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Abstract

Latent factor models are widely used to measure unobserved latent traits in so-
cial and behavioral sciences, including psychology, education, and marketing. When
used in a confirmatory manner, design information is incorporated as zero constraints
on corresponding parameters, yielding structured (confirmatory) latent factor models.
In this paper, we study how such design information affects the identifiability and
the estimation of a structured latent factor model. Insights are gained through both
asymptotic and non-asymptotic analyses. Our asymptotic results are established under
a regime where both the number of manifest variables and the sample size diverge, mo-
tivated by applications to large-scale data. Under this regime, we define the structural
identifiability of the latent factors and establish necessary and sufficient conditions
that ensure structural identifiability. In addition, we propose an estimator which is
shown to be consistent and rate optimal when structural identifiability holds. Finally,
a non-asymptotic error bound is derived for this estimator, through which the effect

of design information is further quantified. Our results shed lights on the design of



large-scale measurement in education and psychology and have important implications

on measurement validity and reliability.
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ability of latent factors, structured low-rank matrix, large-scale psychological measurement

1 Introduction

Latent factor models are one of the major statistical tools for multivariate data analysis
that have received many applications in social and behavioral sciences (Anderson, 2003;
Bartholomew et al., 2011). Such models capture and interpret the common dependence
among multiple manifest variables through the introduction of low-dimensional latent fac-
tors, where the latent factors are often given substantive interpretations. For example, in
educational and psychological measurement, the manifest variables may be a test-taker’s
responses to test items, and the latent factors are often interpreted as his/her cognitive abil-
ities and psychological traits, respectively. In marketing, the manifest variables may be an
audience’s ratings on movies, and the latent factors may be interpreted as his/her preferences
on multiple characteristics of movies.

In many applications, latent factor models are used in a confirmatory manner, where
design information on the relationship between manifest variables and latent factors is spec-
ified a priori. This is translated into a zero constraint on a loading parameter of the model.
We call such a model a structured latent factor model. For example, consider a mathematics
test consisting of J items that measures students’ abilities on calculus and algebra. Then a
structured latent factor model with two factors may be specified to model its item response
data, where the two factors may be interpreted as the calculus and algebra factors, respec-
tively. The relationship between the manifest variables and the two factors is coded by a
J x 2 binary matrix. The jth row being (1,0), (0,1), and (1,1) means that the jth items

can be solved using only calculus skill, only algebra skill, and both, respectively.



Identifiability is an important property of a structured latent factor model for ensuring the
substantive interpretation of latent factors. When the model is not identifiable, certain latent
factors cannot be uniquely extracted from data and thus their substantive interpretations
may not be valid. In particular, if no design information is incorporated, then it is well known
that a latent factor model is not identifiable due to rotational indeterminacy, in which case
one can simultaneously rotate the latent factors and the loading matrix of the model, without
changing the distribution of data. It is thus important to study the relationship between
design information of manifest variables and identifiability of latent factors. That is, when
is a latent factor identifiable and when is not? A related problem is the estimation of a
structured latent factor model. Under what notion of consistency, can a latent factors be
consistently estimated? In that case, what is the convergence rate? These problems will
be investigated in this paper. Similar identifiability problems have been considered in the
context of linear factor models (Anderson and Rubin, 1956; Shapiro, 1985; Grayson and
Marsh, 1994) and restricted latent class models (Xu and Zhang, 2016; Xu, 2017; Gu and Xu,
2018).

This paper considers the identifiability and estimability of structured latent factor models.
We study this problem under a generalized latent factor modeling framework, which includes
latent factor models for continuous, categorical, and count data. Unlike many existing works
that take an empirical Bayes framework treating the latent factors as random variables,
we treat them as unknown model parameters. This treatment has been taken in many
works on latent factor models (Haberman, 1977; Holland, 1990; Bai and Li, 2012; Owen
and Wang, 2016). Under this formulation, the identification of a latent factor becomes
equivalent to the identification of the direction of a vector in R*, where each entry of
the infinite-dimensional vector corresponds to a sample (e.g., a test-taker or a costumer)
in a population. As will be shown in the sequel, to identify such a direction, we need
an infinite number of manifest variables (e.g., measurements). Under such an asymptotic

regime, we provide a necessary and sufficient condition on the design of manifest variables



for the identifiability of latent factors. This condition can be very easily interpreted from a
repeated measurement perspective. In the rest of the paper, this notation of identifiability is
called structural identifiability. Comparing with existing works (e.g., Anderson and Rubin,
1956; Shapiro, 1985; Grayson and Marsh, 1994), the current development applies to a more
general family of latent factor models, and avoids distribution assumptions on the latent
variables by adopting the double asymptotic regime that the sample size N and the number
of manifest variables J simultaneously grow to infinity.

Under the double asymptotic regime and when structural identifiability holds, we propose
an estimator and establish its consistency and convergence rate. Under suitable conditions,
this convergence rate is shown to be optimal through an asymptotic lower bound for this
estimation problem. Finally, a non-asymptotic error bound is derived for this estimator,
which complements the asymptotic results by quantifying the estimation accuracy under a
given design with finite N and J. To establish these results, we prove useful probabilistic
error bounds and develop perturbation bounds on the intersection of linear subspaces which
are of independent value for the theoretical analysis of low-rank matrix estimation.

The rest of the paper is organized as follows. In Section 2, we introduce a generalized
latent factor modeling framework, within which our research questions are formulated. In
Section 3, we discuss the structural identifiability for latent factors, establish the relation-
ship between structural identifiability and estimability, and provide an estimator for which
asymptotic results and a non-asymptotic error bound are established. Further implications
of our theoretical results on large-scale measurement are provided in Section 4 and exten-
sions of our results to more complex settings are discussed in Section 5. A new perturbation
bound on linear subspaces is presented in Section 6 that is key to our main results. Numeri-
cal results are presented in Section 7 that contain two simulation studies and an application
to a personality assessment dataset. Finally, concluding remarks are provided in Section 8.

The proofs of all the technical results are provided as supplementary material.



2 Structured Latent Factor Analysis

2.1 Generalized Latent Factor Model

Suppose that there are N individuals (e.g., N test-takers) and J manifest variables (e.g.
J test items). Let Y;; be a random variable denoting the ith individual’s value on the
jth manifest variable and let y;; be its realization. For example, in educational tests, Y;;s
could be binary responses from the examinees, indicating whether the answers are correct
or not. We further assume that each individual ¢ is associated with a K-dimensional latent
vector, denoted as 6; = (6,1, ...,QZ-K)T and each manifest variable j is associated with K
parameters a; = (a;1, ..., a;x)". We give two concrete contexts. Consider an educational test
of mathematics, with K = 3 dimensions of “algebra”, “geometry”, and “calculus”. Then
0;1, 0;2, and 6;3 represent individual ¢’s proficiency levels on algebra, geometry, and calculus,
respectively. In the measurement of Big Five personality factors (Goldberg, 1993), K =5
personality factors are considered, including “openness to experience”, “conscientiousness”,
“extraversion”, “agreeableness”, and “neuroticism”. Then 6;1, ..., 0;5 represent individual ¢’s
levels on the continuums of the five personality traits. The manifest parameter a;s can be
understood as the regression coefficients when regressing Y;;s on 6;s, 7 = 1,..., N. In many
applications of latent factor models, especially in psychology and education, the estimations
of 8;s and a;s are both of interest.

Our development is under a generalized latent factor model framework (Skrondal and
Rabe-Hesketh, 2004), which extends the generalized linear model framework (McCullagh
and Nelder, 1989) to latent factor analysis. Specifically, we assume that the distribution of

Yi; given 0; and a; is a member of the exponential family with natural parameter

mgj = ajTez' = aj0n + - ajrbir, (1)

and possibly a scale (i.e. dispersion) parameter ¢. More precisely, the density/probability



mass function takes the form:

ym;; — b(my;)

fla;, 0;,¢) = exp ( 3

Fol0)) @)

where b(-) and ¢(+) are pre-specified functions that depend on the member of the exponential
family. Given ; and a;, i = 1,...,N and j = 1, ..., J, we assume that all Y};s are independent.
Consequently, the likelihood function, in which ;s and a;s are treated as fixed effects, can

be written as

AR Yijmi; — b(my;)
L(Ol, ...,0]\[,&1, ...,aJ,gb) = Hnexp < ¢ + C(yij,gb)) . (3)

i=1j=1

This likelihood function is known as the joint likelihood function in the literature of latent
variable models (Skrondal and Rabe-Hesketh, 2004). We remark that in the existing litera-
ture of latent factor models, there is often an intercept term indexed by j in the specification
of (1), which can be easily realized under our formulation by constraining 6;; = 1, for all
¢t =1,2,...,N. In that case, a;; serves as the intercept term. This framework provides a
large class of models, including linear factor models for continuous data, as well as logistic
and Poisson models for multivariate binary and count data, as special cases. These special

cases are listed below.

1. Linear factor model:

}/;jyeza aj; ~ N<a;rel7 02)7
where the scale parameter ¢ = o2.

2. Multidimensional Item Response Theory (MIRT) model:

e aT@i
Y;;10;,a; ~ Bernoulli ( <P 2 ) > )

1+ exp(a; 6;)

where the scale parameter ¢ = 1.



3. Poisson factor model:

Y;;10:,a; ~ Poisson (exp(aJTHZ-)) :
where the scale parameter ¢ = 1.

The analysis of this paper is based on the joint likelihood function (3) where both ;s and
a;s are treated as fixed effects, though in the literature the person parameters 6; are often
treated as random effects and integrated out in the likelihood function (Holland, 1990). This
fixed effect point of view allows us to straightforwardly treat the measurement problem as
an estimation problem. For ease of exposition, we assume the scale parameter is known in
the rest of the paper, while pointing out that it is straightforward to extend all the results

to the case where it is unknown.

2.2 Confirmatory Structure

In this paper, we consider a confirmatory setting where the relationship between the man-
ifest variables and the latent factors is known a priori. Suppose that there are J manifest
variables and K latent factors. Then the confirmatory information is recorded by a J x K
matrix, denoted by @) = (g;x) sk, whose entries take value zero or one. In particular, g = 0
means that manifest variable j is not directly associated with latent factor k. Such design
information is often available in many applications of latent factor models, including in ed-
ucation, psychology, economics, and marketing (Thompson, 2004; Reckase, 2009; Gatignon,
2003).

The design matrix ) incorporates domain knowledge into the statistical analysis by
imposing zero constraints on model parameters. For the generalized latent factor model,
the loading parameter ajj is constrained to zero if g;; is zero. The constraints induced by
the design matrix play an important role in the identifiability and the interpretation of the
latent factors. Intuitively, suitable zero constraints on loading parameters will anchor the

latent factors by preventing rotational indeterminacy, a major problem for the identifiability



of latent factor models. In the rest of this paper, we formalize this intuition by studying how
the design matrix @) affects the identifiability and estimability of generalized latent factor

models.

2.3 A Summary of Main Results

In this paper, we investigate how design information given by q;s affects the quality of mea-
surement. This problem is tackled through both asymptotic analysis and a non-asymptotic
error bound, under the generalized latent factor modeling framework.

Our asymptotic analysis focuses on the identifiability and estimability of the latent fac-
tors, under a setting where both N and J grow to infinity. To define identifiability, consider
a population of people where N = oo and a universe of manifest variables where J = oo.
A latent factor k is a hypothetical construct, defined by the person population. More pre-
cisely, it is determined by the individual latent factor scores of the entire person population,
denoted by (0%,,05,....) € R%+ where 6 denotes the true latent factor score of person i
on latent factor & and R%+ denotes the set of vectors with countably infinite real number
components. The identifiability of the kth latent factor then is equivalent to the identifia-
bility of a vector in R%+ under the distribution of an infinite dimensional random matrix,
{Y;; :i=1,2,...,j = 1,2,...}. This setting is natural in the context of large-scale measure-
ment where both N and J are large.

Under the above setting, this paper addresses three research questions. First, how should
the identifiability of latent factors be suitably formalized? Second, under what design are
the latent factors identifiable? Third, what is the relationship between the identifiability
and estimability? In other words, whether and to what extend can we recover the scores of
an identifiable latent factor from data?

We further provide a non-asymptotic error bound to complement the asymptotic results.
For finite N and J, the effect of design information on the estimation of a latent factor is

reflected by a multiplying coefficient in the bound.



2.4 Preliminaries

In this section, we fix some notations used throughout this paper.

Notations.
a. Z,: the set of all positive integers.
b. R%+: the set of vectors with countably infinite real number components.
c. RZ+x{1K}: the set of all the real matrices with countably infinite rows and K columns.

d. {0, 1}%+*11K}: the set of all the binary matrices with countably infinite rows and K

columns.

e. ©: the parameter matrix for the person population, © € R%+*{1- K},

f. A: the parameter matrix for the manifest variable population, A € R%+*{L-K},

g. @: the design matrix for the manifest variable population, @ € {0, 1}7+*{%K},

h. 0: the vector or matrix with all components being 0.

i. Po a: the probability distribution of (Y;,4,7 € Z,), given person and item parameters

O and A.
J- V[1.m]: the first m components of a vector v.

k. Wi, s,): the submatrix of a matrix W formed by rows S; and columns S;, where

Sl, 52 (@ Z+
I Wiiim ks the first m components of the k-th column of a matrix W.
m. Wiy the k-th column of a matrix W.

n. |v|: the Euclidian norm of a vector v.
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. sin Z(u,v): the sine of the angle between two vectors,

(uTv)?

sin Z(u,v) = 4|1 — ~= Y
2] v?

where u,v € R™, u,v # 0. We point out that the angles between vectors are assumed

to belong to [0, 7] and sin Z(u, v) = 0 for all vectors u, v.

. [W]p: the Frobenius norm of a matrix W = (wyj)mxn, [Wlr = /2500, D23, wi.

. |W|2: the spectral norm of matrix W, i.e., the largest singular value of matrix.

cot(W) = 0o(W) = ... = 0,(W): the singular values of a matrix W € R™*" in a

descending order.

. ¥(W): a function mapping from RZ+*" to R, defined as

T Un<W[1:m,1:n])
A(W) # liming =2 “

. |S]: the cardinality of a set S.

. N A J: the minimum value between N and J.

Main Results

3.1 Structural Identifiability

We first formalize the definition of structural identifiability. For two vectors with countably

infinite components w = (wy, wy,...)",z = (21, 23, ...) " € RZ+ we define

sing Z(w,z) = limsup sin Z(W[1.n], Z[1:n]) (5)
n—0o0

10



which quantifies the angle between two vectors w and z in R?+. In particular, we say the

angle between w and z is zero when sin, Z(w, z) is zero.

Definition 1 (Structural identifiability of a latent factor). Consider the kth latent factor,

(©,A). We say the k-th latent factor is structurally identifiable in the parameter space S if
for any (©,A),(0",A") €S, Poa = Peor,a tmplies sin, Z(Opy, @’[k]) = 0.

We point out that the parameter space §, which will be specified later in this section, is
essentially determined by the design information g;;s. As will be shown shortly, a good design
imposes suitable constraints on the parameter space, which further ensures the structure
identifiability of the latent factors. This definition of identifiability avoids the consideration
of the scale of the latent factor, which is not uniquely determined as the distribution of
data only depends on {6 a; : i,j € Z,}. Moreover, the sine measure is a canonical way to
quantify the distance between two linear spaces that has been used in, for example, the well-
known sine theorems for matrix perturbation (Davis, 1963; Wedin, 1972). As will be shown
in the sequel, this definition of structural identifiability naturally leads to a relationship
between identifiability and estimability and has important implications on psychological
measurement.

We now characterize the structural identifiability under suitable regularity conditions. We
consider a design matrix Q for the manifest variable population, where @ € {0, 1}72+*{%-K},

Our first regularity assumption is about the stability of the ) matrix.

A1 The limit

) i iqi=1,ifkeSand ¢ =0, ifk¢ S 1<5<J

exists for any subset S < {1, ..., K'}. In addition, pgo (&) = 0.

The above assumption requires that the frequency of manifest variables associated with

and only with latent factors in S converges to a limit proportion pg(.S). In addition, po (&) =

11



0 implies that there are few irrelevant manifest variables. We point out that this assumption
is adopted mainly to simplify the statements in Theorem 1 and Theorem 2. As discussed
later, this assumption is automatically satisfied if q;s are generated under a stochastic design.
This assumption will be further relaxed in Section 3.4 where a non-asymptotic error bound is
established. We also make the following assumption on the generalized latent factor model,
which is satisfied under most of the widely used models, including the linear factor model,

MIRT model, and the Poisson factor model listed above.
A2 The natural parameter space {v : |b(v)| < 0} = R.

Under the above assumptions, Theorem 1 provides a necessary and sufficient condition
on the design matrix () for the structural identifiability of the kth latent factor. This result

is established within the parameter space Sg < RZ+*{h-K} 5 RE+x {1 K}

So =5y % S35 ®)
Here, we define
Sy = {© e RE*1K) 1 6] < € and 1(6) > 0} ™)

and

86(92) — {A c RZ+X{1~"’K} . Ha]H < C, A[RQ(S)’SC] =0 fOI‘ all S C {1, ...,K},

(8)
and ’V(A[RQ(S),S]) > () for all S, s.t. pQ(S) > O},

where C'is a positive constant, the v function is defined in (4), and
Ro(S)={j:qw =1, forall ¥’ € S and g;» =0, for all &' ¢ S} (9)

denotes the set of manifest variables that are associated with and only with latent factors in

S. Discussions on the parameter space are provided after the statement of Theorem 1.

12



Theorem 1. Under Assumptions A1 and A2, the k-th latent factor is structurally identifiable
in Sq if and only if
=1 s (10)

keS,pq(S)>0

where we define ﬂk‘ESpQ(S)>U S =& if pg(S) =0 for all S that contains k.
The following proposition guarantees that the parameter space is nontrivial.
Proposition 1. For any Q) satisfying Al, Sq # .

We further remark on the parameter space Sg. First, Sg requires some regularities
on each 0; and a; (i.e., |0;] < C,|a;| < C) and the A-matrix satisfying the constraints
imposed by @ (A[RQ(S)’ sep = 0) for all S. It further requires that there is enough variation
among people, quantified by v(©) > 0, where the 7 function is defined in (4). Note that this
requirement is mild, in the sense that if 8;s are independent and identically distributed (i.i.d.)
with a strictly positive definite covariance matrix, then v(0) > 0 a.s., according to the strong
law of large numbers. Furthermore, v(A(r,(s),s]) > 0 for S satisfying pg(S) > 0 requires
that each type of manifest variables (categorized by S) contains sufficient information if
appearing frequently (pg(S) > 0). Similar to the justification for ©, v(Ary(s)s1) > 0
can also be justified by considering that a;s are i.i.d. following a certain distribution for
J € Rq(S).

We provide an example to facilitate the understanding of Theorem 1. Suppose that
assumptions Al and A2 hold. If K = 2 and po({1}) = po({1,2}) = 1/2, then the second
latent factor is not structurally identifiable, even if it is associated with infinitely many
manifest variables. In addition, having many manifest variables with a simple structure
ensures the structural identifiability of a latent factor. That is, if pg({k}) > 0, then the kth
factor is structurally identifiable.

Finally, we briefly discuss Assumption Al. The next proposition implies that if we have

a stochastic design where () has i.i.d. rows, then Assumption Al is satisfied almost surely.

13



Proposition 2. Assume that the design matriz @ has i.i.d. rows and q; # (0, ...,0) for all

1=1,2,... Then, Assumption A1 is satisfied almost surely. Moreover, let
ws =P (qup =1 for allk e S, and g1, =0 for all k ¢ 5) (11)

for each S < {1,...,K}. Then, Q satisfies Assumption A1 with ps(Q) = wg for all S <

{1,..., K} almost surely.

3.2 Identifiability and Estimability

It is well known that for a fixed dimensional parametric model with i.i.d. observations, the
identifiability of a model parameter is necessary for the existence of a consistent estimator.
We extend this result to the infinite-dimensional parameter space under the current setting.
We start with a generalized definition for the consistency of estimating a latent factor. An
estimator given N individuals and J manifest variables is denoted by (/) AN/ which

only depends on Y[i.n1.s) for all N, J e Z,.

Definition 2 (Consistency for estimating latent factor k). The sequence of estimators

{((:)(N’J),A(N’J)), N, J e Z.,} is said to consistently estimate the latent factor k if

Siné(égf\?ﬂ’ @[1:N,k]) PE)A 07 as Na J — 00, (12>

for all (©,A) € Sg.

The next proposition establishes the necessity of the structural identifiability of a latent

factor on its estimability.

Proposition 3. If latent factor k is not structurally identifiable in Sg, then there does not

exist a consistent estimator for latent factor k.

Remark 1. The above results of identifiability and estimability are all established under a

double asymptotic regime that both N and J grow to infinity, which is suitable for large-

14



scale applications where both N and J are large. It differs from the classical asymptotic
setting (e.g., Anderson and Rubin, 1956; Bing et al., 2017) where J is fized and N grows to
infinity. The classical setting treats the latent factors as random effects and focuses on the
wdentifiability of the loading parameters. There are several reasons for adopting the double
asymptotic regime. First, the double asymptotic regime allows us to directly focus on the
identifiability and the estimation of factor scores 0;, which is of more interest in many
applications (e.g, psychological and educational measurement) than the loading parameters.
To consistently estimate the factor scores, naturally, we need the number of measurements
J to grow to infinity. Second, having a varying J allows us to take the number of manifest
variables into consideration in the research design and data collection when measuring certain
traits with substantive meaning through a latent factor model. Third, even if we only focus
on the loading parameters, the classical asymptotic regime does not lead to consistency on
the estimation of the loading parameters. For example, for the MIRT model for binary data,
one cannot consistently estimate the loading parameters, when J s fixed and N grows to
infinity, unless we assume 6;s to be i.i.d. samples from a certain parametric distribution and
use this parametric assumption in the estimation procedure. Finally, this double asymptotic
regime 1s not entirely new. In fact, this regime has been adopted in, for example, Haberman
(1977), Bai and Li (2012), and Owen and Wang (2016) among others, for the asymptotic

analysis of linear and nonlinear factor models.

3.3 Estimation and Its Consistency

We further show that the structural identifiability and estimability are equivalent under
our setting. For ease of exposition, let @ e {0, 1}%+>*{1~K} be a design matrix satisfying
Assumption Al. In addition, let (0%, A*) € Sg be the true parameters for the person and

the manifest variable populations. We provide an estimator (@(N ) AN )} such that
. P,
sin Z(Ofy”, Ofn i) 0, N, J,— o,

15



when () satisfies (10) which leads to the structural identifiability of latent factor k according

to Theorem 1. Specifically, we consider the following estimator

((:)(N’J),A(N’J)) €argmin — [ (0y,...,0y,a;,...,a5),
st |6:] < ', |ay] < C, (13)

a; EDj,i = 1,...,N,j = ].,...7J,

where [(y, ..., 0y, a,, ..,a;) = S, ijl vi;(0;)a;)—b(0a;), C"is any constant greater than
C' in the definition of Sg, and D; = {a € RX : a;, = 0if ¢;, = 0} imposes the constraint
on a;. Note that maximizing [ (64, ...,0N,ai,...,a;) is equivalent to maximizing the joint
likelihood (3), due to the natural exponential family form. The next theorem provides an

error bound on (@) AN.J)),

Theorem 2. Under assumptions A1-A2 and (0%, A*) € Sg, there ezists a constant k,

(independent of N and J, depending on the function b, the constant C', and K ) such that,

1
—F
VNJ

R1

N (14)

SN AN — Of v Ak, <

Moreover, if Q satisfies (10) and thus latent factor k is structurally identifiable, then there
exists kg > 0 such that

Esin (6., 00 ") < ——2

WS N AT (15)

Proposition 3, and Theorems 1 and 2 together imply that the structural identifiability

and estimability over S are equivalent, which is summarized in the following corollary.

Corollary 1. Under Assumptions A1 and A2, there exists an estimator (é(N’J), A(N’J)) such
that limy j_ sin L(@Ei\]{"]), Opn.nk) = 0 in Po a for all (©,A) € Sq if and only if the design

matriz Q) satisfies (10).

Remark 2. The estimator (13) is closely related to the joint likelihood estimator in the

literature of econometrics and psychometrics. When J is fired and N grows to infinity,

16



this estimator is shown to be inconsistent, due to the simultaneous growth of the sample
size and the parameter space (Neyman and Scott, 1948; Andersen, 1970; Ghosh, 1995).
However, if N and J simultaneously grow to infinity, Haberman (1977) shows that the joint
mazimum likelthood estimator is consistent under the Rasch model, a simple unidimensional
item response theory model. Then under a general family of multidimensional item response
theory models and under an exploratory factor analysis setting, an estimator similar to (13)
is considered in Chen et al. (2019) but without the zero constraints given by the Q-matric.

As a result, the estimator obtained in Chen et al. (2019) is rotationally indeterminant.

Remark 3. The error bound (14) holds even when one or more latent factors are not struc-
turally identifiable. In particular, (14) holds when removing the constraint a; € D; from
(13), which corresponds to the exploratory factor analysis setting where no design matriz Q)
is pre-specified (or in other words, qj; = 1 for all j and k; see the setting of Chen et al.,
2019). In that case, the best one can achieve is to recover the linear space spanned by the
column vectors of ©* and similarly the linear space spanned by the column vectors of A*. To
make sense of such exploratory factor analysis results, one needs an additional rotation step

to find an approzimately sparse estimate of A* (Chen et al., 2019).

Remark 4. The proposed estimator (13) and its error bound are related to exact low-rank
matriz completion (Bhaskar and Javanmard, 2015) and approzimate low-rank matriz com-
pletion (e.g. Candés and Plan, 2010; Davenport et al., 2014; Cai and Zhou, 2018), where
a bound similar to (14) can typically be derived. The key differences are (a) the research
on matriz completion is only interested in the estimation of ©*A*T, while the current paper
focuses on the estimation of ©* that is a fundamental problem of psychological measurement

and (b) our results are derived under a more general family of models.

To further evaluate the efficiency of the proposed estimator, we provide the following

lower bounds.

Theorem 3. Suppose that Assumptions Al and A2 hold. For N,J € Z,, let M™) pe

17



an arbitrary estimator which maps data Y[i.n .57 to RN*J. Then there exists 1 > 0 and

No, Jo > 0 such that for N = Ny, J = Jy, there exists (0%, A*) € Sg such that

—_

% * €1
P@*,A* (\/7 HM(NJ [1:N,1:K] (A[l:J,lzK])THF = N—/\J) = 5 (16)

Moreover, let (:)E,i\]["]) be an arbitrary estimator which maps data Y}i.n,1.7) to RY. Then for each
A* € Sg) defined in (8), there exists €5 > 0 and Ny, Jy > 0 such that for N = Ny, J = Jy,

there exists O € 8(1) such that

. I s E3 62 1
P@*,A* (sm L(@Eli\]f J)7@[1:N’k]) 2 \/_j) 2 5 (17)

Based on the asymptotic upper bounds and lower bounds obtained in Theorems 2 and 3,
we have the following findings. First, the proposed estimator @) (AN-INT is rate optimal
for the estimation of O} \ | ) (Af}.;,. K])T, because the upper bound (14) matches the lower
bound (16). Second, for estimating @ LN K] the proposed estimator @ is rate optimal
when limsupy ; ., J/N < co. This assumption on the rate J/N seems reasonable in many
applications of confirmatory generalized latent factor models, as N is typically larger than
J. Finally, if N = o(.J), then the asymptotic upper bound (15) and lower bound (17) do not
match, in which case the proposed estimator may not be rate optimal. In particular, when
N = o(J), it is known that the lower bound for the estimation of Of1.v ) can be achieved
under a linear factor model (see Bai and Li, 2012). However, this lower bound may not be
achievable under a generalized latent factor model for categorical data, such as the MIRT
model for binary data. This problem is worth further investigation.

We end this section by providing an alternating minimization algorithm (Algorithm 1) for
solving the optimization program (13), which is computationally efficient through our paral-
lel computing implementation using Open Multi-Processing (OpenMP; Dagum and Menon,
1998). Specifically, to handle the constraints, we adopt a projected gradient descent algo-

rithm (e.g. Parikh and Boyd, 2014) for solving (18) and (19) in each iteration, where the
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projections have closed-form solutions. Similar algorithms have been considered in other
works, such as Udell et al. (2016), Zhu et al. (2016) and Bi et al. (2017), for solving opti-
mization problems with respect to low-rank matrices. Following Corollary 2 of Grippo and
Sciandrone (2000), we obtain Lemma 1 below on the convergence property of the proposed

algorithm.

Lemma 1. Any limit point of the sequence {0@ al i = L.,N,j=1..,J1=12 .}

Z)ja

obtained from Algorithm 1 is a critical point of the optimization program (13).

Algorithm 1: Alternating minimization algorithm

1. Input: Data (y;; : 1 <i < N,1 < j < J), dimension K, constraint parameter C’,
initial iteration number [ = 1, and initial value 01(0) and a§0) eD;,i=1,...,N,
j=1,..,J.

2. Alternating minimization:

for(=1,2,... do

fori=1,2,.... N do

02@ € argmin —;(0), (18)
lef<c’
- 1—
where [;(0) = Z}]:l yij(OTag- 1)) _ b(eTag 1))'
end
for j =1,2,....J do
al ¢ arg min —l}(a), (19)
aeDj,|al<C
where [j(a) = Zf\il ?/ij((egl))Ta) _ b((OEZ))Ta).

end

end

3. Output: Iteratively perform Step 2 until convergence. Output 0; = OZ(L),

a; = aéL), 1=1,...N,5=1,...,J, where L is the last iteration number.

3.4 A Non-asymptotic Error Bound

We further provide a non-asymptotic error bound as a complement to the asymptotic results.
Through this error bound, the effect of design information on the estimation of latent factors
is quantified for finite N and .J, without requiring N and J to grow to infinity. We introduce

the following definition on collections of manifest varible types.
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Definition 3 (Feasible collection of subsets). For a given k < {1, ..., K}, we say a collection

of subsets of {1,..., K}, A, is feasible for the kth dimension if

ky=[)s (20)

SeA

The concept of feasible collection is closely related to the necessary and sufficient con-
dition (10) for the structural identifiability of the kth factor. Given the concept of feasible

collection of manifest variable types, we then define an index as follows,

max  minog (A} #
| { A: A is feasible SeA |S|< [RQ(S)ﬁ{l""’J}’S]) UK(G)[l:N,l:K]) }
ON,g = Inin ,

Vi T 2y
which serves as a measure of the signal strength on dimension k. We elaborate on this
index. First, for a given feasible collection 4, the first quantity in the large brackets of (21),
gleijll o] 5‘(AE‘RQ(S)h s/ +/J, measures the amount of information contained in manifest
variables associated with the set of factors S € A. In particular, if for any feasible collection
A, there exists an S € A such that manifest variables of type S do not exist, then this
quantity becomes zero and thus oy, = 0 as the second term in the brackets of (21) is
nonnegative. In that case, the manifest variables essentially contain no information about
the kth dimension. Second, the second term in the brackets, ok (Of.y 1.x1)/ VN, measures
the co-linearity of different dimensions of @Flr NLK]- In summary, oy, s is a nonnegative

index, with a larger value suggesting that @E: N 18 easier to estimate. An error bound is

then established in the next theorem.

Theorem 4. Suppose that Assumption A2 holds and 6} < C,[a}| < C for all1 <i < N

and 1 < j < J. Then, there is a constant k3, independent of N and J, such that

1
—F
VNJ

QW (AWNINT _g# AT H < 29
( ) (LN LKL LK] | N (22)

Moreover, if on; > 4k3 /(N A J)7Y2, then there exists a monotone decreasing function
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k4(+) : Ry — R, (independent of N, J and may depend on C', K and function b) such that
for N = Ny and J = Jy,

Esin Z(6},x4.Oin™”) < Falon.s) (23)

The precise forms of the constant k3 and the function k4(-) are given in the Appendiz.

The above theorem does not require N and J to grow to infinity and thus is referred
to as a non-asymptotic result. Comparing with Theorem 2, the assumptions of Theorem 4
are weaker. That is, Theorem 4 does not require any limit-type assumptions as required in
Theorem 2, including Assumption Al, the requirement (©*, A*) € Sy, and condition (10).
Instead, it quantifies the effect of design information on the estimation of latent factors under
a non-asymptotic setting, only requiring the signal level oy ; is higher than the noise level
413 2 (N A J)~Y2. According to the proposition below, this assumption can be implied by

the limit-type assumptions of Theorem 2 and thus is weaker.

Proposition 4. If Assumption A1 and condition (10) are satisfied and (0%, A*) € Sq, then

limianNJ > 0.
N,J—w0 ’

4 Further Implications

In this section, we discuss the implications of the above results in the applications of gen-
eralized latent factor models to large-scale educational and psychological measurement. In
such applications, each manifest variable typically corresponds to an item in a test, each in-
dividual is a test-taker, and both N and J are large. The latent factors are often interpreted
as individuals’ cognitive abilities, psychological traits, etc., depending on the context of the

test. It is often of interest to estimate the latent factor scores ;.
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Table 1: An example of the design matrix (), which has infinite rows and K = 3 columns.
The rows of () are given by repeating the first 3 x 3 submatrix infinite times.

4.1 On the Design of Tests.

According to Theorems 1 and 2, the key to the structural identifiability and consistent

estimation of factor k is

k= S (24)

keS.pg(S)>0

which provides insights on the measurement design. First, it implies that the “simple struc-
ture” design advocated in psychological measurement is a safe design. Under the simple
structure design, each manifest variable is associated with one and only one factor. If each
latent factor k is associated with many manifest variables that only measure factor k, or
more precisely pg({k}) > 0, (24) is satisfied.

Second, our result implies that a simple structure is not necessary for a good measurement
design. A latent factor can still be identified even when it is always measured together with
some other factors. For example, consider the ()-matrix in Table 1. Under this design, all
three factors satisfy (24) even when there is no item measuring a single latent factor.

Third, (24) is not satisfied when there exists a k' # k and k' € mkES,pQ(S)>0 S. That is,
almost all manifest variables that are associated with factor k are also associated with factor
k', in the asymptotic sense. Consequently, one cannot distinguish factor k from factor k',
making factor k structurally unidentifiable. We point out that in this case, factor &’ may
still be structurally identifiable, as po({k'}) > 0 is still possible.

Finally, (24) is also not satisfied when ﬂkES,pQ(S)>O S = . It implies that the factor
k is not structurally identifiable when the factor is not measured by a sufficient number of

manifest variables.

22



4.2 Properties of Estimated Factor Scores

A useful result. Let (0%, A*) € Sg be the true parameters for the person and the manifest
variable populations. We start with a lemma connecting sine angle consistency and Lo

consistency.

Lemma 2. Let w,w’' € R" with w # 0 and w' # 0 and ¢ = sign(cos Z(w,w')). Then,

W/

2
=2— 2\/1 — sin? Z (w, w'). (25)

I

—_— C—

Iwl W]
Combining Theorem 2 and Lemma 2, we have the following corollary which establishes a

relationship between the true person parameters and their estimates. This result is the key

to the rest of the results in this section.

Corollary 2. Under Assumption A1-A2 and (10) is satisfied for some k, then there exists

a sequence of random variables cy j € {—1,1}, such that

o é(N,J) Pev ix
w —CNJ% A 0, N, J,—> 0. (26)
”@[1:1\7,16]H ”@[kf H

Remark 5. Corollary 2 follows directly from (15). It provides an alternative view on
how C:)%’J) approximates @E:N’k]. Since the likelihood function depends on Op.n1.x) and
Apg:x) only through @[1:N71:K]A[T1:J71:K], the scale of Op.y ) is not identifiable even when
it is structurally identifiable. This phenomenon is intrinsic to latent variable models (e.g.
Skrondal and Rabe-Hesketh, 2004). Corollary 2 states that @E}:N,k] and (:)E,i\]f“]) are close in
Buclidian distance after properly normalized. The normalized vectors ©fy y /|07,y | and

vl

S)

J)/H(LJ%J)H are both of unit length. The value of cy ; depends on the angle between
[1v g and (:)E,i\][’J). Specifically, ey = 1 if cos L<@F1:N,k]’ @%J)) > 0 and cy,; = —1 other-
wise. In practice, especially in psychological measurement, cy j can typically be determined

by additional domain knowledge.
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On the distribution of person population. In psychological measurement, the distri-
bution of true factor scores is typically of interest, which may provide an overview of the
population on the constructs being measured. Corollary 2 implies the following proposition

on the empirical distribution of the factor scores.

Proposition 5. Suppose assumptions A1-A2 are satisfied and furthermore (10) is satisfied

for factor k. We normalize 0}, and ég,iv"]) by

. \/N@fk R CNJ\/N@A%V’J)

= = i=1,., N, (27)
[Crsel

1973

Uj i =
where cy j is defined and discussed in Corollary 2. Let Fy and F N, be the empirical measures

of vi,...,un and vy, ..., 0y, respectively. Then,

P@*,A*

WCLSS(FN,F]\LJ) -0, N,J — o,
where Wass(-, ) denotes the Wasserstein distance between two probability measures

Wass(u,v) = sup | Jhdu - fhdl/|.

h s 1-Lipschitz

We point out that the normalization in (27) is reasonable. Consider a random design set-
ting where 0 s are i.i.d. samples from some distribution with a finite second moment. Then
Fx converges weakly to the distribution of 1/ \/W , where 7 is a random variable following
the same distribution. Proposition 5 then implies that when factor k is structurally identifi-
able and both N and J are large, the empirical distribution of égj,:u), égg"]), - é](\],\,z’J) approxi-
mates the empirical distribution of 05, 05, , ..., 0% accurately, up to a scaling. Specifically, for
any 1-Lipschitz function A, Sh(w)ﬁ’ n,s(dx) is a consistent estimator for § h(x)Fy(dz) accord-
ing to the definition of Wasserstein distance. Furthermore, Corollary 2 states that under the
regularity conditions, limpy_, 4 Zﬁ\;l(vi — 9;)%/N = 0, implying that Zf\il Li(w—op)2=e}/ N = 0,

for all e > 0. That is, most of the 9;s will fall into a small neighborhood of the corresponding
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On ranking consistency. The estimated factor scores may also be used to rank indi-
viduals along a certain trait. In particular, in educational testing, the ranking provides an
ordering of the students’ proficiency in a certain ability (e.g., calculus, algebra, etc.). Our
results also imply the validity of the ranking along a latent factor when it is structurally
identifiable and N and J are sufficiently large. More precisely, we have the following propo-

sition.

Proposition 6. Suppose assumptions A1-A2 are satisfied and furthermore (10) is satisfied
for factor k. Consider v; and v;, the normalized versions of 0 and HA%V"]) as defined in (27).
In addition, assume that there exists a constant kg such that for any sufficiently small € > 0

and sufficiently large N,
iz Hvi —vir] < €}

< Kpe. 28
NN —1)/2 "RE (28)
Then,
v Po% a%
TV Y) Feran gy g, (29)

N(N —-1)/2
where T(v, V) = >, 1(v; > vy, 0y < Oy) + 1(v; < vy, 0; > Uy) is the number of inconsistent

~

pairs according to the ranks of v = (vq,...,uyx) and v = (01, ..., On).

We point out that (28) is a mild regularity condition on the empirical distribution
Fy. 1t requires that the probability mass under F does not concentrate in any small
e-neighborhood, which further implies that the pairs of individuals who are difficult to dis-
tinguish along factor k, i.e., (i,4')s that v; and v; are close, take only a small proportion
among all the (N — 1)N/2 pairs. In fact, it can be shown that (28) is true with probability
tending to 1 as N grows to infinity, when 6} s are i.i.d. samples from a distribution with a
bounded density function. Proposition 6 then implies that if we rank the individuals using
0; (assuming cy,; can be consistently estimated based on other information), the proportion

of incorrectly ranked pairs converges to 0. Note that 7(v, V) is known as the Kendall’s tau
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distance (Kendall and Gibbons, 1990), a widely used measure for ranking consistency.

On classification consistency. Another common practice of utilizing estimated factor
scores is to classify individuals into two or more groups along a certain construct. For
example, in an educational mastery test, it is of interest to classify examinees into “mastery”
and “nonmastery” groups according their proficiency in a certain ability (Lord, 1980; Bartroff
et al., 2008). In measuring psychopathology, it is common to classify respondents into
“diseased” and “non-diseased” groups based on a mental health disorder. We justify the

validity of making classification based on the estimated factor score.

Proposition 7. Suppose assumptions A1-A2 are satisfied and furthermore (10) is satisfied
for factor k. Consider v; and v;, the normalized versions of 0, and ég,iv’J) as defined in (27).

Let 7_ < 7, be the classification thresholds, then

SN o =T, < 7']\; + {0, <71_,v; =7y} Pox ax 0. N.J oo, (30)

Considering two pre-specified thresholds 7 and 7, is the well-known indifference zone
formulation of educational mastery test (e.g. Bartroff et al., 2008). In that context, examinees
with v; > 7, are classified into the “mastery” group and those with v; < 7_ are classified
into the “nonmastery” group. The interval (7_, 7, ) is known as the indifference zone, within
which no decision is made. Proposition 7 then implies that when factor k is structurally

identifiable, the classification error tends to 0 as both N and J grow to infinity.

5 Extensions

5.1 Generalized Latent Factor Models with Intercepts

As mentioned in Section 2.1, intercepts can be easily incorporated into the generalized latent

factor model by restricting ¢;; = 1. Then, a;s are the intercept parameters and g;; = 1 for
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all j. Consequently, for any S satisfying po(S) > 0, 1 € S and thus the latent factors 2-K
are not structurally identifiable according to Theorem 1. Interestingly, these factors are still

structurally identifiable if we restrict to the following parameter space
1
Sg- = {(@,A) €Sy Alflir(l)o NlL@[ltN,m] =0form>2, and #;; =1 forie Z+}, (31)

which requires that O, and ©[; are asymptotically orthogonal, for all k£ > 2.

Proposition 8. Under Assumptions A1-A2, and assuming that ¢y = 1 for all j € Z, and

K > 2, then the kth latent factor is structurally identifiable in Sq _ if and only if

{Lkb= ) 5 (32)

keS,pq(S)>0
for k = 2.
The next proposition guarantees that Sp _ is also non-empty.

Proposition 9. For all Q) satisfying Al and g1 = 1 for all j € Z,, and in addition C' > 1,
then Sg,— # .

Remark 6. When having intercepts in the model, similar results of consistency and a non-

asymptotic error bound can be established for the estimator

(é(N’J),A(N’J)) € argmin —1 (01, ...,0]\[,&17 ...,aJ) ,

st. [0 < ¢, |la;| < ' a; € Dj,
N (33)
0 =1, Z O = 0,
~

i=1,..,Nj=1..Jk=2 ., K.
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5.2 Extension to Missing Values

Our estimator can also handle missing data which are often encountered in practice. Let
2 = (wij)nxs be the indicator matrix of nonmissing values, where w;; = 1 if Y}; is observed
and w;; = 0 if Y;; is missing. When data are completely missing at random, the joint

likelihood function becomes

LQ(017"'70N7a17“‘7aJ7¢) = H €xp <ywqu—bb(m”> +C(ym,¢>>

1,J:wij=1

and our estimator becomes

((:)(N’J),A(N’J)) € arg min — Ak (04,...,0y,a1,...,a)),
st )6, < ' ay] < (34)

ajEDj,i = 1,...,N,j = 1,...,J,

where [%(OAT) = Dl jioy =1 YigMij — b(mi;). Moreover, results similar to Theorem 2 can be

established even when having missing data. Specifically, we assume

A3 w;y;s in Q are independent and identically distributed Bernoulli random variables with

n

This assumption implies that data are completely missing at random and only about n

entries of (Y;;)nx.s are observed. We have the following result.

Proposition 10. Under assumptions A1-A3 and (0%, A*) € Sy, there exists k5 > 0 such

that,

1 A A * *
——F <H@(N7J) (A(NJ))T — M[1:N,1:K] (A[lzN,lsK])T HF>

VNJ

NvJ (NJ)Y? (35)
<Ksmax , 3/d .
n n
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Moreover, if @ satisfies (10) and thus latent factor k is structurally identifiable, then there

exists a constant kg, such that

. . A (N.J IN v J (NJ)V?
ESIHL(@D:N,H’@EH ) < kg max{ T (- (36)

Remark 7. Results similar to (35) have also been derived in the matriz completion literature

(e.g. Candés and Plan, 2010; Davenport et al., 2014; Cai and Zhou, 2013; Bhaskar and
Javanmard, 2015) under specific statistical models with an underlying low rank structure.
Proposition 10 extends the existing results on matriz completion to a generalized latent factor

model.

6 A Useful Perturbation Bound on Linear Subspace

The standard approach (see, e.g., Davenport et al. (2014)) for bounding the error of the max-
imum likelihood estimator is by making use of the strong/weak convexity of the log-likelihood
function. However, in the generalized latent factor model, the log-likelihood function is not
convex in (Op.n1.x7, Apisi:x])- Thus, the standard approach is not applicable for prov-
ing (15) in Theorem 2 and similar results on the estimation of Op:nk in Theorem 4 and
Proposition 10.

New technical tools are developed to handle this problem. Specifically, there are two
major steps for proving Theorem 2. In the first step, we establish (14), which bounds the
error on the estimation of @’["1: N K]AET: J1K] 8 @ whole. This step extends the error bound
for exact low-rank matrix completion (Bhaskar and Javanmard, 2015) under the generalized
latent variable model setting. A small estimation error of @E: N1 K]AET: J1K] implies that
the linear space spanned by the column vectors of @Fl: N1 Can be recovered up to a small
perturbation. In the second step, given the result from the first step and design information,
we show that the direction of the vector @Flt N Can be recovered up to a small perturbation.

This step is technically challenging and is tackled by a new perturbation bound for the

29



intersection of linear spaces. This perturbation bound, as introduced below, may be of
independent value for the theoretical analysis of low-rank matrix estimation.

Let R(W) denote the column space of a matrix W. Under the conditions of Theorem 2,
the result of (14) combined with the Davis-Kahan-Wedin sine theorem (see e.g. Stewart and
Sun, 1990) allows us to bound sin Z(R(O],.y ¢)); R(é%‘]))), for any S satisfying po(S) > 0,

where Z (L, M) denotes the largest principal angle between two linear spaces L and M, i.e.,

sin Z(L, M) = maXyen, uro Milyer v2o sin Z(u, v). Our strategy is to bound
. * A(N,J . * A(N,J
S1n 4(@[1:1\/,@7 @Ek] )) = s L(R(@[I:N,k])v R(@( )))

by sin Z(R(Of.x 1.x7)5 R(OW))) under the assumptions of Theorem 2. Note that
R(Ofng) = ﬂkeS,pQ(S)>0 R(Of1.n,5) and similarly R(éfé\][7J)) = mkeS,pQ(S)>O R(@EJS\SJ))
Consequently, it remains to show that if the linear spaces are perturbed slightly, then their
intersection does not change much. To this end, we establish a new perturbation bound on

the intersection of general linear spaces in the next proposition.

Proposition 11 (Perturbation bound for intersection of linear spaces). Let L, M, L', M’

be linear subspaces of a finite dimensional vector space. Then,

IPranr — Pran| < 8max{a(Oin, (L, M)), (Oin,+ (L', M)HPL = Pr| + [Par — Parl),

(37)
where we define Ouin,+ (L, M) as the smallest positive principal angle between L and M (de-
fined as 0 if all the principal angles are 0), Py denotes the orthogonal projection onto a
linear space M, and a(6) = 2(1 + cos0)/(1 — cos6)3. Here, the norm || - | could be any uni-
tary invariant, uniformly generated and normalized matriz norm. In particular, if we take

|| to be the spectral norm | - |2, then we have

sin /(L' nM', L~ M)
(38)
<8 max{a(Omin,+ (L, M)), a(Omin+ (L', M) }(sin (L, L") + sin £ (M, M")).
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We refer the readers to Stewart and Sun (1990) for more details on principal angles be-
tween two linear spaces and on matrix norms. In particular, the spectral norm is a unitary in-
variant, uniformly generated and normalized matrix norm. The result in Proposition 11 holds
for all linear subspaces. The right-hand side in (37) is finite if and only if Opax + (L, M) # 0
and Opax+ (L', M') # 0. In our problem, L = R(Op.n,g]) and M = R(Op.n,s,) for
51,8 < {l,.., K} and S; # S3. The next lemma further bounds &(fmin+ (L, M)) when

L and M are column spaces of a matrix, which is a key step in proving (15).

Lemma 3. Let W e RVN*E\{0} for some positive integer N and K, and Sy, S, = {1,..., K}

be such that S1\Ss # & and So\S1 # &, then

. 0|251 US| <W[SIUS2])
W13

€08(Omin,+ (R(Wisy)), R(Wisy)))) < 1 (39)

7 Numerical Experiments

7.1 Simulation Study I

We first verify Theorem 2 and its implications when all latent factors are structurally iden-
tifiable. Specifically, we consider K = 5 under the three models discussed in Section 2.1,
including the linear, the MIRT and the Poisson models. Two design structures are consid-
ered, including (1) a simple structure, where po({k}) = 1/5, k = 1,...,5 and (2) a mixed
structure, where po(S) = 1/5, S = {1,2,3},{2,3,4},{3,4,5},{4,5,1}, and {5,1,2}. The
true person parameters ;s and the true manifest parameters ajs are generated i.i.d. from
distributions over the ball {x € R¥ : |x| < 2.5}, respectively, (i.e., C = 2.5 in Sg). Under
these settings, all the latent factors are structurally identifiable.

For each model and each design structure, a range of J values are considered and we let
N = 25J. Specifically, we consider J = 100, 200, ..., 1000 for the linear, the MIRT, and the
Poisson models. For each combination of a model, a design structure, and a J value, 50

independent datasets are generated. For each dataset, we apply Algorithm 1 to solve (13),
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Figure 1: The value of [©@W-)(AN)T Ofn 1) A1k B/ (N J) versus the number of
manifest variables J under different simulation settings (solid line: simple structure; dashed
line: mixed structure). The median, 25% quantile and 75% quantile based on the 50 inde-
pendent replications are shown by the dot, lower bar, and upper bar, respectively.

where C" = 1.2C.

Results are shown in Figures 1-5. Figure 1 shows the trend of 5 |@®/)(ANNT
O N1 K]AET 1 K]H% (y-axis) when J increases (z-axis), where each panel corresponds to a
model. This result verifies (14) in Theorem 2. According to these plots, the normalized
squared Frobenius norm between O,y .14} 1.5) and its estimate O (ANINT decays
towards zero, as J and N increase. Figures 2-5 present results based on the first latent factor
and we point out that the results based on the other latent factors are almost the same.
Figure 2 is used to verify (15) in Theorem 2, showing the pattern that sin Z(©7},y 1, é%‘]))
decreases as J and N increase.

Moreover, Figure 3 provides evidence on the result of Proposition 5. Displayed in Figure 3
are the histograms of v;s and 9;s, respectively, based on a randomly selected dataset when
J = 1000 under the Poisson model and the simple structure. According to this figure, little
difference is observed between the empirical distribution of v;s and that of ©;s. Similar results
are observed for other datasets under all these three models when J and N are large.

Finally, Figures 4 and 5 show results of ranking and classification based on the estimated
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Figure 2: The value of sin Z(O7 y . (:)ﬁ\]”)) under different simulation settings (solid line:
simple structure; dashed line: mixed structure). The median, 25% quantile and 75% quantile
based on the 50 independent replications are shown by the dot, lower bar, and upper bar,
respectively.
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Figure 3: Comparison between the histogram of v;s and that of 0;s for the first latent factor
under the Poisson Model and the simple structure.
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Figure 4: The Kendall’s tau ranking error calculated from @E: n1) and éﬁ\]["]), under different
simulation settings (solid line: simple structure; dashed line: mixed structure). The median,
25% quantile and 75% quantile based on the 50 independent replications are shown by the
dot, lower bar, and upper bar, respectively.
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Figure 5: The classification error calculated from @ﬁ: N1 and (;)ﬁ\]f"]) with indifference zone
(0.13,0.43) under different simulation settings (solid line: simple structure; dashed line:
mixed structure). The median, 25% quantile and 75% quantile based on the 50 independent
replications are shown by the dot, lower bar, and upper bar, respectively.
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Figure 6: The value of |OM/)(ANIN)T Ofn 1Ay x| B/ (N J) versus the number of
manifest variables J under different simulation settings (solid line: Linear Model; dashed
line: MIRT Model; dotted line: Poisson Model). The median, 25% quantile and 75% quantile
based on the 50 independent replications are shown by the dot, lower bar, and upper bar,
respectively.

factor scores, whose theoretical results are given in Propositions 6 and 7. The y-axes of the
two figures show the normalized Kendall’s tau distance in (29) and the classification error
in (30), respectively. Specifically, 7_ and 7, are chosen as 0.14 and 0.43 which are the 55%
and 65% quantiles of the v;s. From these plots, both the ranking and the classification errors

tend to zero, as J and N grow large.

7.2 Simulation Study II

We then provide an example, in which a latent factor is not identifiable. Specifically, we
consider K = 2 and the same latent factor models as in Study I. The design structure is
given by po({1}) = 1/2 and po({1,2}) = 1/2. The true person parameters s and the true
manifest parameters a*s are generated i.i.d. from distributions over the ball {x € R¥ : |x| <
3}, respectively, (i.e., C' = 3in Sg). Under these settings, the first latent factor is structurally
identifiable and the second factor is not. For each model, we consider J = 100, 200, ..., 1000.
The rest of the simulation setting is the same as Study I. Results are shown in Figures 6

é(N,J)(A(N,J))T

and 7. First, Figure 6 presents the patten that | — Of N1k AfsmlF
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Figure 7: The value of sin Z(O},y . éﬁ\]”)) under different simulation settings (solid line:
the first latent trait; dashed line: the second latent trait). The median, 25% quantile and
75% quantile based on the 50 independent replications are shown by the dot, lower bar, and
upper bar, respectively.

decays to 0 when J increases, even when a latent factor is not structurally identifiable.
This is consistent with the first part of Theorem 2. Second, Figure 7 shows the trend of
sin 4(65: N (:)E,i\][‘])) as J increases. In particular, the value of sin L(@E‘L NA] C;)E,i\]”)) stays
above 0.3 for most of the data sets for the factor which is structurally unidentifiable, while

it still decays towards O for the identifiable one.

7.3 Real Data Example

As an illustration, we apply the proposed method to analyze a personality assessment dataset
based on an International Personality Item Pool (IPIP) NEO personality inventory (John-
son, 2014). This inventory is a public-domain version of the widely used NEO personality
inventory (Costa and McCrae, 1985), which is designed to measure the Big Five personality
factors (K = 5), including Neuroticism (N), Agreeableness (A), Extraversion (E), Openness
to experience (O), and Conscientiousness (C). The dataset contains 20,993 individuals and
300 items. We use a subset of the dataset which contains 7,325 individuals who have an-

swered all 300 items. The measurement design matrix has a simple structure, which is a
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Figure 8: The histogram of the estimated factor scores @E,i\]f"]), k=1,...,5 for the IPIP-NEO
dataset.

N A E O C
1.00 -0.23 -0.35 -0.04 -0.34
-0.23 1.00 0.22 0.19 0.31
-0.35 0.22 1.00 0.20 0.18
-0.04 0.19 0.20 1.00 -0.01
-0.34 031 0.18 -0.01 1.00

QO ™ » Z

Table 2: The correlation matrix between the estimated factor scores for the IPIP-NEO
dataset.

safe design according to our identifiability theory. Under this design, each item only mea-
sures one personality factor and each factor is measured by 60 items. All the items are on
a five-category rating scale, where reverse-worded items were reversely recorded (1 — 5, 2
— 4,4 — 2,5 — 1) at the time the respondent completed the inventory. In this analysis
we dichotomize them by merging categories {1, 2,3} and {4, 5}, respectively, and then fit the
MIRT model.

The results are shown in Figures 8 through 9 and Tables 2 and Table 3. In Figure 8§,
the histograms of é%"]) are given, for k = 1,...,5, which correspond to the N, A, E, O,
and C factors, respectively. As we can see, the estimated factor scores are quite normally
distributed, especially for the first three factors. For the O and C factors, the distributions of
the estimated factor scores are slightly right skewed. In Table 2, the correlations between the
factors are calculated using the estimated factor scores. The correlations between the factors

are relatively small, which are largely consistent with the existing findings in the literature
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Figure 9: The boxplot of the 60 estimated unconstrained loadings for each of the five factors
for the IPIP-NEO dataset.

Factor Items Loading Content
23(N+) 2.81 Am often down in the dumps.
4(N+) 2.66 Get stressed out easily.

N 58(N—) 2.51 Know how to cope.

25(N+) 2.38 Have frequent mood swings.
13(N+) 2.31 Get upset easily.

79(A-) 2.02 Take advantage of others.
86(A—) 1.88 Look down on others.

A 84(A+) 1.82 Am concerned about others.

98(A—) 1.80 Insult people.

67(A—) 1.80 Distrust people.
123(E+) 2.93 Feel comfortable around people.
128(E—) 2.54 Avoid contacts with others.

E 124(E+) 2.48 Act comfortably with others.
139(E—) 2.25 Avoid crowds.
132(E+) 2.19 Talk to a lot of different people at parties.
196(0—) 2.28 Do not like art.
191(0+) 2.25 Believe in the importance of art.

0] 226(0-) 2.11 Am not interested in abstract ideas.
225(0+) 2.07 Enjoy thinking about things.
229(0-) 2.05 Am not interested in theoretical discussions.
286(C—) 2.23 Find it difficult to get down to work.
272(C+) 2.21 Work hard.

C 283(C+) 2.15 Start tasks right away.

289(C—) 2.11 Have difficulty starting tasks.
285(C+) 2.10 Carry out my plans.

Table 3: The content of the top five items with highest estimated loadings on each factor
for the IPIP-NEO dataset.
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of Big Five personality (Digman, 1997). Figure 9 shows the box plot of the 60 unconstrained
loadings for each of the five factors, according to which all the estimated loadings take value
between 0 and 3 and the majority of them take value between 0.5 and 2. Table 3 lists the
content of the top five items with the highest estimated loadings for each factor. These items

are indeed representative of the Big Five factors.

8 Concluding Remarks

In this paper, we study how design information affects the identifiability and estimabil-
ity of a general family of structured latent factor models, through both asymptotic and
non-asymptotic analyses. In particular, under a double asymptotic regime where both the
numbers of individuals and manifest variables grow to infinity, we define the concept of
structural identifiability for latent factors. Then necessary and sufficient conditions are es-
tablished for the structural identifiability of a given latent factor. Moreover, an estimator
is proposed that can consistently recover all the structurally identifiable latent factors. A
non-asymptotic error bound is developed to characterize the effect of design information on
the estimation of latent factors, which complements the asymptotic results. In establishing
these results, new perturbation bounds on the intersection of linear subspaces, as well as
some other technical tools, are developed, which may be of independent theoretical interest.
As shown in Section 4, our results have significant implications on the use of generalized
latent factor models in large-scale educational and psychological measurement.

There are many future directions along the current work. First, it is of interest to develop
methods, such as information criteria, for model comparison based on the proposed estima-
tor. These methods can be used to select a design matrix ) that best describes the data
structure when there are multiple candidates, or to determine the underlying latent dimen-
sions. Second, the current results may be further generalized by considering more general

latent factor models beyond the exponential family. For example, we may establish similar
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identifiability and estimability results when the distribution of Y;; is a more complicated

function or even an unknown function of €; and a;.
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