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Abstract

CrossMark

The interaction of strong near-infrared (NIR) laser pulses with wide-bandgap dielectrics
produces high harmonics in the extreme ultraviolet (XUV) wavelength range. These
observations have opened up the possibility of attosecond metrology in solids, which would
benefit from a precise measurement of the emission times of individual harmonics with respect
to the NIR laser field. Here we show that, when high-harmonics are detected from the input
surface of a magnesium oxide crystal, a bichromatic probing of the XUV emission shows a
clear synchronization largely consistent with a semiclassical model of electron—hole
recollisions in bulk solids. On the other hand, the bichromatic spectrogram of harmonics
originating from the exit surface of the 200 pum-thick crystal is strongly modified, indicating
the influence of laser field distortions during propagation. Our tracking of sub-cycle electron
and hole re-collisions at XUV energies is relevant to the development of solid-state sources of

attosecond pulses.
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1. Introduction

Generation of extreme ultraviolet (XUV) high harmonics from
gaseous media has been the foundation of attosecond science
[1,2], which includes attosecond pulse generation [3], imaging
molecular orbitals [4] and attosecond tunneling interferometry
[5, 6]. At the heart of atomic high-order harmonic generation
(HHG) lies a three-step recollision process [7] that consists
of tunnel ionization, free-electron acceleration, and recolli-
sion to the parent ion. Based on their kinetic energies, elec-
trons recollide with the parent ions at slightly different times
in the subcycle scale [8], causing an intrinsic delay between
harmonics. This delay, termed ‘atto-chirp’, is deleterious for

3 Author to whom any correspondence should be addressed.

0953-4075/20/144003+5%$33.00

crafting transform-limited isolated attosecond pulses or
attosecond pulse trains. The precise timing between the elec-
tron trajectories is the cornerstone of high-harmonic spec-
troscopy [5]. Following the recent observation of high-
harmonic emission from bulk crystals [9-17], attosecond
metrology is being extended to solids, with methods devel-
oped to reconstruct electronic band structures in reciprocal
space [14, 18], to probe the periodic potential in real space [16,
17], and to boost the emission efficiency in nano-structures
[19-22], as well as toward stable attosecond pulses [23]. Just
like in gas-phase HHG, many of these applications benefit
from the understanding of the temporal connection between
harmonics and the driving NIR laser field at the sub-cycle
level.
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In solids, there are two major HHG channels and they are
expected to have distinct temporal profiles [24]. XUV harmon-
ics from thin SiO; subjected to NIR laser fields were found
chirp-free [14, 25], which is consistent with Bloch-like nonlin-
ear oscillations of electrons in the conduction bands. The other
competing channel is inter-band polarization or recollision
based harmonics [13, 24, 26, 27], similar to HHG from gases.
As shown in ultraviolet harmonics from ZnO, this process pre-
serves the temporal mapping characteristic of gas-phase HHG
[13]. In MgO crystals, the modulation of the high-harmonic
spectrum with the carrier-envelope phase of the few-cycle
laser pulse [28], as well as the laser-intensity-induced shift
in the emission phase of individual harmonics [29] also point
toward the inter-band or recollision-based emission, however
the atto-chirp has not been measured.

Here we apply a bichromatic probing scheme [, 6, 8, 13]
to XUV high-harmonics emitted from the input and exit sur-
faces of a magnesium oxide crystal. Harmonics emitted from
the input surface show clear spectral signatures consistent with
recolliding electron—hole pair trajectories, and quantify the
‘atto-chirp’. This is our first result. Spectrograms of harmonics
emitted from the exit surface of a 200 micrometer thick MgO,
however, are strongly distorted. This is our second result.
Together with a measured broadening and blue-shift of the
transmitted NIR spectrum, we conclude that the bichromatic
probing scheme encodes temporal nonlinearities experienced
by the NIR pump during propagation through the crystal. Spa-
tial distortions of the XUV high-harmonic beam from the same
crystal has been recently reported, too [30]. Lastly, we develop
a quantum-mechanical model of high-harmonic generation in
solids that adds tunneling of the electron—hole pair across the
minimum bangap of MgO. Implications of our work include
the possibility of developing attosecond metrologies based on
recolliding electrons at XUV photon energies in solids and the
generation of attosecond pulses with crystals.

2. Experiment

In the experiment, we measure high harmonics from MgO
crystals with 200 pm thickness subjected to an NIR field cen-
tered at 1320 nm and its weak second harmonic. Both the fun-
damental and second harmonic are polarized along the [100]
direction of the crystallographic axis. We record the XUV
high-harmonic spectra as a function of the attosecond delay
between the two colors, which is controlled with a pair of glass
wedges (see the supplementary material for more detail, which
can be found online at https://stacks.iop.org/JPB/53/mmedia).

We begin our investigation by showing the relevance of
temporal distortions of the infrared field upon propagation.
This is performed by comparing two-color driven harmonic
spectra in the transmission mode (figure 1, top panel) with
those in the reflection mode (figure 1, bottom panel), but oth-
erwise under similar conditions (see supplementary informa-
tion for details). The excitation intensity inside the sample
in both cases (considering Fresnel loss) is estimated to be
~10 TW cm~2. Because XUV harmonics are effectively emit-
ted within a thickness that is on the order of one absorption
length (~10 nm), from the entrance side in the reflection
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Figure 1. The modulation of the even harmonics measured in the
transmission geometry (top panel) shows an intra-harmonic chirp
(dashed black line), resulting in inconsistent determination of the
modulation phase. Unequivocal determination of the modulation
phase is possible, instead, in the reflection geometry—here set at a
45° angle of incidence (bottom panel). The local minima for the
even-harmonic modulation are extracted and indicated by the
diamond symbols. Each harmonic is independently normalized to 1.

geometry and from the exit side in the transmission geometry,
the transmitted harmonics are expected to encode the distor-
tions accumulated by the pump pulse during propagation from
the entrance to the exit side of the sample. Indeed, transmit-
ted harmonics exhibit broader peaks, which we attribute to the
broader (by about 30 percent) and blue-shifted spectrum of the
fundamental pulse upon propagation (see supplementary infor-
mation). Moreover, each individual transmitted harmonic
exhibits a linear frequency shift with the second harmonic
delay (shown by the dashed line), which is consistent with dif-
ferent NIR center frequencies across the pulse. Spectral broad-
ening and frequency shifts are a result of nonlinear propagation
effects, possibly self-phase modulation, since no frequency
shift on individual harmonics is measured in reflection mode
(dashed line). Linear dispersion of MgO is ruled out as a possi-
ble contribution by adding a similarly thick MgO crystal in the
beam path before the focusing lens, for the reflection geometry.

In addition to the individual frequency shifts, there is a
delay across neighboring harmonics. As shown in a previ-
ous work [8], this modulation provides a measurement of
the sub-cycle emission time of the harmonics, the so-called
‘atto-chirp’. This quantity is derived by matching the observed
modulation with that predicted by a model of recolliding elec-
tron—hole pairs in MgO, as described in the next paragraph
and in the supplementary information. In the reflection geom-
etry, we measure a lower limit for the attochirp decreasing
from 148 444 as/eV at ~ 11 eV to 11 £ 44 as/eV at ~ 15
eV, when a semiclassical model of recolliding electron—hole
pairs is considered. The atto-chirp deduced with a quantum
model (described below) is compatible with the semiclassical
one, but has a larger uncertainty (supplementary figure 4). The
phase of the inter-harmonic modulation is stronger in the trans-
mission geometry, but the marked intra-harmonic shift renders
determination of this phase inconsistent.

Next, we analyze the observed modulation of the even-
order harmonics as a function of the two-color delay in detail,
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Figure 2. Modulation of high-harmonic power for harmonics 11th
to 21st (color coded) versus sub-cycle delay between the
fundamental and second harmonic fields (in cycles of the second
harmonic) measured in the reflection geometry. The order of the
harmonic and the modulation amplitude (normalized to 1) are
reported in parentheses next to the curves on the right-hand side.
The delay that yields the highest power is marked by colored circles
for every harmonic. The dashed red lines are fits to the experimental
modulation with function cos(¢ + ¢qp), Where ¢ is delay. The only
fit parameter is the offset phase, ¢qp. The second harmonic power is
set to ~0.5% of the fundamental, which is estimated to correspond
to ~1% of the fundamental intensity (see supplementary
information).

for the reflection geometry. When a second harmonic field with
~1% of the intensity of the pump is added to the fundamen-
tal driver and properly phased, the asymmetric field breaks
the inversion symmetry of the high-harmonic dipole, result-
ing in electrons and holes being accelerated farther apart or
closer together at subsequent laser half-cycles of the driver.
The uneven path length is described by the addition or sub-
traction of a phase o(nw, ¢) to the oscillating high-harmonic
dipole [8, 13], dependent on the harmonic order n and two-
color delay ¢ (see supplementary information). As the delay ¢
is varied, the high-harmonic power modulates with an order-
dependent phase. This is shown in figure 2 for the reflection
case.

Experimental parameters are reported in the supplementary
information. The delay that yields the highest harmonic power
(Popt) is extracted from a cosine fit of the normalized modula-
tions with a fixed frequency for all harmonics. It is plotted in
figure 2 (colored circles) for the even and the odd harmonics
separately, and in figure 3, where it is compared with the the-
oretical predictions. Overall, the delay for the even harmonics
agrees reasonably well with the simple semiclassical three-
step model introduced above (orange line) [26, 27], up to an
unmeasured offset phase. In essence, the agreement suggests
that XUV harmonics from MgO are a result of recollisions
between electrons and their associated holes that are driven by
the strong laser fields in the lowest conduction and one of the
highest valence bands, respectively. The measured attochirp
is consistent with so-called short trajectories. It is possible
that long trajectories are suppressed due to spatio-temporal
averaging across the laser focus, unfavorable transverse phase
matching, or rapid decoherence. The latter may be due to
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Figure 3. (a) Both the semi-classical and quantum correction
models of recolliding electron—hole pairs predict a harmonic order
dependent phase for the modulation of the even-order harmonics.
They closely match the experimental data (blue markers), up to an
offset (see supplementary information for details). This is the so
called ‘atto-chirp’. The odd harmonics (panel b) also show order
dependence but they deviate significantly from the model. The
deviation decreases for increasing intensity of the second harmonic
(dashed line), but still falls short of predicting the maximum at the
15th order. The predictions from the model are restricted within the
maximum band-gap at the zone edge. The 18th and 21st harmonics
lie above the maximum band-gap, indicated by the gray area.

many-body interactions during the laser-driven excursion, or
to spatial inhomogeneities probed by the potentially extended
wavepacket [31]. Bloch-like emission, instead, predicts a mod-
ulation phase which is either in-phase or out-of-phase with the
second harmonic delay, but without atto-chirp (see derivation
in the supplementary information). We note that the semiclas-
sical model predicts the emission phase of harmonics only up
to 18th order because of the limit set by the maximum band-
gap at the zone edge. The emission of harmonics beyond this
order would require considerations of tunneling to a higher-
lying conduction band [28, 32, 36] although experimental data
does not show any apparent abrupt changes in the emission
phase around this energy range. Harmonics between 18th—21st
(included) lie in the bandgap with the second conduction band
[33].

We note that the semiclassical model neglects quantum
aspects similar to those studied both theoretically [34] and
experimentally [6] in the gas phase. Here, we extend those
calculations to the solid-state platform for the first time (see
derivation in the supplementary information), see yellow line
figure 3(a). However, the difference is not statistically signif-
icant and is within the uncertainty in the extracted phase for
otherwise fixed model parameters. The theoretical framework
that we have developed for solids predicts an imaginary com-
ponent of the birth time of about 460 as for harmonics in the
photon energy range from 12 eV to 18 eV (supplementary
figure 3), corresponding to ~ 0.1 cycles of the NIR field. This
value is similar to that measured in He atoms driven at 4.4
x 10" W e¢m~2 [6]. However, we find a large offset of the
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modulation phase for the odd harmonics, compared to both
the semiclassical model and that with this extended model
(figure 3(b)). The offset decreases assuming a stronger second
harmonic, thus suggesting an underestimate of the experimen-
tal field strength, but the model falls short of predicting the
maximum at the 15th harmonic. The large deviation might
arise from physics beyond our model. Supplementary figure 5
confirms, with additional experimental data, that for increasing
second-harmonic strength the relative modulation phase for
even versus odd harmonics progressively decreases. A flatten-
ing in the relative phase of the even harmonics is observed as
the second harmonic strength increases to 0.56% of the funda-
mental. Therefore, the reported atto-chirps shall be considered
lower limits.

3. Conclusions

In conclusion, we measured the attosecond synchronization
of XUV harmonics from 200 micrometer thick MgO crystals
subjected to intense NIR laser fields. The results obtained in
the reflection geometry closely represent the intrinsic delay of
high-harmonics predicted by generalized re-collision model,
whereas two-color spectrograms of harmonics measured in
the transmission geometry show strong temporal distortions—a
cautionary tale for performing in-situ high-harmonic spec-
troscopy in this geometry. Our evidence suggests that they
are strongly influenced by propagation effects. In the reflec-
tion geometry, using semiclassical trajectories we extract a
minimum atto-chirp of 11 4 44 as/eV (lower limit) about the
16th harmonic at ~15 eV. With proper dispersion compensa-
tion, such as with ultra-thin metal filters, XUV harmonics from
MgO could support attosecond pulse trains. Typical gas-phase
harmonic sources operate at about two orders of magnitude
higher laser intensities. Because of the modest peak intensity
requirements, solid-state HHG based sources should be feasi-
ble with modern high repetition rate laser systems [35] such
that the total XUV flux can be increased significantly.
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