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ABSTRACT: We present a new methodology for polymer
self-consistent field theory (SCFT) that has spectral accuracy
in the contour dimension while retaining linear scaling of
computational effort with system size. In contrast, traditional
linear-scaling algorithms only have polynomial order accuracy.
The improved accuracy allows for faster simulations and lower
memory costs compared to traditional algorithms. The new
spectral methods are enabled by converting from an auxiliary
field representation to a recently developed “polymer coherent
states” framework.

Numerical auxiliary field (AF)-based self-consistent field
theory (SCFT) has become a standard tool in modern

polymer physics. It has been used to predict, interrogate, and
understand many phenomena in inhomogeneous polymer
systems, such as self-assembly and phase behavior.1 The core
of numerical AF SCFT is computing polymer density fields,
ψ̃(r), from propagators, q(r,s), which describe the random-
walk statistics of polymers in an auxiliary potential field, w(r),
where s indexes the chain contour position and r denotes
position in a d-dimensional domain. The potential field is
updated based on the densities until a self-consistent solution
is reached. The most computationally expensive task is
computing the chain propagator, which, for Gaussian chains,
satisfies the modified diffusion equation (MDE):

q s w s q sr r r( , ) ( ( , )) ( , )s
2∂ = ∇ − (1)

Originally this equation was solved using a spectral method
with a Galerkin approximation and symmetry-adapted plane-
wave basis functions.2 This method has spectral accuracy in
space (r) and is analytical in contour (s) but suffers from high
computational cost due to the need to diagonalize a matrix to
find the Fourier coefficients. The dimension of the matrix is
the number of basis functions used, M, and the diagonalization
is an M( )3 operation. For three-dimensional calculations with
large cells or low symmetry, the matrix diagonalization
becomes unfeasible because of the large number of basis
functions needed and poor algorithm scaling.
There exist alternative, pseudospectral methods that have

spectral accuracy in space (r) and polynomial accuracy in
contour (s) and that can be solved with near-linear cost

NM M( ln )s , where Ns is the number of contour points.3

Two of the most common methods are those developed by
Rasmussen and co-workers3,4 and by Ranjan et al.,5 which are

N( )s
2− and N( )s

4− accurate and which we abbreviate as RK2
and RQM4, respectively. Prior work has shown that although
the RQM4 method is more accurate, RK2 is more efficient for
some problems because of lower computational costs.6

While these algorithms are representative of state-of-the-art
methods, at strong segregation they need (10 )3 contour
points for sufficient accuracy.7 This can become intractable in
very large cells or for systems with sharp interfaces where many
spatial grid points are also necessary to resolve interfaces
accurately. Recently, there has been work to obtain even higher
accuracy in contour sampling by using a spectral deferred
correction, but these methods are still limited to polynomial-
order accuracy in contour.8 An ideal algorithm would achieve
spectral accuracy in the spatial and contour dimensions, while
preserving the near-linear cost scaling of the pseudospectral
methods. One way to achieve spectral accuracy in the contour
domain is by using a Chebyshev polynomial expansion in s in
eq 1, but this yields a nonsparse system of equations that
cannot be solved efficiently. The Supporting Information
discusses this point further.
An alternative, “coherent states” (CS) representation of

polymer field theory has recently emerged,9 which is formally
equivalent to the AF theory10 but allows for different numerical
methods that achieve spectral contour accuracy with linear
scaling. Here we consider a canonical ensemble of incompres-
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sible molten diblock copolymers to illustrate the differences
between the form of the two theories and then discuss
numerical methods to solve each model. The ensemble
contains n diblock chains, with species “A” volume fraction f
in a volume V at temperature T.
The AF theory for a linear diblock copolymer is well

documented in the literature, so we do not reproduce it
here.1,11 We simply note that the theory consists of a pressure
and exchange field, w+ and w−, that modulate incompressibility
and a Flory χ interaction between dissimilar segments,
respectively.
The details of how to convert an AF theory to a CS theory

are given explicitly by Man et al.,12 and following their
procedure yields the partition function

Z w w

H w wexp( , , , , , )A

A A B

B CS A B B

∫ ∫ ∫ ∫ ∫
∫

ϕ ϕ ϕ

ϕ β ϕ ϕ ϕ ϕ

= *

* − [ * *]

+ −

+ − (2)
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where β = 1/kBT is the inverse thermal energy. In eq 3, the
contour dimension, s, has been scaled by the polymer length,
N, and all positions, lengths, and volumes have been scaled by
the unperturbed radius of gyration. All spatial integrals are over
the system volume, V, and we choose periodic boundary
conditions in the spatial dimension, r. The coherent-states
Hamiltonian, HCS, is similar to the AF model Hamiltonian, but
the single-chain partition function from the AF model has been
replaced by explicit, semilocal terms containing the (d + 1)-
dimensional propagator-like fields ϕA, ϕA*, ϕB, and ϕB* that
generate the single-chain statistics and architecture. Notably,
the term involving ϕA*(r,0)ϕB*(r,0) is a source to create A−B
diblock junctions, while the final two terms terminate A blocks
after f monomers and B blocks after 1 − f monomers. The w−
field appears quadratically in the Hamiltonian and could be
integrated out of the theory, but we have found it
advantageous to retain both w− and ϕ, ϕ* fields in developing
our linear scaling methods. It should be noted that the
functional integration paths of the w+, ϕA*, and ϕB* fields have
been Wick rotated to the imaginary axis, rendering the exact
theory deceivingly real.
To perform an SCFT calculation, we seek a saddle point

with respect to the six fields that are arguments of HCS. As is
frequently done in the AF case, we perform a relaxation in
fictitious time to reach the steady state saddle point.1,12 This
time relaxation can in principle be augmented with
appropriately distributed noise to perform a complex Langevin
field theoretic simulation of the exact field theory,12,13 but here
we restrict consideration to the mean-field approximation of
SCFT. The relaxation equations are

w t t tr r r( , ) 1 ( , ) ( , )t1
1

A Bμ ψ ψ∂ = − + ∼ + ∼−
+ (4)

w t
w
N

t t fr r r( , )
2

( , ) ( , ) 2 1t2
1

A Bμ
χ

ψ ψ∂ = − − ∼ + ∼ + −−
−

−

(5)

s t w t w t s t

V s t

t t

r r r r
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A B∫

μ ϕ ϕ

δ ϕ

ϕ ϕ

∂ = − ∂ − ∇ + +

+
*

* *

−
+ −
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(7)

with analogous equations for ϕB and ϕB*. The mobility
parameters μ1, μ2, and μ3 can be chosen to give the fastest
numerical convergence. The volume fraction operators in the
CS framework are

t s s t s tr r r( , ) d ( , , ) ( , , )
f

A 0 A A∫ψ ϕ ϕ∼ = *
(8)

t s s t s tr r r( , ) d ( , , ) ( , , )
f

B 0

1

B B∫ψ ϕ ϕ∼ = *
−

(9)

At steady state, the AF and CS models reduce to precisely the
same equations; however, in AF theories we solve the MDE
(eq 1) for the propagator at each time point, while in CS
theories we update the propagator-like fields, ϕA, ϕA*, ϕB, and
ϕB*, in fictitious time according to eqs 6 and 7.
A successful alternative to the relaxation method is a fixed

point iteration method with Anderson mixing (AM) applied to
the w fields.14,15 Although we do not employ AM in this work,
it could be applied to both the CS and AF w-field saddle point
searches instead of the relaxation algorithm. We do not expect
the choice of w-field update algorithm to affect the relative
performance of AF and CS methods, as long as the same
method is used for each. Further evidence for this claim is
presented in the Supporting Information.
To solve the mean-field relaxation equations, we must

specify a time discretization scheme. The simplest method uses
an Euler discretization to update the potential fields, w

w w
t

r r
r r

( ) ( )
1 ( ) ( )

j j
j j

1

1
A Bμ

ψ ψ
−
Δ

= − + ∼ + ∼+
+

+
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w w
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r r
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( ) ( ) 2 1
j j j

j j
1

2

1

A Bμ χ
ψ ψ−

Δ
= − − ∼ + ∼ + −−

+
− −

+

(11)

where the superscript j denotes the discrete time index.
We refer to eqs 10 and 11 as Euler time stepping. Previous

work has shown that a far improved time stepping uses a semi-
implicit Seidel (SIS) method,11 which can accelerate
calculations by orders of magnitude. Unfortunately, existing
SIS methods only apply to AF methods and not to CS theories
because the volume fraction operators have a nonlocal time
dependence on the potential fields in the latter case.
To complete the CS-SCFT method, we require an algorithm

to solve eqs 6 and 7. Previous authors reported a method with
spectral accuracy in space and first-order accuracy in contour
by using a combination of Fourier transforms and finite
differences (FDs).12 We propose an alternative method that
replaces the FD approximation with a Chebyshev−Tau
approximation in the contour dimension to obtain a scheme
that has spectral accuracy in both space and contour.16 Volume
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fraction operators can also be computed with spectral accuracy
using Clenshaw−Curtis quadrature.17 Importantly, this scheme
has near-linear scaling in both the spatial and contour
resolution via fast Fourier transform (FFT) algorithms. We
explain the method using the ϕA equation, but it easily
generalizes to the equations for all the propagator-like fields.
We first convert the source term to an effective boundary

condition

t
V t

t t
r

r

r r r
( , 0, )

( , 0, )

d ( , 0, ) ( , 0, )A
B

A B∫
ϕ

ϕ

ϕ ϕ
=

*

* * (12)

We next define a Chebyshev expansion for ϕA
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s

n nA
0

∑ϕ = −
= (13)

T n(cos( )) cos( )n ν ν= (14)

If we discretize the contour along the Chebyshev nodes, sj =
f(1−cos(jπ/Ns))/2, j = 0, 1,···, Ns, then ϕA can be computed
from the Chebyshev coefficients, an, using the discrete cosine
transform (DCT):

s t a t jn Nr r( , , ) ( , )cos( / )N j
n

N

n sA
0

s

s

∑ϕ π=−
= (15)

Substituting the expansion into eq 6 and using the properties
of Chebyshev polynomials and Fourier transforms, we obtain
for 0 ≤ n ≤ Ns − 3

r

k c a t
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n a t

k a t

w t w t c a t a t

k k

k

r r r

( ) ( , )
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( 1) ( , )

( ) ( , )
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1 2
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1 2
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= − { + − }

−
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−
+

+ − + (16)

and for Ns − 2 ≤ n ≤ Ns − 1

k a t
f
n a t

w t w t a t

k k

r r r

( ) ( , )
4
( 1) ( , )

( ( , ) ( , )) ( , )

t n n

nr

3
1 2

1μ ∂ + ̂ + + ̂

= − { + }

−
+

+ − (17)

where a t a tr k( , ) ( , )n nr{ } = ̂ is the Fourier transform in
space. The coefficient cn = 1 for n ≠ 0 and c0 = 2. Discretizing
time with semi-implicit forward Euler and defining μ3Δt = Δt′
yield for 0 ≤ n ≤ Ns − 3

k t c a
t
f

n a

k t a c f f

k k

k k k

(1 ) ( )
4

( 1) ( )

(1 ) ( ) ( ) ( )

n n
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n
j

2
1

2
2 2

+ Δ ′ ̂ + Δ ′ + ̂

− + Δ ′ ̂ = −

+

+ + (18)

and for Ns − 2 ≤ n ≤ Ns − 1

k t a
t
f

n a fk k k(1 ) ( )
4

( 1) ( ) ( )n
j

n
j

n
j2

1+ Δ ′ ̂ + Δ ′ + ̂ =+
(19)

with

f t w w ak r r r( ) 1 ( ( ) ( )) ( )n
j j j

n
j

r
1= {[ − Δ ′ + ] }+ −

−
(20)

Combining eqs 18−20 with the boundary condition
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−

− −
(21)

yields a bordered tridiagonal system for each Fourier mode, k.
Each system can be solved in N( )s operations, resulting in

NM( )s operations to solve the global system. The original
propagator can be obtained via a fast DCT in contour
( NM N( ln )s s operations) followed by a FFT in space
( NM M( ln )s operations). After updating propagators and
converting from Fourier−Chebyshev space to real-contour
space, volume fraction operators are computed using
Clenshaw−Curtis quadrature.17 Finally, we update the
interaction fields according to the Euler potential update
scheme (eqs 10 and 11).
To compare this new CS−Chebyshev method to AF

methods (RK2 and RQM4) and the previously reported FD
method for CS theories, we computed the SCFT-intensive
Hamiltonian, βH/n, of a symmetric ( f = 0.5) diblock
copolymer in a one-dimensional cell with length 4Rg at χN =
15 and χN = 80. In all cases, the relaxation was run until the l2
norms of δH/δw+ and δH/δw− were both less than the
tolerance, λf, but we omit the k = 0 mode of δH/δw+ to which
the theory is invariant. Numerical parameters such as time step
and mobilities were tuned to just below their stability
thresholds. We use a Chebyshev method calculation with Ns
= 500 as the reference value for the intensive Hamiltonian and
run time.
We first examine the error scaling with Ns for each method.

Figure 1 shows that the FD, RK2, and RQM4 methods have

the expected asymptotic error scaling slopes of −1, −2, and
−4, respectively. Although the Chebyshev method was fit with
a line to illustrate the rapid convergence with Ns, the points are
not linear on the log−log plot because of the spectral accuracy.
The Chebyshev method has greatly improved the accuracy

and scaling compared to the other methods, shown by the
lower error and much steeper slope. The method is so accurate
that the error saturates to the force tolerance, λf, with only 51
contour points. The high accuracy with few contour samples
represents a potential huge memory savings in large-scale
numerical computations.
We now discuss the computational speed of each method.

We present results in terms of efficiency: the computation time
taken to reach a given level of accuracy in the intensive
Hamiltonian. The appropriate accuracy level will vary between
applications, but resolving phase boundaries can require
(10 )6− accuracy in the SCFT intensive Hamiltonian.7,18

Figure 1. Comparison of intensive Hamiltonian error with number of
contour samples for each contour method. Computed at χN = 15 and
f = 0.5 with M = 32 spatial grid points. Horizontal dashed line
indicates force cutoff, λf = 10−13.
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While the previous results did not differentiate between time
stepping methods, here we present results for both the Euler
and SIS time stepping methods for the AF theories. It is
important to compare different contour methods using the
same w-field time stepping algorithm, which isolates the effect
of contour accuracy, but it is also useful to compare the new
CS methods that use Euler time stepping versus the AF-SIS
methods, which represent the current standard in polymer
SCFT. Figure 2 shows efficiency curves for each method when
applied to a symmetric diblock at χN = 15. Full numerical
parameter sets can be found in the Supporting Information.

For calculations that use Euler time stepping (open
symbols), the Chebyshev method shows the best efficiency.
For fixed small values of intensive Hamiltonian error, the
Chebyshev method is an order of magnitude faster than any
other method. SIS time stepping (solid symbols) speeds up the
AF calculations by approximately an order of magnitude, but
this does not make them more efficient than the Chebyshev
method over the relevant ranges of intensive Hamiltonian
error. For large values of the intensive Hamiltonian error
(>10−5) where the Chebyshev method is not applicable
because no Ns returned such a large error, the AF-SIS methods
are faster than the Chebyshev−Euler method. There thus
remains a niche for AF-SIS calculations where significant
accuracy can be sacrificed for speed. We show in the
Supporting Information that these conclusions extend to the
double gyroid morphology.
We note, however, that there has been much more work to

date on AF theories than CS theories. Although the SIS time
stepping method is not applicable to CS theories, there are
other techniques such as Anderson mixing that could be used
to improve w-field iteration.14 Combining fictitious time
relaxation of ϕ fields with AM on w fields could potentially
yield the most efficient algorithm for all ranges of accuracy.
We next consider a strongly segregated symmetric diblock

with χN = 80. Previous work has shown that high accuracy is
essential to successfully converge SCFT calculations under
these conditions,7 so we expect the Chebyshev method to
outperform the other methods. Results are presented in Figure
3.
The Chebyshev method again is the most efficient method

at a fixed level of intensive Hamiltonian error, regardless of
time stepping method. Contrary to the χN = 15 case, the AF-

SIS methods do not provide a fast, low accuracy alternative to
the Chebyshev method: low accuracy AF-SIS calculations take
just as long as high accuracy Chebyshev calculations. For
applications where high accuracy is necessary, the Chebyshev
method thus offers a large improvement over existing methods.
In this letter, we have shown that CS field theories can offer

numerical advantages over traditional approaches to SCFT.
Although they are formally equivalent, coherent states theories
allow for fully spectral, linear scaling numerical methods, which
enable much more accurate simulations at lower memory cost
and faster speeds than AF methods. Although not discussed in
this work, CS theories can also be applied to a wide range of
polymer systems, such as systems with three or more
components, arbitrary architecture, and supramolecular chem-
istries that cannot be effectively treated with AF models.19 We
expect that the numerical and theoretical advantages of CS
theories over AF theories will allow for previously intractable
problems to now be tackled.
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