:bd *

Note that the separation of the total current into the intra-
band and interband contributions is only physically sensible
in the LG [42]. The LG intraband current in Eq. (15b),
when rewritten in terms of the velocity-gauge density matrix
elements g, [using Eq. (19)], would involve not only the
diagonal elements g,,, but also off-diagonal elements.

D. Computational complexities and parameter values

We briefly comment on the computational scalings for
the time-propagation and current calculations in the LG and
VG SBEs. In the case of the SBEs in LG, for each time
step &, the binary search, linear interpolations of the rele-
vant energies, and matrix elements at k = K 4+ A(t) have the
leading-order scaling of O[Ny log(Ng )N,f], with Nj the number
of k-discretization points and N, the number of bands. The
calculation of the currents in Eq. (15) scales as O(Nkoz), and
the propagation step (either Runge-Kutta or split operator)
involving pk = scales as NiNj. Thus for each time interval
At = ng 8t where we calculate the current, the total compu-
tational complexity is

19 = O[ns NiNj (log Ny + Np)]. (20)

In the case of the SBEs in VG without dephasing and
separation of the total current, the total computational scaling
is

Y6 = O(nsNNj). (21)

When we want to include the dephasing and separate the
interband and intraband currents, the complexity increases:
the interpolation of the Fourier components u*; at k +A
scales as O[NgNgNj log Ni], with Ng the number of reciprocal
lattice vectors; the calculation and storing of the overlaps QF
in Eq. (19b) scales as O(NkN(;sz); the transformation step in
Eq. (19a) scales as O(NkNg ); the total complexity is thus

fYVO 9PN =O(Ng N +NiN;ns; +NiN; N +NiNpNg 1og N ).
(22)

It should be mentioned that the complexity formulas are valid
in the limit of N, Ng, N, going to infinity. For the examples
considered in this work, some of these parameter values are
quite small, and the formulas hold only approximately. Fig-
ure | shows the computational complexities in Egs. (20)—(22)
plotted for some parameter examples. In our implementation,
we parallelize with OPENMP over different k values.

For the 1D calculations, we choose N, = 600, N, = 5,
Ng = 10, and ng; =5 (8t = 0.2), the ratio between com-
plexities of the VG SBEs and the LG SBEs is fV¢/fL0 =
O[N,/(log Ni. + Np)] = 0.44. For the case where we want to
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FIG. 1. Examples of computational complexities [Egs. (20)-
(22)], with ns, =5, Ng = 10. (a) Fixed N, =2 and varying Ny.
(b) Fixed N; = 2007 and varying N,,. Data points are shown for some
parameters used for the 2D system in this work (calculations for VG
SBE with dephasing are not performed for the 2D system, see text).

include the dephasing in VG, the ratio is fYG-deph / fLG — 1 28,
For the 2D calculations, we use Ny = 200%, N, =2, Ng =
102, so the ratios are fV6/fL6 = 0.16 and fVO-deph/ LG —
10.22. Note that more states are usually needed in the VG
for convergence (but the high-harmonic part of the spectrum
could be converged earlier, see Sec. IV B).

III. RESULTS FOR 1D ZNO

We first consider the 1D ZnO model that has been exten-
sively used in the literature to study HHG in solids, with the
Mathieu potential V (x) = —Vp[1 + cos(2mx/ay)], Vo = 0.37,
and ag = 8 [23,25,42,55,56]. Figures 2(a) and 2(b) show the
band structure and a few diagonal elements of the momen-
tum operator pk , respectively. Two off-diagonal elements
of the momentum operator pf;m, calculated directly after the
diagonalization procedure, i.e., without the application of any
structure-gauge choices, are plotted in Fig. 2(c). Since the
present 1D potential Vg is real and symmetric, the uf; values
obtained from Eq. (2) are real, resulting in real p¥,, values. The
|uk) obtained from the diagonalization procedure assumes a

50 1.5
(a VB — CB — b) n=1— n=3
40 1.0 n=2 -
~ 30
g 3080 .
& 0.0 pe=s RN -
B = —
8 X -0.5
-1.0
-1.5
(d) (m,n) =(2,3) —
2,4) --
£
S WHF AW I e
3 — : -------
< PT gauge ,\/'—';
’ -1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

k (units of m/ag) k (units of m/ag)

FIG. 2. (a) Band structure of the 1D ZnO model (two valence
bands and three conduction bands are shown). (b) Three diagonal
elements of the momentum operator. Two off-diagonal elements of
the momentum operator, (c) before and (d) after application of the
parallel transport gauge.

(a) VG

PT gauge
random gauge —

(b) LG

—
o
-

spectral intensity
=
(=]
e

0 10 20 30 40 50 60 70 O
harmonic order

10 20 30 40 50 60 70
harmonic order

FIG. 3. High-harmonic spectrum for the laser-driven Mathieu
potential calculated in (a) VG and (b) LG, without dephasing. The
vertical dotted lines at around the 11th and 36th harmonics show,
respectively, the band-gap energy and the largest energy between the
highest valence band and the lowest conduction band. The VG SBEs
in (a) are seen to be independent of the structure-gauge choice.

random sign, which is reflected in the discontinuities of pf,, in
Fig. 2(c). Construction of the PT gauge from Eq. (10) results
in the smooth p¥,, shown in Fig. 2(d). As we are dealing with
real |uf§), the accumulated Berry phase from Eq. (11) is zero,
the Berry connections are zero, and the TPT gauge in Eq. (12)
is the same as the PT gauge.

For the propagation of the SBEs, the lowest two bands
in Fig. 2(a) are taken as the valence bands and are as-
sumed to be initially fully occupied [57]. In the past, many
works [23,25,42,55] using this model system make the as-
sumption that only electrons with crystal momenta close to
k =0 contribute to the current, citing the minimum band
gap at k =0 and the exponential decay of the tunneling
probability away from k£ = 0. However, recent work (see,
e.g., Ref. [58]) has shown that other k points contribute
significantly to the total HHG yield in terms of the higher
conduction bands. In the time propagation, we use the A(z) =
A cos? [t/(27)] cos(wypt ), with Ag = 0.30, carrier frequency
wp = 0.0142 (A = 3200 nm), and FWHM time duration 7 =
48 fs.

In the VG SBEs, without the inclusion of dephasing and
separation of intraband and interband currents, the HHG
spectrum does not depend on the structure-gauge choice, see
Fig. 3(a). Thus in this specific case (the SBEs for different
k are decoupled), the structure-gauge construction is unnec-
essary. The situation is drastically different in the LG SBEs,
where the random gauge utterly fails to reproduce the correct
spectrum, shown in Fig. 3(b).

The HHG spectrum for a calculation without the inclusion
of dephasing is shown in Figs. 4(a) and 4(b) for the interband
and intraband contributions, respectively. On the scale of the
figure, the LG and VG SBEs agree for harmonics emitted
above and below the band-gap energy. Without the inclusion
of dephasing, destructive interferences lead to significantly
lower yields in the perturbative region, and almost no well-
resolved harmonics are seen in the first plateau region. When
a short dephasing time of 2 fs is introduced, we recover the
clean harmonics, shown in Figs. 4(c) and 4(d). Again, the field
gauge results are identical, validating our proposed procedure
from Sec. ITC on the inclusion of dephasing in VG.

IV. RESULTS FOR MONOLAYER hBN

In this section, we consider the case of monolayer hBN.
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FIG. 4. High-harmonic spectrum for the laser-driven Mathieu
potential calculated in LG (blue area) and VG (solid line). Upper
panels show the (a) interband and (b) intraband contributions for the
case of no dephasing. Lower panels (b) and (c) show the result for
the case of 2-fs dephasing. The vertical dotted lines at around the
11th and 36th harmonics respectively show the band-gap energy and
the largest energy between the highest valence band and the lowest
conduction band.

A. hBN structure

For the structure calculation, we employ the pseudopoten-
tial method described in [46]. Briefly, the Fourier components
of the pseudopotential are decomposed into a symmetric and
an antisymmetric term, Vg = V3, cos(G - ¢) + Vg sin(G - q),
with 2¢ = a/+/3é, and a = 4.7 the lattice constant. The form
factors Vg, and V45 are cut off such that scaled reciprocal
lattice vector satisfies |G|?(a/27)? < 16/3. For the four dif-
ferent values |G|2(a/27'r)2 =0, 4/3, 3, 16/3, the form factors
take on the values V2 = 0, 0.396 34, 0.054 09, 0.286 64,
and Vg% =0, 0.294 25, 0, 0.135 86, respectively. In the
diagonalization of the TISE in Eq. (2), we used 100 reciprocal
lattice vectors, which yields a total of 100 bands. In Fig. 5(a),
the band structures of the first four bands are shown, with the
minimal band gap of E;, = 7.78 eV located at the K symmetry
point.

To illustrate the properties of the different structure gauges,
we consider only the first two bands, taken respectively as the
initially fully occupied valence band and the empty conduc-
tion band. The PT gauge construction of the higher bands
requires the treatment of degenerate states, which is beyond
the scope of the present work. In Figs. 5(b)-5(d) the imaginary
parts of the x component of Plfz are plotted versus crystal
momenta k in the first BZ in the reduced coordinates along
b, and b, [Eq. (6)]. In the random gauge of Fig. 5(b), there
is neither continuity nor BZ periodicity. The discontinuities
are clearly seen around (ki, k») = (0.3,0.3), while the BZ
nonperiodicity is observed when wrapping around the BZ,
e.g., along the line k, = 0.6, where Im(I’]fz,x) takes on differ-
ent values at k; = —|by|/2 = —0.76 and x; = |b;|/2 = 0.76.
In the PT gauge of Fig. 6(c), continuity is ensured without
BZ periodicity, while in the TPT gauge of Fig. 6(d), both
continuity and BZ periodicity are ensured.

The Berry connections in the TPT gauge for the first
two bands are plotted in Figs. 6(a) and 6(b). The Berry
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FIG. 5. (a) Band structure of the 2D hBN model (one valence
band and three conduction bands are shown). (b, ¢) Imaginary part of
the x component of the momentum operator, Im(p¥, .), plotted in the
first BZ as a function of the reduced coordinates along b, and b, [see
Eq. (6)]. (b) No structure-gauge choice (random gauge); (c) parallel
transport gauge; and (d) twisted parallel transport gauge.

connections are structure-gauge dependent and transform as

.;l]; = .Aﬁ - kapﬁ under a general structure-gauge transfor-
mation in Eq. (1). The z component of the Berry curva-
ture, @° =V, x A%, for the valence and conduction band
is shown in Figs. 5(c) and 5(d), respectively. They are seen
to be prominent around the K symmetry points and sat-
isfy Slﬁ = —SZ;k due to the time-reversal symmetry of our
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FIG. 6. Berry connections for (a) the valence band and (b) the
conduction band in the twisted parallel transport gauge. For better
visualization, the arrow sizes in (b) are scaled by two with respect to
(a). Berry curvatures for (c) the valence band and (d) the conduction
band. The hexagon in the plots guides the eye and traces the first BZ.
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FIG. 7. The intraband and interband contribution to the HHG
spectrum, for a linearly polarized driver along I'-K and parallely
polarized harmonics, calculated with LG SBEs. The vertical dotted
lines at around the 10th and 28th harmonics respectively show the
smallest band gap at the K point and the maximal band gap at the I
point. Dephasing time is set to co. The dominance of the interband
over the intraband contribution is true for all driver and harmonic
emission directions considered in this work.

Hamiltonian [35,36]. Contrary to the Berry connections, the
Berry curvatures are structure-gauge invariant and are respon-
sible for the anomalous velocity, which can give rise to a
Hall current perpendicular to the applied field polarization
direction [35]. Recently, extreme nonlinear processes in solids
such as HHG and high-order sideband generation have been
suggested as a probe to measure the Berry curvature [15,59].

B. hBN HHG

For the hBN calculations we use
A(t) = Apg(t)[s€, cos(wpt ) + & sin(wyt)], (23)

where Ap = 0.35, wp=0.0285 (A =1600 nm), g(t)=
cos? [t /(21)] with t € [—7, 7], and T = 29.4 fs. For linear
polarization s = 0, while for circular polarization s = 1 and
€ = &,. For our current system and pulse parameters used,
the interband current strongly dominates over the intraband
current for all harmonic orders, see Fig. 7.

Figure 8 shows the HHG spectra for different driver po-
larizations, calculated in the LG (with TPT structure gauge)
and VG (with random structure gauge). Consider first the LG
results given by the filled curves. For the LPD along the I'-K
direction, purely odd-order (even-order) harmonics are polar-
ized along the parallel (perpendicular) direction and above the
band-gap energy, as shown in Fig. 8(a) [Fig. 8(b)]. When the
LPD is along the I'-M direction, only high harmonics parallel
to the LPD are emitted, which is shown in Fig. 8(c). For the
HHG spectrum using a circular driver in Fig. 8(d), above the
~20th harmonic, two pairs of harmonic peaks [(22w, 23wy)
and (25wq, 26wy)] are present, with elements in each pair
having opposite helicities. This is a consequence of the three-
fold rotational symmetry of the crystal lattice and is similar to
HHG in atoms and molecules using counter-rotating bicircular
fields with threefold spatiotemporal symmetry, where the
HHG spectrum exhibits combs in which every third harmonic
is missing [60—-64]. Below the ~20th harmonic, the harmonic
peaks are not well resolved due to the interference of more k
points in the BZ contributing to a given harmonic energy.
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harmonic order
FIG. 8. LG and VG convergence properties for HHG in hBN
with respect to the number of bands, with (a, b) a linearly po-
larized driver along I'-K, (c) along the I'-M directions, and (d) a
circular driver. The insets show the crystal structure, as well as the
driver (large red arrows) and emission polarization directions (small
blue arrows). The laser parameters are A = 1600 nm, A, = 0.35,
T = 29.4 fs. The vertical dotted lines at around the 10th and 28th
harmonics respectively show the smallest band gap at the K point
and the maximal band gap at the I" point. Dephasing time is set to
oo. Note the fast convergence of the harmonics above the band-gap
energy compared to that below the band-gap energy.

For all the driver and emission polarizations in Fig. 8,
the convergence properties of the VG SBEs with respect to
the number of bands are similar, as we will discuss below.
Using only two bands, the shape of the VG high harmonics
deviates considerably from the LG results above the band-gap
energy. Below the band-gap energy, the VG yields are severely
overestimated, and in the I"'-M direction [Fig. 8(c)], no even
harmonics are generated, in agreement with Ref. [46]. The
convergence of the spectrum in VG with respect to the LG is
much faster for harmonic orders above the band-gap energy:
10 bands are required for convergence above the band gap
while 30 bands are required below. This somewhat unin-
tuitive behavior is a manifestation of the different physical
mechanisms governing the two different harmonic frequency
regimes. Above the band gap, the HHG can be explained by
the recollision model [30,31]: an electron tunnels from the
valence band into the conduction band, leaving behind a hole;
the electron and hole are accelerated by the laser in their re-
spective bands and recollide when they reencounter each other
spatially, emitting a photon with energy corresponding to the
instantaneous band gap at recollision. Below the band gap,
however, the harmonics can be explained by a perturbative
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FIG. 9. HHG spectra with and without common approximations used in the literature (see text) for hBN driven by linearly polarized pulses.
LPD is along (a, b) I'-K and (c,d) I'-M directions. Laser parameters and figure formats are the same as in Fig. 8.

analysis [46,65] involving infinite sums over all band indices,
where the VG SBEs are known to diverge in the DC limit. We
note that even when using 30 bands in the VG SBEs, there is a
mismatch between the LG and VG results below the band gap,
which we think could be due to more bands being needed in
the LG SBEs or numerical inaccuracies in the construction of
the relevant gauge-dependent quantities. The fast convergence
of the spectrum in the VG above the band-gap energy versus
below can be exploited in future numerical simulations where
one is only interested in the harmonics above the band gap
and does not need to first converge the low-order harmonics.
Note, however, that our case study of monolayer hBN rep-
resents a system where the interband contribution dominates
significantly over the intraband contribution for all harmonic
orders. A general convergence statement for cases where the
interband and intraband dynamics are competing would need
further investigation.

C. Role of the Berry connections and TDPs

We have successfully demonstrated the construction of a
smooth and BZ-periodic gauge and showed that the two-band
LG SBEs correctly produce converged spectra above the band
gap. One can now ask the question, Why is this important?

In this section, we discuss some of the common approx-
imations made in the literature with respect to the Berry
connections and TDPs in the LG SBEs and their potential
shortcomings. The calculations in this section are performed
in the LG and TPT gauge, with the dephasing time set to co
and the pulse parameters identical to those in the previous
section.

A prevalent approximation in the literature is to neglect
both the Berry connections and TDPs,

~k
A =0
k

mn

(24a)

arg(d, ) =0, with m#n. (24b)

As mentioned in Secs. I and IT A, the use of this approx-
imation is a consequence of the difficulties in constructing a
smooth periodic structure gauge. For example, from a basic
application of a commercial crystal-structure code, one can
obtain the TDPs in the random gauge, and the easiest way to
construct a BZ-periodic TDP would be to take the absolute
value of the TDPs.

We first apply the approximation in Eq. (24) to monolayer
hBN using linearly polarized drivers, with the corresponding
HHG spectra plotted in Fig. 9 in black solid lines. When
the driver is polarized along I'-K and I'-M, the parallely
polarized harmonics respectively shown in Figs. 9(a) and 9(c)
are reproduced quite well overall (compare with the filled
curve for the full calculation), with deviations appearing for
the highest-order harmonics with orders >21. In contrast, the
perpendicularly polarized harmonics differ significantly from
the full SBE results: for the I'-K driver in Fig. 9(b), purely odd
harmonics are emitted instead of the purely even harmonics
in the full calculation, while for the I'-M driver in Fig. 9(d),
nonzero high-harmonic yields are observed even when the
full calculation shows no yield. The generation of purely
even or odd harmonics depends on whether the emission of
neighboring half-cycles are exactly in or out of phase [33,66].
Our results for the perpendicular case in Figs. 9(b) and 9(d)
show that the omission of the Berry connection and TDPs
substantially changes the phase at the time of emission.

In Refs. [33,34], the importance of the TPDs for the
generation of even-order high harmonics were illustrated in
ZnO, but without inclusion of the Berry connections [67].
We test the same approximation here, i.e., by using in our

simulations the correct TDPs but setting flﬁ = 0. The results
are shown in Fig. 9 by the green dashed lines. For all driver
and emission polarization directions, the spectrum contains
both odd and even harmonics, and the harmonic yields are
severely overestimated. Thus the TDPs and Berry connections
should both be included consistently in LG SBE simulations:
taking only one of them into account can potentially alter
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FIG. 10. Same format as in Fig. 9 but for a circularly polarized
pulse.

the symmetry properties of the system and result in wrong
HHG spectra. Our current results thus disagree with one of the
conclusions from Ref. [33], i.e., the claim that the TDPs can
be neglected when the crystal has reflection symmetry with
the symmetry plane perpendicular to the LPD.

We also considered another frequently employed approx-
imation in the literature (see, e.g., [30-32,51]), in which the

Berry connections are neglected (Aﬁ = 0) and the transition
dipoles are assumed to be constants, assuming the values
corresponding to the minimal band-gap crystal momentum
(the K symmetry point in our case). This approximation [red
dotted line in Fig. 9] produces parallel HHG spectra that have
mostly correct shapes but with underestimated yields, and
perpendicular HHG spectra that are again quite at odds with
the full calculation.

Finally, we calculated the spectra with the above approx-
imations for circularly polarized drivers, which is shown in
Fig. 10. In this case, the results for all three approximations
differ significantly from the full calculations. For example,
the approximation in Eq. (24), which worked sufficiently in
Figs. 9(a) and 9(b), fails for the circular polarized case in
Fig. 10. Also, the approximation with the constant transition
dipole matrix elements exhibits a spectrum involving peaks
separated by 6w, wrongly suggesting a crystal structure with
sixfold rotational symmetry. Given the recent experimental
interest in HHG in solids using circular or elliptical polarized
drivers, the use of such approximations (see, e.g., [32,52])
should be performed with extreme care.

We have thus shown, at least for the case of hBN, that all
the different approximations break down for the perpendicu-
larly polarized harmonics and for circularly polarized drivers.
We stress that the applicability of a given approximation
highly depends on the considered system. For example, in
many bulk solids, tunneling can be expected to occur near
the I' symmetry point of the BZ, and the use of a constant
transition dipole is in this case somewhat justified. More
investigations are needed for other systems, but we emphasize
that rigorous checks and care should always taken when
neglecting either the Berry connections or the TPDs.

V. SUMMARY AND OUTLOOK

We have theoretically investigated how the choice of struc-
ture and laser gauges affect the SBEs for the HHG process
solids. Towards this purpose, we presented a method for the

construction of a smooth and BZ-periodic structure gauge, as
well as Berry connections which are ubiquitous in systems
with time-reversal or inversion symmetry breaking. The LG
SBEs were found to be computationally more efficient than
the VG SBEs, provided that dephasing and separation of the
total current are to be included in the calculations. The LG
SBEs, however, require the construction of a smooth and
periodic structure gauge. We tested two sample systems, a 1D
Mathieu model and a pseudopotential model for monolayer
hexagonal hBN. The VG SBEs were found to require more
bands for convergence, with faster convergence of the high-
order harmonics above the band-gap energy as compared to
below. For hBN without inversion symmetry, we showed how
the neglect of the Berry connections and TDPs leads to incor-
rect HHG physics. We stress that the Berry connections and
TDPs are generally nonzero in systems without parity or time-
reversal symmetry [35,36] (e.g., ZnO, hBN, InP), and their
omittance in calculations can potentially lead to qualitatively
wrong results. Even in situations when the Berry connections
are identically zero, the gauge construction scheme presented
in this work is still useful for the construction of smooth
matrix elements (e.g., as shown in Sec. III). Our results should
be important for all future applications of SBEs for HHG in
solids.
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APPENDIX: NUMERICAL DETAILS ON CONSTRUCTION
OF THE PT AND TPT GAUGES

In Sec. IT A, the construction of the PT and TPT gauges is
outlined for the case where k is a continuous variable. Here
we give more details on the discrete case that can be useful
for numerical applications.

Suppose we have discretized the reduced coordinates x;
along I3d [see Eq. (6)] as

K) =k + jAka, j=0,...,Ng—1, (A1)

with Axy; = |by|/N; and N; the number of discretization
points. For notational convenience, for now, let the variable A
be a placeholder for k4, and the explicit writing of the crystal
momenta k and band indices be omitted. We have

— Im[In(u; |t 15)]

—Im[In(uy |(|uz.) + ARy |up) + - )]
—Im[In(1 + Ax(u |8, |up) + - -)]

— AMIm[ (1|9 u3) ]

AN (U195 u;)]

= A0A;, (A2)

%

where we have used that (u; |0, |u;) is purely imaginary. The
Berry connections at the discretization point A/ [Eq. (A1)] can
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thus be evaluated as [36]
Ay = —(AA) Im[In(uy |55 a5)]. (A3)

The continuous and discrete cases, for the PT and TPT
gauges, are summarized in Table. I of the main text.
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