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Abstract: We revisit the classic problem of determining stress concentrations on neighboring fibers to multiple, 

transversely-aligned fiber breaks in a planar, unidirectional fiber-matrix composite. Fibers are assumed to be 

perfectly bonded to the elastic matrix.  Finite size effects on stress concentration are studied by varying the overall 

length of the composite relative to the characteristic load transfer length between broken and intact fibers.  As an 

alternative to the discrete fiber and matrix framework in the classic analysis of Hedgepeth, and its extension by 

Hikami and Chou, the fiber stress distribution in the composite is obtained through continuum modeling of the 

composite as a highly anisotropic elastic plate, whereby the stresses and stress concentration factors at fiber 

locations in the discrete model are extracted in a closed form.  For composites of finite length, the stress 

concentration factors determined using the continuum model compare favorably with numerical solution of the 

discrete shear-lag model.  In the limit of a plate with infinitely long fibers, our stress concentration factors also 

agree well with the exact results of Hikami and Chou.  For composites having a length less than the characteristic 

elastic load transfer length, and loaded under displacement boundary conditions, we show that local stress 

concentrations vanish irrespective of the size of the crack or the number of fiber breaks. This behavior becomes 

important when modeling and interpreting laboratory experiments on the mechanical behavior of recent soft 

composite specimens consisting of stiff fibers in an extremely compliant elastic matrix.  

 

1. Introduction 

A fundamental problem in composite strength theory is the mechanics of load transfer around clusters of fiber 

breaks that often develop in a unidirectional fiber-matrix composite when loaded.  It is well known that the 

formation of such clusters of broken fibers depends both on the statistically-distributed fiber strength [1–4] and 

on the mechanism of stress redistribution from broken to intact fibers [5–9]. When a fiber in the composite breaks 

at a flaw, the two local regions of the fiber on each side of the break unload to zero at the break over some length, 

and the original loads carried by these segments are transferred laterally onto neighboring intact fibers. This 
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causes these neighbors to be overloaded, and thus more susceptible to failure near the break. The characteristic 

length of this overload region, which depends on the mechanical and geometric properties of the fiber and 

surrounding matrix, is roughly the same as that of the unloaded fiber segments, and is an important length scale 

in composite strength theory; it is often called the effective load transfer length (when viewed in terms of local 

fiber overloads), or ineffective length (when viewed in terms of the lost load carrying the broken fiber). This load 

transfer process has been originally demonstrated using a shear-lag model by Hedgepeth [5], and extensively 

studied to improve the accuracy and realism under certain circumstances [10,11]. Fiber break evolution in 

unidirectional composites has also been investigated in detail [12,13]. As failure progresses, and the break cluster 

size increases, the stress concentrations in the neighboring intact fibers also increase, as does actual length of load 

transfer on these fibers.  

In order to model the failure process and overall statistical strength distribution of large composites, idealized 

models of the stress redistribution from broken to intact fibers are often used, as well as idealizations of the 

geometry of the statistical fiber break progression in growing break clusters.  Such idealizations are typically 

necessary to keep computations tractable, especially when seeking to gain analytical insight into the scaling of 

the strength distribution with composite volume, as well as the behavior of the lower distribution tail important 

to establishing maximum permissible composite load levels consistent with maintaining high reliability [14]. 

More elaborate finite element models [15–24] can be very useful for providing benchmark fiber and matrix stress 

distribution results, but computational demands limit the size scales and numbers of fibers that can be treated. 

These are often too small to uncover large-scale statistical behavior that ultimately emerges in composite 

structures used in engineering applications. Also, studies involving more elaborate Monte Carlo simulations [25–

29] of the statistical failure process based on more detailed micromechanical models that accommodate the 

longitudinal staggering of fiber breaks, have repeatedly shown that while the failure patterns in break clusters 

may appear to be very different from their idealizations, the shapes of the resulting probability distributions for 

composite strength are affected surprisingly little and in ways amenable to straightforward scaling factors.  

Idealized models representing two extremes for the stress redistribution mechanism have been used 

extensively in the literature, mainly because of their simplicity. At one extreme, are equal load-sharing (ELS) 

models [30,31] together with their global load-sharing (GLS) generalizations [32,33], and at the other extreme 

are local load-sharing (LLS) models [5,6,9,34].  In ELS models the fundamental assumption is that, as failure 

progresses, all failed fibers over a certain bundle length carry no load, and all surviving fibers share the applied 

load equally. In GLS models the same general principle applies at a cross-sectional plane except that a nearby 

failed fiber may still carry some load at that plane, as determined by a slip-length around the fiber break over 

which the fiber gradually unloads. These two models, ELS and GLS are typically applied to composites where 

the matrix has a low yield strength in shear, and/or readily debonds from the fiber, leaving only weak coupling 

between fibers. In these cases, the stress redistribution from broken to intact fibers becomes far more diffuse over 



many fibers and over much longer lengths, as illustrated for instance in Beyerlein and Phoenix [9]  Thus, 

immediate neighbors see almost no stress concentration compared to others receiving extra load from failed fibers. 

Consequently, ELS and GLS models cannot predict the formation of growing clusters of breaks; however, they 

do capture the influence of fiber strength statistics in determining composite strength behavior.   

LLS models apply to composites where the matrix is elastic and resistant to yielding and debonding from the 

fiber, and thus, the load of failed fibers is redistributed mostly onto a few nearby intact neighbors. Consequently, 

formation of growing fiber break clusters and their ultimate instability resulting in composite failure is a natural 

feature of LLS models. Within the general LLS framework, many modelling approaches have been developed to 

calculate realistic stress concentration profiles in fibers next to break clusters. For instance, Hedgepeth and Van 

Dyke [6] extended the previously mentioned, shear-lag analysis of Hedgepeth [5] to 3D unidirectional composites 

having fibers arranged in both hexagonal and square arrays. Goree and Gross [35] also extended this 2D model 

and found an approximate solution for the stress field around certain clusters in a 3D composite containing a 

square array of linearly elastic fibers in an infinite linearly elastic matrix. However, only numerical values of fiber 

stress concentrations were determined for certain failure configurations, which did not suggest useful analytical 

approximations applicable to other configurations. More recently, Mahesh et al. [36,37] were able to determine 

such analytical approximations in 3D settings, which compared favorably to numerical solutions of the shear-lag 

model. These were used together with Weibull fiber strength behavior to generate analytical distributions for 

composite strength based on fiber break cluster growth, which compared favorably to Monte Carlo simulation 

results of the same failure process but based on numerical solution of the shear-lag equations.  

Other researchers have developed models in the spirit of LLS but focusing on additional aspects of practical 

importance such as effects of number of fibers [38,39], random fiber arrangement and spacing [40], plastic 

yielding and debonding of the fiber-matrix interface [6,9], mixing of two fiber types which is often referred to as 

hybrid composites [33,41], and lifetime creep/rupture [42,43] among others. Some build on spring element 

models [44,45] whose numerical results are fit with analytical functions to extend their utility when calculating 

fiber failure probabilities in various configurations. Others make use of finite element (FE) calculations to arrive 

at similar analytical approximations that are incorporated into an influence function approach to model fiber 

overloads in larger, and more irregular break cluster geometries, e.g. Swolfs et al. [23]. These models are often 

used in simplified probability calculations of composite failure based on Weibull fiber strength, and others use 

them in Monte Carlo simulations of the composite failure process under comparable assumptions.   

The development of LLS models owes much to the seminal, analytical work of Hedgepeth [5], who provided 

an exact solution for stress redistribution onto fibers next to a transversely-aligned group of broken fibers in a 

unidirectional fiber-matrix composite. The composite was in the form of a 2D planar sheet consisting of a parallel 

array of infinitely long fibers perfectly bonded to an elastic matrix separating them, and where the group of broken 



fibers was reminiscent of a crack, as shown in Fig. 1. Hedgepeth found an expression for the “peak” stress 

concentration factor (SCF) ,1nK   for the first intact fiber next to a cluster of n adjacent breaks, this being 
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The superscript ‘ ’ indicates that fibers have infinite length. Hikami and Chou [8] extended this result and 

obtained an exact expression for ,n sK  on fiber number s directly ahead of the last broken fiber along the crack 

plane (see Fig. 1): 
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Various attempts have been made to find a simpler approximate expression for ,n sK .  For example, Beyerlein et 

al. [46] used Stirling’s formula to derive several approximate expressions for the stress concentration factor given 

by (1a,b), and Phoenix and Beyerlein [47] found that ,1 1 4nK n  +  with an error less than 0.25 percent.   

 

Fig. 1. Planar 2D composite with elastic fibers embedded in an elastic matrix. A group of n  consecutive fibers is 

broken, forming a crack-like structure. x-axis is along the fiber direction, and y-axis is along the transverse 

direction. The height of the composite is 2L (in Hedgepeth L → ), and a uniform vertical displacement   is 

imposed on the upper and lower surface of the composite.  Integer k  is used to label fibers where k−    , 

and the n  contiguous broken fibers span 0 1k n  − . Integer s  denotes the sth intact fiber ahead of the last 

broken fiber along the crack plane, where s = 1 corresponds to the first intact fiber.  

 



However, there are two limitations on these previous works. The first one is that, for equation (1) these 

approximations work well only when n >> s (except for an approximation found by Phoenix and Beyerlein [47] 

that is accurate, but only for s = 1).  We are not aware of any approximation expression that works for the full 

range of n and s.  In this work, we provide such an expression (see eq. (19)).  The other limitation is that most of 

analytical and numerical studies assume the composite length is much larger than the load transfer length, and as 

a consequence the composite is often taken to be infinitely long in some analytical models [5,8].  This assumption 

is reasonable for traditional composites in which the ratio of modulus of fiber to matrix is below 100.  But it is 

not the case for the emerging class of soft composites [48–51]. These soft composites consist of traditional stiff 

fibers embedded in a very soft but tough matrix.  Indeed, the matrices in these composites have shear moduli as 

low as kPa, and can withstand strains up to 1000% [48,49].  It has been found out that these soft composites 

exhibit extremely high effective toughness, high tear strength, high tensile modulus, and low bending modulus, 

and have many potential applications, e.g. soft biological prosthetics [52–54]. To illustrate the idea of finite length 

of soft composites, let us consider the key length scale in the Hedgepeth solution: the load transfer length, Tl .  

Physically, Tl  represents the extent of the overload region along a fiber near a fiber break.  In the Hedgepeth 

theory, this load transfer length is, to within a quantity of order 1,  
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where fA  is the cross-sectional area of a fiber, fE  is the Young’s modulus of fiber and m  is the shear modulus 

of the matrix.  Many tough soft matrices have shear moduli on the order of 0.1 MPa or less.  For E-glass fibers 

used in Huang et al. [49], 74fE   GPa, thus 
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Taking the fiber radius to be 7 microns [49], 51.2 10fA −   m, and thus, 1Tl   cm.  In contrast, if the soft 

matrix were replaced by an epoxy, then 
9
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 which is roughly 0.09 mm.  Since the 

size of typical samples are on the order of centimeters, a composite sample with an epoxy matrix can be considered 

as infinite, which is not true for a composite sample with a soft matrix.  This motivates us to study size effects, 

that is, instead of infinitely long fibers, the length of fibers in our unidirectional composite is finite. In this study, 

we provide an expression of SCF based on continuum mechanics for more general case where the composite 

length is finite. 



The plan of this paper is as follows.  In the methods section, we first summarize the shear-lag model of 

Hedgepeth [5] and then introduce a continuum model to determine the stress and strain in the composite.  In the 

results section, we present a closed-form solution for the continuum model.  We solve the shear-lag model 

numerically and compare these results with the continuum model.  We present an approximate formula for the 

stress concentration factor for a composite where fibers have finite length, L  (in the following this is denoted by 

,
L
n sK ).   We also compare ,n sK with the exact result of Hikami and Chou [8]. 

 

2. Methods 

The geometry is shown in Fig. 1.  The composite consists of a 2D array of parallel fibers of length 2L and 

Young’s modulus fE .  The fibers are perfectly bonded to an elastic matrix of shear modulus m .  The composite 

is infinite in the y direction and has n consecutive fiber breaks along the center line x = 0.  A uniform vertical 

displacement   is imposed on the upper and lower surface of the composite plate at x L=  , thus the strain far 

away from the crack is / L =  .  All fibers have the same cross-sectional area fA .  The effective matrix width 

between fibers is w and the effective fiber size is h.  As in Phoenix and Beyerlein [47] we focus on the main 

mechanical effects, and not concerned ourselves with the cross-sectional geometry of the fibers (e.g., round or 

square). 

2.1 Discrete Model 

We briefly summarize the shear-lag model of Hedgepeth [5]. Details can be found in Hedgepeth [5] and 

Hikami and Chou [8]. The key idea is that fibers can support only tension and the matrix can only carry shear. As 

shown in Fig. 1, we use an integer k to label fibers, for example, ( )ku x and ( )kp x  denote the displacement and 

load of the kth fiber.   Following Hedgepeth, we introduce the load transfer length  

f f
T

m

E A w
l

h
 .            (4)  

We introduce the normalization for position along a fiber, load and displacement 
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The governing equations is a system of ODEs and were given by Hedgepeth [5] as 
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The boundary conditions of the finite fiber length problem are: 
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The first condition is the symmetry condition where all unbroken fibers have zero displacement on the mid-plane. 

The second condition states that the force on the broken fiber end is zero.   The last condition is the applied 

displacement boundary condition.  Numerical solution of this discrete model, equations (6) and (7), can be easily 

obtained by any boundary value problem (BVP) solvers (e.g., bvp4c in Matlab, or solve_bvp in Python), and it 

will be used to compare with the solution of the continuum model below.  

 

2.2 Continuum model 

We seek an approximate solution using a continuum description where the composite is modeled as a highly 

anisotropic plate [46,55].  As noted by Hedgepeth [5] and Hedgepeth and Van Dyke [6], equation (6) is a discrete 

version of the Laplace equation.  Our approach is similar but simpler than the model proposed by Beyerlein et al. 

[46] who model the composite as an orthotropic medium.   More details of the continuum model described below 

can be found in Sha et al. [55] which use the same approach to study the stress state near a crack tip inside a craze.  

Note, in fracture mechanics the convention is that 1x -axis is along the crack plane direction, and 2x -axis is 

perpendicular to the crack. Connected with the discrete model by Hedgepeth, 1x -axis in our continuum model 

corresponds to y-axis in Fig. 1 (transverse direction), and 2x -axis corresponds to x-axis (fiber direction). 

Accordingly, the normal stress xx  in the fibers and shear stress xy  in the matrix correspond to 22  and 12  in 

our continuum model, respectively. The unidirectional composite in Fig. 1 is modeled as a plane stress orthotropic 

solid with  
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where ij  are the strains, and ijC  are the standard moduli for an orthotropic plate. In particular, assuming 

f mE   and using the rule of mixtures [46],  
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where fV  is the volume fraction of fiber.  For stiff fibers and compliant matrices, 11 22C C , 13 22C C , 

23 22C C  and 12 66 22C C C  .  Thus, a good approximation for our geometry is to neglect 11  [55] with  
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where 2u  is the displacement in the vertical or fiber direction.  The relevant equilibrium equation is  
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Substituting (9a,b) into (10) gives 
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In the continuum model, the 2D planar composite is replaced by an infinitely long elastic strip with height 

2L (see Fig. 2).  The n fiber breaks in the original problem appears as a crack of length a occupying the interval 

( ),0a−  on the 1x -axis.   The boundary conditions are 
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Equation (12a) states that the crack formed by the fiber breaks is traction free whereas equation (12b) enforces 

the displacement imposed on the top and bottom of the composite.   

 

Fig. 2. Geometry of the continuum model, the crack has length a and the infinitely strip has height 2L.   A uniform 

displacement is imposed on the upper and lower surface.   

 

3. Results 



The exact solution of the continuum problem (11) with (12a,b) can be obtained by a transformation of 

variables and conformal mapping.  Due to the finite length of fibers, the discrete problem cannot be solved 

analytically, however, its solution is obtained numerically by solving a system of ODEs. Here we state the main 

results.  For the continuum problem we define a dimensionless constant 
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The stresses 22  and 12  for the continuum model can be written in complex form (see the Appendix), i.e., 

( )
( ) ( )

( )( ) ( ) ( )( )

22

22 12

exp / exp /

exp / 1 exp / exp /

C z L a L
z i

L z L z L a L

 
  

  

  − −
  

 + =
− − −

,    (14)  

where ( )1 2 /z x i x = +  and /L L = .   In particular, directly ahead of the crack tip, we have 12 0 = and 
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The factor 1 /x L  in equation (15a) can be written as: 
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The stresses given by the continuum crack solution (14) and (15) have a square root singularity as one approaches 

the crack tip.  Since the continuum solution does not account for the discrete geometry, the position of the crack 

tip must be interpreted carefully.  The position of the crack tip in the continuum model is determined empirically 

by matching the stress concentration factors of fibers directly ahead of crack tip with the analytic solution of the 

discrete model by Hikami and Chou [8], which is given by equation (1b). In a previous study, Beyerlein et al. 

[46] found that the best agreement between the continuum and discrete models occurs when the crack tip is placed 

at the distance of (h+w)/3 to the left of the first intact fiber.  They obtained this result by placing the crack tip at 

different locations, specifically, at (h+w)/2, 2(h+w)/7, 4(h+w)/17 to the left of the first intact fiber and looking for 

the best match.  Since we use a slightly different and simpler continuum model, we check whether (h+w)/3 is still 

the “best” position.  To do this we place the crack tip at five different locations (i.e., (h+w)/4, (h+w)/3, (h+w)/2, 

2(h+w)/3, and 3(h+w)/4 to the left of the first intact fiber) to find the best match and our result turns out to be the 

same as Beyerlein et al. [46].  Let 1x  be the distance of the s intact fiber from the crack tip, that is 
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The length of the crack a  is 
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Using (15a,b) and (16), the SCF ,
L
n sK  is 
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In the limit of an infinite large plate, l → , the SCF reduces to 
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Fig. 3 compares the exact solution of Hikami and Chou [8] given by (1) with (19) for n = 1,2,3,4 and different 

values of s.   Fig. 4 compares the ,
L
n sK  (discrete versus continuum) for n = 1,2,3,4 with different normalized fiber 

length or composite height.  The cross symbols are the analytical solution given by (18) and the circles are 

numerical results obtained by solving the discrete model (DM).  Both figures show that our continuum model can 

accurately predict the stress concentration factor.    

 

Fig. 3. Comparison of ,n sK  by Hikami and Chou, and equation (19), with different values of n and s. The analytic 

solutions of Hikami and Chou are plotted as circles, and results by equation (19) are plotted as cross symbols.  



 

We point out an interesting result:  the stress concentration factor ,n sK  for an infinite large plate is 

independent of fiber size, matrix spacing and material properties.  However, this is not the case when fibers have 

finite length.   Recall in soft composites, the load transfer length Tl  can be very large (centimeters), hence fiber 

length in a small specimen can be less than the load transfer length.   This bring up another point.  Fig. 4 shows 

that for short composites, that is, if / 1Tl L l=  , all the unbroken fibers are under ELS, that is, all intact fibers 

bear the same load, irrespectively of the size of the crack. 

 

 

Fig. 4. ,
L
n sK  in the intact fiber s with different normalized length l . The solutions by discrete model (DM) and 

equation (18) are plotted as circles and crosses, respectively.  (a) 1n = ; (b) 2n = ; (c) 3n = ; (d) 4n = . 



 

To pursue this idea further, we replace the finite crack in Fig. 2 with a semi-infinite crack.   The exact stress 

distribution for this case is obtained by setting a =   in equation (14), resulting in: 
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Using (16) and (20a) with 2 0x = , the stress acting on the fiber s directly ahead of the crack tip is: 
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         (21)  

Note for / 1/ 3Tl L l= =  (short composite), the exponential factor in (21) is ( )exp −  for the 1st intact fiber ahead 

of the crack tip, for the 2nd intact fiber s = 2, this factor decreases to ( )exp 4− . Accordingly, the SCFs are 1.022 

and 1.000, respectively. Hence, in short composites, the intact fibers are under ELS, irrespective of crack size.   

In this regime, the composite is extremely flaw insensitive despite LLS.    

As a further test of the continuum model, we plot the stress profile along the first intact fiber ( 1s = ) for 

different composite size L  and broken fiber number n. We use equation (14) to compute the normalized tension 

22  along the fiber, i.e., 

2

22
22

22
2 2
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3 3 3

Re
/ 1exp exp 1 exp exp exp

3 3 3 3 3

xi n
l l l

C L x xi i n
l l l l l
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


   

        − − +                 
 =  

              
− − − +                            

 (22) 

where 2 2 / Tx x l= . In Fig. 5, we plot the normalized stress 22  versus the relative position 2 2/ /x l x L=  along 

the fiber with different values of n and l . As shown below, the DM results (symbols) agree with the 

approximation of equation (22) (lines) within 5% error, irrespective of the value of l .  As expected, for 1l  , 

the stress decays very fast within the load transfer length Tl  and approaches one; while for the 1l  , the stress 

decays very slowly and remains close to one.  

 

 



 

Fig. 5. Normalized stress 22  versus the relative position 2 /x L  along the first intact fiber with different values 
of n. The solutions by discrete model (DM) and equation (22) are plotted as symbols and lines, respectively. (a) 

1n = ; (b) 2n = ; (c) 3n = ; (d) 4n = . 

 

4. Summary and Discussion 

A continuum model is used to determine the stress concentration factor in a unidirectional fiber-matrix 

composite with finite length fibers.  The stress concentration factor determined using the continuum model 

compares well with numerical solution of the shear-lag model.  It is commonly accepted that a unidirectional 

composite with elastic matrix is under LLS.  Our analysis shows that this is not the case for soft composites where 

the fiber/matrix modulus ratio is exceedingly large. For this class of composites, small samples are flaw 

insensitive and ELS is the norm rather than the exception.  



For soft composites, this result means that failure of small specimens is governed by ELS and hence by its 

fiber statistics.  Daniels [30] has shown that the failure strength of an ELS bundle consisting of a large number of 

fibers of equal length   is asymptotically normally distributed.  Specifically, the probability ( )P   that the 

composite fails for nominal stress less than or equal to   is  

( ) maxP  


 

 − 
=  

 
,     ( )

2 /21
2

z
rz e dr



−

−

 =          (23a,b)  

where max is the mean strength and    is the standard deviation.  In general, max  and    depend on the fiber 

strength statistics, and bundle size. A well accepted model is that fibers obey Weibull distribution, that is, the 

probability that a fiber of length   will break when subjected to a tensile stress less than or equal to   is  

( )
0 0

, 1 exp 1 expF
l

 



  
 

 

      
   = − − = − −   
         

        (24)  

where 0  is the reference stress associated with a reference length 0l , 0   is the Weibull shape parameter, and 

( )
1

0l


 = .  For most fibers, 3 12  .  The smaller the value of  , the higher the variability of fiber strength.   

Using this model, Coleman [56] showed that  

1/ 1/
max e 

   − −=   ,           (25a)  

and the standard deviation   

( )1/ 1/ 1/1e e
N

    − − −= −  ,         (25b) 

where N is the number of fibers in the bundle or composite.  In our case, the fiber length is 2L, 2L = .  Under 

ELS, we can predict the mean strength and work of extension assuming fibers obey Weibull statistics, and show 

such composites exhibit the Mullin effect typically observed in rubbers [57] and double network gels [58,59]. 

This work will be reported in a separated paper. 

Our result indicates that linear elastic fracture mechanics (LEFM) breaks down completely for small 

specimens where ELS prevails.  For LEFM to be useful, it is necessary that / 1TL l   (see equations (15a,b)), 

that is, fibers in the composite must be much longer than the load transfer length .  If this condition is satisfied, 

then the fiber stress near the crack tip, given by equation (15a), approaches 

( )
( )

( )

( )
( )22

22 1 2 1 1
1

1 exp / 2
0, 0 , / 1, / 3

1 exp / 2/

a LCx x x L x h w
a Lx L


 



− −
 =    +

+ −
  (26)  



which has the inverse square root singularity of LEFM if 1x  is allowed to go to zero.  For this case, 

( )

( )
22

1 exp / 2
2 /

1 exp / 2
a L

C L
a L


 



− −

+ −
 corresponds to the stress intensity factor of the crack.   

The above analysis is for a 2D planar sheet with equally spaced fibers perfectly bonded to an elastic matrix.  

It is possible to extend the present analysis to study different fiber packings in 2D using the 3D shear-lag model 

developed by Hedgepeth and Van Dyke [6].  Mahesh et al. [36] have studied the stress decay along fibers ahead 

of a penny shaped crack and found similar behavior seen in 2D.  Hence we do not expect significant differences 

in scaling behavior.  The analysis in this work is based on linear elasticity where the strains are assumed to be 

small.  However, soft composites can stretch up to 1000% strain, so it may seem that our analysis is impractical.  

Our analysis can be justified by the fact that, in a displacement-controlled test, a composite sample will reach a 

peak stress at strains ~0.05 to 0.1 (see for example, Fig. 3C in King et al. [48]).  In this regime, linear elasticity is 

valid.  This peak stress is an important mechanical parameter since it characterizes the maximum load capability 

of the composite.  The existence of peak stress is due to competition between stress lost due to fiber breaking and 

stress gain due to loading.  Indeed, as long as fibers can support load, the composite modulus will be significantly 

larger than matrix modulus and small strain theory is valid.  The strain will be large once fibers are highly 

fragmented.  After this point the linear theory break down and there will be a rapid load drop in the stress-strain 

curve.  The analysis in this work allow us to understand the mechanics of load transfer before and during the 

stress drop.  We note that the soft composite in King et al. [48] is a plane weave fabric which has much more 

complicated micro-mechanics than the unidirectional composite in this study. To study the stress concentrations 

in such plane weave fabric, one might seek wisdom from the existing analytic models [60,61], and then include 

the fiber size effect.  Here we highlight the differences and connections of soft composites with existing composite 

theories and LEFM.  We hope this work can stimulate interest in soft composites. 
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Appendix: Solution of continuum model 

We convert equations (11) and (12) into an anti-shear plane crack problem using the following 

transformations: 

1 1x X= , 2 2x X= , 22
2


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
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12
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The constitutive model, rewritten in the transformed stresses 2 1,   are isotropic, i.e., 
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Further, 2 1,   satisfies equilibrium in the transformed plane 1 2( , )X X  
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.        (A3) 

Equations (A2) and (A3) imply that 2u  is the displacement field of an anti-plane shear problem, and it satisfies 

the Laplace equation in the 1 2( , )X X  plane 

2 2
2 2
2 2

1 2

0u u
X X
 

+ =
 

.            (A4) 

Symmetry implies that we need to consider the upper half of the strip and the boundary conditions are: 

( ) ( ) ( ) ( )2
2 1 2 2 2 1 2 2 1 2

2

, , 0, 0 0, 0, 0 , 0 0uu x x L a x x u x x u x a x
x


  = =  −   = =  = =  − = =


  (A5) 

Let 2 2
2 2 2

x Xu u u
L L

 =  + =  + , where /L L = .  Note that stresses associated with 2X
L

  is 22 22 /C L =   and 

12 0 =  everywhere in the strip.   By equations (A3) and (A4), the displacement field 2u  must satisfy Laplace 

equation in the 1 2( , )X X  plane with boundary conditions 

( ) ( )

( ) ( )

2
2 1 2 1 2

2

2 1 2 2 1 2

, 0, 0, 0 ,

0, 0 , 0 0

uu X X L a X X
X L

u X X u X a X




 

 
  = = −   = = −



 = =  − = =

     (A6) 

Next, we map the strip in the 1 2( , )X X  plane conformally onto the upper half  plane, where 1 2i  = + .  Let 

1 2z X iX= + , the conformal map is 



( )exp /z L =             (A7) 

The crack in the z plane maps onto ( )/ ,1a Le  −  (the crack tips are mapped to 1 =  and /a Le −  in the   plane).   

The top of the strip, 2X L=  is mapped onto the negative real   axis.   This mapping transforms the displacement 

2 1 2( , )u X X  onto a displacement ( )2 1 2ˆ ,u    in the   plane.   Since the complex stress ( ) 2 1z i    = +  is analytic, 

the transformed stress ( )̂  in the   plane is also analytic and they are related by 

( ) ( )ˆ ˆd
dz L
 

      = =           (A8) 

This means that the crack in the interval ( )/ ,1a Le  −  is loaded by a negative traction 12
lC

l 


−  .   The complex 

stresses ( )̂   in the  plane can be found using a formula by Rice [62]:  

( )
( ) ( )

( ) ( )
( )

( ) ( )

/

/1
12

2 /

/
12 12

/

1
ˆ

1

1

a L

a L

a L
e

a L

a L

t t eC dt
t te

C C e

e











 
  



   

−

−



−

−

−

− −− 
=

−− −

   −
= − +  

 − −  


      (A9) 

Using (A8), the stresses in the z plane is 

( )
( )( )

/ /
12

12

/ / /1

z L a L

z L z L a L

C e eCz
L L e e e

 

  


−



−

  −
   

= − +
− −

.        (A10) 

Equation (A10) is the stress associated with 2u , the stress associated with 2u  is 

( ) ( )
( )( )

/ /
12

12

/ / /1

z L a L

z L z L a L

C e eCz z
L L e e e

 

  
 

−



−

  −
   

= + =
− −

       (A11)  

The actual stresses 22  and 12  can be obtained from (A11) using (A2), i.e., 22 2 12 1,   = =  with 

1 1 2 2, /X x X x = = .  The case of a → can be obtained by setting a =   in (A11).  


