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ABSTRACT
Graph neural networks (GNNs) are widely used in many appli-

cations. However, their robustness against adversarial attacks is

criticized. Prior studies show that using unnoticeable modifications

on graph topology or nodal features can significantly reduce the

performances of GNNs. It is very challenging to design robust graph

neural networks against poisoning attack and several efforts have

been taken. Existing work aims at reducing the negative impact

from adversarial edges only with the poisoned graph, which is

sub-optimal since they fail to discriminate adversarial edges from

normal ones. On the other hand, clean graphs from similar domains

as the target poisoned graph are usually available in the real world.

By perturbing these clean graphs, we create supervised knowledge

to train the ability to detect adversarial edges so that the robustness

of GNNs is elevated. However, such potential for clean graphs is

neglected by existing work. To this end, we investigate a novel prob-

lem of improving the robustness of GNNs against poisoning attacks

by exploring clean graphs. Specifically, we propose PA-GNN, which

relies on a penalized aggregation mechanism that directly restrict

the negative impact of adversarial edges by assigning them lower

attention coefficients. To optimize PA-GNN for a poisoned graph,

we design a meta-optimization algorithm that trains PA-GNN to

penalize perturbations using clean graphs and their adversarial

counterparts, and transfers such ability to improve the robustness

of PA-GNN on the poisoned graph. Experimental results on four

real-world datasets demonstrate the robustness of PA-GNN against

poisoning attacks on graphs.
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1 INTRODUCTION
Graph neural networks (GNNs) [14, 19], which explore the power

of neural networks for graph data, have achieved remarkable re-

sults in various applications [10, 17, 37]. The key to the success of

GNNs is its signal-passing process [39], where information from

neighbors is aggregated for every node in each layer. The collected

information enriches node representations, preserving both nodal

feature characteristics and topological structure.

Though GNNs are effective for modeling graph data, the way that

GNNs aggregate neighbor nodes’ information for representation

learning makes them vulnerable to adversarial attacks [6, 40, 43, 49,

51]. Poisoning attack on a graph [49], which adds/deletes carefully

chosen edges to the graph topology or injects carefully designed

perturbations to nodal features, can contaminate the neighborhoods

of nodes, bring noises/errors to node representations, and degrade

the performances of GNNs significantly. The lack of robustness

become a critical issue of GNNs in many applications such as finan-

cial system and risk management [1]. For example, fake accounts

created by a hacker can add friends with normal users on social

networks to promote their scores predicted by a GNN model. A

model that’s not robust enough to resist such “cheap” attacks could

lead to serious consequences. Hence, it is important to develop

robust GNNs against adversarial attacks. Recent studies of adver-

sarial attacks on GNNs suggest that adding perturbed edges is more

effective than deleting edges or adding noises to node features [40].

This is because node features are usually high-dimensional, requir-

ing larger budgets to attack. Deleting edges only result in the loss

of some information while adding edges is cheap to contaminate

information passing dramatically. For example, adding a few bridge

edges connecting two communities can affect the latent represen-

tations of many nodes. Thus, we focus on defense against the more
effective poisoning attacks that a training graph is poisoned with
injected adversarial edges.

To defend against the injected adversarial edges, a natural idea

is to delete these adversarial edges or reduce their negative impacts.

Several efforts have been made in this direction [18, 40, 48]. For

example, Wu et al. [40] utilize Jaccard similarity of features to prune

perturbed graphs with the assumption that connected nodes have

high feature similarity. RGCN in [48] introduce Gaussian constrains

on model parameters to absorb the effects of adversarial changes.

The aforementioned models only rely on the poisoned graph for

training, leading to sub-optimal solutions. The lack of supervised

information about real perturbations in a poisoned graph obstructs

models from modeling the distribution of adversarial edges. There-

fore, exploring alternative supervision for learning the ability to

reduce the negative effects of adversarial edges is promising.
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There usually exist clean graphs with similar topological distri-

butions and attribute features to the poisoned graph. For example,

Yelp and Foursquare have similar co-review networks where the

nodes are restaurants and two restaurants are linked if the number

of co-reviewers exceeds a threshold. Facebook and Twitter can be

treated as social networks that share similar domains. It is not diffi-

cult to acquire similar graphs for the targeted perturbed one. As

shown in existing work [20, 34], because of the similarity of topolog-

ical and attribute features, we can transfer knowledge from source

graphs to target ones so that the performance on target graphs is

elevated. Similarly, we can inject adversarial edges to clean graphs

as supervisions for training robust GNNs, which are able to penalize

adversarial edges. Such ability can be further transferred to improve

the robustness of GNNs on the poisoned graph. Leveraging clean

graphs to build robust GNNs is a promising direction. However,

prior studies in this direction are rather limited.

Therefore, in this paper, we investigate a novel problem of ex-

ploring clean graphs for improving the robustness of GNNs against

poisoning attacks. The basic idea is first learning to discriminate ad-

versarial edges, thereby reducing their negative effects, then trans-

ferring such ability to a GNN on the poisoned graph. In essence,

we are faced with two challenges: (i) how to mathematically utilize

clean graphs to equip GNNs with the ability of reducing negative

impacts of adversarial edges; and (ii) how to effectively transfer

such ability learned on clean graphs to a poisoned graph. In an

attempt to solve these challenges, we propose a novel framework

Penalized Aggregation GNN (PA-GNN). Firstly, clean graphs are

attacked by adding adversarial edges, which serve as supervisions

of known perturbations. With these known adversarial edges, a

penalized aggregation mechanism is then designed to learn the

ability of alleviating negative influences from perturbations. We

further transfer this ability to the target poisoned graph with a spe-

cial meta-optimization approach, so that the robustness of GNNs

is elevated. To the best of our knowledge, we are the first one to

propose a GNN that can directly penalize perturbations and to

leverage transfer learning for enhancing the robustness of GNN

models. The main contributions of this paper are:

• We study a new problem and propose a principle approach of ex-

ploring clean graphs for learning a robust GNN against poisoning

attacks on a target graph;

• We provide a novel framework PA-GNN, which is able to alleviate

the negative effects of adversarial edges with carefully designed

penalized aggregation mechanism, and transfer the alleviation

ability to the target poisoned graph with meta-optimization;

• We conduct extensive experiments on real-world datasets to

demonstrate the effectiveness of PA-GNN against various poi-

soning attacks and to understand its behaviors.

The rest of the paper is organized as follows. We review related

work in Section 2. We define our problems in Section 3. We intro-

duce the details of PA-GNN in Section 4. Extensive experiments and

their results are illustrated and analyzed in Section 5. We conclude

the paper in Section 6.

2 RELATED WORK
In this section, we briefly review related works, including graph

neural networks, adversarial attack and defense on graphs.

2.1 Graph Neural Networks
In general, graph neural networks refer to all deep learningmethods

for graph data [8, 9, 26–28, 41]. It can be generally categorized into

two categories, i.e., spectral-based and spatial-based. Spectral-based

GNNs define “convolution” following spectral graph theory [3].

The first generation of GCNs are developed by Bruna et al. [3]

using spectral graph theory. Various spectral-based GCNs are de-

veloped later on [7, 15, 19, 22]. To improve efficiency, spatial-based

GNNs are proposed to overcome this issue [12, 14, 29, 30]. Because

spatial-based GNNs directly aggregate neighbor nodes as the convo-

lution, and are trained on mini-batches, they are more scalable than

spectral-based ones. Recently, Veličković et al. [37] propose graph

attention network (GAT) that leverages self-attention of neighbor

nodes for the aggregation process. The major idea of GATs [47] is

focusing on most important neighbors and assign higher weights

to them during the information passing. However, existing GNNs
aggregates neighbors’ information for representation learning, mak-
ing them vulnerable to adversarial attacks, especially perturbed edges
added to the graph topology. Next, we review adversarial attack and

defense methods on graphs.

2.2 Adversarial Attack and Defense on Graphs
Neural networks are widely criticized due to the lack of robustness

[5, 13, 21, 23–25], and the same to GNNs. Various adversarial attack

methods have been designed, showing the vulnerability of GNNs

[2, 4, 6, 42, 50]. There are two major categories of adversarial at-

tack methods, namely evasion attack and poisoning attack. Evasion

attack focuses on generating fake samples for a trained model. Dai

et al. [6] introduce an evasion attack algorithm based on reinforce-

ment learning. On the contrary, poisoning attack changes training

data, which can decrease the performance of GNNs significantly.

For example, Zügner et al. [49] propose nettack which make GNNs

fail on any selected node by modifying its neighbor connections.

They further developmetattack [51] that reduces the overall perfor-
mance of GNNs. Comparing with evasion attack, poisoning attack

methods are usually stronger and can lead to an extremely low

performance [35, 48, 49], because of its destruction of training data.

Besides, it is almost impossible to clean up a graph which is already

poisoned. Therefore, we focus on defending the poisoning attack

of graph data in this paper.

How to improve the robustness of GNNs against adversarial

poising attacks is attracting increasing attention and initial efforts

have been taken [18, 40, 43, 48]. For example, Wu et al. [40] utilize

the Jaccard similarity of features to prune perturbed graphs with

the assumption that connected nodes should have high feature

similarity. RGCN in [48] adopts Gaussian distributions as the node

representations in each convolutional layer to absorb the effects of

adversarial changes in the variances of the Gaussian distributions.

The basic idea of aforementioned robust GNNs against poisoning

attack is to alleviate the negative effects of the perturbed edges.

However, perturbed edges are treated equally as normal edges

during aggregation in existing robust GNNs.

The proposed PA-GNN is inherently different from existing

works: (i) instead of purely trained on the poisoned target graph,

adopting clean graphs with similar domains to learn the ability of

penalizing perturbations; and (ii) investigating meta-learning to
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transfer such ability to the target poisoned graph for improving the

robustness.

3 PRELIMINARIES
3.1 Notations
We use G = (V, E,X) to denote a graph, whereV = {v1, . . . ,vN }
is the set of N nodes, E ⊆ V ×V represents the set of edges, and

X = {x1, . . . , xN } indicates node features. In a semi-supervised

setting, partial nodes comewith labels and are defined asVL
, where

the corresponding label for node v is denoted by yv . Note that the
topology structure of G is damaged, and the original clean version

is unknown. In addition to the poisoned graph G, we assume there

existsM clean graphs sharing similar domains with G. For example,

when G is the citation network of publications in data mining field,

a similar graph can be another citation network from physics. We

use {G1, . . . ,GM } to represent clean graphs. Similarly, each clean

graph consists of nodes and edges. We use VLi to denote the labeled

nodes in graph Gi .

3.2 Basic GNN Design
We introduce the general architecture of a graph neural network.

A graph neural network contains multiple layers. Each layer trans-

forms its input node features to another Euclidean space as output.

Different from fully-connected layers, a GNN layer takes first-order

neighbors’ information into consideration when transforming the

feature vector of a node. This “message-passing” mechanism en-

sures the initial features of any two nodes can affect each other

even if they are faraway neighbors, along with the network going

deeper. The input node features to the l-th layer in an L-layer GNN

can be represented by a set of vectors Hl = {hl
1
, . . . , hlN }, h

l
i ∈ R

dl ,

where hli corresponds to vi . Obviously, H
1 = X. The output node

features of the l-th layer, which also formulate the input to the next

layer, are generated as follows:

hl+1i = Update

[
hli ,Agg(h

l
j |j ∈ Ni )

]
(1)

where Ni is the set of first-order neighbors of node i , Agg(·) in-
dicates a generic aggregation function on neighbor nodes, and

Update(·) is an update function that generates a new node repre-

sentation vector from the previous one and messages from neigh-

bors. Most graph neural networks follow the above definition. For

example, Hamilton et al. [14] introduce mean, pooling and LSTM

as the aggregation function, Veličković et al. [37] leverage self-

attention mechanism to update node representations. A GNN can

be represented by a parameterized function fθ where θ represents

parameters, the loss function can be represented as Lc (θ ). In semi-

supervised learning, the cross-entropy loss function for node clas-

sification takes the form:

Lc (θ ) = −
∑

v∈VL

yv log ŷv , (2)

where ŷv is the predicted label generated by passing the output

from the final GNN layer to a softmax function.

3.3 Problem Definition
The problem of exploring clean graphs for learning a robust GNN

against poisoning attacks on a target graph is formally defined as:

Perturb… …Clean
Graphs

: adversarial edge: example node
Transfer

Train

Poisoned
GraphFine-tune

Robust GNN

Meta-
Optimization

Figure 1: Overall framework of PA-GNN. Thicker arrows in-
dicate higher attention coefficients. θ∗ denotes themodel ini-
tialization from meta-optimization.

Problem 1. Given the target graph G that is poisoned with ad-
versarial edges, a set of clean graphs {G1, . . . ,GM } from similar
domain as G, and the partially labeled nodes of each graph (i.e.,
{VL

1
, . . . ,VLM ;VL}), we aim at learning a robust GNN to predict the

unlabeled nodes of G.

It is worth noting that, in this paper, we learn a robust GNN

for semi-supervised node classification. The proposed PA-GNN is

a general framework for learning robust GNN of various graph

mining tasks such as link prediction.

4 PROPOSED FRAMEWORK
In this section, we give the details of PA-GNN. An illustration of the

framework is shown in Figure 1. Firstly, clean graphs {G1, . . . ,GM }

are introduced to generate perturbed edges. The generated per-

turbations then serve as supervised knowledge to train a model

initialization for PA-GNN using meta-optimization. Finally, we fine-

tune the initialization on the target poisoned graph for the best

performance. Thanks to the meta-optimization, the ability to re-

duce negative effects of adversarial attack is retained after adapting

to G. In the following sections, we introduce technical details of

PA-GNN.

4.1 Penalized Aggregation Mechanism
We begin by analyzing the reason why GNNs are vulnerable to

adversarial attacks with the general definition of GNNs in Equation

1. Suppose the graph data fed into a GNN is perturbed, the aggre-

gation function Agg(·) treats “fake” neighbors equally as normal

ones, and propagates their information to update other nodes. As

a result, GNNs fail to generate desired outputs under influence

of adversarial attacks. Consequently, if messages passing through

perturbed edges are filtered, the aggregation function will focus on

“true” neighbors. In an ideal condition, GNNs can work well if all

perturbed edges produced by attackers are ignored.

Motivated by above analysis, we design a novel GNN with pe-

nalized aggregation mechanism (PA-GNN) which automatically re-

strict themessage-passing through perturbed edge. Firstly, we adopt

similar implementation from [36] and define the self-attention co-

efficient a
l
i j for node features of vi and vj on the l-the layer using

a non-linear function:

a
l
i j = LeakyReLU

(
(al )⊤[Wlhli ⊕Wlhlj ]

)
, (3)

where al and Wl
are parameters, ⊤ represents the transposition,

and ⊕ indicates the concatenation of vectors. Note that coefficients
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are only defined for first-order neighbors. Takevi as an example,we

only compute a
l
i j for j ∈ Ni , which is the set of direct neighbors of

vi . The attention coefficients related to vi are further normalized

among all nodes in Ni for comparable scores:

α li j =
exp

(
a
l
i j
)∑

k∈Ni exp
(
a
l
ik

) . (4)

We use normalized attention coefficient scores to generate a linear

combination of their corresponding node features. The linear com-

bination process serves as the aggregating process, and its results

are utilized to update node features. More concretely, a graph neural

network layer is constructed as follows:

hl+1i = σ
( ∑
j∈Nj

α li jW
lhlj

)
. (5)

A similar definition can be found in [37]. Clearly, the above design of

GNN layer cannot discriminate perturbed edges, let alone alleviate

their negative effects on the “message-passing” mechanism, because

there is no supervision to teach it how to honor normal edges

and punish perturbed ones. A natural solution to this problem

is reducing the attention coefficients for all perturbed edges in a

poisoned graph. Noticing the exponential rectifier in Equation 4, a

lower attention coefficient only allows little information passing

through its corresponding edge, which mitigate negative effects if

the edge is an adversarial one. Moreover, since normalized attention

coefficient scores of one node always sum up to 1, reducing the

attention coefficient for perturbed edges will also introduce more

attention to clean neighbors. To measure the attention coefficients

received by perturbed edges, we propose the following metric:

Sp =

L∑
l=1

∑
ei j ∈P

a
l
i j , (6)

where L is the total number of layers in the network, and P denotes

the perturbed edges. Generally, a smaller Sp indicates less attention

coefficients received by adversarial edges. To further train GNNs

such that a lower Sp is guaranteed, we design the following loss

function to penalize perturbed edges:

Ldist = −min

(
η, E

ei j ∈E\P
1≤l≤L

a
l
i j − E

ei j ∈P
1≤l≤L

a
l
i j

)
, (7)

where η is a hyper parameter controlling the margin between mean

values of two distributions, E\P represents normal edges in the

graph, and E computes the expectation. Using the expectation of

attention coefficients for all normal edges as an anchor, Ldist aims

at reducing the averaged attention coefficient of perturbed edges,

until a certain discrepancy of η between these two mean values is

satisfied. Note that minimizing Sp directly instead of Ldist will

lead to unstable attention coefficients, making PA-GNN hard to

converge. The expectations of attention coefficients are estimated

by their empirical means:

E
ei j ∈E\P
1≤l≤L

a
l
i j =

1

L|E\P|

L∑
l=1

∑
ei j ∈E\P

a
l
i j , (8)

E
ei j ∈P
1≤l≤L

a
l
i j =

1

L|P |

L∑
l=1

∑
ei j ∈P

a
l
i j , (9)

where | · | denotes the cardinality of a set. We combine Ldist with

the original cross-entropy lossLc and create the following learning

objective for PA-GNN:

min

θ
L = min

θ
(Lc + λLdist ), (10)

where λ balances the semi-supervised classification loss and the

attention coefficient scores on perturbed edges.

Training PA-GNNwith the above objective directly is non-trivial,

because it is unlikely to distinguish exact perturbed edges P from

normal edges in a poisoned graph. However, it is practical to dis-

cover vulnerable edges from clean graphs with adversarial attack

methods on graphs. For example, metattack poisons a clean graph

to reduces the performance of GNNs by adding adversarial edges,

which can be treated as the set P. Therefore, we explore clean

graphs from domains similar to the poisoned graph. Specifically, as

shown in Figure 1, we first inject perturbation edges to clean graphs

using adversarial attack methods, then leverage those adversarial

counterparts to train the ability to penalize perturbed edges. Such

ability is further transferred to GNNs on the target graph, so that

the robustness is improved. In the following section, we discuss

how we transfer the ability to penalize perturbed edges from clean

graphs to the target poisoned graph in detail.

4.2 Transfer with Meta-Optimization
As discussed above, it is very challenging to train PA-GNN for a

poisoned graph because the adversarial edge distribution remains

unknown. We turn to exploit clean graphs from similar domains to

create adversarial counterparts that serve as supervised knowledge.

One simple solution to utilize them is pre-training PA-GNN on

clean graphs with perturbations, which formulate the set of adver-

sarial edges P. Then the pre-trained model is fine-tuned on target

graph G purely with the node classification objective. However,

the performance of pre-training with clean graphs and adversarial

edges is rather limited, because graphs have different data distribu-

tions, making it difficult to equip GNNs with a generalized ability

to discriminate perturbations. Our experimental results in Section

5.3 also confirm the above analysis.

In recent years, meta-learning has shown promising results in

various applications [32, 38, 44, 46]. The goal of meta-learning is to

train a model on a variety of learning tasks, such that it can solve

new tasks with a small amount or even no supervision knowledge

[11, 16, 45]. Finn et al. [11] propose model-agnostic meta-learning

algorithm where the model is trained explicitly such that a small

number of gradient steps and few training data from a new task can

also produce good generalization performance on that task. This

motivates us to train a meta model with a generalized ability to

penalize perturbed edges (i.e., assign lower attention coefficients).

The meta model serve as the initialization of PA-GNN, and its fast-

adaptation capability helps retain such penalizing ability as much as

possible on the target poisoned graph. To achieve the goal, we pro-

pose a meta-optimization algorithm that trains the initialization of

PA-GNN. With manually generated perturbations on clean graphs,

PA-GNN receive full supervision and its initialization preserve the

penalizing ability. Further fine-tuned model on the poisoned graph

G is able to defend adversarial attacks and maintain an excellent

performance.

Technical Presentation  WSDM ’20, February 3–7, 2020, Houston, TX, USA

603



We begin with generating perturbations on clean graphs. State-

of-the-art adversarial attack method for graph – metattack [51]

is chosen. Let Pi represent the set of adversarial edges created

for clean graph Gi . Next, we define learning tasks for the meta-

optimization. The learning objective of any task is defined in Equa-

tion 10, which aims at classifying nodes accurately while assigning

low attention coefficient scores to perturbed edges on its corre-

sponding graph. Let Ti denote the specific task for Gi . Namely,

there areM tasks in accordance with clean graphs. Because clean

graphs are specified for every task, we use LTi (θ ) to denote the

loss function of task Ti . We then compile support sets and query

sets for learning tasks. Labeled nodes from each clean graph is split

into two groups – one for the support set and the other as the query

set. Let Si and Qi denote the support set and the query set for Gi ,

respectively.

GivenM learning tasks, the optimization algorithm first adapts

the initial model parameters to every learning task separately. For-

mally, θ becomes θ ′i when adapting to Ti . We use gradient descent

to compute the updated model parameter θ ′i . The gradient w.r.t θ
′
i

is evaluated using LTi (θ ) on corresponding support set Si , and the

initial model parameters θ are updated as follows:

θ ′i = θ − α∇θLTi (θ ), (11)

where α controls the learning rate. Note that only one gradient

step is shown in Equation 11, but using multiple gradient updates

is a straightforward extension, as suggested by [11]. There areM
different versions of the initial model (i.e., fθ ′i , · · · , fθ

′
M
) constructed

in accordance with learning tasks.

The model parameters are trained by optimizing for the perfor-

mance of fθ ′i with respect to θ across all tasks. More concretely, we

define the following objective function for the meta-optimization:

min

θ

M∑
i=1
LTi (θ

′
i ) = min

θ

M∑
i=1
LTi (θ − α∇θ LTi (θ )). (12)

Because both classifying nodes and penalizing adversarial edges

are considered by the objective of PA-GNN, model parameters will

preserve the ability to reduce the negative effects from adversarial

attacks while maintaining a high accuracy for the classification.

Note that we perform meta-optimization over θ with the objective

computed using the updated model parameters θ ′i for all tasks. Con-
sequently, model parameters are optimized such that few numbers

of gradient steps on a new task will produce maximally effective

behavior on that task. The characteristic of fast-adaptation on new

tasks would help the model retain the ability to penalize perturbed

edges on G, which is proved by the experiential results in Section

5.3.1. Formally, stochastic gradient descent (SGD) is used to update

model parameters θ cross tasks:

θ ← θ − β∇θ

M∑
i=1
LTi (θ

′
i ). (13)

In practice, the above gradients are estimated using labeled nodes

from query sets Si of all tasks. Our empirical results suggest that

splitting support sets and query sets on-the-fly through iterations

of the meta-optimization improves overall performance. We adopt

this strategy for the training procedure of PA-GNN.

Training Algorithm An overview of the training procedure of

PA-GNN is illustrated in Algorithm 1.

Algorithm 1: The training framework of PA-GNN

Input: G and {G1, . . . ,GM }

Output: Model parameters θ
1 Randomly initialize θ ;

2 for Gi = G1, . . . ,GM do
3 Select perturbed edge set Pi with metattack;
4 end
5 while not early-stop do
6 for Gi = G1, . . . ,GM do
7 Split labeled nodes of Gi into support set Si and Qi ;

8 Evaluating ∇θLTi (θ ) with Si and LTi ;
9 Compute adapted parameters θ ′i with gradient

descent: θ ′i ← θ − α∇θLTi (θ );

10 end
11 Update θ on {Q1, . . . ,QM } with:

θ ← θ − β∇θ
∑M
i=1 LTi (θ

′
i );

12 end
13 Fine-tune θ on G use Lc ;

5 EXPERIMENTS
In this section, we conduct experiments to evaluate the effectiveness

of PA-GNN. We aim to answer the following questions:

• Can PA-GNN outperform existing robust GNNs under represen-

tative and state-of-the-art adversarial attacks on graphs?

• How the penalized aggregationmechanism and themeta-optimization

algorithm contribute to PA-GNN?

• How sensitive of PA-GNN on the hyper-parameters?

Next, we start by introducing the experimental settings followed

by experiments on node classification to answer these questions.

5.1 Experimental Setup
5.1.1 Datasets. To conduct comprehensive studies of PA-GNN, we

conduct experiments under two different settings:

• Same-domain setting: We sample the poisoned graph and clean

graphs from the same data distribution. Two popular benchmark

networks (i.e., Pubmed [33] and Reddit [14]) are selected as large

graphs. Pubmed is a citation network where nodes are documents

and edges represent citations; Reddit is compiled from reddit.com

where nodes are threads and edges denote two threads are com-

mented by a same user. Both graphs build nodal features using

averaged word embedding vectors [31] of documents/threads.We

create desired graphs using sub-graphs of the large graph. Each

of them is randomly split into 5 similar-size non-overlapping

sub-graphs. One graph is perturbed as the poisoned graph, while

the remained ones are used as clean graphs.

• Similar-domain setting: We put PA-GNN in real-world settings

where graphs come from different scenarios. More concretely, we

compile two datasets from Yelp Review
1
, which contains point-of-

interests (POIs) and user reviews from various cities in Northern

1
https://www.yelp.com/dataset
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Table 1: Statistics of datasets
Pubmed Reddit Yelp-Small Yelp-Large

Avg. # of nodes 1061 3180 3426 15757

Avg. # of edges 2614 14950 90431 160893

# of features 500 503 200 25

# of classes 3 7 2 2

American. Firstly, each city in Yelp Review is transferred into a

graph, where nodes are POIs, nodal features are averaged word-

embedding vector [31] of all reviews that a POI received, and

binary labels are created to tell whether corresponding POIs are

restaurants. We further define edges using co-reviews (i.e., re-

views from the same author). Graphs from different cities have

different data distribution because of the differences in tastes,

culture, lifestyle, etc. The first dataset (Yelp-Small) contains four

middle-scale cities including Cleveland, Madison, Mississauga,

and Glendale where Cleveland is perturbed as G. The second

dataset (Yelp-Large) contains top-3 largest cities including Char-

lotte, Phoenix, and Toronto. Specifically, we inject adversarial

edges to the graph from Toronto to validate the transferability of

PA-GNN because Toronto is a foreign city compared with others.

We itemize statistics of datasets in Table 1. We randomly select 10%

of nodes for training, 20% for validation and remained for testing

on all datasets (i.e., on G). 40% nodes from each clean graph are

selected to build support and query sets, while remained ones are

treated as unlabeled. Support sets and query sets are equally split

on-the-fly randomly for each iteration of the meta-optimization

(i.e., after θ is updated) to ensure the maximum performance.

5.1.2 Attack Methods. To evaluate how robust PA-GNN is under

different attack methods and settings, three representative and

state-of-the-art adversarial attack methods on graphs are chosen:

• Non-Targeted Attack: Non-targeted attack aims at reducing the

overall performance of GNNs. We adopt metattack [51] for non-

targeted attack, which is also state-of-the-art adversarial attack

method on graph data. We increase the perturbation rate (i.e.,

number of perturbed edges over all normal edges) from 0 to 30%,

by a step size of 5% (10% for Yelp-Large dataset due to the high

computational cost of metattack). We use the setting with best

attack performance according to [51].

• Targeted Attack: Targeted attack focuses on misclassifying spe-

cific target nodes. nettack [49] is adopted as the targeted attack

method. Specifically, we first randomly perturb 500 nodes with

nettack on target graph, then randomly assign them to training,

validating, and testing sets according to their proportions (i.e.,

1:2:7). This creates a realistic setting since not all nodes will be

attacked (hacked) in a real-world scenario, and perturbations

can happen in training, validating and testing sets. We adopt the

original setting for nettack from [49].

• Random Attack: Random attack randomly select some node pairs,

and flip their connectivity (i.e., remove existing edges and connect

non-adjacent nodes). It can be treated as an injecting random

noises to a clean graph. The ratio of the number of flipped edges

to the number of clean edges varies from 0 to 100% with a step

size of 20%.

We evaluate comparedmethods against state-of-the-art non-targeted

attack method metattack on all datasets. We analyze the perfor-

mances against targeted attack on Reddit and Yelp-Large datasets.

For random attack, we compare each method on Pubmed and Yelp-

Small datasets as a complementary. Consistent results are observed

on remained datasets.

5.1.3 Baselines. We compare PA-GNN with representative and

state-of-the-art GNNs and robust GNNs. The details are:

• GCN [19]: GCN is a widely used graph neural network. It de-

fines graph convolution via spectral analysis. We adopt the most

popular version from [19].

• GAT [14]: As introduced in Section 2.1, GAT leverages multi-

head self-attention to assign different weights to neighborhoods.

• PreProcess [40]: This method improves the robustness of GNNs

by removing existing edges whose connected nodes have low

feature similarities. Jaccard similarity is used sparse features and

Cosine similarity is adopted for dense features.

• RGCN [48]: RGCN aims to defend against adversarial edges

with Gaussian distributions as the latent node representation in

hidden layers to absorb the negative effects of adversarial edges.

• VPN [18]: Different from GCN, parameters of VPN are trained

on a family of powered graphs of G. The family of powered

graphs increases the spatial field of normal graph convolution,

thus improves the robustness.

Note that PreProcess, RGCN and VPN are state-of-the-art robust GNNs
developed to defend against adversarial attacks on graphs.

5.1.4 Settings and Parameters. We report the averaged results of 10

runs for all experiments. We deploy a multi-head mechanism [36]

to enhance the performance of self-attention. We adopt metattack
to generate perturbations on clean graphs. All hyper-parameters

are tuned on the validation set to achieve the best performance. For

a fair comparison, following a common way [48], we fix the number

of layers to 2 and the total number of hidden units per layer to 64

for all compared models. We set λ to 1.0 and η to 100 for all settings.

Parameter sensitivity on λ and η will be analyzed in Section 5.4. We

perform 5 gradient steps to estimate θ ′ as suggested by [11].

5.2 Robustness Comparison
To answer the first question, we evaluate the robustness of PA-

GNN under various adversarial attack scenarios with comparison

to baseline methods. We adopt semi-supervised node classification

as our evaluation task as described in Section 5.1.4.

5.2.1 Defense Against Non-Targeted Attack. We first conduct exper-

iments under non-targeted attack on four datasets. Each experiment

is conducted 10 times. The average accuracy with standard devia-

tion is reported in Table 2. From the table, we make the following

observations: (i) As illustrated, the accuracy of vanilla GCN and

GAT decays rapidly when the perturbation rate goes higher, while

other robust GNN models achieve relatively higher performance in

most cases. This suggests the necessity of improving the robustness

of GNN models; (ii) The prepossessing-based method shows consis-

tent results on the Pubmed dataset with sparse features. However, it

fails for other datasets. Because the feature similarity and neighbor

relationship are often complementary, purely relying on feature
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Table 2: Node classification performance (Accuracy±Std) under non-targeted metattack [51]
Dataset Ptb Rate (%) 0 5 10 15 20 25 30

Pubmed

GCN 77.81±0.34 76.00±0.24 74.74±0.55 73.69±0.37 70.39±0.32 68.78±0.56 67.13±0.32

GAT 74.28±1.80 70.19±1.59 69.36±1.76 68.79±1.34 68.29±1.53 66.35±1.95 65.47±1.99

PreProcess 73.69±0.42 73.49±0.29 73.76±0.45 73.60±0.26 73.85±0.48 73.46±0.55 73.65±0.36

RGCN 77.81±0.24 78.07±0.21 74.86±0.37 74.31±0.35 70.83±0.28 67.63±0.21 66.89±0.48

VPN 77.92±0.93 75.83±1.14 74.03±2.84 74.31±0.93 70.14±1.26 68.47±1.11 66.53±1.09

PA-GNN 82.92±0.13 81.67±0.21 80.56±0.07 80.28±0.25 78.75±0.17 76.67±0.42 75.47±0.39

Reddit

GCN 96.33±0.13 91.87±0.18 89.26±0.16 87.26±0.14 85.55±0.17 83.50±0.14 80.92±0.27

GAT 93.81±0.35 92.13±0.49 89.88±0.60 87.91±0.45 85.43±0.61 83.40±0.39 81.27±0.38

PreProcess 95.22±0.18 95.14±0.19 88.40±0.35 87.00±0.27 85.70±0.25 83.59±0.27 81.17±0.30

RGCN 93.15±0.44 89.20±0.37 85.81±0.35 83.58±0.29 81.83±0.42 80.22±0.36 76.42±0.82

VPN 95.91±0.17 91.95±0.17 89.03±0.28 86.97±0.15 85.38±0.24 83.49±0.29 80.85±0.28

PA-GNN 95.80±0.11 94.35±0.33 92.16±0.49 90.74±0.56 88.44±0.20 86.60±0.17 84.45±0.34

Yelp-Small

GCN 87.27±0.31 74.54±0.98 73.44±0.35 73.30±0.83 72.16±0.88 69.70±0.90 68.55±0.85

GAT 86.22±0.18 81.09±0.31 76.29±0.74 74.21±0.51 73.43±0.78 71.80±0.69 70.58±1.22

PreProcess 86.53±0.97 82.89±0.33 73.52±1.59 72.99±0.68 71.72±0.99 70.38±0.62 69.31±1.32

RGCN 88.19±0.31 79.70±0.69 77.25±2.12 75.85±1.31 75.65±0.33 74.71±0.21 73.30±2.95

VPN 86.05±1.60 78.13±0.38 74.36±1.54 74.33±0.59 72.54±0.35 71.86±0.78 70.13±1.72

PA-GNN 86.53±0.18 86.34±0.18 84.17±0.17 82.41±0.46 77.69±0.25 76.77±0.60 76.20±0.39

Yelp-Large

GCN 84.21±0.48 − 80.96±1.66 − 80.56±1.69 − 78.64±0.46

GAT 84.73±0.22 − 81.25±0.36 − 79.82±0.42 − 77.81±0.39

PreProcess 84.54±0.25 − 82.16±4.12 − 78.80±2.17 − 78.05±2.63

RGCN 85.09±0.13 − 79.42±0.27 − 78.31±0.08 − 77.74±0.12

VPN 84.36±0.23 − 82.77±0.25 − 80.64±2.41 − 79.22±2.32

PA-GNN 84.98±0.16 − 84.66±0.09 − 82.71±0.29 − 81.48±0.12

similarity to determining perturbation edges is not a promising solu-

tion. On the contrary, PA-GNN aims at learning the ability to detect

and penalizing perturbations from data, which is more dynamic

and reliable; (iii) Comparing with RGCN, PA-GNN achieves higher

performance under different scenarios. This is because PA-GNN

successfully leverages clean graphs for improving the robustness.

Moreover, instead of constraining model parameters with Gaussian

distributions, PA-GNN directly restricts the attention coefficients of

perturbed edges, which is more straightforward. The above obser-

vations articulate the efficacy of PA-GNN, which successfully learns

to penalize perturbations thanks to the meta-optimization on clean

graphs. Lastly, we point out that PA-GNN achieves slightly higher

or comparable performance even if G is clean (i.e., no adversarial

edges), showing the advantage of the meta-optimization process.

5.2.2 Defense Against Targeted Attack. We further study how ro-

bust PA-GNN is under targeted attack. As shown in Table 3, PA-

GNN outperforms all the compared methods under targeted attack,

with approximate 5% performance improvements on both datasets

compared with second accurate methods. This confirms the relia-

bility of PA-GNN against targeted attack. Moreover, note that the

perturbations of clean graphs are generated bymetattack, which is a
non-target adversarial attack algorithm. We conclude that PA-GNN

does not rely on specific adversarial attack algorithm to train model

initialization. The ability to penalize perturbation can be general-

ized to defend other adversarial attacks. A similar conclusion can

be drawn from following experiments against random attack.

5.2.3 Defense Against Random Attack. Finally, we evaluate all com-

pared methods against random attack. As shown in Figure 2, PA-

GNN consistently out-performs all compared methods. Thanks to
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Figure 2: Node classification accuracy under random attack.

the meta-optimization process, PA-GNN successfully learns to pe-

nalize perturbations, and transfers such ability to target graph with

a different kind of perturbation. Besides, the low performance of

GAT indicates the vulnerability of the self-attention, which con-

firms the effectiveness of the proposed penalizing aggregationmech-

anism.

5.3 Ablation Study
To answer the second question, we conduct ablation studies to

understand the penalized aggregation and meta-optimization algo-

rithm.

5.3.1 Varying the Penalized Aggregation Mechanism. We analyze

the effect of proposed penalized aggregation mechanism from two

aspects. Firstly, we propose PA-GNNnp , a variant of PA-GNN that

removes the penalized aggregation mechanism by setting λ = 0. We

validate PA-GNNnp on Reddit dataset, and its performance against

different perturbation rates is reported in Table 4. As we can see,

PA-GNN consistently out-performs PA-GNNnp by 2% of accuracy.
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Table 3: Node classification accuracy under targeted attack.
Dataset GCN GAT PreProcess RGCN VPN PA-GNN

Reddit 74.25±0.20 73.83±0.12 73.02±0.18 74.75±0.15 74.00±0.07 79.57±0.13
Yelp-Large 71.97±0.12 71.12±0.73 74.83±0.12 77.01±0.24 72.09±0.73 82.28±0.49

Table 4: Node classification accuracy of ablations.
Ptb Rate (%) 0 5 10 15 20 25 30

PA-GNNnp 95.25±0.81 92.17±0.23 90.45±0.72 88.72±0.61 86.66±0.18 84.68±0.52 81.53±0.34

PA-GNN
2nd 77.11±0.67 75.43±1.11 71.18±1.24 68.51±1.95 64.86±1.59 63.16±1.29 61.08±1.07

PA-GNNf t 96.72±0.09 91.89±0.14 89.79±0.24 87.56±0.25 85.41±0.17 83.88±0.35 82.14±0.38

PA-GNNjt 96.63±0.18 92.13±0.19 88.62±0.35 87.00±0.27 84.65±0.25 82.75±0.27 81.20±0.30

PA-GNN 95.80±0.11 94.35±0.33 92.16±0.49 90.74±0.56 88.44±0.20 86.60±0.17 84.45±0.34

Table 5: Mean values of attention coefficients.
Normal edges Ptb. edges

W/o penalty 12.63 12.80

With penalty 4.76 3.86

(a) W/o penalized aggregation. (b) With penalized aggregation.

Figure 3: Distributions of attention coefficients in PA-GNN.

The penalized aggregation mechanism limits negative effects from

perturbed edges, in turns improves the performance on the target

graph. Secondly, we explore distributions of attention coefficient

on the poisoned graph of PA-GNN with/without the penalized ag-

gregation mechanism. Specifically, the normalized distributions of

attention coefficients for normal and perturbed edges are plotted in

Figure 3. We further report their mean values in Table 5. Without

the penalized aggregation, perturbed edges obtain relatively higher

attention coefficients. This explains how adversarial attacks hurt the

aggregation process of a GNN. As shown in Figure 3b, normal edges

receive relative higher attention coefficients through PA-GNN, con-

firming the ability to penalize perturbations is transferable since

PA-GNN is fine-tuned merely with the node classification objective.

These observations reaffirm the effectiveness of the penalized ag-

gregation mechanism and the meta-optimization algorithm, which

successfully transfers the ability to penalize perturbations in the

poisoned graph.

5.3.2 Varying the Meta-Optimization Algorithm. Next, we study
the contribution of the meta-optimization algorithm. As discussed

in Section 4.2, three ablations are created accordingly: PA-GNN
2nd ,

PA-GNNf t , and PA-GNNjt . PA-GNN2nd ignores clean graphs and

rely on a second-time attack to generate perturbed edges. PA-GNNf t
omit the meta-optimization process, training the model initializa-

tion on clean graphs and their adversarial counterparts jointly. We

then fine-tune the initialization for G using the classification loss

Lc . PA-GNNjt further simplifies PA-GNNf t by adding G to the

joint training step. Note that we remove Ldist for G because de-

tailed perturbation information is unknown for a poisoned graph.

All three variants are evaluated on Reddit dataset, and their perfor-

mance is reported in Table 4.

PA-GNN
2nd performs the worst among all variations. Because

perturbed edges from the adversarial attack can significantly hurt

the accuracy, treating them as clean edges is not a feasible solution.

PA-GNNf t , and PA-GNNjt slightly out-perform PA-GNN when G

is clean. This is not amazing since more training data can contribute

to the model. However, their performance decreases rapidly as

the perturbation rate raises up. Because the data distribution of

a perturbed graph is changed, barely aggregate all available data

is not an optimal solution for defending adversarial attack. It is

vital to design PA-GNN which leverages clean graphs from similar

domains for improving the robustness of GNNs. At last, PA-GNNnp
consistently out-performs PA-GNNf t , and PA-GNNjt in perturbed

cases. shown advantages of the meta-optimization algorithm which

utilizes clean graphs to train the model regardless of the penalized

aggregation mechanism.

5.4 Parameter Sensitivity Analysis
We investigate the sensitivity of η and λ for PA-GNN. η controls the

penalty of perturbed edges, while λ balances the classification objec-
tive and the penalized aggregation mechanism. Generally, a larger

η pull the distribution of perturbed edges farther away from that

of normal edges. We explore the sensitivity on Pubmed and Reddit

datasets, both with a 10% perturbation rate. We alter η and λ among

{0, 1, 10, 100, 1000} and {0, 50, 100, 200, 400, 800}, respectively. The

performance of PA-GNN is illustrated in Figure 4. As we can see,

the accuracy of PA-GNN is relatively smooth when parameters are

within certain ranges. However, extremely large values of η and

λ result in low performances on both datasets, which should be

avoided in practice. Moreover, increasing λ from 0 to 1 improves the

accuracy on both datasets, demonstrating the proposed penalized

aggregation mechanism can improve the robustness of PA-GNN.
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Figure 4: Parameter sensitivity analysis.
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6 CONCLUSION AND FUTURE WORK
In this paper, we study a new problem of exploring extra clean

graphs for learning a robust GNN against the poisoning attacks

on a target graph. We propose a new framework PA-GNN, that

leverages penalized attention mechanism to learn the ability to

reduce the negative impact from perturbations on clean graphs and

meta-optimization to transfer the alleviation ability to the target

poisoned graph. Experimental results of node classification tasks

demonstrate the efficacy of PA-GNN against different poisoning

attacks. In the future, we would like to explore the potential of

transfer learning for improving robustness on other models, such

as community detection and graph classification.
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