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Abstract

In many real-world classification applications such as fake

news detection, the training data can be extremely imbal-

anced, which brings challenges to existing classifiers as the

majority classes dominate the loss functions of classifiers.

Oversampling techniques such as SMOTE are effective

approaches to tackle the class imbalance problem by

producing more synthetic minority samples. Despite their

success, the majority of existing oversampling methods only

consider local data distributions when generating minority

samples, which can result in noisy minority samples that do

not fit global data distributions or interleave with majority

classes. Hence, in this paper, we study the class imbalance

problem by simultaneously exploring local and global data

information since: (i) the local data distribution could give

detailed information for generating minority samples; and

(ii) the global data distribution could provide guidance to

avoid generating outliers or samples that interleave with

majority classes. Specifically, we propose a novel framework

GL-GAN, which leverages the SMOTE method to explore

local distribution in a learned latent space and employs

GAN to capture the global information, so that synthetic

minority samples can be generated under even extremely

imbalanced scenarios. Experimental results on diverse real

data sets demonstrate the effectiveness of our GL-GAN

framework in producing realistic and discriminative minor-

ity samples for improving the classification performance of

various classifiers on imbalanced training data. Our code is

available at https://github.com/wentao-repo/GL-GAN.

Keywords: imbalanced data, adversarial learning

1 Introduction

The classification performance heavily relies on the
quality and quantity of the training data [11]. However,
in many real-world applications, due to some practical
concerns such as privacy and time cost, only limited
labeled data can be collected. Meanwhile, such data
could be imbalanced. Specifically, some classes have
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significantly larger number of data samples while others
have very limited amount of data, which is called class
imbalance problem [10]. For instance, in fake news de-
tection [24], the majority of news in the collected data
are true news while only a small portion of news are fake
news. The imbalanced data has negative impacts on the
classifier training since the standard classifiers tend to
be overwhelmed by the majority classes while ignoring
the minority classes [3]. Furthermore, even though mi-
nority classes may only take extremely small ratio of
one data set, for some applications like medical diag-
nosis, misclassifying a minority class sample is usually
more severe than misclassifying a majority one [16].

Oversampling has been proven to be an effective
way to alleviate the class imbalance problem by over-
sampling minority samples into the imbalanced data
set [17]. As one of the most popular oversampling
methods, Synthetic Minority Over-sampling Technique
(SMOTE) [2] generates new synthetic minority samples
by performing linear interpolation operations between
existing minority samples and their nearest neighbors
within the same class. As shown in Figure 1, by apply-
ing the SMOTE method, new synthetic minority sam-
ples are generated along with the linear interpolation
between two existing minority samples.

Despite the success of SMOTE and its variants [8,
9], they still face some challenges. First, SMOTE-based
methods only consider the local neighbor relationship
of each minority sample, while the global distribution
is totally ignored. Without considering the global
distribution of the given data, the generated minority
samples could not fit the real data distribution. For
instance, the generated samples in Figure 1 are either
located on the null space of the given data samples or
interleaved with majority data samples. Second, the
interpolation operations performed by these methods
on raw feature space may not generate realistic data
samples. For instance, for the given text data which
lies in discrete space, SMOTE-based methods cannot
guarantee their generated texts are readable.

Therefore, in this paper, we study the class imbal-
ance problem by simultaneously exploring both global
and local information. The local data distribution pro-
vides detailed local information for generating minority
samples; and the global data distribution provides guid-
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Figure 1: An example of imbalanced data and SMOTE
method. The synthetic minority samples are generated
along the dash line between two minority samples.

ance from a global view to avoid generating samples that
interleave with majority samples or fall in the null space
of the given data. We are faced with two challenges:
(i) how to explore global data distribution for minor-
ity sample generation; and (ii) how to simultaneously
leverage global and local distribution information to
generate realistic and discriminative synthetic minority
samples. Recently, generative adversarial learning [7]
has shown promising results in generating realistic data
samples [7, 20] through estimating the latent global data
distribution, which paves us a way to solve these two
challenges. Hence, we propose a novel framework which
leverages oversampling techniques to capture local data
structure and generative adversarial learning to explore
global data distribution. The contributions of our work
are summarized below:

• We identify the importance of both global and
local distribution information in tackling the class
imbalance problem.
• We propose a novel generative adversarial frame-

work, GL-GAN, to generate realistic and discrim-
inative minority samples by exploring both global
and local distributions.
• We conduct extensive experiments on diverse real

data sets to demonstrate the effectiveness of GL-
GAN on alleviating the class imbalance problem.

The rest of this paper is organized as follows. Section 2
summarizes related works. Our proposed GL-GAN
framework is introduced in Section 3. Empirical studies
and case studies are reported in Section 4 and Section 5
separately. Finally, we conclude this work in Section 6.

2 Related Work

Existing works for tackling the class imbalance prob-
lem can be roughly classified into three categories:
data-level methods, algorithm-level methods and hybrid

methods [13]. Our GL-GAN is a data-level method.
Undersampling [25, 16] and oversampling [2, 8, 9]

are two fundamental data-level solutions. Briefly, un-
dersampling approaches downsize the majority class
by removing majority samples, while oversampling ap-
proaches upsize the minority class by generating minor-
ity samples [15]. Oversampling with replacement, also
called random oversampling [6], is the simplest over-
sampling approach that randomly duplicates existing
minority samples to augment the minority class. How-
ever, the random oversampling method often makes the
decision boundary of the classifier smaller and causes
the classifier to over-fit [8]. As an improved approach,
SMOTE [2] inflates the minority class by producing syn-
thetic minority samples instead of duplicating existing
minority samples. Different from SMOTE-based meth-
ods [2, 8, 9] that utilize Euclidean distance to perform
interpolation operations, some recent work [1, 23] in-
troduced Mahalanobis distance into synthetic minority
samples generation process and achieved good perfor-
mance on classifier training.

Recently, more and more researchers have been at-
tracted by the generative adversarial learning due to
its great power on generating different kinds of real-
istic synthetic data samples. The pioneer work intro-
duced by [7] presented Generative Adversarial Networks
(GAN) to learn the real data distribution through a
minimax game between a generator G and a discrimi-
nator D. The generator G produces synthetic samples
to fool the discriminator D, while the discriminator D
judges whether the input samples come from the gener-
ator or from the real data set. These two components
fight against each other and improve themselves grad-
ually [5]. Some recent research applied generative ad-
versarial learning to solve the class imbalance problem.
For instance, conditional GAN [20] is adopted in [4] for
producing minority samples effectively. BAGAN [18], is
a data augmentation model that can alleviate the class
imbalance problem by modifying the discriminator D in
the traditional GAN. However, the local structure of the
given minority samples is not explored by these afore-
mentioned models, so some generated synthetic samples
may be close to the decision boundary and hard to be
utilized to train a classifier.

Our GL-GAN is inherently different from existing
works and, hence, able to generate more realistic and
discriminative synthetic minority samples.

3 The Proposed Framework

In this paper, we focus on the binary class imbalance
problem. Given an imbalanced sample set Xorg contain-
ing a majority sample set Xmaj and a minority sample
set Xmin, our goal is to generate a set of realistic and

308
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d 

07
/0

2/
20

 to
 1

74
.6

0.
22

9.
11

5.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



Figure 2: An overview of GL-GAN.

discriminative synthetic minority samples Xsyn so that,
comparing with training only on the original imbalanced
sample set Xorg, the classification performance of clas-
sifiers can be greatly improved by training on the bal-
anced augmentation sample set Xorg ∪ Xsyn.

As shown in Figure 2, our GL-GAN is composed
of two modules, local structure exploration and global
distribution learning. The former is designed for gener-
ating latent representations of minority samples through
exploring the local distribution information, and the lat-
ter aims to produce realistic and discriminative minority
samples that can fit the global distribution. Next, we
will introduce details of each module.

3.1 Local Structure Exploration The local struc-
ture exploration module consists of two components,
i.e., an encoder E and a local data representation inter-
polator I, specifying for two different tasks separately.

3.1.1 Discriminative Representation Learning
In many cases, directly generating synthetic data sam-
ples in raw feature space by local-based oversampling
techniques such as SMOTE may cause several problems.

Firstly, as we demonstrated before, these methods
cannot generate realistic synthetic samples for some spe-
cific data types like text data. Secondly, the gener-
ated minority data samples may interleave with major-
ity samples. This motivates us to first learn discrimina-
tive latent representations of the raw data, then exploit
the local data structure in the learned latent space. The
advantages of doing this are as follows: (i) By learning a
low-dimensional latent representation, we can preserve
the most important information of the data while drop
some noisy information; and (ii) During the latent rep-
resentation learning process, we can enforce the latent
representations of data samples belonging to the same
class to be closed to each other.

Deep autoencoders have been proved to be an
effective way to extract important information from
high-dimensional data using low-dimensional represen-
tations [22]. Typically, an autoencoder consists of two
components: an encoder E and a decoder Q. The en-

coder E takes the high-dimensional data as input and
maps them to the corresponding latent representations.
The decoder Q recovers these learned latent representa-
tions back to the raw feature space. The goal of training
an autoencoder is to minimize the reconstruction error
between the input data and the reconstructed data pro-
duced by the decoder Q, which can be defined as
(3.1)

Lrec(Q (E (Xorg)) ,Xorg)=
1

|Xorg|
∑

xi∈Xorg

‖Q (E (xi))− xi‖22.

In our GL-GAN framework, we propose to embed
the given real data samples into a latent space with
majority samples in one cluster and minority samples
in another cluster, and these two clusters should be far-
away from each other. To do that, we aim to reduce the
interleaving between the synthetic generated minority
samples and the given majority samples. Formally, this
process can be described by

Lclu =
1

|Xmaj |
∑

xi∈Xmaj

‖E(xi)− zmaj‖22 +
λ1

|Xmin|∑
xi∈Xmin

‖E(xi)− zmin‖22 − λ2‖zmaj − zmin‖22,
(3.2)

where zmaj and zmin are mean of the latent represen-
tations of majority sample set Xmaj and minority sam-
ple set Xmin, respectively. λ1 and λ2 are two hyper-
parameters controlling the weights. Starting from here,
we use Λ or λ to represent hyper-parameters.

Therefore, the autoencoder in our GL-GAN can be
trained by minimizing the following loss function:

(3.3) LA = Lrec + Λ1Lclu + Λ2R(θ).

Here R(θ) is the regularizer of the model parameters
θ. Once the autoencoder is trained well, the latent
representation of sample xi can be given as zi = E(xi).

3.1.2 Local-based Data Generation With the
learned latent representations, we can generate syn-
thetic minority samples in the latent space by exploring
the local structure of the sample set Zmin, which is the
latent embedding of the minority sample set Xmin. In
our GL-GAN, we adopt SMOTE as the implementation
of the local data interpolator I because of its simplicity.

For any minority sample zi ∈ Zmin, SMOTE
1) discovers k nearest neighbors {z1i , z2i , . . . , zki } of zi
within the same minority class set Zmin, 2) randomly
picks up any one nearest neighbor zni (n ∈ [1, k]) from
the set {z1i , z2i , . . . , zki } and chooses a random number
η ∈ [0, 1]. Hence, a new synthetic minority sample
z′i could be created by z′i = zi + η (zni − zi). The
second step can be repeated N times, and, finally,
N×|Zmin| synthetic minority samples will be generated
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when executing the same process on every minority
sample in Zmin. After the synthetic minority sample set
Zsyn is obtained, we can get a balanced augmentation
sample set Z = Zmaj ∪Zmin ∪Zsyn in the latent space.

3.2 Global Distribution Learning For making the
generated minority samples in Zsyn more realistic and
discriminative, we introduce a generative adversarial
learning model to learn the global information of given
samples and modify samples in Zsyn accordingly.

3.2.1 Discriminator D The role of the discrimina-
tor D is to differentiate if a data sample is real or fake.
For a data sample who comes from the given real data
set, the discriminator D labels it as a real sample. If a
data sample is synthetically generated by the generator
G, it will be classified as a fake sample. The discrim-
inator D and the generator G fight against each other
and improve themselves gradually. The loss function for
training the discriminator D can be written as
(3.4)

LD =
1

|Xorg|
∑

xi∈Xorg

‖D(xi)−1‖22+
λ

|Z|
∑
zi∈Z

‖D(G(zi))−0‖22.

In equilibrium, the discriminator D cannot find the
difference between real and synthetic samples, which
means the quality of synthetic data generated by the
generator G are approximate to the real data.

3.2.2 Classifier C For making sure that generated
data samples can have expected labels, we introduce a
classifier C in our GL-GAN. Specifically, the classifier
C also takes both real samples and synthetic samples
generated by the generator G as input. Since the input
of G in GL-GAN is the balanced augmentation sample
set Z, every output of the generator G, i.e. G(zi), has its
corresponding label. The classifier C works on labeled
data samples and makes classification for them. The loss
function for training the classifier C in our GL-GAN is
(3.5)

LC =
1

|Xorg|
∑

xi∈Xorg

‖C(xi)−Γxi‖
2
2+

λ

|Z|
∑
zi∈Z

‖C(G(zi))−Γzi‖
2
2.

Here Γxi and Γzi are true labels of real sample xi and
latent representation zi, respectively. By introducing
the classifier C into the traditional GAN, the generator
G is forced to produce synthetic samples which can be
classified by C correctly.

3.2.3 Generator G Different from the traditional
generator G that takes a set of random noise follow-
ing some prior distribution as input, during the model
training phase, the generator G in our GL-GAN is fed
with the balanced augmentation sample set Z. Since

there are two types of latent representations in Z, i.e.,
the latent representations of real samples in Zmaj and
Zmin, denoted as Zorg = Zmaj ∪ Zmin, and the latent
representations of synthetic samples in Zsyn, the gener-
ator G should be able to project latent representations
Zorg back to the raw feature space as well as produce
synthetic data samples that can fool the discriminator
D. Therefore, the loss for training generator G includes
three different types: the reconstruction loss Lrec for
mapping latent representations Zorg back to the raw
feature space, the discriminator loss L(G,D) produced
by the discriminator D for evaluating the difference be-
tween the real data samples and data samples generated
by G, and the classifier loss L(G,C) brought by the clas-
sifier C for making classification on the generated data
samples of G. Formally, the loss function for training
the generator G in our GL-GAN can be defined as

LG = Lrec(G(Zorg),Xorg) + λ1L(G,D) + λ2L(G,C)

=
1

|Xorg|
∑

xi∈Xorg,zi∈Zorg

‖G(zi)− xi‖22 +
λ1
|Z|∑

zi∈Z
‖D(G(zi))− 1‖22 +

λ2
|Z|

∑
zi∈Z

‖C(G(zi))− Γzi‖22.

(3.6)

After the whole framework is trained well, the generator
G is able to produce a set of realistic and discriminative
synthetic minority samples.

3.3 Objective Function of GL-GAN With local
structure exploration module and global distribution
learning module introduced above, the final objective
function of GL-GAN is given as:

(3.7) min
θG,θC

max
θD
Lrec(G(Zorg),Xorg)+Λ1L(G,D)+Λ2L(G,C)

where θG, θC and θD are the parameters of generator
G, classifier C and discriminator D, respectively.

3.4 Algorithm In this subsection, we present our
GL-GAN framework in Algorithm 1.

As shown in Algorithm 1, we train the autoencoder
part at first to make sure the autoencoder could map
the input data samples into two far-way clusters in the
latent space. After pre-training the autoencoder, we uti-
lize the encoder E to obtain the latent representations
of the input data samples. Then, the local data inter-
polator I can be applied in the learned latent space to
generate a set of synthetic minority samples within the
same cluster. In order to train the generative adversar-
ial learning part more effectively, we use the knowledge
learned by the pre-trained autoencoder to initialize the
generative model. Specifically, the discriminator D and
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Algorithm 1 The algorithm of GL-GAN.

Require: an imbalanced sample set Xorg
1: Initialize the parameters of autoencoder.
2: Pre-train the autoencoder to obtain the latent represen-

tations Zorg = Zmaj ∪ Zmin of Xorg.
3: Apply SMOTE method for Zmin to get the synthetic

minority sample set Zsyn.
4: Form a balanced augmentation sample set Z = Zmaj ∪
Zmin ∪ Zsyn in the learned latent space.

5: repeat
6: for discriminator-epochs do
7: Train the discriminator D with augmented latent

sample set Z and real sample set Xorg. (Sec. 3.2.1)
8: end for
9: for classifier-epochs do

10: Train the classifier C with augmented latent sample
set Z and real sample set Xorg. (Sec. 3.2.2)

11: end for
12: for generator-epochs do
13: Train the generator G. (Sec. 3.2.3)
14: end for
15: until model convergence

the classifier C have the same architecture with the en-
coder E except both D and C have one more layer.
The last layer of the discriminator D is a dense layer
with a softmax activation function for producing binary
outputs and the last layer of the classifier C is a dense
layer for producing classification results. The parame-
ters learned by the encoder E will be used to initialize
the discriminator D and the classifier C during the gen-
erative model training phase. Similarly, the generator
G is initialized by the weight parameters learned by the
decoder Q since they have the same architecture.

4 Experiments

In this section, we conduct experiments to verify the
effectiveness of our proposed GL-GAN framework. We
aim at answering the following two questions:

• Can the proposed GL-GAN framework generate
discriminative minority samples for improving the
classification performance of imbalanced data?
• What is the impact of each module of GL-GAN?

We begin by introducing the data sets and experimental
settings, then we compare GL-GAN with several state-
of-the-art related methods on the classification task to
answer the first question. We then analyze the impact of
each module of GL-GAN to answer the second question.

4.1 Experimental Settings In order to test how
the generated synthetic samples alleviate the binary
class imbalance problem, we utilize the classification
performance of different classifiers training on various

augmented sample sets as the evaluation indicator.

4.1.1 Data Sets The experiments are conducted on
five real data sets, i.e., USPS, Sensorless Drive Diag-
nosis, Gas Sensor Array Drift, Madelon and Gisette.
Sensorless Drive Diagnosis and Gas Sensor Array Drift
are publicly from the UCI data repository1 and the
rest three can be obtained from Feature Selection data
repository2. Since all these five data sets are class bal-
anced, we construct the imbalanced data set for each
of them according to the following three steps. Firstly,
we randomly choose one class as majority class and an-
other one as minority class to obtain a balanced binary
data set. Then we divide 80% data samples of the bal-
anced binary class data set as the candidates set and
the rest as the test set. Lastly, we artificially imbalance
the candidates set to form the imbalanced data set by
utilizing a predefined imbalanced ratio r. For instance,
if r = 0.01, then 99% minority samples will be removed
from the candidates set so that the ratio of the minority
samples to the majority samples in the imbalanced data
set is 0.01. Table 1 provides the statistical information
of five imbalanced data sets obtained by the aforemen-
tioned three steps when the imbalanced ratio r = 0.01.

Table 1: Statistical information of imbalanced data sets.
Data Set # Features # Majority # Minority

USPS 256 744 7
Sensorless Drive Diagnosis 48 4256 42

Gas Sensor Array Drift 128 1549 15
Madelon 500 1040 10
Gisette 5000 2800 28

4.1.2 Classifiers Since our goal is to generate syn-
thetic minority samples for improving the classification
performance, we introduce several classifiers to help to
evaluate the quality of the generated samples. Three
representative classifiers, i.e., Multi-layer Perceptron
(MLPClassifier), Linear Support Vector Classification
(LinearSVC) and AdaBoost are adopted in our exper-
iments. We train these classifiers on the training sets
augmented by the synthetic minority samples gener-
ated by our model or baselines and test them on the
corresponding test data sets. All these three classifiers
are implemented by the scikit-learn package3 in Python,
and we use their default settings in all experiments.

4.1.3 Evaluation Metrics For measuring the clas-
sification performance of classifiers, we introduce three
different metrics, macro F1-score, micro F1-score and
Matthews correlation coefficient (MCC) [19] into our ex-
periments. The value of MCC is in the range [−1, 1], in

1https://archive.ics.uci.edu/ml/index.php
2http://featureselection.asu.edu/datasets.php
3https://scikit-learn.org/stable/index.html
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Table 2: Classification performance of classifiers on the USPS data set.
Evaluation Method

Classifier Metrics Imbalanced Random SMOTE MDO NRAS SWIM BAGAN GL-GAN

macro F1 0.7712 0.8840 0.8825 0.8914 0.8415 0.6443 0.8208 0.8937
MLPClassifier micro F1 0.7969 0.8899 0.8887 0.8947 0.8503 0.6595 0.8356 0.8985

MCC 0.6232 0.7839 0.7823 0.7858 0.7022 0.4731 0.6872 0.7990

macro F1 0.8473 0.8580 0.8580 0.8834 0.8408 0.6184 0.8836 0.8912
LinearSVC micro F1 0.8589 0.8681 0.8680 0.8865 0.8497 0.6380 0.8896 0.8957

MCC 0.7346 0.7510 0.7510 0.7683 0.7010 0.4440 0.7838 0.7913

macro F1 0.8024 0.7878 0.8036 0.8436 0.7883 0.8900 0.7848 0.8920
AdaBoost micro F1 0.8218 0.8095 0.8221 0.8558 0.8098 0.8906 0.8077 0.8966

MCC 0.6689 0.6441 0.6662 0.7291 0.6444 0.7865 0.6433 0.7942

Table 3: Classification performance of classifiers on the Sensorless Drive Diagnosis data set.
Evaluation Method

Classifier Metrics Imbalanced Random SMOTE MDO NRAS SWIM BAGAN GL-GAN

macro F1 0.7697 0.8642 0.8700 0.8580 0.8510 0.8439 0.9078 0.9334
MLPClassifier micro F1 0.7809 0.8666 0.8722 0.8608 0.8542 0.8476 0.9086 0.9338

MCC 0.6251 0.7608 0.7699 0.7513 0.7406 0.7299 0.8310 0.8755

macro F1 0.8195 0.8425 0.8425 0.8455 0.8420 0.8435 0.9281 0.8714
LinearSVC micro F1 0.8250 0.8462 0.8462 0.8490 0.8457 0.8471 0.9285 0.8735

MCC 0.6939 0.7277 0.7277 0.7322 0.7269 0.7292 0.8659 0.7721

macro F1 0.8962 0.9683 0.9686 0.9955 0.9835 0.9924 0.9817 0.9959
AdaBoost micro F1 0.8973 0.9683 0.9687 0.9955 0.9835 0.9924 0.9817 0.9959

MCC 0.8119 0.9385 0.9392 0.9910 0.9676 0.9849 0.9638 0.9918

which MCC = 1 indicates a perfect prediction, MCC =
0 means the prediction made by a classifier is no better
than the random prediction and MCC = -1 represents
total wrong between the prediction and the observation.

4.2 Effectiveness Evaluation For evaluating the
effectiveness of our GL-GAN framework on alleviating
the binary class imbalance problem, we compare the
quality of the synthetic samples generated by GL-GAN
with several representative and state-of-the-art over-
sampling methods, including: 1) Imbalanced, which di-
rectly uses original imbalanced data sets without adding
minority samples; 2) Random [6], i.e., random over-
sampling, which inflates minority class by duplicating
existing minority samples; 3) SMOTE [2], which gener-
ates minority samples by performing linear interpolation
operations between minority samples and their nearest
neighbors; 4) MDO [1], which produces minority sam-
ples that have the same Mahalanobis distance from the
considered class mean with existing minority samples;
5) NRAS [21], which performs a noise removal process
on the minority class first and then constructs synthetic
samples from the remaining samples; 6) SWIM [23],
which utilizes the distribution information of majority
class to generate minority samples located at the same
Mahalanobis distance from the majority class; and 7)
BAGAN [18] which takes random noise as input and
produces synthetic samples to balance the imbalanced
data set. We adopt the implementations of Random
and SMOTE methods provided by literature [14] and of
MDO and NRAS methods provided by literature [12] in

all experiments with default settings. BAGAN is devel-
oped upon its public source code4.

For each imbalanced data set, we apply baselines
and our model to generate synthetic minority data sam-
ples and then form different augmented data sets for
training classifiers. Table 2 to Table 6 list the classifica-
tion performance of three different classifiers on five test
data sets. We conduct each experiment ten times and
report average results. From these tables, we make the
following observations: (i) Compared with the imbal-
anced set, the classification performance generally in-
creases with the oversampling techniques, which shows
the importance of oversampling. (ii) In most cases,
with GL-GAN, the classification performance of classi-
fiers outperforms with baselines, which implies the high
quality of synthetic minority samples generated by GL-
GAN. This is because local-based oversampling methods
like SMOTE may produce some synthetic minority sam-
ples which are interleaved with existing majority sam-
ples or located in the null space of the given data set,
while only global distribution information is explored in
BAGAN and the generated synthetic samples may over-
look the local structure of the given minority samples.

4.3 Components Analysis In order to investigate
the impact of each module in our GL-GAN framework,
we implement two models employing part of compo-
nents contained in GL-GAN to generate synthetic mi-
nority samples and compare the quality of generated
samples with GL-GAN. First, we combine the autoen-

4https://github.com/IBM/BAGAN
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Table 4: Classification performance of classifiers on the Gas Sensor Array Drift data set.
Evaluation Method

Classifier Metrics Imbalanced Random SMOTE MDO NRAS SWIM BAGAN GL-GAN

macro F1 0.3879 0.7880 0.8116 0.6540 0.7182 0.6974 0.8891 0.8881
MLPClassifier micro F1 0.5376 0.8003 0.8201 0.6833 0.7424 0.6985 0.8908 0.8884

MCC 0.1077 0.6518 0.6832 0.4819 0.5592 0.3967 0.7933 0.7782

macro F1 0.8580 0.9270 0.9296 0.6588 0.9216 0.3822 0.9290 0.9694
LinearSVC micro F1 0.8619 0.9270 0.9296 0.6866 0.9216 0.5126 0.9296 0.9695

MCC 0.7511 0.8560 0.8610 0.4871 0.8445 0.1606 0.8666 0.9391

macro F1 0.3825 0.4620 0.4739 0.5299 0.5295 0.4795 0.4995 0.5976
AdaBoost micro F1 0.5255 0.5418 0.5352 0.5963 0.6082 0.5445 0.5352 0.6082

MCC 0.0689 0.0940 0.0690 0.3423 0.3174 0.0954 0.0653 0.2181

Table 5: Classification performance of classifiers on the Madelon data set.
Evaluation Method

classifier Metrics Imbalanced Random SMOTE MDO NRAS SWIM BAGAN GL-GAN

macro F1 0.3333 0.3346 0.3364 0.4513 0.4440 0.4088 0.3376 0.4821
MLPClassifier micro F1 0.5000 0.5006 0.5008 0.4931 0.5213 0.5128 0.5019 0.5260

MCC 0.0 0.0132 0.0120 -0.0165 0.0628 0.0465 0.0439 0.0640

macro F1 0.3324 0.3333 0.3367 0.4643 0.4306 0.3894 0.3376 0.4390
LinearSVC micro F1 0.4981 0.5000 0.5000 0.4942 0.5092 0.5058 0.5019 0.5212

MCC -0.0439 0.0 0.0 -0.0131 0.0276 0.0237 0.0439 0.0657

macro F1 0.3354 0.3325 0.3400 0.3529 0.4860 0.4504 0.3325 0.3612
AdaBoost micro F1 0.5000 0.4981 0.5000 0.4942 0.4885 0.4962 0.4981 0.5019

MCC 0.0034 -0.0439 0.0 -0.0324 -0.0233 -0.0094 -0.0439 0.0092

coder component and the local data interpolator com-
ponent together to obtain a new model called Auto-only.
In Auto-only, the encoder E maps all given data sam-
ples into a latent space and the new synthetic minority
samples are generated by the local data interpolator I.
This procedure is the same with the first module in GL-
GAN. However, instead of importing all latent represen-
tations into the generator G, Auto-only model employs
the decoder Q to project all latent representations back
to the raw feature space. Second, for studying the func-
tionality of GAN-based module, we adopt conditional
GAN [20] to generate synthetic minority samples. The
conditional GAN takes random noise as input and pro-
duces synthetic samples with minority class label.

We conduct experiments on two real data sets and
display the experimental results in Figure 3 and Fig-
ure 4, respectively. Here we can see, despite autoen-
coder (Auto-only) or conditional GAN (cGAN) can also
produce synthetic minority samples for training a classi-
fier, the quality of generated synthetic samples are not
good enough, especially in the extremely imbalanced
scenario (r = 0.01). However, since our GL-GAN could
simultaneously explore the global and local information
through combining the advantages of local-based over-
sampling techniques and generative adversarial learning
together, the synthetic samples produced by GL-GAN
could be more helpful for training a better classifier.

5 Case Studies

For verifying whether GL-GAN can produce more real-
istic synthetic minority samples, we visualize the syn-
thetic samples generated on a handwritten digits data

set MNIST5. Here we randomly choose images “4” as
majority class and images “7” as minority class, and
form the imbalanced data set as described in Sec 4.1.1.

5.1 Functionality of Autoencoder As we men-
tioned before, in order to avoid minority samples are
generated in the null space of the given sample set or in-
terleaved with majority samples, we require the encoder
contained in our GL-GAN framework is able to map the
given sample set Xorg into two far-away clusters in the
latent space, which can be achieved by Eq. (3.2). Here
we utilize the MNIST data set to verify the usefulness of
this design. In Figure 5, the right figure shows a snippet
of images generated by the Auto-only method, in which
the setting of the encoder is exactly same with the en-
coder E contained in our GL-GAN. As a comparison, we
remove the loss function defined in Eq. (3.2) from the
final loss function of the autoencoder, i.e., Eq. (3.3),
and also apply SMOTE to generate synthetic minority
samples in the latent space. In other words, the ma-
jority samples and minority samples are not required to
be mapped far-away from each other in the latent space
learned by the encoder, which is a common setting in the
traditional autoencoder (AE). As the left figure shown,
under this setting, the quality of generated synthetic mi-
nority samples “7” is worse than the Auto-only method
generated ones. The reason is that, in the latent space,
the synthetic minority samples generated by SMOTE
may still have probability to interleave with majority
samples if the majority cluster and minority cluster are

5http://yann.lecun.com/exdb/mnist/
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Table 6: Classification performance of classifiers on the Gisette data set.
Evaluation Method

Classifier Metrics Imbalanced Random SMOTE MDO NRAS SWIM BAGAN GL-GAN

macro F1 0.4618 0.6051 0.6161 0.6317 0.5888 0.4462 0.8552
MLPClassifier micro F1 0.5685 0.6528 0.6604 0.6710 0.6426 - 0.5558 0.8568

MCC 0.2423 0.4246 0.4371 0.4486 0.4066 0.2418 0.7277

macro F1 0.6053 0.6115 0.6115 0.8616 0.6718 0.3521 0.8636
LinearSVC micro F1 0.6529 0.6571 0.6571 0.8636 0.7011 - 0.5086 0.8650

MCC 0.4248 0.4318 0.4318 0.7482 0.5018 0.0930 0.7457

macro F1 0.5226 0.5874 0.5669 0.3361 0.5718 0.5949 0.6271
AdaBoost micro F1 0.5993 0.6400 0.6271 0.4850 0.6300 - 0.6199 0.6679

MCC 0.3320 0.4001 0.3817 -0.0935 0.3848 0.2770 0.4476
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Figure 3: MCC score of AdaBoost on the Gisette data set.

not far-away from each other. Hence, the generated
synthetic images may not good enough. In short, these
two figures demonstrate the loss function described by
Eq. (3.2) is useful and indispensable.

5.2 Quality of Generated Image Data We also
visualize the synthetic minority samples generated by
SMOTE and our proposed GL-GAN framework on the
MNIST data set. In the left figure of Figure 6, several
synthetic samples produced by SMOTE looks like some
intermediates between the majority class “4” and mi-
nority class “7”. As we discussed before, due to only
local neighbor relationships are utilized in SMOTE and
the global information is totally ignored, SMOTE can-
not avoid producing outliers or samples that interleaved
with majority samples. On the contrary, our GL-GAN
framework is able to generate more realistic synthetic
minority samples. Since both global and local distri-
butions are simultaneously explored in GL-GAN, the
drawbacks of SMOTE can be overcame and high qual-
ity synthetic minority samples can be generated.

6 Conclusion and Future Work

In this paper, we propose a novel framework to solve
the class imbalance problem through generating syn-
thetic data samples for minority class. Different from
local-based oversampling methods which only explore
the local structure of minority samples and generative
adversarial learning models which only utilize the global
distribution information of all given samples, our GL-
GAN framework considers both global and local infor-
mation of the given data in the synthetic minority sam-
ple generation process. Extensive experimental results
demonstrate that, comparing with existing baselines,

our model can produce more realistic and discriminative
synthetic minority samples, which are helpful for train-
ing better classifiers. In the future, we would extend
our GL-GAN framework to the class imbalance prob-
lem of multi-class as well as some specific imbalanced
application scenarios such as credit fraud detection.
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