Technical Presentation

WSDM ’20, February 3-7, 2020, Houston, TX, USA

Transferring Robustness for Graph Neural Network Against
Poisoning Attacks

Xianfeng TangT, Yandong Li*, Yiwei Sun', Huaxiu Yao, Prasenjit MitraT, Suhang WangT*
Pennsylvania State University', University of Central Florida*
{tangxianfeng, lyndon.leeseu}@outlook.com {yus162, huy144, pum10, szw494}@psu.edu

ABSTRACT

Graph neural networks (GNNs) are widely used in many appli-
cations. However, their robustness against adversarial attacks is
criticized. Prior studies show that using unnoticeable modifications
on graph topology or nodal features can significantly reduce the
performances of GNNGs. It is very challenging to design robust graph
neural networks against poisoning attack and several efforts have
been taken. Existing work aims at reducing the negative impact
from adversarial edges only with the poisoned graph, which is
sub-optimal since they fail to discriminate adversarial edges from
normal ones. On the other hand, clean graphs from similar domains
as the target poisoned graph are usually available in the real world.
By perturbing these clean graphs, we create supervised knowledge
to train the ability to detect adversarial edges so that the robustness
of GNN:ss is elevated. However, such potential for clean graphs is
neglected by existing work. To this end, we investigate a novel prob-
lem of improving the robustness of GNNs against poisoning attacks
by exploring clean graphs. Specifically, we propose PA-GNN, which
relies on a penalized aggregation mechanism that directly restrict
the negative impact of adversarial edges by assigning them lower
attention coefficients. To optimize PA-GNN for a poisoned graph,
we design a meta-optimization algorithm that trains PA-GNN to
penalize perturbations using clean graphs and their adversarial
counterparts, and transfers such ability to improve the robustness
of PA-GNN on the poisoned graph. Experimental results on four
real-world datasets demonstrate the robustness of PA-GNN against
poisoning attacks on graphs.

KEYWORDS
Robust Graph Neural Networks, Adversarial Defense

ACM Reference Format:

Xianfeng TangT, Yandong Li*, Yiwei Sun’, Huaxiu Yao, Prasenjit Mitra®,
Suhang Wang?. 2020. Transferring Robustness for Graph Neural Network
Against Poisoning Attacks. In The Thirteenth ACM International Conference
on Web Search and Data Mining (WSDM °20), February 3-7, 2020, Houston, TX,
USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3336191.
3371851

“Corresponding Author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WSDM °20, February 3-7, 2020, Houston, TX, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6822-3/20/02...$15.00
https://doi.org/10.1145/3336191.3371851

600

1 INTRODUCTION

Graph neural networks (GNNs) [14, 19], which explore the power
of neural networks for graph data, have achieved remarkable re-
sults in various applications [10, 17, 37]. The key to the success of
GNNs is its signal-passing process [39], where information from
neighbors is aggregated for every node in each layer. The collected
information enriches node representations, preserving both nodal
feature characteristics and topological structure.

Though GNNss are effective for modeling graph data, the way that
GNNs aggregate neighbor nodes’ information for representation
learning makes them vulnerable to adversarial attacks [6, 40, 43, 49,
51]. Poisoning attack on a graph [49], which adds/deletes carefully
chosen edges to the graph topology or injects carefully designed
perturbations to nodal features, can contaminate the neighborhoods
of nodes, bring noises/errors to node representations, and degrade
the performances of GNNs significantly. The lack of robustness
become a critical issue of GNNs in many applications such as finan-
cial system and risk management [1]. For example, fake accounts
created by a hacker can add friends with normal users on social
networks to promote their scores predicted by a GNN model. A
model that’s not robust enough to resist such “cheap” attacks could
lead to serious consequences. Hence, it is important to develop
robust GNNs against adversarial attacks. Recent studies of adver-
sarial attacks on GNNs suggest that adding perturbed edges is more
effective than deleting edges or adding noises to node features [40].
This is because node features are usually high-dimensional, requir-
ing larger budgets to attack. Deleting edges only result in the loss
of some information while adding edges is cheap to contaminate
information passing dramatically. For example, adding a few bridge
edges connecting two communities can affect the latent represen-
tations of many nodes. Thus, we focus on defense against the more
effective poisoning attacks that a training graph is poisoned with
injected adversarial edges.

To defend against the injected adversarial edges, a natural idea
is to delete these adversarial edges or reduce their negative impacts.
Several efforts have been made in this direction [18, 40, 48]. For
example, Wu et al. [40] utilize Jaccard similarity of features to prune
perturbed graphs with the assumption that connected nodes have
high feature similarity. RGCN in [48] introduce Gaussian constrains
on model parameters to absorb the effects of adversarial changes.
The aforementioned models only rely on the poisoned graph for
training, leading to sub-optimal solutions. The lack of supervised
information about real perturbations in a poisoned graph obstructs
models from modeling the distribution of adversarial edges. There-
fore, exploring alternative supervision for learning the ability to
reduce the negative effects of adversarial edges is promising.

https://doi.org/10.1145/3336191.3371851
https://doi.org/10.1145/3336191.3371851
https://doi.org/10.1145/3336191.3371851

Technical Presentation

There usually exist clean graphs with similar topological distri-
butions and attribute features to the poisoned graph. For example,
Yelp and Foursquare have similar co-review networks where the
nodes are restaurants and two restaurants are linked if the number
of co-reviewers exceeds a threshold. Facebook and Twitter can be
treated as social networks that share similar domains. It is not diffi-
cult to acquire similar graphs for the targeted perturbed one. As
shown in existing work [20, 34], because of the similarity of topolog-
ical and attribute features, we can transfer knowledge from source
graphs to target ones so that the performance on target graphs is
elevated. Similarly, we can inject adversarial edges to clean graphs
as supervisions for training robust GNNs, which are able to penalize
adversarial edges. Such ability can be further transferred to improve
the robustness of GNNs on the poisoned graph. Leveraging clean
graphs to build robust GNNs is a promising direction. However,
prior studies in this direction are rather limited.

Therefore, in this paper, we investigate a novel problem of ex-
ploring clean graphs for improving the robustness of GNNs against
poisoning attacks. The basic idea is first learning to discriminate ad-
versarial edges, thereby reducing their negative effects, then trans-
ferring such ability to a GNN on the poisoned graph. In essence,
we are faced with two challenges: (i) how to mathematically utilize
clean graphs to equip GNNs with the ability of reducing negative
impacts of adversarial edges; and (ii) how to effectively transfer
such ability learned on clean graphs to a poisoned graph. In an
attempt to solve these challenges, we propose a novel framework
Penalized Aggregation GNN (PA-GNN). Firstly, clean graphs are
attacked by adding adversarial edges, which serve as supervisions
of known perturbations. With these known adversarial edges, a
penalized aggregation mechanism is then designed to learn the
ability of alleviating negative influences from perturbations. We
further transfer this ability to the target poisoned graph with a spe-
cial meta-optimization approach, so that the robustness of GNNs
is elevated. To the best of our knowledge, we are the first one to
propose a GNN that can directly penalize perturbations and to
leverage transfer learning for enhancing the robustness of GNN
models. The main contributions of this paper are:

e We study a new problem and propose a principle approach of ex-
ploring clean graphs for learning a robust GNN against poisoning
attacks on a target graph;

e We provide a novel framework PA-GNN, which is able to alleviate
the negative effects of adversarial edges with carefully designed
penalized aggregation mechanism, and transfer the alleviation
ability to the target poisoned graph with meta-optimization;

e We conduct extensive experiments on real-world datasets to
demonstrate the effectiveness of PA-GNN against various poi-
soning attacks and to understand its behaviors.

The rest of the paper is organized as follows. We review related
work in Section 2. We define our problems in Section 3. We intro-
duce the details of PA-GNN in Section 4. Extensive experiments and
their results are illustrated and analyzed in Section 5. We conclude
the paper in Section 6.

2 RELATED WORK

In this section, we briefly review related works, including graph
neural networks, adversarial attack and defense on graphs.

601

WSDM ’20, February 3-7, 2020, Houston, TX, USA

2.1 Graph Neural Networks

In general, graph neural networks refer to all deep learning methods
for graph data [8, 9, 26-28, 41]. It can be generally categorized into
two categories, i.e., spectral-based and spatial-based. Spectral-based
GNNs define “convolution” following spectral graph theory [3].
The first generation of GCNs are developed by Bruna et al. [3]
using spectral graph theory. Various spectral-based GCNs are de-
veloped later on [7, 15, 19, 22]. To improve efficiency, spatial-based
GNNss are proposed to overcome this issue [12, 14, 29, 30]. Because
spatial-based GNNs directly aggregate neighbor nodes as the convo-
lution, and are trained on mini-batches, they are more scalable than
spectral-based ones. Recently, Velickovi¢ et al. [37] propose graph
attention network (GAT) that leverages self-attention of neighbor
nodes for the aggregation process. The major idea of GATs [47] is
focusing on most important neighbors and assign higher weights
to them during the information passing. However, existing GNNs
aggregates neighbors’ information for representation learning, mak-
ing them vulnerable to adversarial attacks, especially perturbed edges
added to the graph topology. Next, we review adversarial attack and
defense methods on graphs.

2.2 Adversarial Attack and Defense on Graphs

Neural networks are widely criticized due to the lack of robustness
[5, 13, 21, 23-25], and the same to GNNs. Various adversarial attack
methods have been designed, showing the vulnerability of GNNs
[2, 4, 6, 42, 50]. There are two major categories of adversarial at-
tack methods, namely evasion attack and poisoning attack. Evasion
attack focuses on generating fake samples for a trained model. Dai
et al. [6] introduce an evasion attack algorithm based on reinforce-
ment learning. On the contrary, poisoning attack changes training
data, which can decrease the performance of GNNs significantly.
For example, Zugner et al. [49] propose nettack which make GNNs
fail on any selected node by modifying its neighbor connections.
They further develop metattack [51] that reduces the overall perfor-
mance of GNNs. Comparing with evasion attack, poisoning attack
methods are usually stronger and can lead to an extremely low
performance [35, 48, 49], because of its destruction of training data.
Besides, it is almost impossible to clean up a graph which is already
poisoned. Therefore, we focus on defending the poisoning attack
of graph data in this paper.

How to improve the robustness of GNNs against adversarial
poising attacks is attracting increasing attention and initial efforts
have been taken [18, 40, 43, 48]. For example, Wu et al. [40] utilize
the Jaccard similarity of features to prune perturbed graphs with
the assumption that connected nodes should have high feature
similarity. RGCN in [48] adopts Gaussian distributions as the node
representations in each convolutional layer to absorb the effects of
adversarial changes in the variances of the Gaussian distributions.
The basic idea of aforementioned robust GNNs against poisoning
attack is to alleviate the negative effects of the perturbed edges.
However, perturbed edges are treated equally as normal edges
during aggregation in existing robust GNNs.

The proposed PA-GNN is inherently different from existing
works: (i) instead of purely trained on the poisoned target graph,
adopting clean graphs with similar domains to learn the ability of
penalizing perturbations; and (ii) investigating meta-learning to

Technical Presentation

transfer such ability to the target poisoned graph for improving the
robustness.

3 PRELIMINARIES

3.1 Notations

We use G = (V, &,X) to denote a graph, where V = {v1,...,oN}
is the set of N nodes, & C V X V represents the set of edges, and
X = {x1,...,xN} indicates node features. In a semi-supervised
setting, partial nodes come with labels and are defined as V', where
the corresponding label for node v is denoted by y,,. Note that the
topology structure of G is damaged, and the original clean version
is unknown. In addition to the poisoned graph G, we assume there
exists M clean graphs sharing similar domains with G. For example,
when G is the citation network of publications in data mining field,
a similar graph can be another citation network from physics. We
use {G1,...,Gp} to represent clean graphs. Similarly, each clean
graph consists of nodes and edges. We use VI.L to denote the labeled
nodes in graph G;.

3.2 Basic GNN Design

We introduce the general architecture of a graph neural network.
A graph neural network contains multiple layers. Each layer trans-
forms its input node features to another Euclidean space as output.
Different from fully-connected layers, a GNN layer takes first-order
neighbors’ information into consideration when transforming the
feature vector of a node. This “message-passing” mechanism en-
sures the initial features of any two nodes can affect each other
even if they are faraway neighbors, along with the network going
deeper. The input node features to the [-th layer in an L-layer GNN
can be represented by a set of vectors H = {hl, .. ,hfv}, hg e RY,

where hg corresponds to v;. Obviously, H! = X. The output node
features of the [-th layer, which also formulate the input to the next
layer, are generated as follows:

hi*! = Update b}, Agg(hl]j € A})] @

where N; is the set of first-order neighbors of node i, Agg(-) in-
dicates a generic aggregation function on neighbor nodes, and
Update(-) is an update function that generates a new node repre-
sentation vector from the previous one and messages from neigh-
bors. Most graph neural networks follow the above definition. For
example, Hamilton et al. [14] introduce mean, pooling and LSTM
as the aggregation function, Veli¢kovi¢ et al. [37] leverage self-
attention mechanism to update node representations. A GNN can
be represented by a parameterized function fy where 0 represents
parameters, the loss function can be represented as L.(0). In semi-
supervised learning, the cross-entropy loss function for node clas-
sification takes the form:

LeO)==) yologio,

veyl

@

where g, is the predicted label generated by passing the output
from the final GNN layer to a softmax function.

3.3 Problem Definition

The problem of exploring clean graphs for learning a robust GNN
against poisoning attacks on a target graph is formally defined as:

602

WSDM ’20, February 3-7, 2020, Houston, TX, USA

4 1

i I i —9 ! Meta- -
Gy () } (W Optimization | g Q-

i N) PN ! 0 9! t N\

' Clean ! Perturb | : | Train

‘Graphs 1 } 1 ;

3 Gm@ ! : ‘l !

Robust GNN; Poisoned TN
i | Graph

S | Fine-tune P

1 ./‘<°] g Transfer 0"

| 1 4: example node - -: adversarial edge

Figure 1: Overall framework of PA-GNN. Thicker arrows in-
dicate higher attention coefficients. 6* denotes the model ini-

tialization from meta-optimization.
ProBLEM 1. Given the target graph G that is poisoned with ad-

versarial edges, a set of clean graphs {Gi,...,Gp} from similar
domain as G, and the partially labeled nodes of each graph (i.e.,
{VL, .. .,V%/I; (VL}), we aim at learning a robust GNN to predict the
unlabeled nodes of G.

It is worth noting that, in this paper, we learn a robust GNN
for semi-supervised node classification. The proposed PA-GNN is
a general framework for learning robust GNN of various graph
mining tasks such as link prediction.

4 PROPOSED FRAMEWORK

In this section, we give the details of PA-GNN. An illustration of the
framework is shown in Figure 1. Firstly, clean graphs {Gy, ..., Gpm}
are introduced to generate perturbed edges. The generated per-
turbations then serve as supervised knowledge to train a model
initialization for PA-GNN using meta-optimization. Finally, we fine-
tune the initialization on the target poisoned graph for the best
performance. Thanks to the meta-optimization, the ability to re-
duce negative effects of adversarial attack is retained after adapting
to G. In the following sections, we introduce technical details of
PA-GNN.

4.1 Penalized Aggregation Mechanism

We begin by analyzing the reason why GNNs are vulnerable to
adversarial attacks with the general definition of GNNs in Equation
1. Suppose the graph data fed into a GNN is perturbed, the aggre-
gation function Agg(-) treats “fake” neighbors equally as normal
ones, and propagates their information to update other nodes. As
a result, GNNss fail to generate desired outputs under influence
of adversarial attacks. Consequently, if messages passing through
perturbed edges are filtered, the aggregation function will focus on
“true” neighbors. In an ideal condition, GNNs can work well if all
perturbed edges produced by attackers are ignored.

Motivated by above analysis, we design a novel GNN with pe-
nalized aggregation mechanism (PA-GNN) which automatically re-
strict the message-passing through perturbed edge. Firstly, we adopt
similar implementation from [36] and define the self-attention co-
efficient aﬁ : for node features of v; and v; on the I-the layer using
a non-linear function:

a}; = LeakyReLU((a')T[W'h} ® W'h!]), 3)

where a! and W! are parameters, T represents the transposition,
and & indicates the concatenation of vectors. Note that coefficients

Technical Presentation

are only defined for first-order neighbors. Take v; as an example,we
only compute afj for j € Nj, which is the set of direct neighbors of
v;. The attention coefficients related to v; are further normalized
among all nodes in N; for comparable scores:

l
I exp(ai j)
%y @l)
Zken; explay;)
We use normalized attention coefficient scores to generate a linear
combination of their corresponding node features. The linear com-
bination process serves as the aggregating process, and its results

are utilized to update node features. More concretely, a graph neural
network layer is constructed as follows:

1 1 Iy 1
hi*! = o Z a;;W'h;).
N,

@

®)

A similar definition can be found in [37]. Clearly, the above design of
GNN layer cannot discriminate perturbed edges, let alone alleviate
their negative effects on the “message-passing” mechanism, because
there is no supervision to teach it how to honor normal edges
and punish perturbed ones. A natural solution to this problem
is reducing the attention coeflicients for all perturbed edges in a
poisoned graph. Noticing the exponential rectifier in Equation 4, a
lower attention coefficient only allows little information passing
through its corresponding edge, which mitigate negative effects if
the edge is an adversarial one. Moreover, since normalized attention
coefficient scores of one node always sum up to 1, reducing the
attention coefficient for perturbed edges will also introduce more
attention to clean neighbors. To measure the attention coefficients
received by perturbed edges, we propose the following metric:

Sp=2, 2

I=1 ejjeP

O

where L is the total number of layers in the network, and # denotes
the perturbed edges. Generally, a smaller S, indicates less attention
coeflicients received by adversarial edges. To further train GNNs
such that a lower S, is guaranteed, we design the following loss
function to penalize perturbed edges:

: 1 1
Laisy =—min (’7’ E a;—- E aij)’ (7)
e;jjeE\P ejjeP
1<I<L 1<I<L

where 7 is a hyper parameter controlling the margin between mean
values of two distributions, E\P represents normal edges in the
graph, and E computes the expectation. Using the expectation of
attention coefficients for all normal edges as an anchor, Lg;,; aims
at reducing the averaged attention coefficient of perturbed edges,
until a certain discrepancy of n between these two mean values is
satisfied. Note that minimizing S, directly instead of .Lg;5, will
lead to unstable attention coefficients, making PA-GNN hard to
converge. The expectations of attention coefficients are estimated
by their empirical means:

L
I 1 i
E al=—— > al, ®)
e;iee\p Y LIE\P| v
oer I=1 e;;€E\P
| &
I _ i
E = gpr 2 2. % ©)
cuer K=
1<I<L)

603

WSDM ’20, February 3-7, 2020, Houston, TX, USA

where | - | denotes the cardinality of a set. We combine L ;,; with
the original cross-entropy loss L. and create the following learning
objective for PA-GNN:

mgin L= mgin(.[c +ALgist)s (10)
where A balances the semi-supervised classification loss and the
attention coefficient scores on perturbed edges.

Training PA-GNN with the above objective directly is non-trivial,
because it is unlikely to distinguish exact perturbed edges # from
normal edges in a poisoned graph. However, it is practical to dis-
cover vulnerable edges from clean graphs with adversarial attack
methods on graphs. For example, metattack poisons a clean graph
to reduces the performance of GNNs by adding adversarial edges,
which can be treated as the set . Therefore, we explore clean
graphs from domains similar to the poisoned graph. Specifically, as
shown in Figure 1, we first inject perturbation edges to clean graphs
using adversarial attack methods, then leverage those adversarial
counterparts to train the ability to penalize perturbed edges. Such
ability is further transferred to GNNs on the target graph, so that
the robustness is improved. In the following section, we discuss
how we transfer the ability to penalize perturbed edges from clean
graphs to the target poisoned graph in detail.

4.2 Transfer with Meta-Optimization

As discussed above, it is very challenging to train PA-GNN for a
poisoned graph because the adversarial edge distribution remains
unknown. We turn to exploit clean graphs from similar domains to
create adversarial counterparts that serve as supervised knowledge.
One simple solution to utilize them is pre-training PA-GNN on
clean graphs with perturbations, which formulate the set of adver-
sarial edges #. Then the pre-trained model is fine-tuned on target
graph G purely with the node classification objective. However,
the performance of pre-training with clean graphs and adversarial
edges is rather limited, because graphs have different data distribu-
tions, making it difficult to equip GNNs with a generalized ability
to discriminate perturbations. Our experimental results in Section
5.3 also confirm the above analysis.

In recent years, meta-learning has shown promising results in
various applications [32, 38, 44, 46]. The goal of meta-learning is to
train a model on a variety of learning tasks, such that it can solve
new tasks with a small amount or even no supervision knowledge
[11, 16, 45]. Finn et al. [11] propose model-agnostic meta-learning
algorithm where the model is trained explicitly such that a small
number of gradient steps and few training data from a new task can
also produce good generalization performance on that task. This
motivates us to train a meta model with a generalized ability to
penalize perturbed edges (i.e., assign lower attention coefficients).
The meta model serve as the initialization of PA-GNN, and its fast-
adaptation capability helps retain such penalizing ability as much as
possible on the target poisoned graph. To achieve the goal, we pro-
pose a meta-optimization algorithm that trains the initialization of
PA-GNN. With manually generated perturbations on clean graphs,
PA-GNN receive full supervision and its initialization preserve the
penalizing ability. Further fine-tuned model on the poisoned graph
@ is able to defend adversarial attacks and maintain an excellent
performance.

Technical Presentation

We begin with generating perturbations on clean graphs. State-
of-the-art adversarial attack method for graph — metattack [51]
is chosen. Let P; represent the set of adversarial edges created
for clean graph G;. Next, we define learning tasks for the meta-
optimization. The learning objective of any task is defined in Equa-
tion 10, which aims at classifying nodes accurately while assigning
low attention coefficient scores to perturbed edges on its corre-
sponding graph. Let 7; denote the specific task for G;. Namely,
there are M tasks in accordance with clean graphs. Because clean
graphs are specified for every task, we use L;(0) to denote the
loss function of task 7;. We then compile support sets and query
sets for learning tasks. Labeled nodes from each clean graph is split
into two groups — one for the support set and the other as the query
set. Let S; and Q; denote the support set and the query set for G;,
respectively.

Given M learning tasks, the optimization algorithm first adapts
the initial model parameters to every learning task separately. For-
mally, 6 becomes 6] when adapting to 7;. We use gradient descent
to compute the updated model parameter 6. The gradient w.r.t 6
is evaluated using L;(6) on corresponding support set S;, and the
initial model parameters 6 are updated as follows:

0] = 6 - aVyLy(0), 11)

where & controls the learning rate. Note that only one gradient
step is shown in Equation 11, but using multiple gradient updates
is a straightforward extension, as suggested by [11]. There are M
different versions of the initial model (i.e., fg;, TN fglrw) constructed
in accordance with learning tasks.

The model parameters are trained by optimizing for the perfor-
mance of fg; with respect to 6 across all tasks. More concretely, we
define the following objective function for the meta-optimization:

M M
mgin; Lg:(6)) = mein; L7:(0 - aVg Lg:(0)). (12)
Because both classifying nodes and penalizing adversarial edges
are considered by the objective of PA-GNN, model parameters will
preserve the ability to reduce the negative effects from adversarial
attacks while maintaining a high accuracy for the classification.
Note that we perform meta-optimization over 6 with the objective
computed using the updated model parameters 6; for all tasks. Con-
sequently, model parameters are optimized such that few numbers
of gradient steps on a new task will produce maximally effective
behavior on that task. The characteristic of fast-adaptation on new
tasks would help the model retain the ability to penalize perturbed
edges on G, which is proved by the experiential results in Section
5.3.1. Formally, stochastic gradient descent (SGD) is used to update
model parameters 6 cross tasks:

M
0 —0-pV9) Lr:(0)).

i=1

(13)

In practice, the above gradients are estimated using labeled nodes
from query sets S; of all tasks. Our empirical results suggest that
splitting support sets and query sets on-the-fly through iterations
of the meta-optimization improves overall performance. We adopt
this strategy for the training procedure of PA-GNN.

604

WSDM ’20, February 3-7, 2020, Houston, TX, USA

Training Algorithm An overview of the training procedure of
PA-GNN is illustrated in Algorithm 1.

Algorithm 1: The training framework of PA-GNN
Input: G and {Gy,...,Gp}
Output: Model parameters 6

1 Randomly initialize 6;

2 fOI‘G[=G1,...,GM do

3 ‘ Select perturbed edge set P; with metattack;

4 end
5 while not early-stop do

6 forG,-=G1,...,GMd0

7 Split labeled nodes of G; into support set S; and Q;;
8 Evaluating Vg Lq:(0) with S; and Lq:;

9 Compute adapted parameters 6] with gradient

descent: 0] < 0 — aVg L (0);
end
Update 6 on {Qq, ..., Qp} with:
0 —0-pVo S, L7:6]);

10

11

12 end

3 Fine-tune 0 on G use L;

—-

5 EXPERIMENTS

In this section, we conduct experiments to evaluate the effectiveness

of PA-GNN. We aim to answer the following questions:

e Can PA-GNN outperform existing robust GNNs under represen-
tative and state-of-the-art adversarial attacks on graphs?

o How the penalized aggregation mechanism and the meta-optimization

algorithm contribute to PA-GNN?
e How sensitive of PA-GNN on the hyper-parameters?
Next, we start by introducing the experimental settings followed
by experiments on node classification to answer these questions.

5.1 Experimental Setup

5.1.1 Datasets. To conduct comprehensive studies of PA-GNN, we
conduct experiments under two different settings:

o Same-domain setting: We sample the poisoned graph and clean
graphs from the same data distribution. Two popular benchmark
networks (i.e., Pubmed [33] and Reddit [14]) are selected as large
graphs. Pubmed is a citation network where nodes are documents
and edges represent citations; Reddit is compiled from reddit.com
where nodes are threads and edges denote two threads are com-
mented by a same user. Both graphs build nodal features using
averaged word embedding vectors [31] of documents/threads. We
create desired graphs using sub-graphs of the large graph. Each
of them is randomly split into 5 similar-size non-overlapping
sub-graphs. One graph is perturbed as the poisoned graph, while
the remained ones are used as clean graphs.

Similar-domain setting: We put PA-GNN in real-world settings
where graphs come from different scenarios. More concretely, we
compile two datasets from Yelp Review!, which contains point-of-
interests (POIs) and user reviews from various cities in Northern

https://www.yelp.com/dataset

Technical Presentation

Table 1: Statistics of datasets

Pubmed Reddit Yelp-Small Yelp-Large
Avg. # of nodes 1061 3180 3426 15757
Avg. # of edges 2614 14950 90431 160893
of features 500 503 200 25
of classes 3 7 2 2

American. Firstly, each city in Yelp Review is transferred into a
graph, where nodes are POIs, nodal features are averaged word-
embedding vector [31] of all reviews that a POI received, and
binary labels are created to tell whether corresponding POIs are
restaurants. We further define edges using co-reviews (i.e., re-
views from the same author). Graphs from different cities have
different data distribution because of the differences in tastes,
culture, lifestyle, etc. The first dataset (Yelp-Small) contains four
middle-scale cities including Cleveland, Madison, Mississauga,
and Glendale where Cleveland is perturbed as G. The second
dataset (Yelp-Large) contains top-3 largest cities including Char-
lotte, Phoenix, and Toronto. Specifically, we inject adversarial
edges to the graph from Toronto to validate the transferability of
PA-GNN because Toronto is a foreign city compared with others.

We itemize statistics of datasets in Table 1. We randomly select 10%
of nodes for training, 20% for validation and remained for testing
on all datasets (i.e., on G). 40% nodes from each clean graph are
selected to build support and query sets, while remained ones are
treated as unlabeled. Support sets and query sets are equally split
on-the-fly randomly for each iteration of the meta-optimization
(i.e., after 6 is updated) to ensure the maximum performance.

5.1.2 Attack Methods. To evaluate how robust PA-GNN is under
different attack methods and settings, three representative and
state-of-the-art adversarial attack methods on graphs are chosen:

o Non-Targeted Attack: Non-targeted attack aims at reducing the
overall performance of GNNs. We adopt metattack [51] for non-
targeted attack, which is also state-of-the-art adversarial attack
method on graph data. We increase the perturbation rate (i.e.,
number of perturbed edges over all normal edges) from 0 to 30%,
by a step size of 5% (10% for Yelp-Large dataset due to the high
computational cost of metattack). We use the setting with best
attack performance according to [51].

o Targeted Attack: Targeted attack focuses on misclassifying spe-
cific target nodes. nettack [49] is adopted as the targeted attack
method. Specifically, we first randomly perturb 500 nodes with
nettack on target graph, then randomly assign them to training,
validating, and testing sets according to their proportions (i.e.,
1:2:7). This creates a realistic setting since not all nodes will be
attacked (hacked) in a real-world scenario, and perturbations
can happen in training, validating and testing sets. We adopt the
original setting for nettack from [49].

e Random Attack: Random attack randomly select some node pairs,
and flip their connectivity (i.e., remove existing edges and connect
non-adjacent nodes). It can be treated as an injecting random
noises to a clean graph. The ratio of the number of flipped edges
to the number of clean edges varies from 0 to 100% with a step
size of 20%.

605

WSDM ’20, February 3-7, 2020, Houston, TX, USA

We evaluate compared methods against state-of-the-art non-targeted
attack method metattack on all datasets. We analyze the perfor-
mances against targeted attack on Reddit and Yelp-Large datasets.
For random attack, we compare each method on Pubmed and Yelp-
Small datasets as a complementary. Consistent results are observed

on remained datasets.

5.1.3 Baselines. We compare PA-GNN with representative and
state-of-the-art GNNs and robust GNNs. The details are:

e GCN [19]: GCN is a widely used graph neural network. It de-
fines graph convolution via spectral analysis. We adopt the most
popular version from [19].

GAT [14]: As introduced in Section 2.1, GAT leverages multi-
head self-attention to assign different weights to neighborhoods.
PreProcess [40]: This method improves the robustness of GNNs
by removing existing edges whose connected nodes have low
feature similarities. Jaccard similarity is used sparse features and
Cosine similarity is adopted for dense features.

RGCN [48]: RGCN aims to defend against adversarial edges
with Gaussian distributions as the latent node representation in
hidden layers to absorb the negative effects of adversarial edges.
VPN [18]: Different from GCN, parameters of VPN are trained
on a family of powered graphs of G. The family of powered
graphs increases the spatial field of normal graph convolution,
thus improves the robustness.

Note that PreProcess, RGCN and VPN are state-of-the-art robust GNNs
developed to defend against adversarial attacks on graphs.

5.14 Settings and Parameters. We report the averaged results of 10
runs for all experiments. We deploy a multi-head mechanism [36]
to enhance the performance of self-attention. We adopt metattack
to generate perturbations on clean graphs. All hyper-parameters
are tuned on the validation set to achieve the best performance. For
a fair comparison, following a common way [48], we fix the number
of layers to 2 and the total number of hidden units per layer to 64
for all compared models. We set A to 1.0 and 1 to 100 for all settings.
Parameter sensitivity on A and 5 will be analyzed in Section 5.4. We
perform 5 gradient steps to estimate 6’ as suggested by [11].

5.2 Robustness Comparison

To answer the first question, we evaluate the robustness of PA-
GNN under various adversarial attack scenarios with comparison
to baseline methods. We adopt semi-supervised node classification
as our evaluation task as described in Section 5.1.4.

5.2.1 Defense Against Non-Targeted Attack. We first conduct exper-
iments under non-targeted attack on four datasets. Each experiment
is conducted 10 times. The average accuracy with standard devia-
tion is reported in Table 2. From the table, we make the following
observations: (i) As illustrated, the accuracy of vanilla GCN and
GAT decays rapidly when the perturbation rate goes higher, while
other robust GNN models achieve relatively higher performance in
most cases. This suggests the necessity of improving the robustness
of GNN models; (ii) The prepossessing-based method shows consis-
tent results on the Pubmed dataset with sparse features. However, it
fails for other datasets. Because the feature similarity and neighbor
relationship are often complementary, purely relying on feature

Technical Presentation

WSDM ’20, February 3-7, 2020, Houston, TX, USA

Table 2: Node classification performance (Accuracy+Std) under non-targeted metattack [51]

Dataset Ptb Rate (%) 0 5 10 15 20 25 30
GCN 77.81+£0.34 76.00+0.24 74.74+0.55 73.69+0.37 70.39+0.32 68.78+0.56 67.13+0.32
GAT 74.28+1.80 70.19+1.59 69.36+1.76 68.79+1.34 68.29+1.53 66.35£1.95 65.47+£1.99
Pubmed PreProcess 73.69+0.42 73.49+0.29 73.76+0.45 73.60+0.26 73.85+0.48 73.46+0.55 73.65+0.36
RGCN 77.81+0.24 78.07+0.21 74.86+0.37 74.31+0.35 70.83+0.28 67.63+£0.21 66.89+0.48
VPN 77.92+0.93 75.83+1.14 74.03+2.84 74.31+£0.93 70.14+1.26 68.47+1.11 66.53+1.09
PA-GNN 82.92+0.13 81.67+0.21 80.56+0.07 80.28+0.25 78.75+0.17 76.67+0.42 75.47+0.39
GCN 96.33+0.13 91.87+0.18 89.26+0.16 87.26+0.14 85.55+0.17 83.50+0.14 80.92+0.27
GAT 93.81+0.35 92.13+£0.49 89.88+0.60 87.91+0.45 85.43+0.61 83.40+0.39 81.27+0.38
Reddit PreProcess 95.22+0.18 95.14+0.19 88.40+0.35 87.00+0.27 85.70+0.25 83.59+0.27 81.17+0.30
RGCN 93.15+0.44 89.20+0.37 85.81+0.35 83.58+0.29 81.83+0.42 80.22+0.36 76.42+0.82
VPN 95.91+0.17 91.95+0.17 89.03+0.28 86.97+0.15 85.38+0.24 83.49+0.29 80.85+0.28
PA-GNN 95.80+0.11 94.35+0.33 92.16+0.49 90.74+0.56 88.44+0.20 86.60+0.17 84.45+0.34
GCN 87.27+0.31 74.54+0.98 73.44+0.35 73.30+0.83 72.16+0.88 69.70+0.90 68.55+0.85
GAT 86.22+0.18 81.09+0.31 76.29+0.74 74.21£0.51 73.43+0.78 71.80+0.69 70.58+1.22
Yelp-Small PreProcess 86.53+0.97 82.89+0.33 73.52+1.59 72.99+0.68 71.72+0.99 70.38+0.62 69.31+£1.32
RGCN 88.19+0.31 79.70+0.69 77.25+£2.12 75.85+1.31 75.65+0.33 74.71+0.21 73.30+£2.95
VPN 86.05+1.60 78.13+0.38 74.36+1.54 74.33+0.59 72.54+0.35 71.86+0.78 70.13+1.72
PA-GNN 86.53+0.18 86.34+0.18 84.17+0.17 82.41+0.46 77.69+0.25 76.77+0.60 76.20+0.39
GCN 84.21+0.48 - 80.96+1.66 - 80.56+1.69 - 78.64+0.46
GAT 84.73+0.22 - 81.25+0.36 - 79.82+0.42 - 77.81£0.39
PreProcess 84.54+0.25 - 82.16+4.12 - 78.80+2.17 - 78.05+2.63
Yelp-Large
RGCN 85.09+0.13 - 79.42+0.27 - 78.31£0.08 - 77.74+0.12
VPN 84.36+0.23 - 82.77+0.25 - 80.64+2.41 - 79.22+2.32
PA-GNN 84.98+0.16 - 84.66+0.09 - 82.71+0.29 - 81.48+0.12
similarity to determining perturbation edges is not a promising solu- o L Son \ Lo
tion. On the contrary, PA-GNN aims at learning the ability to detect e ess T peemocess
and penalizing perturbations from data, which is more dynamic 8 PAGNN \\\\ PAGN
and reliable; (iii) Comparing with RGCN, PA-GNN achieves higher 5 .- g o8 \\\ D
performance under different scenarios. This is because PA-GNN E o . - ;3 \‘ T gy -
successfully leverages clean graphs for improving the robustness. N AR \ 078 *\% e ™~
Moreover, instead of constraining model parameters with Gaussian 07 IR T¥eoss Tl TR e
distributions, PA-GNN directly restricts the attention coefficients of e o el R T
perturbed edges, which is more straightforward. The above obser- 065 el
. . . 0 20 40 60 80 100 0 20 40 60 80 100
vations articulate the efficacy of PA-GNN, which successfully learns Perturbation Rate (%) Perturbation Rate (%)
to penalize perturbations thanks to the meta-optimization on clean (a) Pubmed (b) Yelp-Small

graphs. Lastly, we point out that PA-GNN achieves slightly higher
or comparable performance even if G is clean (i.e., no adversarial
edges), showing the advantage of the meta-optimization process.

5.2.2 Defense Against Targeted Attack. We further study how ro-
bust PA-GNN is under targeted attack. As shown in Table 3, PA-
GNN outperforms all the compared methods under targeted attack,
with approximate 5% performance improvements on both datasets
compared with second accurate methods. This confirms the relia-
bility of PA-GNN against targeted attack. Moreover, note that the
perturbations of clean graphs are generated by metattack, which is a
non-target adversarial attack algorithm. We conclude that PA-GNN
does not rely on specific adversarial attack algorithm to train model
initialization. The ability to penalize perturbation can be general-
ized to defend other adversarial attacks. A similar conclusion can
be drawn from following experiments against random attack.

5.2.3 Defense Against Random Attack. Finally, we evaluate all com-
pared methods against random attack. As shown in Figure 2, PA-
GNN consistently out-performs all compared methods. Thanks to

606

Figure 2: Node classification accuracy under random attack.

the meta-optimization process, PA-GNN successfully learns to pe-
nalize perturbations, and transfers such ability to target graph with
a different kind of perturbation. Besides, the low performance of
GAT indicates the vulnerability of the self-attention, which con-
firms the effectiveness of the proposed penalizing aggregation mech-
anism.

5.3 Ablation Study

To answer the second question, we conduct ablation studies to
understand the penalized aggregation and meta-optimization algo-
rithm.

5.3.1 Varying the Penalized Aggregation Mechanism. We analyze
the effect of proposed penalized aggregation mechanism from two
aspects. Firstly, we propose PA-GNNj,,, a variant of PA-GNN that
removes the penalized aggregation mechanism by setting A = 0. We
validate PA-GNN,;, on Reddit dataset, and its performance against
different perturbation rates is reported in Table 4. As we can see,
PA-GNN consistently out-performs PA-GNNy,, by 2% of accuracy.

Technical Presentation

WSDM ’20, February 3-7, 2020, Houston, TX, USA

Table 3: Node classification accuracy under targeted attack.

Dataset GCN GAT PreProcess RGCN VPN PA-GNN
Reddit 74.25+0.20 73.83+0.12 73.02+0.18 74.75+0.15 74.00+0.07 79.57+0.13
Yelp-Large 71.97+0.12 71.12+0.73 74.83+0.12 77.01+0.24 72.09+0.73 82.28+0.49
Table 4: Node classification accuracy of ablations.
Ptb Rate (%) 0 5 10 15 20 25 30
PA-GNNp, 95.25+0.81 92.17+0.23 90.45+0.72 88.72+0.61 86.66+0.18 84.68+0.52 81.53+0.34
PA-GNNy, 4 77.11+0.67 75.43+1.11 71.18+1.24 68.51+1.95 64.86+1.59 63.16+1.29 61.08+1.07
PA—GNth 96.72+0.09 91.89+0.14 89.79+0.24 87.56+0.25 85.41+0.17 83.88+0.35 82.14+0.38
PA-GNNj, 96.63+0.18 92.13+0.19 88.62+0.35 87.00+0.27 84.65+0.25 82.75+0.27 81.20+0.30
PA-GNN 95.80+0.11 94.35+0.33 92.16+0.49 90.74+0.56 88.44+0.20 86.60+0.17 84.45+0.34

Table 5: Mean values of attention coeflicients.

Normal edges Ptb. edges
W/o penalty 12.63 12.80
With penalty 4.76 3.86

0.15

o
o
@

Normal
Ptb

Normal
Ptb

o
=3
o

Probability dist.
o
< S
R
Probability dist.

0.10

=]
o
~

o
o
S

0.00
0 10 20 30 40 0 5 10 15

Attnention coefficient score Attnention coefficient score

(a) W/o penalized aggregation. (b) With penalized aggregation.

Figure 3: Distributions of attention coefficients in PA-GNN.

The penalized aggregation mechanism limits negative effects from
perturbed edges, in turns improves the performance on the target
graph. Secondly, we explore distributions of attention coefficient
on the poisoned graph of PA-GNN with/without the penalized ag-
gregation mechanism. Specifically, the normalized distributions of
attention coefficients for normal and perturbed edges are plotted in
Figure 3. We further report their mean values in Table 5. Without
the penalized aggregation, perturbed edges obtain relatively higher
attention coefficients. This explains how adversarial attacks hurt the
aggregation process of a GNN. As shown in Figure 3b, normal edges
receive relative higher attention coefficients through PA-GNN, con-
firming the ability to penalize perturbations is transferable since
PA-GNN is fine-tuned merely with the node classification objective.
These observations reaffirm the effectiveness of the penalized ag-
gregation mechanism and the meta-optimization algorithm, which
successfully transfers the ability to penalize perturbations in the
poisoned graph.

5.3.2 Varying the Meta-Optimization Algorithm. Next, we study
the contribution of the meta-optimization algorithm. As discussed
in Section 4.2, three ablations are created accordingly: PA-GNN,,, 4,
PA-GNNy;, and PA-GNNj;. PA-GNNy,, 4 ignores clean graphs and
rely on a second-time attack to generate perturbed edges. PA-GNNy,
omit the meta-optimization process, training the model initializa-
tion on clean graphs and their adversarial counterparts jointly. We
then fine-tune the initialization for G using the classification loss
L. PA-GNNj; further simplifies PA-GNN, by adding G to the
joint training step. Note that we remove Ly;; for G because de-
tailed perturbation information is unknown for a poisoned graph.
All three variants are evaluated on Reddit dataset, and their perfor-
mance is reported in Table 4.

PA-GNN,,, 4 performs the worst among all variations. Because
perturbed edges from the adversarial attack can significantly hurt
the accuracy, treating them as clean edges is not a feasible solution.
PA-GNNy;, and PA-GNNj; slightly out-perform PA-GNN when G
is clean. This is not amazing since more training data can contribute
to the model. However, their performance decreases rapidly as
the perturbation rate raises up. Because the data distribution of
a perturbed graph is changed, barely aggregate all available data
is not an optimal solution for defending adversarial attack. It is
vital to design PA-GNN which leverages clean graphs from similar
domains for improving the robustness of GNNs. At last, PA-GNNj,,,
consistently out-performs PA-GNNy;, and PA-GNNj; in perturbed
cases. shown advantages of the meta-optimization algorithm which
utilizes clean graphs to train the model regardless of the penalized
aggregation mechanism.

5.4 Parameter Sensitivity Analysis

We investigate the sensitivity of 7 and A for PA-GNN. 7 controls the
penalty of perturbed edges, while A balances the classification objec-
tive and the penalized aggregation mechanism. Generally, a larger
n pull the distribution of perturbed edges farther away from that
of normal edges. We explore the sensitivity on Pubmed and Reddit
datasets, both with a 10% perturbation rate. We alter and A among
{0, 1, 10, 100, 1000} and {0, 50, 100, 200, 400, 800}, respectively. The
performance of PA-GNN is illustrated in Figure 4. As we can see,
the accuracy of PA-GNN is relatively smooth when parameters are
within certain ranges. However, extremely large values of n and
A result in low performances on both datasets, which should be
avoided in practice. Moreover, increasing A from 0 to 1 improves the
accuracy on both datasets, demonstrating the proposed penalized
aggregation mechanism can improve the robustness of PA-GNN.

.
PN _—~

m\\ 0 ® 10 \
100N 200 100

— 400 S
A 1000 goo M A 1000 goo

100
200
400
"

(a) Pubmed with 10% Ptb. (b) Reddit with 10% Ptb.

Figure 4: Parameter sensitivity analysis.

Technical Presentation

6 CONCLUSION AND FUTURE WORK

In this paper, we study a new problem of exploring extra clean
graphs for learning a robust GNN against the poisoning attacks
on a target graph. We propose a new framework PA-GNN, that
leverages penalized attention mechanism to learn the ability to
reduce the negative impact from perturbations on clean graphs and
meta-optimization to transfer the alleviation ability to the target
poisoned graph. Experimental results of node classification tasks
demonstrate the efficacy of PA-GNN against different poisoning
attacks. In the future, we would like to explore the potential of
transfer learning for improving robustness on other models, such
as community detection and graph classification.

ACKNOWLEDGMENTS

This material is based upon work supported by, or in part by, the
National Science Foundation (NSF) under grant #1909702.

REFERENCES

[1] Leman Akoglu, Hanghang Tong, and Danai Koutra. 2015. Graph based anomaly
detection and description: a survey. Data mining and knowledge discovery 29, 3
(2015), 626-688.

Aleksandar Bojchevski and Stephan Giinnemann. 2019. Adversarial Attacks on

Node Embeddings via Graph Poisoning. In ICML.

[3] JoanBruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-

works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203

(2013).

Jinyin Chen, Yangyang Wu, Xuanheng Xu, Yixian Chen, Haibin Zheng, and

Qi Xuan. 2018. Fast gradient attack on network embedding. arXiv preprint

arXiv:1809.02797 (2018).

[5] Minhao Cheng, Thong Le, Pin-Yu Chen, Jinfeng Yi, Huan Zhang, and Cho-Jui
Hsieh. 2018. Query-efficient hard-label black-box attack: An optimization-based
approach. arXiv preprint arXiv:1807.04457 (2018).

[6] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.
Adversarial attack on graph structured data. ICML (2018).

[7] Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In Advances
in neural information processing systems. 3844-3852.

[8] Kaize Ding, Jundong Li, Rohit Bhanushali, and Huan Liu. 2019. Deep Anomaly
Detection on Attributed Networks. In SDM.

[9] Kaize Ding, Yichuan Li, Jundong Li, Chenghao Liu, and Huan Liu. 2019.
Graph Neural Networks with High-order Feature Interactions. arXiv preprint
arXiv:1908.07110 (2019).

[10] Wengqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph Neural Networks for Social Recommendation. In The World Wide
Web Conference. ACM, 417-426.

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-

learning for fast adaptation of deep networks. In ICML.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. 2018. Large-scale learnable

graph convolutional networks. In KDD.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and

harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[14] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS.

[15] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks
on graph-structured data. arXiv preprint arXiv:1506.05163 (2015).

[16] Sepp Hochreiter, A Steven Younger, and Peter R Conwell. 2001. Learning to learn
using gradient descent. In ICANN. Springer, 87-94.

[17] Chao Huang, Xian Wu, Xuchao Zhang, Chuxu Zhang, Jiashu Zhao, Dawei Yin,
and Nitesh V Chawla. 2019. Online Purchase Prediction via Multi-Scale Modeling
of Behavior Dynamics. In KDD. ACM, 2613-2622.

[18] Ming Jin, Heng Chang, Wenwu Zhu, and Somayeh Sojoudi. 2019. Power up!
Robust Graph Convolutional Network against Evasion Attacks based on Graph
Powering. arXiv preprint arXiv:1905.10029 (2019).

[19] Thomas N Kipf and Max Welling. 2016. Semi-Supervised Classification with
Graph Convolutional Networks. arXiv preprint arXiv:1609.02907 (2016).

[20] Jaekoo Lee, Hyunjae Kim, Jongsun Lee, and Sungroh Yoon. 2017. Transfer

learning for deep learning on graph-structured data. In AAAL

Ruirui Li, Liangda Li, Xian Wu, Yunhong Zhou, and Wei Wang. 2019. Click

Feedback-Aware Query Recommendation Using Adversarial Examples. In The

World Wide Web Conference. ACM, 2978-2984.

[2

—

[4

=

[12

[13

(21

608

[22

[23

[24

[25

IS
S

[27

[28

[29

[30

[31]

[33

[34

[35

[36

[39

[40

[41

[42]

[43

[44

[45

[46

o
=

a
=

WSDM ’20, February 3-7, 2020, Houston, TX, USA

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. 2018. Adaptive graph
convolutional neural networks. In AAAL

Yingwei Li, Song Bai, Cihang Xie, Zhenyu Liao, Xiaohui Shen, and Alan L Yuille.
2019. Regional Homogeneity: Towards Learning Transferable Universal Adver-
sarial Perturbations Against Defenses. arXiv preprint arXiv:1904.00979 (2019).
Yingwei Li, Song Bai, Yuyin Zhou, Cihang Xie, Zhishuai Zhang, and Alan Yuille.
2018. Learning Transferable Adversarial Examples via Ghost Networks. arXiv
preprint arXiv:1812.03413 (2018).

Yandong Li, Lijun Li, Ligiang Wang, Tong Zhang, and Boqing Gong. 2019. NAT-
TACK: Learning the Distributions of Adversarial Examples for an Improved
Black-Box Attack on Deep Neural Networks. ICML (2019).

Yao Ma, Suhang Wang, Charu C. Aggarwal, and Jiliang Tang. 2019. Graph
Convolutional Networks with EigenPooling. In KDD.

Yao Ma, Suhang Wang, Charu C. Aggarwal, Dawei Yin, and Jiliang Tang. 2019.
Multi-dimensional Graph Convolutional Networks. In SDM.

Yao Ma, Suhang Wang, Lingfei Wu, and Jiliang Tang. 2019. Attacking Graph
Convolutional Networks via Rewiring. arXiv preprint:1906.03750 (2019).
Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda,
and Michael M Bronstein. 2017. Geometric deep learning on graphs and manifolds
using mixture model cnns. In CVPR.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. 2016. Learning
convolutional neural networks for graphs. In ICML.

Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global vectors for word representation. In EMNLP.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy
Lillicrap. 2016. Meta-learning with memory-augmented neural networks. In
ICML.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93-93.

Kai Shu, Suhang Wang, Jiliang Tang, Yilin Wang, and Huan Liu. 2018. Crossfire:
Cross media joint friend and item recommendations. In WSDM.

Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant Honavar.
2019. Node Injection Attacks on Graphs via Reinforcement Learning. arXiv
preprint arXiv:1909.06543 (2019).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.
Matching networks for one shot learning. In Advances in neural information
processing systems. 3630-3638.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu,
and Kilian Q Weinberger. 2019. Simplifying graph convolutional networks. arXiv
preprint arXiv:1902.07153 (2019).

Huijun Wu, Chen Wang, Yuriy Tyshetskiy, Andrew Docherty, Kai Lu, and Liming
Zhu. 2019. Adversarial Examples on Graph Data: Deep Insights into Attack and
Defense. In IJCAL

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S Yu. 2019. A comprehensive survey on graph neural networks. arXiv
preprint arXiv:1901.00596 (2019).

Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil
Jain. 2019. Adversarial attacks and defenses in images, graphs and text: A review.
arXiv preprint arXiv:1909.08072 (2019).

Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong,
and Xue Lin. 2019. Topology Attack and Defense for Graph Neural Networks:
An Optimization Perspective. arXiv preprint arXiv:1906.04214 (2019).

Huaxiu Yao, Yiding Liu, Ying Wei, Xianfeng Tang, and Zhenhui Li. 2019. Learning
from Multiple Cities: A Meta-Learning Approach for Spatial-Temporal Prediction.
In The World Wide Web Conference. ACM, 2181-2191.

Huaxiu Yao, Ying Wei, Junzhou Huang, and Zhenhui Li. 2019. Hierarchically
Structured Meta-learning. In ICML. 7045-7054.

Huaxiu Yao, Chuxu Zhang, Ying Wei, Meng Jiang, Suhang Wang, Junzhou Huang,
Nitesh V Chawla, and Zhenhui Li. 2019. Graph Few-shot Learning via Knowledge
Transfer. arXiv preprint arXiv:1910.03053 (2019).

Jiani Zhang, Xingjian Shi, Junyuan Xie, Hao Ma, Irwin King, and Dit-Yan Yeung.
2018. Gaan: Gated attention networks for learning on large and spatiotemporal
graphs. arXiv preprint arXiv:1803.07294 (2018).

Dingyuan Zhu, Ziwei Zhang, Peng Cui, and Wenwu Zhu. 2019. Robust Graph
Convolutional Networks Against Adversarial Attacks. In KDD.

Daniel Zigner, Amir Akbarnejad, and Stephan Giinnemann. 2018. Adversarial
attacks on neural networks for graph data. In KDD.

Daniel Ziigner and Stephan Giinnemann. 2019. Certifiable robustness and robust
training for graph convolutional networks. In KDD.

Daniel Ziigner and Stephan Giinnemann. 2019. Adversarial Attacks on Graph
Neural Networks via Meta Learning. In ICLR.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Neural Networks
	2.2 Adversarial Attack and Defense on Graphs

	3 Preliminaries
	3.1 Notations
	3.2 Basic GNN Design
	3.3 Problem Definition

	4 Proposed Framework
	4.1 Penalized Aggregation Mechanism
	4.2 Transfer with Meta-Optimization

	5 Experiments
	5.1 Experimental Setup
	5.2 Robustness Comparison
	5.3 Ablation Study
	5.4 Parameter Sensitivity Analysis

	6 Conclusion and Future Work
	Acknowledgments
	References

