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Abstract

Statistical analysis of spatio-temporal data has been evolving to handle in-
creasingly large data sets. For example, the North American CORDEX pro-
gram is producing daily values of climate-related variables on spatial grids
with approximately 100,000 locations over 150 years. Smoothing of such
massive and noisy data is essential to understanding their spatio-temporal
features. It also reduces the size of the data by representing them in terms
of suitable basis functions, which facilitates further computations and statis-
tical analysis. Traditional tensor-based methods break down under the size
of such massive data. We develop a penalized spline method for representing
such data using a generalization of the sandwich smoother proposed by Xiao
et al. (2013). Unlike the original method, our generalization treats the spa-
tial and temporal dimensions distinctly and allows the methodology to be
directly applied to non-gridded data. We demonstrate the practicality of the
methodology using both simulated and real data. The new smoother, as well

as the original sandwich smoother, are implemented in the hero R package.
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1. Introduction

Statistical analysis of spatio-temporal data has changed over time as the
data sets have grown increasingly large. For example, the North American
component of the Coordinated Regional Climate Downscaling Experiment
(CORDEX, Giorgi et al., 2009) program is producing daily values of climate-
related variables on (approximately) 0.44°, 0.22°, and 0.11° native rotated-
pole grids (50 km, 25 km, and 12.5 km resolutions, respectively), which
correspond to spatial grids with approximately, 18,000, 100,000, and 400,000
locations, respectively. Our goal is to develop computationally feasible and
statistically meaningful methodology for describing the spatio-temporal fea-
tures of very large spatio-temporal data sets such as those generated by
the North American Regional Climate Change Assessment Program (NAR-
CCAP, Mearns et al., 2009, 2012) or the North American CORDEX (NA-
CORDEX) programs. Thus, our goals relate more to describing the spatio-
temporal structure of our data rather than predicting unobserved values, and
we focus on methodology for representing and compressing the data using
smooth functions.

Smoothing and dimension reduction by means of basis representations
play a fundamental role in functional data analysis (FDA, Ramsay et al.
2009). With the emerging applications of FDA to spatio-temporal data, e.g.,
Aston et al. (2016), Liu et al. (2017), Constantinou et al. (2017), Gromenko
et al. (2017a), Gromenko et al. (2017b), French et al. (2019), comes the need

to develop effective and meaningful smoothing and dimension reduction tools



for such data.

Methods have been proposed for investigating data of similar magni-
tude. Medical imaging data frequently have a magnitude similar to the NA-
CORDEX data. However, it seems that the research goals of methods for
analysis of that data are quite different (e.g., modeling curves of event-related
potential (Zhu et al., 2018) or representing two-dimensional manifolds (Lila
et al., 2016)) and are not suitable for our purpose. Methodology directly
related to modeling massive spatio-temporal data sets tends to focus on pre-
diction (e.g., Ma and Kang (2019); Jurek and Katzfuss (2018)). Additionally,
user-friendly software or code are frequently not provided with these meth-
ods, making them difficult to apply to other data.

We develop a penalized spline method for representing continuous spatio-
temporal data with a dominant smooth component. Our approach builds on
the original sandwich smoother (OSS) proposed by Xiao et al. (2013). Multi-
variate splines are frequently constructed using tensor products of univariate
splines associated with each dimension, and a penalized fitting criterion is
typically used to estimate the relevant model parameters. Xiao et al. (2013)
proposed a special form of the penalty matrix that allows for highly efficient
computation using linear array operations. To deal meaningfully with the
spatio-temporal data introduced above, we develop a framework that inherits
the computational advantages of the OSS while treating the spatial and tem-
poral dimensions differently. We recommend utilizing compactly-supported
radial basis splines to represent the spatial dimension instead of the tensor
product B-splines recommended by Xiao et al. (2013). This modification

allows us to apply the generalized sandwich smoother to non-gridded spatio-



temporal data, extending the applicability of the methodology to our desired
context. Our approach is computationally faster than standard tensor-based
methods and more widely and meaningfully applicable in the context of cli-
mate data than the OSS.

The paper is organized as follows. In Section 2, we describe some relevant
smoothing methods and explain why they are not ideal for the data that
motivate this research. The proposed spatio-temporal sandwich smoother
is introduced in Section 3. We demonstrate its performance in Section 4
using synthetic data constructed from a large-scale climate experiment, and
in Section 5 by applying it to two large climate data sets to which the OSS
cannot be applied. We summarize our results and discuss future work in

Section 6.

2. Traditional splines and fast p-splines

Consider a d-dimensional smoothly-varying process {u(t),t € D}, where
t = (t1,ta,..., 1) is the d-dimensional coordinate vector, and D is a bounded
d-dimensional region in R?. In what follows, we generally focus on spatial
and spatio-temporal data, so d =2 or d = 3.

We will adapt our notation slightly depending on the context. In general,
a process in two dimensions will be denoted pu(u,v), with (u,v) € D C R2.
The two spatial dimensions will be referred to as the u- and v-dimensions.
In the special case that the process is observed in geographical space, we let
s := (u,v) refer to a spatial location. In this case, the u- and v-dimensions
would typically be associated with something like longitude and latitude in

the geographic coordinate system or easting and northing in the Universal



Transverse Mercator (UTM) coordinate system. A generic three-dimensional
process will be denoted p(u,v,t), where (u,v,t) € D x [0,00). We will
specifically focus on data observed in two-dimensional geographic space and
one-dimensional time, and in that case, we will utilize the notation u(s,t),
where s € D and t € [0, 00).

The data are assumed to be observed with error or noise, so that

y() = p() + (), (1)

where (+) is replaced by the appropriate coordinates in d-dimensional space,
and €(-) is an error process.
In the remainder of this section, we provide some background that helps

understand the need for a new approach.

2.1. Standard multivariate tensor splines

We first consider smoothing a two-dimensional surface. Suppose we ob-
serve a partial realization of a two-dimensional process {y(u,v) = u(u,v) +
€(u,v), (u,v) € D}. The n observed values of y are denoted by the column
vector y = (Y1, Y2, - - -, Yn), with y; := y(u;,v;), 1 =1,2,... n.

A standard way to smooth the observed data, from a functional data
perspective, is to use a tensor product of univariate basis functions. Let
{bi,k=1,2,...,c;} and {b?,1 =1,2,...,cy} denote a set of univariate basis
functions (e.g., natural cubic splines, B-splines, monomials (Ramsey and
Silverman, 2005; Hastie et al., 2009)) associated with dimensions u and v,
respectively. The tensor product spline is defined by

> Oubi(wbi(v),

1<k<c1,1<i<c2



where {0;,1 < k < ¢1,1 <1 < ¢} is a set of associated coefficients. The

original data are then modeled as

ywo) = D b} (v) + €(u,v).
1<k<c1,1<1<c2
The smoothed data are obtained as

f(u,v) = Z O 1bi (u)B7 (v),

1<k<ci,1<I<cz

andy = (91,...,0n) = (w1, v1), ..., (U, vy)). Let @ := vec(Or1)k=1,...cr1=1,....co

be the column vector of coefficients, where vec is the operation that stacks
each column of a matrix into a vector. An estimate of @ is obtained by

minimizing
ly = (B2®B1)0[|> +6"P,0 = |ly — BO||* + 6" P,0 (2)

Wlth respect to 9, where B1 = [bi(ui)]lgigmlgkgq, B2 = [b%(vi)]lgign,lglgcga

B := B, ® By, and
P)\ = )\l]:c2 X Pl + )\QPQ X Ic1 (3)

is a penalty matrix. More specifically, P, and P5 are penalty matrices asso-
ciated with the basis functions for the v and v dimensions, respectively, and
A := (A1, Ag) is the vector of smoothing parameters. Penalties are commonly
related to derivative properties of the splines (Reinsch, 1967; O’Sullivan,
1986) or differences in the basis coefficients (Eilers and Marx, 1996). In this

context, the smoothed data are obtained via the equation

S’ = S/\Y: (4)



where

S, =B(B'B +P,) 'B”.

The most difficult challenge for applying tensor product smoothing splines
is typically the choice of smoothing parameters. Frequently, these parameters

are chosen to minimize the Generalized Crossvalidation (GCV) statistic of

Craven and Wahba (1978), defined as

ntrace{y” (I — S, )%y}
{trace(I—S,)}?> (5)

GOV(A) =

The smoothing matrix Sy greatly simplifies in the one-dimensional context,
and computation of the GCV can be efficiently done for many different val-
ues of (scalar) A by solving a generalized eigenvalue problem (Ramsey and
Silverman, 2005, Ch. 5). In the two-dimensional setting, a similar approach
can be used if isotropic smoothing is done, i.e., when A; = A\9. In the general
case of A\; # Ay, the computation of the GCV becomes much more expensive
since there are no helpful features to exploit (Eilers et al., 2015). In the
special case of gridded data, efficient algorithms can be used to smooth the

data when A; # Ay (Eilers et al., 2006; Currie et al., 2006).

2.2. The sandwich smoother

Similar to Eilers et al. (2006) and Currie et al. (2006), Xiao et al. (2013)
consider data on an n; x ny grid. The sampled data can be represented as

an ny X ng matrix Y := [y, li=1,..n1,j=1,...ns, Where y; ; := y(u;, v;); similarly,

Y = [§ijli=1,.n1.j=1,..ns With 9;; = fi(u;,v;). As in the previous subsection,

A

y = vec(Y) and y := vec(Y). Xiao et al. (2013) utilize the P-splines, i.e.,

B-spline bases and coefficient difference penalties, which were first proposed



by Eilers and Marx (1996); the penalty matrix for P-splines is
P, := D/D;, (6)

where D; is a differencing matrix of order m;,.

Xiao et al. (2013) proposed smoothing Y as Y = S;YS, (from which the
nickname “sandwich smoother” is derived), where S; and S, are smoother
matrices associated with dimensions v and v, respectively. Properties of the
tensor product can be used to show that y = (S2 ® Sy)y.

The important difference between the traditional tensor product smooth
and the sandwich smoother is the way the penalty is computed. For sim-
plicity, assume that penalties are based on the P-spline difference penalty
in Equation (6). The traditional penalty and sandwich smoother penalty
are constrasted in Table 1. While the differences may appear to be subtle,
the form of the sandwich smoother penalty allows for gains in computational
efficiency that can span orders of magnitude (Xiao et al., 2013, Sections 5,
7). This is mainly because the GCV statistic in Equation (5) for the OSS
only requires two eigenvalue decompositions of relatively small matrices of
size ¢; X ¢; for each penalty, ¢ = 1, 2, along with some very elementary matrix
operations, without requiring matrix inversion. In contrast, computing the
GCV statistic for the traditional tensor product smooth (even when the data
are on a grid and the the generalized linear array model (GLAM) algorithm
of Currie et al. (2006) may be utilized) requires inverting a cjcy X ¢j¢y ma-
trix for every combination of A\; and Ay. The details of efficiently computing
the GCV using the sandwich smoother are described by Xiao et al. (2013,
Section 2).



Penalty

Traditional Al ® DTDl + )\QDQTDQ ® I,
Sandwich AlBng &® D’{Dl"‘l‘)\QDgDQ (024 B{Bl + )\1)\2D,'2FD2 X D?Dl

Table 1: The penalty terms for the traditional two-dimensional tensor product smoothing

splines and the sandwich smoother.

The OSS can be generalized to d > 3 dimensions, where
Yisin,ig = Wiy, -5 tiy) +e(tiy, o tiy), 1<ip <my,, 1 <k <d

In this setting, the data can be arranged in an array Y := [Y;,i,...i,]1<i, <np.1<k<d
and the generalized linear array model (GLAM) algorithm Currie et al. (2006)
can be used to efficiently fit the model to the data (both in terms of speed
and storage requirements). Additionally, the properties allowing for fast
computation of the GCV statistic in the bivariate setting directly generalize
to higher dimensions, enabling quick selection of the smoothing parameters.
Xiao et al. (2013) demonstrate that the OSS is much faster to implement
and apply than the traditional tensor product P-spline model, even when the
GLAM algorithm is utilized in fitting the traditional model (see Table 2 of

Xiao et al. (2013)). Similar patterns are observed in higher dimensions.

2.3. Difficulties applying the sandwich smoother to spatio-temporal data

The OSS can be extended to d-dimensions, so it may be possible to di-
rectly apply it to three-dimensional spatio-temporal data on a grid. However,

there are problems with naively applying the OSS to spatio-temporal arrays.



First, the spatial dimension is fundamentally different than the time di-
mension, so it may be appropriate to use different types of basis functions
in these two dimensions. A more serious issue and restriction is that the
OSS requires the data to be on a rectilinear grid, which is atypical for
geographically-referenced data, even when produced by a designed experi-
ment. A rectilinear grid is defined by all combinations of points constructed
from the increasing sequences uq,...,u,, and vy,...,V,,, i.e., by the set
{(uj,v;),i=1,....,n1,5=1,...,n2} (Reed et al., 1996). Many large spatio-
temporal data sets are observed on irregular grids (French, 2017) or may not
defined on a grid of any type; they are formed by collections of spatially-
referenced time series available at more or less irregular locations and over
domains with irregular shapes. Examples include pollution data, historical
weather data, or ionosphere data studied by Gromenko et al. (2017b). Exam-
ples related to computer climate models are presented in Section 5. Figure
1 provides a constrast between a rectlinear and irregular grid.

A final issue with applying the OSS to the spatio-temporal data we con-
sider is that Euclidean distance is an inappropriate distance metric. The
data we consider typically are referenced using longitude/latitude coordi-
nates on a large domain. In that context, Euclidean distance is no longer
appropriate for measuring distance between points and great circle distance
should be used instead. This is a critical detail for the use of tensor-product
splines, which implicitly assume that the basis functions will not change if
the data locations are translated in the spatial domain. Thus, the OSS is
typically not appropriate for geographically-referenced data covering large

spatial domains.
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Figure 1: A contrast between a rectilinear and irregular grid.

. Spatio-temporal sandwich smoother

We propose a new spatio-temporal sandwich smoother (STSS) appropri-

Radial basis functions provide an alternative to tensor product basis func-

ate for spatio-temporal data that addresses the issues raised in Section 2.3.
It inherits many of the computational benefits of the OSS while also applying
to more general settings. The two main building blocks of the new smoother
are 1) suitable spatial basis functions with a suitable penalty, and 2) a more

flexible spatial structure. The following subsections explain the details.

3.1. Radial basis functions

tions for smoothing bivariate data (Ruppert et al., 2003). A radial basis func-
tion is a function whose value depends on the distance from a knot location
k € D. For a specific knot k;, the ith radial basis function, r;(s) is a function

depending only on |k; — s|, where | - | is a distance metric. For example, the

11



bi-square basis function (Cressie and Johannesson, 2008) is defined by
ri(s) = (1 - [ki —s[*67*)*I(|ki — s < ), (7)

where ¢ is a bandwidth parameter that controls the rate of decay of the basis
function. The Gaussian radial basis function is another radial basis function,
defined by 7;(s) = exp(—|k; — s|72¢72). The density estimation literature
related to kernel smoothing provides many additional radial basis function by
generalizing one-dimensional distance to two dimensions. Several of these are
summarized in Waller and Gotway (2004). Many spatial covariance functions
are examples of radial basis functions (Schabenberger and Gotway, 2005).
We must give special consideration to the type of radial basis functions
we want to use in our smoothing. The B-splines used by Xiao et al. (2013)
have many beneficial properties that we would like to maintain in our spa-
tial smoothing. B-splines have: 1. compact support, 2. easy-to-compute
derivatives, 3. specifiable parameters related to smoothness. We desire to
retain these properties for our radial basis functions. While many radial
basis functions satisfy at least one of these properties, the Wendland covari-
ance function (Wendland, 1995) satisfies all three. The basic form of the

Wendland covariance function is

SYiahl 0<h<¢
r(h) = :
0 o <h
where h is distance between two points in d-dimensional space, N is the
desired degree of the polynomial (and is related to smoothness), ¢ defines

the support of the function, and {a;,j = 1,..., N} are a set of non-zero

coefficients. In addition to the dependence of the covariance function on

12



the range parameter ¢, the specific form of the covariance function equation
depends on N and d; Table 1 of Wendland (1995) provides several examples.
Additional details about the Wendland covariance function may be found in

Wendland (1995) and Gneiting (2002).

3.2. Data structure

The OSS assumes an array structure Y := [y; j|1<i<n,,1<j<n, for d = 2, but
can be extended to higher dimensions. In order to exploit the computational
benefits of the OSS, we need to retain this structure while dealing with the
issues highlighted in Section 2.3.

We retain an array structure in our spatio-temporal data by treating
the spatial dimension as the first dimension and the temporal dimension as
the second dimension. Suppose that responses are observed at n, spatial
locations at n; times. Note that the spatial locations do not need to be on
a grid, but the responses must be observed for all locations at each of the
n; times, i.e., there are no missing data. In this setting, our data can be

represented as

Y = [y(si, tj)]z‘:l,...,ns,jzl,...,m-
As will be shown, using this form of data representation along with radial
basis functions in the spatial dimension solves the issues with treating the

spatial and temporal dimensions the same, having non-gridded spatial data,

and dealing with non-Fuclidean distance.

3.3. Penalty function

Xiao et al. (2013) utilize the P-splines of Eilers and Marx (1996) in the

OSS. This means that in addition to utilizing B-spline basis functions in
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Table 2: Differencing matrices for several orders of m for coefficients ¢y, co, ..., cs5.

Order ¢ ¢ c¢3 c1 c¢s

1 -1
1 -1
m=1
1 -1
1 -1
1 -2 1
m =2 1 -2 1
1 -2 1
1 -3 3 -1
m=3
1 -3 3 -1

each direction, the penalty for each set of basis functions is given by the
crossproduct of (D™)TD™ where D™ is a differencing matrix of order m
(cf., Eilers and Marx (1996) and Wood (2017)). Examples of D™ are shown
for m = 1,2,3,4 for 5 coefficients ¢y, ..., c; in Table 2 (up to a factor —1).
Essentially, differences between adjacent coefficients are iteratively repeated.

While one could technically utilize the differencing matrices to penalize
the coefficients of radial basis functions, this does not seem sensible since
there is no coherent ordering of the associated spatial knot locations. Specif-
ically, the coefficients of a univariate B-spline are associated with knot loca-
tions wuq, us, . . ., u.. The coefficients of a radial basis functions are associated
with knot locations ki, ks,..., k.. There is a natural ordering of the u-

locations, but not for the k-locations, so “adjacent” locations for the radial

14



basis must be defined judiciously.

We propose penalizing the radial basis coefficients using a spatial differ-
encing matrix of order m, S™, based on the concept of nearest neighbors.
Consider spatial locations ki, ..., k.. There are many ways to definine the
neighbors of each knot location (Rue and Held, 2005). Let A; denote the
neighbors of knot location k;. Note that for the differencing matrices in Ta-
ble 2, every row is a contrast (i.e., the coefficients sum to 0). We will use
this property to recursively define a spatial differencing matrix. Let S de-
note the ith row of the spatial difference matrix of order m and S}”; denote

position j of the ¢th row. For ¢ = 1,2,..., ¢, we define

(

#{N} i =i

Si; =4 -1 ifk; € NG, j #i (8)

0 otherwise.

\

Thus, in row ¢, coefficient j receives a weight of -1 if k; is a neighbor of k;,
while the weight for coefficient 7 is the number of nearest neighbors for k;.
We define the mth order neighbors of knot k; to be the union of the neighbors
of the (m — 1)th order neighbors of knot k; (excluding k; itself and neighbors

from any previous order):

N = U Nt \{kiu{mu Ng}}, (9)

G ENT" ! 7=l
where N!' = N, i =1,...,c. The ith row of the mth order spatial difference
is then defined to be the difference between the ith row of the (m — 1)th
order spatial difference matrix and the sum of the rows of the (m — 1)th

order spatial difference matrix corresponding to the mth order neighbors of

15
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Figure 2: A graph displaying relationships between coordinates. Arrows indicate locations

that are neighbors.

knot k;:

S D . (10)
j:kjEMm

Lastly, just as P; = DI'D; in Equation (6) in the traditional P-splines con-

text, the penalty matrix P, for the spatial dimension is
P, .= (S™’s™. (11)

The goal of the spatial differencing penalty is to control the magnitude of
the difference of coefficients associated with knot locations near one another
in space. As the difference order m increases, the penalty is stricter in the
sense that more neighboring coefficients are included in each contrast, which
favors coefficients that vary more slowly across the spatial domain.

We illustrate with a simple example of the spatial differencing penalty.
Consider 12 knot locations on a regular grid defined by u-locations 1, 2, and
3 and v-locations 1, 2, 3, 4. The indices of the knots are provided in Table 3,

and Figure 2 displays the relationships between the knots. Arrows connect

16



Table 3: Indices of coordinates for spatial difference penalty example.

Index w-coordinate w-coordinate

1 1 1
2 2 1
3 3 1
4 1 2
5 2 2
6 3 2
7 1 3
8 2 3
9 3 3
10 1 4
11 2 4
12 3 4

17



knots that are neighbors. The spatial penalty matrices S and S? for these
knots are provided in Table 4. In a spatial context, the spatial difference
penalty makes much more sense than that standard P-splines differencing
penalty.

The reader may note that if one constructs the traditional tensor-product
penalty from Table 1 based on differencing the v and v coordinates of points
on a rectlinear grid that one arrives at a penalty identical to the spatial
difference penalty shown for m = 1 in Table 4. However, one should note
that this only occurs when the knots are on a rectilinear grid and does not
occur for m > 2. More importantly, the traditional tensor-product penalty
based on differences of linearly-adjacent coefficients does not naturally extend
to two-dimensional space. However, the spatial difference penalty applies to

knots located arbitrarily in space without requiring a rectilinear grid.

3.4. Additional implementation details

We now briefly discuss some additional details of practical application of
the STSS to real data.

Several scales of radial basis functions should be used to smooth the
spatial dimension in order capture differing scales of data variability (Cressie
and Johannesson, 2008; Nychka et al., 2015). For each scale, a (unique)
set of knot locations is determined, and a separate set of basis function
parameters (e.g., range parameter ¢, polynomial order N) can be used for
each scale. Higher resolutions (finer scales) require more knots. It is common
to approximately quadruple the number of knots used for each successive
scale (Nychka et al., 2015), though this is not required. When multiple scales

are used, if the spatial penalty is utilized, then the penalties are computed for
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Table 4: Spatial difference penalty for locations in Figure 2. Zero entries are left blank.

Difference order Index ¢ ¢ ¢3 ¢4 ¢ ¢ €7 €8 C9 Cio Ci1 Cl12
1 2 -1 -1
2 -1 3 -1 -1
3 -2 -1
4 -1 3 -1 -1
5 -1 -1 4 -1 -1
6 -1 -1 3 -1

m=1
7 -1 3 -1 -1
8 -1 -1 4 -1 -1
9 -1 -1 3 -1
10 -1 2 -1
11 -1 -1 3 -1
12 -1 -2
1 4 4 1 -4 2 1
2 3 6 -3 2 -5 2 1
3 1 -4 4 2 -4 1
4 -3 2 6 -5 1 -4 2 1
) 2 4 2 -4 8 -4 2 -5 2 1
6 2 3 1 -5 6 2 A4 1
m =2

7 1 -4 2 6 -5 1 -3 2
8 1 2 5 2 -4 8 -4 2 -4 2
9 1 2 4 1 -5 6 2 -3
10 1 -4 2 4 -4 1
11 1 2 5 2 -3 6 -3
12 1 2 4 1 -4 4

19



each scale independently, and concatenated block diagonally. More formally,
if radial basis functions are computed at g scales and P? denotes the penalty
for radial basis scale i, then P, = diag(P},... PY).

The support parameter ¢ defining the radial basis function (cf. Equation
(7)) should be chosen to overlap at least some of the observed data coordi-
nates. Though it is not required, the ¢ parameter is typically constant for
the basis functions of a specific resolution. In order to avoid numerical in-
stability, we recommend choosing ¢ to be at least twice the largest distance
between each knot and its closest observed data coordinate. If the support of
a radial basis function associated with a knot does not overlap any observed
data coordinates, the knot should be removed before performing analysis.
Conversely, a range parameter that is too large can also result in computa-
tional instability because columns of the resulting basis matrix B will have
highly correlated columns.

The smoothness parameter N of the Wendland covariance function should
generally increase when the smoothness of the spatial process increases. It
is common to consider values of NV in integer and half-integer steps. How-
ever, the condition number associated with Wendland covariance functions
can quickly increase with N, so any gains potential gains from modeling
a smoother process may be offset by numerical instability (Chernih et al.,
2014). Additionally, there is perhaps no advantage to using different smooth-
ing parameters for different spatial scales as the overall smoothness of the
model will be driven by the finest scale.

We emphasize that the Wendland covariance function does not need to

be used to define the radial basis functions used for this method, though it
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has some attractive properties. However, it is highly recommended to choose
compactly-supported radial basis functions in order to preserve sparsity in

matrix operations.

3.5. Complete steps of spatio-temporal sandwich smoother

We now fully outline the algorithm for implementing the STSS. The al-
gorithm is written using general notation so that it extends naturally to the
OSS, with the exception that the “Initial smoothing preparation” would only
be related to constructing the B-splines for each dimension of Y. The STSS
and the OSS have both been fully implemented in the hero R package.

Initial smoothing preparation

1. Determine the boundary polygon for the spatial study area.

2. Specify the spatial knot locations for each spatial scale. This can be

done with minimal user input in the hero package.

3. Specify the Wendland covariance function parameters for each set of
radial basis functions and evalulate the spatial basis functions at each

of the observed spatial locations.

4. Specify the temporal knot locations/determine the number of B-spline

basis functions for the temporal dimension.

5. Specify the B-spline basis parameters and evaluate the B-spline basis

function at each of the observed time points.
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Assembling spline information
Let B; and P; be the evaluated basis functions and associated penalty
matrix for dimension i, i = 1,2, ...,d. Let diag(-) denote the diagonal matrix

based on the elements provided in () and ¢; denote the number of columns
of Bz

1. Let V,diag(e;)V! be the eigen decomposition of B B;, where V; de-

notes the eigenvectors of the decomposition and e; := (ey;, ..., €.;) is

the vector of eigenvalues.

2. Compute Q; := Vidiag(ei_l/Q)V;‘F for i = 1,2,...,d, where ez._l/2 de-

notes the vector (e; /?, ... ,6;.1/2).

3. Let U;diag(u;)U7? be the eigen decomposition of QY P;Q;, where u; :=
(U1, - .., Ue;) are the eigen values of the decomposition and U, are the

eigen vectors.
4. Compute A; :=B,;Q,U; fori =1,2,... d.

Prepare the data
1. Compute Y := RH(A4, RH(A4_y,--- ,RH(A;,Y)---)), where RH(A,Y)
is a rotation of the H-transform of the array Y by a matrix A (Currie

et al., 2006).

2. Compute yly := nymmid for 1 <i4; <n;, 1 <j < d, wherey =

vec(Y). This is simply the sum of the squared response values.

Enhance the fit
Choose a suitable optimization algorithm to find the optimal penalty

parameters Aq, ..., Aq. For each combination of the penalty parameters:
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1. Compute @; := ((1 4+ Nuy)™ b, .o, (1 + Nue,i) ') and ﬁ3/2 = ((1+
)\iuh‘)il/2 RN (]. + )\Z‘Ucii)ilm) for i = 1,... ,d.

2. Compute @1 := 1y ® - -- @ 1; and 0'/? := fli/Q ® o

3. Compute 7 := [[, Do (T4 Nug)

4. Construct y := vec(Y).

5. The GCV statistic as a function of Ay,...,\; is then GCV(\) =
(370 — 23702 + ")/ (1 = 7/ TT, )

Choose the values of Ay, ..., A\g that minimize the GCV.

FEstimate and smooth

1. Compute G; := Q;U;diag(w;) for i =1,2,...,d.
2. Compute 6 = RH(Gy, RH(Gqy_1,--- , RH(G1,Y) -+ ).

3. Compute Y = RH(By, RH(By_1,--- ,RH(B,,0)---)).

4. Simulation Study

In order to compare the new methodology to the OSS, we construct a
simulated example in such a way that both our new STSS and the OSS
can be applied. The synthetic data are designed to mimic realistic data
from the NARCCAP. Real data were produced for many time scales (sub-
daily, daily, monthly, seasonally, and annually) at a 50 km spatial resolution
(approximately 18,000 spatial locations for each time, depending on various

factors) over much of the United States, Canada, and northern Mexico. The
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output was produced by taking boundary conditions from atmosphere-ocean
general circulation models (GCMs) and using the information to downscale
climate behavior to a finer resolution using a regional climate model (RCM).
Data were produced for the time periods 1971-2000 and 2041-2070, with the
future data utilizing the A2 emissions scenario from the Special Report on
Emission Scenarios (Nakicenovic et al., 2000). The data are publicly available
through the Earth System Grid (Mearns et al., 2007, updated 2014).

For the purpose of our simulation study, we create data similar to maxi-
mum daily surface air temperature (C) from 1971-2000 for the ECP2 regional
climate model (Juang et al., 1997) forced by the GFDL GCM (GFDL Global
Atmospheric Model Development Team, 2004)). This particular data set
is produced on a 147 x 116 grid (17,052 locations) covering much of North
America. The observed data are noisy, so they were preprocessed to pro-
duce a smooth pu(-) surface (cf., Equation (1)). The OSS was applied to
the 30-year time series observed at each location using 1,050 B-spline basis
functions and a P-spline difference penalty with m = 2. The smoothing pa-
rameter A\ was chosen via GCV. The nearest neighbors within 414 km (5%
of the maximum distance between spatial locations) of each spatial location
were determined, and then the smoothed time series for these neighbors was
averaged for each calendar day. This resulted in a smooth spatio-temporal
data set on a 147 x 116 grid observed at 365 days, and corresponds to u(-)
in Equation (1). The resulting surfaces for the first day of Spring, Summer,
Fall, and Winter (March 20th, June 21st, September 22nd, and December
21st) are shown in Figure 3 .

We considered four different data-generating distributions for the error
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Figure 3: Smoothed maximum daily surface air temperature (C) for several days of the

calendar year for the NARCCAP data.
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process €(+) in Equation (1):
A. {e(s) "X N(0,3%),s € D}.

B. {e(s) "%P N(0,0%(s)),s € D}, where 02(s) is a function that gently
varies over space. o(s) was chosen as the standard deviation of the
original temperature values at each spatial location. Figure 4 displays

a heat map of the o(s) surface over the domain.

iid.

C. {e(s) ~ ts,s € D}.
D. {e(s) " t4,s € D}.

Scenario A, in which model/measurement errors are iid normal is fairly
standard. Scenario B may be more realistic, as it reflects the fact that tem-
perature variability is larger inland and decreases as we move closer to the
coasts. Scenarios C and D are intended to explore how robust the smoothers
are to departures from normality. Scenario D is a a bit extreme, and may be
unrealistic, as t4 errors have infinite fourth moment (sample kurtosis would
not converge with increasing sample size).

For each data-generating scenario, ten smoothers were applied to each
simulated data set; the smoothers are summarized in Table 5. The first
two were the OSS with difference penalties of m = 1 and 2, respectively.
The data are observed on an irregular grid, but the responses were treated
as if they were observed on a 147 x 116 grid over [0,1]?. For both the u
and v dimension, 60 B-spline basis functions spanning [0, 1] were used. For
the temporal dimension, 35 B-spline bases were created that spanned the

interval [1,365]. The number of basis functions was chosen based on the
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Figure 5: Knots locations for radial basis functions for the first two resolutions.

recommendation of Ruppert et al. (2003). The remaining eight smoothers
were the STSS, but with different numbers of basis functions, smoothness
parameters, and spatial difference penalties. We considered a larger number
of implementations to get an idea how much the new method depends on
the possible values of the tuning parameters. The Wendland radial basis
functions were constructed using three, four, and five spatial resolutions,
respectively. The support, ¢, for each resolution was chosen to be four times
the maximum distance between all knots and their nearest neighbor. The
number of knots used in the radial basis functions for the five resolutions
were 175, 344, 694, 1,031, and 1,388 knots, respectively. The temporal basis
functions used for STSSs were the same as for the OSS. The knot locations
for the first two spatial resolutions are shown in Figure 5.

For each simulated data set, the mean squared error (MSE) was com-
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Smoother

Spatial basis functions

Penalty

2 B-splines with 60 knots each
2 B-splines with 60 knots each
Wendland basis (k = 1) with
1,213 knots at three
resolutions
Wendland basis (k = 1) with
1,213 knots at three
resolutions
Wendland basis (k = 1) with
2,244 knots at four resolutions
Wendland basis (k = 1) with
2,244 knots at four resolutions
Wendland basis (k = 1) with
3,632 knots at five resolutions
Wendland basis (k = 1) with
3,632 knots at five resolutions
Wendland basis (k = 2) with
1,213 knots at three
resolutions
Wendland basis (k = 2) with
1,213 knots at three

resolutions

Standard P-spline with m =1
Standard P-spline with m = 2
Spatial penalty with m =1

Spatial penalty with m = 2

Spatial penalty with m =1

Spatial penalty with m = 2

Spatial penalty with m =1

Spatial penalty with m = 2

Spatial penalty with m =1

Spatial penalty with m = 2

Table 5: Summary of smoothing methods applied to simulated data. Temporal smoothing

is the same for all methods, 35 B-splines with standard P-spline penalty with m = 2.

Smoothers a and b are implementations of the OSS. Smoothers c-j are implementations

of the STSS.
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puted, where

1 17,052 365
MSE i = ———— N (e D2 .
SE = 17 052 < 365 ; ;[M(Swﬂ 9(si, )] (12)

The results of the simulation study are summarized in Figure 6.

The first general observation is that practically all implenations of our
STSS have significantly smaller MSEs than implementation a of the OSS,
and many have smaller MSEs than implementation b. The latter statement
is particularly in scenarios A and B, which correspond to the most commonly
encountered normal errors. For data scenarios A, B, and C, the best STSSs
have significantly smaller MSE than the best OSSs; their mean is below the
lower bound of the 95 percent ¢-confidence interval for the mean MSE of the
original smoothers. In data-generating scenario D, sandwich smoother b had
significantly smaller MSE than the best STSS, but errors without finite vari-
ance may often be unrealistic. While many more potential smoother variants
(in terms of penalty order, number of basis functions, smoothness parame-
ters, etc.) could be considered for both the original and spatio-temporal
sandwich smoothers, these results suggest that STSS is at least competitive
with the OSS when both can be utilized, and may even perform better in
some scenarios. However, we emphasize that a primary goal of the STSS is
to build an approach for describing spatio-temporal data when the OSS is
inappropriate, not necessarily to improve performance when both approaches
are appropriate.

One area where the STSS cannot challenge the OSS is computation time.
On the test computer (a Windows 10 laptop with 16 GB of RAM and Intel
Core i7-7500U CPU running at 2.70GHz), typical execution time for smooth-
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Figure 6: Boxplots of the MSEs (12) for the four error distributions, A, B, C, D, and all
implementations listed in Table 5. Methods a and b correspond to the two most natural

implementations of the OSS of Xiao et al. (2013).
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ing the simulated data sets was about 2 seconds for the OSS and about 30,
76, and 205 seconds for the STSSs with 3, 4, and 5 spatial basis resolutions,
respectively. Because eigen decompositions must be performed for the spa-
tial basis functions at all resolutions simultaneously, this results in an eigen
decomposition of a 3,632x3,632 matrix for smoothers with the most basis
functions, whereas the original sandwich smoother only needed to compute
eigen decompositions for a 60 x 60 matrix. Since the computational com-
plexity of the eigen decomposition typically scales cubically, this increases
the execution time of the STSS. However, the STSS is still very efficient
computationally, and can be applied to massive spatial time series that are
impossible for a standard tensor-product spline (because of computational

complexity) or the OSS (because of data structure).

5. Spatial time series examples

We now consider two examples for which it would be impossible to apply
the OSS because the spatial locations do not form an array. The spatial
region over which the data are defined is the continental United States, shown
in Figure 7. We can refer to such data as spatially-indexed time series.
We consider two examples: one involving data from the NARCCAP and
another from the NA-CORDEX program. The second example emphasizes

computational aspects related to a very large data set.

5.1. NARCCAP example
We consider temperature data produced by the NARCCAP. We utilize

a combination of models different from those used in Section 4. Specif-

ically, we consider maximum daily surface air temperature (C) simulated
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Figure 7: WRFG-CGCMS3 locations in the continental United States are indicated by the
small black squares. The knot locations for the lowest resolution basis functions are shown
by larger blue squares, by orange triangles for the middle resolution, and green circles for

the highest resolution.

for the time period January 1, 2041 to December 31, 2041 produced by
the WRFG regional climate model (Skamarock et al., 2005) forced by the
CGCM3 atmosphere-ocean general circulation model (Flato et al., 2000)
within the continental United States. This results in time series observed
at 2,948 spatial locations over 365 days, for a total of 1,079,305 total re-
sponse values. The black dots in in Figure 7 indicate the observed data
locations.

We now consider application of the STSS to these data. We constructed
radial basis functions using the Wendland covariance function at three differ-
ent resolutions using 45, 170, and 684 knots, respectively (899 total knots).

The support at each resolution was designed to be at least 3 times as far as
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Figure 8: A scatterplot of the observed maximum daily surface air temperature (C) versus
the fitted values after applying the STSS to the WRFG-CGCM3 at locations shown in
Figure 7.

the nearest neighbor of each knot location, and the Wendland polynomial
order was set to N = 2. The knot locations for each resolution are shown by
differently colored and shaped symbols in Figure 7. The spatial difference
penalty of order m = 2 was used. As in Section 4, 35 B-spline basis functions
were used for the temporal dimension. On the test computer, the smoothing
(preparing the splines, optimizing the penalty parameters, estimating the
coefficients, etc.) took a little less than 5 seconds. Figure 8 provides a scat-
terplot of the observed versus fitted values. The plot shows the desired linear

relationship between the variables.
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5.2. NA-CORDEX example

The NA-CORDEX program is the North American component of the
CORDEX program sponsored by the World Climate Research Program. It
is a successor to the NARCCAP. The NA-CORDEX program has a similar
spatial domain to the NARCCAP, but produces data at a higher resolution
(25 km versus 50 km) and for a much longer time period (NA-CORDEX:
1950-2100, NARCCAP: 1971-2000 and 2041-2070). The NA-CORDEX pro-
gram plans to produce climate data for a combination of 6 GCMs from the
CMIP5 archive (Taylor et al., 2012) and 7 RCMs, though only a subset is
currently available. Future climate scenarios are run under Representation
Concentration Pathways (RCP) 4.5 and 8.5 adopted by the IPCC for its
fifth Assessment Report (AR5, Pachauri et al., 2014) in 2014. We consider
smoothing the daily maximum surface air temperature (C) of data down-
scaled by the CanRCM4 RCM (Scinocca et al., 2016) forced by the CanESM2
GCM Chylek et al. (2011) available as of September 12, 2018 through the
Earth System Grid (Mearns et al., 2017). We consider only the RCP 8.5 Sce-
nario for the future climate data. The domain of the observed data locations
is shown in Figure 9.

The smoothing process was complicated by the massive size of the original
data. The original data were available as two separate files in NetCDF format
with sizes of 11.9 and 19.9 GB, respectively. The data could not be read into
memory directly. However, the NetCDF format is a serialized data storage
format, allowing a researcher to read a subset of the data into memory one
section at a time.

The spatial data locations were determined and a polygon border for these
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Figure 9: The domain of the observed NA-CORDEX locations is shown in dark grey.

locations was manually constructed. Using this polygon, Wendland order
N = 1 radial basis functions were constructed at four different resolutions
and a total of 2,243 knot locations. The overlap of the basis functions at
each resolution was roughly 4 times the distance between each knot and its
nearest neighbor. The temporal basis functions were composed of 35 B-spline
basis functions spread over the interval [1,365]. Necessary spline-related
information was then assembled for the STSS, taking roughly 3 minutes, 45
seconds on the test computer.

Having specified the basis functions, the data were prepared for the STSS.
Specifically, the data for each year were read from file and then transformed
using spline-related matrices via the process outlined in Section 3.5. The

transformed data could be stored using only 86.5 Mb in the gzip compres-

36



sion format. The process of reading and preparing the data took under 11
minutes. The optimal penalty parameters were then chosen based on the
minimal GCV statistic. This step utilized a sequence of grid searches and
optimization routines, taking less than 1 minute to complete. Lastly, esti-
mating the regression coefficients and computing the fitted values took about
5 minutes, 15 seconds.

The total amount of time it took to process the nearly 32 GB of data on
the test machine was around 20 minutes. Additionally, the smoothed data
can be easily reconstructed from the set of evaluated basis functions and
the estimated coefficients, which can be stored in gzip compressed files of
size 86.2 MB. Figure 10 displays a scatterplot of the observed temperatures
versus the smoothed data, confirming that the STSS has captured the overall

pattern of the original temperature data.

6. Discussion

We have developed a spatio-temporal sandwich smoother (STSS) that
builds on the original sandwich smoother (OSS) proposed by Xiao et al.
(2013). In contrast to the OSS, the STSS treats the spatial and tempo-
ral dimensions distinctly, modeling the spatial dimension using compactly-
supported Wendland covariance-based radial basis functions and the tem-
poral dimension using B-splines. Additionally, we have proposed a spatial
difference penalty more natural for controlling the variation of the spatial
coefficients over the study domain and that generalizes to basis functions not
observed on a grid. While the OSS can only be applied to data on a recti-
linear grid, the STSS can be applied to irregularly gridded or non-gridded
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(C) versus the smoothed fitted values in the example of Section 5.2. A random sample of
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spatial time series, which are more common for the spatio-temporal data
sets motivating this research. The STSS was used to process and represent
nearly 32 GB of daily temperature data observed over 150 years in around
20 minutes on a 16 GB Windows laptop, demonstrating its ability to smooth
massive spatio-temporal data sets.

Our main takeaway from simulations in Section 4 is that the STSS is
competitive with the OSS when data are on a rectilinear grid. However,
the OSS is much more computationally efficient because the required eigen
decompositions are for substantially smaller matrices (e.g., 60 versus 3,600
in the simulation studies). Thus, if the data are on a rectilinear grid, it is
difficult to claim that the STSS provides a large improvement over the OSS,
the difference may depend more on tuning parameters than the method used.
However, when data are spatial time series observed on an irregular grid or on
a set of non-gridded spatial locations, then the OSS is inappropriate while the
STSS provides an effective, computationally efficient approach for smoothing
the data.

A weakness of both the OSS and STSS is that they require complete data
with no missing values. This is necessitated by the representation of the
data as a complete array Y. If the data are nearly complete, then imputing
needed values to create a complete data will negligibly impact the fitted
results. When the observed data are not on a rectilinear grid, Xiao et al.
(2013) recommended creating a rectilinear “gridded” data set by averaging
nearby points or imputing missing values.

Estimators for the variance of 8 and y can be derived, but it is not clear

that they are computable. The solution for 8 from the penalized residual sum
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of squares in Equation (2) is @ = (B'B + P,)'B”y, so var() = (B'B +
P,)'BTvar(y)B(B"B+P,) !, noting that P, is symmetric. The size of the
inverse matrices would likely preclude this computation. Similarly, starting
in Equation (4), var(y) = S,var(y)S,, noting that S, is symmetric. Once
again, the size of these matrices likely precludes the variance computation.

The computational complexity of the STSS is dominated by two pairs
of eigen decompositions, discussed in more detail in Section 3.5, while the
other relevant computations are simple matrix products. Specifically, the
STSS requires the eigen decomposition of BYB; (the cross-product of the
basis functions of dimension i) and Q' P;Q; (where Q; is computed from a
matrix product and P; is the penalty associated with dimension 7). Both
sets of matrix products are of size ¢; X ¢;, where ¢; is the number of knots
needed in dimension 4. Let cgrsg be the maximum number of knots associated
with either the spatial or temporal dimension. Since eigen decomposition
algorithms typically have cubic order complexity based on the size of the
matrix being decomposed, the overall complexity of our approach should
be O(cdrgs). In contrast, the main bottleneck of a standard tensor-product
smoother is the inversion of a matrix of size cicocs X cicacs, where each
¢; is the number number of knot location in each dimension. Let cgtp =
c1C9c3. Since matrix inversion (or more accurately, a linear solve involving
that matrix) typically has cubic order computational complexity, the overall
computational complexity of the standard smoother should be O(cdrp,), with
CSTD >> CSTSS-

Several aspects of the STSS warrant further investigation. A limitation

of the STSS is that matrix decompositions for the radial basis matrices take
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substantially longer than the corresponding decompositions on the multivari-
ate P-splines used by the OSS. One possibility for improving the speed of
the STSS would be constructing the radial basis functions at each resolution
such that they are orthogonal to one another. In that case, the necessary
decompositions could be done for each resolution separately, which would in-
crease the speed of the algorithm. A single parameter controls the penalty for
the spatial bases of the STSS across all resolutions. Orthogonal bases across
resolutions would allow for each resolution to be penalized separately. As-
suming non-orthogonal bases between resolutions, the penalty parameter is
essentially controlled by the finest spatial resolution. The presentation of the
STSS in this manuscript assumed isotropic, stationary Wendland covariance
basis functions, which may not be appropriate. No mathematical principle
is violated by using nonstationary or anisotropic covariance functions, but it
is not clear how one would implement such a change in practice.

The examples presented in this manuscript all involved data with rela-
tively dense data locations, and basis function knots were distributed in a
fairly regular pattern. For spatial locations distributed more heterogeneously
it would be appropriate to place fewer knots in regions with fewer observed
data and more knots in regions with more observed data. Additionally, it
may be appropriate to place more knots in regions or at times with greater
response variability. The bivariate splines over triangulations proposed by
Lai and Wang (2013) may provide an alternative approach to the spatial
smoothing aspect of this problem. This may reduce the required number
of knots (improving computational efficiency). Additionally, Lai and Wang

state that their approach, “.. is a good choice when data are located in
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domains with complex boundaries and/or possible holes”; which aligns well
with the context we consider. Another important consideration is how to
elicit parameter values that may not be easy to optimize over, such as the
smoothness parameter N, the difference penalty m, or even the number of
spatial resolutions for which to construct bases. The STSS allows for cross-
validation assuming one selects folds with respect to spatial locations and/or
time steps that allows for the data to be represented in array form. This
facilitates a standard approach for choosing between models.

All analyses have been executed in Microsoft R Open 3.5.3 (Core Team,
2019; Microsoft, 2019). Code for all analyses in this paper are available
as Supplementary Material. Due to their size, interested researchers must
directly download the NARCCAP and NA-CORDEX data NetCDF files from
the NCAR Climate Gateway (https://www.earthsystemgrid.org/), with
additional information in the provided code. Both the OSS and STSS are
implemented in the hero R package, which is provided in the supplementary

material.
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