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To identify the potential distal regulatory regions of human ribosomal protein genes (RPGs) and to understand
their characteristics, we studied the chromatin interactions in seven cell lines and four primary cell types. We
identified 22,797 putative regulatory regions that directly or indirectly interact with human RPG promoters. A
large proportion of these regions are only present in one cell line or one cell type, implying that RPGs may be
differentially regulated across experimental conditions. We also noticed that groups of RPGs, which are the same

groups across cell lines and cell types, share common regulatory regions. These shared regulatory regions by
RPGs may contribute to their coordinated regulation. By studying the overrepresented motifs in the identified
regulatory regions, we showed that there are about two dozen motifs in these regions shared across cell lines and
cell types. Our study shed new light on the coordinated transcriptional regulation of human RPGs.

1. Introduction

It is important to study the transcriptional regulation of ribosomal
protein genes (RPGs) [1,2]. RPGs are house-keeping genes that code for
the structural proteins in the ribosome, the machine that makes pro-
teins in every organism. In addition to their ribosome-related function,
RPGs have also been involved in other functions and their dysfunction
may result in various diseases [3,4]. As a set of essential genes and one
type of the most abundantly expressed genes [5,6], RPGs are well
known for their coordinated expression, meaning that in a given spe-
cies, their mRNA expression levels are highly correlated across various
experimental conditions [7]. To study RPG transcriptional regulation is
thus fundamentally important, not only for our understanding of the
molecular basis of their functions, but also for deciphering the general
principles of gene transcriptional regulation especially coordinated
gene regulation [1,8].

Many studies have been carried out to understand how RPGs are
coordinately regulated. Early experimental studies showed that several
RPGs share transcription factor (TF) binding sites (TFBSs) of a common
TF and validated the regulatory roles of these TFBSs [9,10]. Later, high-
throughput experiments showed that TFs such as RAP1 and FHL1 bind
to their TFBSs in promoters of almost all RPGs in yeast [11,12]. With
the genomes of human and other organisms available, computational
studies became popular and demonstrated that there are TFBSs of
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common TFs spread in promoters of almost all RPGs in a species
[7,13-15].

All above studies focused on RPG promoter regions. Rarely is there a
study that explores the distal regulatory regions of RPGs. Here and in
the following, promoters were defined as previously [16,17] as the
upstream 1000 base pairs (bps) to the downstream 100 bps of RPG
transcriptional start sites (TSSs); and distal regions were defined as
genomic regions that were at least 2500 bps away from the annotated
genes. To fill this gap, we previously studied the putative regulatory
regions within one megabase (Mbps) of the 80 human RPGs with the
DNase I hypersensitive sites (DHSs) in 349 samples [16]. For the sake of
simplicity, henceforth, we used “sample” to refer to a cell line, a cell
type, or a tissue under an experimental condition. We identified 217
putative regulatory regions of RPGs that are shared by the majority of
the 349 samples.

Although our previous study shed new light on human RPG tran-
scriptional regulation, it is limited in the following aspects [16]. First,
not all identified regions interacted with RPG promoters and thus they
may not be RPG regulatory regions. Second, the previously identified
regions are shared across the majority (= 85%) of the 349 samples and
are limited in terms of studying sample-specific regulation of human
RPGs. Third, these regulatory regions are limited to 1 Mbps neighbor-
hood of RPGs, while they may be further away from the target genes
[18].
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To understand human RPG distal regulation better, in this study, we
defined sample-specific putative RPG regulatory regions directly from
high-throughput chromatin interaction data in eleven samples [19,20]
(Material and Methods). We identified 22,797 putative RPG regulatory
regions, the majority of which were distal regions. More than 44% of
these regions were only identified in one sample, implying that RPGs
were likely to be differentially regulated in different samples. Inter-
estingly, 2 to 77 RPGs shared a common regulatory region in a sample
and the same pairs of RPGs shared common regulatory regions across
samples, which may partially explain their coordinated gene expres-
sion. By studying the overrepresented TF binding motifs in these re-
gions, we identified common TF binding motifs shared by samples. Our
study shed new light on the distal regulation of the human RPGs.

2. Materials and methods
2.1. Human RPGs and high-throughput chromatin interaction data

We obtained the coordinates of the 80 human RPGs from the
National Center for Biotechnology Information. We compared the obtained
RPG coordinates with those from the RPG database (http://ribosome.
med.miyazaki-u.ac.jp/) and found that they were consistent.

We obtained chromatin interaction data from two studies
(Supplementary Table S1). One was the Hi-C data in seven cell lines
(GM12878, IMR90, HMEC, KBM7, HUVEC, NHEK, K562) from Rao
et al. [20]. Rao et al. defined high-confidence interacting pairs of
genomic regions called looplists, the number of which was too small to
be used here. We thus downloaded their normalized contact matrix for
each of the above seven samples from https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE63525. Rao et al. generated these contact
matrices by the Knight and Ruiz normalization vectors [20]. They
provided the normalized number of Hi-C reads that supported the in-
teraction of the two corresponding genomic regions. We considered the
pairs of genomic regions supported with at least 30 normalized Hi-C
reads as the interacting pairs of regions in this study. Here 30 was the
largest cutoff that enabled the inclusion of more than 99% of the de-
fined interacting regions by other studies in two common cell lines,
IMR90 and K562 [21,22]. Note that these pairs of interacting regions
can be from different chromosomes, although the majority of them are
intra-chromosomal interactions. We obtained the corresponding DHS
data for each of the seven samples from the ENCODE project [23]
(https://www.encodeproject.org/search/?type = Experiment).

The other dataset was a promoter capture Hi-C dataset in seventeen
primary cell types, where relatively more abundant data were available
in eight of the seventeen cell types [19]. These eight cell types were
aCD4, nB, EP, tB, tCD8, FoeT, naCD4, and tCD4. The interactions be-
tween genomic regions were defined in the Supplementary Table S2 in
the original study [19]. All pairs of interacting regions were from the
same chromosomes. We were able to download the corresponding DHS
data for the following four cell types: aCD4, nB, tCD8, and FoeT from
https://www.encodeproject.org/search/?type = Experiment.

2.2. Direct and indirect RPG regulatory regions and enhancers

With a chromatin interaction dataset and the corresponding DHS
data in a sample, we obtained direct and indirect regulatory regions of
RPGs in this sample (Fig. 1). A direct region in a sample is a region
overlapping with at least one DHS region and interacting with another
region that overlaps with RPG promoters. The overlap of two genomic
regions was calculated with the bedtools (https://bedtools.readthedocs.
io/en/latest/content/tools/intersect.html) by the following command:
bedtools intersect -a a.bed -b b.bed -wao > out.bed. The interaction and
DHS regions used are defined in the corresponding sample. Similarly,
an indirect region is a region overlapping with at least one DHS region
and interacting with another region that overlaps with a direct or in-
direct region. Note that a RPG may have multiple direct and indirect
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regions, an indirect region may interact with another indirect region of
the same RPG, and a direct region of a RPG may be an indirect region of
another RPG in the same sample.

Each direct or indirect region was about 5000 bps long
(Supplementary Table S1), which depended on the Hi-C resolution and
was on average much longer than known regulatory regions [24,25]. To
predict TF binding motifs in these regions, we considered the minimum
sub-regions within a regulatory region that contained all overlapping
DHSs in this region. When the minimum regions were shorter than
800 bps, we extended them equally on both sides of these regions so
that the regions were at least 800 bps. The reason to extend short region
was that the length of the known mammalian regulatory regions are
normally in this range based on previous studies and the DHS data may
not be perfect [24,25]. We then obtained the DNA sequences for these
processed regions.

2.3. Motif analyses in promoters and other regulatory regions

For a given set of sequences, such as the set of sequences from all
potential RPG regulatory regions in a sample, we predicted the over-
represented motifs in these sequences by the SIOMICS tool [26,27].
SIOMICS considers the co-occurrence and overrepresentation of various
combinations of patterns (initialized with 8-mers, 8 bps long DNA
segments) in the input sequences to identify motifs through an effective
tree structure and algorithm, which showed good performance in pre-
vious studies [27,28]. The combination of motifs output from SIOMICS
are called motif modules, which represent groups of motifs and their
cofactor motifs. We considered motif modules in input sequences, as in
high eukaryotes, it is the TFBSs of different TFs in a short region to form
cis-regulatory modules to control the gene expression patterns [24].

We compared the predicted motifs with the motifs in the JASPAR
database [29]. The JASPAR database is widely used for its manually
annotated TF motifs. We claimed a predicted motif was similar to a
known motif in JASPAR if it had a STAMP [30] similarity E-value
smaller than le-5, a cutoff used in previous studies [31,32].

2.4. Other analyses

We downloaded the normalized gene expression data in 79 different
tissues from the GNF Expression Atlas 2 [33], which is widely used to
study gene transcriptional regulation [24,34]. For every pair of human
RPGs, we calculated their Spearman's correlation coefficient. We then
compared the correlation of RPG pairs with a common distal regulatory
region and the correlation of RPG pairs without a common distal reg-
ulatory region by the Wilcoxon test [35].

3. Results
3.1. About 22,797 regions may regulate human RPGs

We studied the direct and indirect regulatory regions of RPGs in
eleven samples based on the high-throughput chromatin interaction
data [19,20] and the DHSs in the corresponding samples [23] (Material
and Methods) (Fig. 1). We used the interaction data from two studies,
because both had multiple samples with a high sequencing depth. The
sequence depth is the ratio of the sum of the length of all uniquely
mapped Hi-C reads in a sample to the length of the human genome. In a
sample, a direct region of a RPG is a region that physically interacts
with this RPG promoter based on the corresponding chromatin inter-
action data and overlaps with at least a DHS region in this sample, and
an indirect region of a RPG is a region that indirectly interacts with this
RPG promoter and overlaps with at least a DHS region (Material and
Methods). In total, we identified about 22,797 putative regulatory re-
gions that interacted with RPG promoters in different samples (Sup-
plementary Table S1). The majority of these regions were distal regions
(Supplementary Table S2). The number of the putative regions varied
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Fig. 1. The identification of the putative RPG regulatory regions: (a) Different sources of interaction data were used to infer RPG regulatory regions and the enriched
TF binding motifs in these regions; (b) An example of direct and indirect regulatory regions of a RPG.

across samples. The details were in the following.

In seven samples from Rao et al., we identified 16,588 potential RPG
regulatory regions (Supplementary Table S1). The number of regions in
one sample varied from 338 to 16,541, depending on the sequencing
depth and the nature of the samples (Fig. 2A, C, E). For instance, in
GM12878, there were 2226 direct regions and 14,315 indirect regions
identified, which was at least eight times of the direct and indirect
regions identified in other samples (Supplementary Table S1). This was
because GM12878 had a sequencing depth about nine to seventeen
times of that in other samples [20]. In general, with a larger sequencing
depth in a sample, there are more potential RPG regulatory regions
identified in this sample (Supplementary Fig. S1). However, this is not
always true. For instance, KBM7 had a lower sequencing depth than
NHEK, while it had more direct and indirect RPG regulatory regions
than NHEK. The different number of direct and indirect regions in
samples with similar sequencing depth, such as that in K562, KBM7,
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and NHEK, indicates the sample-specific characteristics of RPG reg-
ulatory regions instead of the effect of different sequencing depth
(Fig. 2C). On average, we identified 470 direct and 2745 indirect re-
gions in a sample excluding GM12878.

To assess the statistical significance of the identified regulatory re-
gions, we randomly chose 80 genomic regions, each of which was the
same length as the RPG promoters. We then applied the same procedure
to identify direct and indirect regions in each sample for these 80
random regions. We repeated this procedure 200 times with 200 groups
of 80 random regions. We identified much fewer number of direct and
indirect regions that interacted with the 80 random regions (Fig. 2A, C,
E). For instance, in K562, we had 102 direct regions and 679 indirect
regions for random regions on average, while there were 351 direct and
1549 indirect regions for the 80 RPGs. This suggested that compared
with random genomic regions, RPGs had significantly more potential
regulatory regions.
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Fig. 2. The identified putative RPG distal regulatory regions: (A) & (B) The number of RPGs with identified regulatory regions in a sample; (C) & (D) The number of
identified direct regions in a sample; (E) & (F) The number of identified indirect regions in a sample. In each section, the box plot is from 200 simulated sets of 80
random genomic regions. There are 2226 direct and 14,315 indirect regions identified (741 direct and 7924 indirect regions identified for random regions) in
GM12878, which are not shown in (C) and (E), as they are much larger than the corresponding numbers in other samples.
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Similarly, we identified in total 6209 regions that were likely to
regulate RPGs in four samples from Javierre et al. [19]. Javierre et al.
studied seventeen samples while only four samples had the corre-
sponding DHS data and had enough sequencing depth to have putative
regulatory regions for at least 50 RPGs (Fig. 2B). The number of reg-
ulatory regions in a sample varied from 2902 to 4139, depending on the
samples instead of the sequencing depth (Fig. 2D and F). For instance,
the sample FoeT had the largest sequencing depth, while the number of
regions identified in FoeT was the smallest (Supplementary Table S1).
In these four samples, the number of RPG regulatory regions identified
was larger than that in all samples from Rao et al. except GM12878. On
average, in each sample, we identified 545 direct and 2792 indirect
regions, respectively (Fig. 2D, F, and Supplementary Table S1). Com-
pared with randomly chosen genomic regions, on average, there were
25 direct and 275 indirect regions for the 80 random regions in 200
simulations. Interestingly, despite the higher sequencing depth and
more RPG regulatory regions identified in Javierre et al.'s samples, the
number of RPGs with identified regulatory regions was smaller in Ja-
vierre et al.'s samples compared with that in Rao et al.'s samples, which
may be due to the bias of the capture Hi-C experiments in identifying
chromatin interactions, the unsaturated sequencing depth, sample-
specific RPG regulatory regions, etc.

The above direct and indirect regions in a sample were obtained by
overlapping the corresponding interacting regions defined by Hi-C with
the RPG promoters (Material and Methods). Since the interacting re-
gions were defined at about 5000 bps resolution [19,20], we relaxed
the criteria of overlapping of two regions. We claimed two regions
overlapping if they were within x bps to each other, for x to be 1000,
2000, or 5000 bps, respectively. For a given x, we defined direct and
indirect regions of RPGs similarly as illustrated in Fig. 1. We found that
the number of the defined RPG direct and indirect regions was similar
as that with x equal to 0. This suggested that the defined RPG direct and
indirect regions were robust and were not greatly affected by the
overlapping criteria. It also indicated that these regions were not close
to each other. In fact, the mean and median distance of adjacent regions
were 299,917 bps and 10,000 bps, respectively, in Rao et al.'s samples;
and 93,913 bps and 3919 bps, respectively, in Javierre et al.'s samples.

We also studied the distances between the identified regions and
their corresponding RPGs (Fig. 3, Supplementary Table S2). In Rao
et al.'s data, 55.5% (9210/16588) of these regions were distal regions.
The distance between a region and the corresponding RPG had a mean
of 2.8 Mbps and a median of 28,007 bps. Similarly, in Javierre et al.'s
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data, 98.9% (6140/6209) of these regions were distal regions. The
distance between a region and the corresponding RPG had a mean of
9.7 Mbps and a median of 551,403 bps. Since almost all human RPGs
have neighboring protein-coding genes within 1 Mbps [16], this sug-
gested that RPGs were not the closest genes to many of these regions
(Supplementary Table S2).

3.2. The identified putative RPG regulatory regions varied dramatically
across samples

We compared the identified RPG regulatory regions in different
samples (Table 1). We found that the majority of them were not the
same and not even overlapping across samples. This suggests that RPGs
are likely to be regulated by different distal regions under different
experimental conditions, which is consistent with our previous study
[16].

More than 91% (15148) of the 16,588 regions in Rao et al.'s data
were not shared across samples. Excluding GM12878, which had much
higher sequencing depth than other samples, ~80% (2891) of the 3598
regions were identified in only one of the remaining samples. This
percentage became smaller for Javierre et al.'s data, where more than
56% (3522) of the 6209 regions were identified in only one sample. A
large proportion of the regulatory regions were sample-specific, which
were unlikely to be caused by the difference of the sequencing depth.
This was because in all seven samples except GM12878 in Rao et al.'s
data and in all four samples in Javierre et al.'s data, the sequencing
depth was similar (Supplementary Table S1), while the number of
identified regulatory regions was very different. Moreover, although
GM12878 had a much higher sequencing depth, more than 49.7% of
regions identified in other six samples in Rao et al.'s data were not
identified in GM12878. It thus implied that RPGs were likely to be
regulated differently across different samples.

To assess the statistical significance of the shared regions across
samples, we studied the shared interacting regions by the aforemen-
tioned 200 sets of 80 random regions. We found that in these 200 si-
mulations, the random regions always had fewer potential regulatory
regions but higher percentages of unshared potential regulatory regions
across samples (Table 1). For instance, there were 3598 regions iden-
tified for the 80 RPGs in all seven samples except GM12878 from Rao
et al., 80.1% of which did not overlap with any identified region in
other five samples. Correspondingly, on average, there were 1837 re-
gions identified for the 80 random regions in these six samples, 90.4%

Rao_Direct Rao_All Fig. 3. The distance between a regulatory region and
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Table 1
The comparison of regulatory regions across samples.
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%Regions shared by
3 samples

%Regions shared by
4 samples

%Regions shared by
5 samples

%Regions shared by
> 6 samples

Number of %Regions not %Regions shared by
regions shared 2 samples
Rao 16,588 (9400)  91.3% (95.4%)  4.9% (3.2%)
Rao without GM12878 3598 (1837) 80.3% (90.4%)  11.8% (6.6%)
Javierre 6209 (672) 56.72% (61.0%) 19.87% (20.8%)

2.2% (1%)
3.2% (1.7%)
11.53% (11.2%)

0.6% (0.2%)
2.1% (0.7%)
11.87% (7.0%)

0.5% (0.1%)
1.2% (0.4%)
NA

0.5% (0.1%)
1.4% (0.2%)
NA

The number in the parentheses are for the sets of 80 random regions.
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Fig. 4. The comparisons of regulatory regions across samples. The percentage of direct regions in a sample (row) overlapped with (A) the direct regions and (B) all

regulatory regions in another sample (column) is represented by the heatmap.

of which did not overlap with any identified region in other five sam-
ples. Moreover, the random regions always had lower percentages of
regions shared by different number of samples than the 80 RPGs. For
instance, in Javierre et al.'s data, 11.9% of the regions were shared by
all four samples for RPGs, compared with the average 6.8% of the re-
gions shared by four samples for the 80 random regions (Table 1).
These observations are consistent with the fact that RPGs and their
regulation are more conserved across samples than random regions.

To further understand the conservation of these regions across
samples, we studied how the direct regions were shared across samples
(Fig. 4). The direct regions were those that physically interacted with
the RPG promoters and were detected by the Hi-C experiments (Fig. 1).
We found that a large proportion of the direct regions in a sample did
not overlap with the direct regions in any other sample in both Rao
et al.'s and Javierre et al.'s data, suggesting that RPGs are likely to have
different regulatory regions across samples. Moreover, fewer than 20%
of GM12878 direct regions were found in other samples, probably be-
cause of its much larger sequencing depth. In addition, the direct re-
gions in the seven samples by Rao et al. and those in the four samples by
Javierre et al. were quite different, indicating the intrinsic difference
between the seven cell lines and the four cell types.

All these observations together suggested that RPGs are likely to
have different regulatory regions across samples. Otherwise, we should
have seen a much larger portion of direct regions shared across samples.
For instance, if 90% of the RPG regulatory regions were conserved
across samples, we should have seen that two samples shared at least
80% of their regulatory regions. However, this was not the case. For
instance, there were more than 37% and 42% of HMEC direct regions
did not overlap with KBM7 direct regions and HUVEC direct regions,
respectively (Supplementary Table S3). Moreover, since GM12878 had
a much higher sequencing depth than other samples, it should have
included almost all direct regions in other samples, while in fact,
around 20% of HUVEC direct regions and more than 56% of direct
regions in the four samples considered by Javierre et al. were not
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identified in GM12878.

We also compared the direct regions in a sample with all regulatory
regions in another sample (Fig. 4B and Supplementary Table S4). There
were more direct regions in a sample identified in another sample,
when we considered all regulatory regions instead of only the direct
regulatory regions. However, the increment was small, only a handful
of percentage, indicating that the majority of the direct regions in one
sample were still direct regions in another sample. Although most direct
regions were shared across samples when we considered all regulatory
regions, there were still a fraction of the direct regions not shared by
samples, which were likely due to sample-specific regulatory regions.
For instance, at a much larger sequencing depth in GM12878, there
were still about 15% of the direct regions in HUVEC were not identified
in GM12878 (supplementary Table S4).

We also studied how the indirect regions were shared across sam-
ples (Supplementary Tables S5 and S6). The indirect regions were not as
conserved as the direct regions. In other words, there were an even
higher percentage of indirect regions that were not shared by two
samples. Moreover, there were much more indirect regions that were
not conserved across samples.

3.3. RPGs shared distal regulatory regions to form putative co-regulated
gene clusters

With many regulatory regions identified only in one sample, we
attempted to understand how RPGs are coordinately regulated. We
hypothesized that in a sample, there may exist a region, which physi-
cally interacted with multiple regions that targeted various RPGs. In
this way, such a region controls all RPGs and thus may contribute to
their coordinate transcriptional regulation. We had no success in
finding such a region in any sample. However, we did notice that one
region may regulate multiple RPGs in every sample.

We started to identify pairs of RPGs that had at least a pair of their
regulatory regions overlapped. In each sample, there was at least one
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Table 2
Clusters of RPGs shared their regulatory regions.
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Data source Sample #Pairs (#RPGs

%Shared RPG pairs (%shared Loose clusters

Strict clusters

involved) random pairs) across samples
#Clusters (#RPGs Minimum(Maximum) # Clusters (#RPGs  Minimum(Maximum)
involved) #RPGs in a cluster involved) #RPGs in a Cluster
Rao GM12878 890 (77) 1.91% (1.03%) 1(77) 77 (77) 820 (77) 2(14)
HMEC 1(2) 100% (0) 1(2) 2(2) 12 2(2)
HUVEC 1(2) 100% (0) 1(2) 2(2) 12 2(2)
IMR90 13 (19) 61.54% (0.12%) 6 (19) 2(8) 13 (19) 2(2)
K562 9(12) 66.67% (0.13%) 3(12) 2(8) 9 (12) 2(2)
KBM7 4(8) 100% (0) 2(8) 2(2) 4(8) 2(2)
NHEK 2(4) 100% (0) 2(4) 2(2) 24) 2(2)
Javierre nB 16 (18) 62.50% (0) 6 (18) 2(7) 8 (18) 2(3)
tCD8 21 (23) 100% (0) 8 (23) 2 (6) 11 (23) 2(3)
FoeT 24 (23) 62.50% (0) 8 (23) 2(5) 10 (23) 2(5)
tCD4 22 (27) 95.45% (0) 11 (27) 24 11 (27) 24

pair of RPGs that had their regulatory regions overlapped (Table 2). In
other words, these pairs of RPGs shared common regulatory regions in a
sample. There were 890 such pairs in GM12878 that involved 77 of the
80 RPGs (except RPS4Y, RPL34 and RPL36A), which was much larger
than that in other samples, most likely due to its much larger sequen-
cing depth. In samples other than GM12878, on average, we identified
five pairs of RPGs sharing regulatory regions that involved 30 RPGs.
The regulatory regions shared by different RPGs may partially explain
their coordinated transcriptional regulation.

We tried to understand what characteristics these pairs of RPGs
sharing regulatory regions may have. We checked whether these pairs
were from the same ribosomal unit. We found that most pairs contained
one RPG from the small unit and the other RPG from the large unit. We
checked whether these pairs were from the same chromosomes or have
a higher sequencing similarity but did not observe such a relationship.
We also studied whether these RPG pairs may have more correlated
expression (Material and Methods). Indeed, these RPG pairs had sig-
nificantly larger gene expression correlation across different human
tissues than the RPG pairs that did not share any regulatory region
(Mann-Whitney test p-value < 2E-7). We checked whether these pairs
were conserved across samples as well. We found that except those from
GM12878, they were indeed quite conserved across samples (Table 2).
For instance, 100% of the identified RPG pairs in HMEC, HUVEC,
KBM7, NHEK and tCD8 were also identified in other samples. As to the
80 random regions, in 200 simulation runs, we barely had any pair of
random regions sharing regulatory regions across samples (Table 2 and
Supplementary Table S7). The RPG pairs in GM12878 were often not
identified in other samples, which may be due to the much smaller
sequencing depth in other samples.

With the above pairs of RPGs in a sample, we grouped them into
clusters of RPGs in two approaches (Table 2). One was the strict way, in
which we required that every pair of RPGs in a resulted cluster shared
at least one regulatory region. We called the resulted clusters strict

Table 3
Motif discovery in the putative regulatory regions of RPGs.

clusters. The other was the loose way, where a RPG was added into a
cluster if this RPG shared a regulatory region with at least one RPG in
that cluster, with the pairs of RPGs identified above as the initial
clusters. We called the resulted final clusters by the second way loose
clusters. We obtained 1 to 820 strict clusters and 1 to 11 loose clusters
in a sample. The strict clusters in a sample contained 2 to 77 RPGs, with
the 77 RPGs in different clusters. Similarly, the loose clusters in a
sample contained 2 to 77 RPGs, where the 77 RPGs could be in one
cluster such as a cluster in GM12878. In terms of 80 random regions, in
200 simulations, except in GM12878, they barely formed clusters in a
sample (Supplementary Table S7). Even when they formed clusters, the
number of regions involved was much smaller. Most importantly, the
pairs of random regions sharing a regulatory region in a sample rarely
shared any regulatory region in another sample. In other words, the
observed shared regulatory regions by pairs or groups of RPGs may
explain the coordinated regulation of RPGs, as their regulatory regions
were connected rather than independent.

3.4. RPGs shared common regulatory motifs across samples

To understand why RPGs have coordinated expression patterns, we
also studied the putative regulatory motifs in the above RPG regulatory
regions. We only considered the DHSs within these regions in the cor-
responding samples for the motif analysis, as these regions were open
for TFs to bind. The average length of these DHS regions was 150 bps,
shorter than that of known regulatory regions, which was mostly sev-
eral hundred bps but can even be up to a couple of thousand bps
[24,25,36,37]. We thus extended each region equally from its two ends
if this region was shorter than 800 bps so that the extended regions
were at least 800 bps. We then identified motifs in these extended re-
gions by de novo motif discovery [26,27], as the number of known
motifs was still limited [29,38,39]. We found that about two dozen
motifs were shared by different samples.

Data source  Sample # predicted motifs %motifs similar to JASPAR

%motifs similar to motifs in other ~%known RPG-regulating motifs

%motifs supported

(random) motif samples identified
Rao GM12878 1118 (64) 38.28% 99.55% 71.43% 99.55%
IMR90 371 (16) 42.05% 100.0% 57.14% 100.0%
HMEC 103 (2) 41.75% 100.0% 35.71% 100.0%
KBM7 149 (3) 54.36% 100.0% 35.71% 100.0%
HUVEC 68 (8) 50.0% 98.53% 28.57% 98.53%
NHEK 189 (12) 41.8% 100.0% 42.86% 100.0%
K562 362 (14) 46.96% 100.0% 50% 100.0%
Javierre nB 487 (23) 50.51% 99.59% 64.29% 99.59%
tCD8 528 (26) 45.83% 99.81% 71.43% 99.81%
FoeT 552 (48) 46.56% 100.0% 57.14% 100.0%
tCD4 607 (12) 46.46% 99.67% 71.43% 99.67%
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By de novo motif discovery (Material and Methods), we identified
68 to 1118 motifs in different samples (Table 3). The number of motifs
identified in a sample correlated well with the number of RPG reg-
ulatory regions identified in this sample, with GM12878 having the
largest number of motifs and HUVEC having the smallest. To assess the
statistical significance of the identified motifs, we permuted the input
genomic sequences and identified motifs in the permuted sequences in
each sample. We identified at least eight times fewer number of motifs
in the random sequences in every sample (Table 3), suggesting that the
identified motifs in RPG regulatory regions were statistically significant
and likely to be meaningful.

To assess the biological meaning of the predicted motifs, we further
compared the predicted motifs with the known motifs in the JASPAR
database [29]. In a sample, 38.28% to 54.36% of motifs were similar to
known motifs (STAMP E-value < 1E-5 [30]). Moreover, we compared
the motifs predicted in different samples. There were 98.53% to 100%
of motifs identified in a sample that were also independently predicted
in at least another sample. Note that the majority of the regions in two
samples were different (Table 2), suggesting that these motifs were
likely to be biologically meaningful. In addition, we compared the
predicted motifs with known RPG regulating motifs. We collected
fourteen motifs that were reported to regulate RPGs in literature [16].
We found that on average, 53.25% of these RPG-regulating motifs were
identified in a sample. Note that these RPG-regulating motifs were
previously identified in RPG promoter regions, and now we identified
them in the RPG distal regions as well. In total, almost all motifs pre-
dicted in a sample were either similar to known motifs, or in-
dependently identified in other samples, or similar to known RPG-
regulating motifs.

In spite of the existence of different motifs in different samples, we
were able to identify 48 motifs shared by at least four samples between
Rao et al.'s data and Javierre et al.'s data, including the CTCF motif
(Supplementary Table S8). We identified 99 motifs shared by at least
four samples from Rao et al. and 131 motifs by the four samples from
Javierre et al. Interestingly, 48 motifs were shared by the 99 motifs
from Rao et al. and the 131 motifs from Javierre et al., demonstrating
that there were common regulatory mechanisms among RPGs in spite of
the different putative regulatory regions and regulatory motifs. Among
these 48 motifs, 24 of them were known motifs and 11 of them were
known to regulate RPGs (Supplementary Table S8).

4. Discussion

We studied the putative regulatory regions of human RPGs in eleven
samples. We identified about 22,797 regions that directly or indirectly
interacted with RPG promoters, the majority of which were distal re-
gions. There were a large fraction of regulatory regions that were dif-
ferent in different samples. Interestingly, about 1% to 91% direct re-
gions in a sample were often identified to interact with RPG promoter
directly in other samples (Supplementary Table S3). Moreover, dif-
ferent RPGs may share common regulatory regions and form a co-
regulated gene groups. Such co-regulated gene groups were conserved
across samples. In addition, in different samples, common regulatory
motifs were identified. All these observations may explain why human
RPGs are coordinately regulated even though they have different reg-
ulatory regions and are regulated differently across samples.

We identified 16,588 regulatory regions that were likely to regulate
RPGs from Rao et al.'s data. However, this number may be over-esti-
mated, given the much higher sequencing depth in GM12878 and the
imperfect cutoff 30 to define chromatin interaction from the normalized
Hi-C contact matrices in GM12878. With this said, it is no doubt that
there should be thousands of distal regions that may regulate RPGs. In
fact, if we considered the other six samples from Rao et al., there were
9210 different distal regions identified. If we considered the four
samples from Javierre et al., there were 6140 different distal regions.
Note that the Javierre et al.'s interaction data were defined by the
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original study [19]. Since we only considered a handful of samples,
there may be even more distal regions, given the fact that the majority
of regions identified in a sample were not identified in a new sample.

Previously, we identified 217 RPG regulatory regions based on DHS
data in 349 samples [16]. Compared with the regions identified here,
95.9% of the 217 RPG regulatory regions were identified in the seven
samples from Rao et al., while only 1.9% of the regions identified in
these seven samples here were also identified by the previous study.
Similarly, 74.8% of the 217 regions were identified in the four samples
from Javierre et al. that accounted for about 3.4% of the identified
regions in Javierre et al.'s samples. These numbers suggested that the
previously identified regions were limited by considering the regions
shared by the majority samples. It also implied that RPGs are likely to
be regulated differently in different samples.

Although the identified RPG regulatory regions here physically in-
teract with RPG promoters in the corresponding samples, they were still
putative RPG regulatory regions. This was because we did not know
whether these direct or indirect interactions changed the RPG expres-
sion levels. Future studies may explore in this direction to define more
accurate RPG regulatory regions. With this said, these regions re-
presented our current understanding of RPG distal transcriptional reg-
ulation. Moreover, these regions shed new light on our understanding
of the coordinated regulation of human RPGs.

We noticed that 77 of the 80 human RPGs were in a loose cluster in
GM12878 (Table 2). Because of the much larger sequencing depth in
GM12878, we are not sure whether this is true in other samples, if the
sequencing depth in other samples is increased. It will be valuable to
test this in the future. If it is true, this cluster may significantly con-
tribute to RPG coordinated regulation. Even if it is not true, it is clear
that there are several dozen RPGs in different samples sharing reg-
ulatory regions, which facilitates their coordinated activities. It is worth
pointing out that the pairs of RPGs sharing regulatory regions in a
sample were also observed in a different sample, suggesting that such a
sharing mechanism is conserved.

We identified different numbers of motifs across samples. This is not
surprising, since the number of regulatory regions is quite different
across samples. However, we noticed that there are about a dozen
motifs shared by different samples from different studies, suggesting
that these shared motifs may indeed be RPG-specific and they may
contribute to the RPG coordinated regulation as well. It is worth in-
vestigating whether these shared motifs (Supplementary Table S8),
especially the novel ones, are bona fide RPG-regulating motifs.

We noticed a surprising difference between the Hi-C data from Rao
et al. and the promoter capture Hi-C data from Javierre et al. The se-
quencing depth was slightly larger in samples from Javierre et al. than
those from Rao et al. except in GM12878. There were indeed more
regions identified in the corresponding samples from Javierre et al.
Surprisingly, there were slightly fewer RPGs with identified regions
from Javierre et al. than those from Rao et al. We are not sure that this
is because the promoter capture Hi-C is biased, there is something
different among the samples in the two studies, or something else.

Although the progresses we made, there is a long way to go to un-
derstand RPG coordinated regulation. First, chromatin interaction data
with a much higher sequencing depth is greatly needed in other sam-
ples. With such data, we may be able to understand how the number of
the identified regulatory regions relate to the sequencing depth and
how to more accurately define RPG regulatory regions. Moreover, we
will be for sure to know which regions are sample-specific and which
are shared across samples, and thus study how RPGs are able to or-
chestrate their coordinated expression with different regions under
different conditions. Second, experimental validation of the functional
consequences of certain RPG regulatory regions is a must. Such a va-
lidation will not only generate new knowledge about RPG regulation,
but also provide guidelines to understand which of these regions may
be truly functional. Third, integration of genomic and epigenomic data
under the same conditions will greatly advance our understanding of
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RPG distal regulation. Finally, it is important to also study how RPGs
are controlled at the translational level, which may contribute more to
RPG coordinated regulation. We hope to work on these directions in the
future to understand their regulation better.
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