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Abstract:  An upper estimate for fiber/matrix modulus ratio in traditional fiber reinforced polymer (FRP) 

composites is 100.  Matrices made from tough elastic gels can have modulus approaching kilopascals and increase 

this ratio to 710 .  We study how this extremely high modulus ratio affects the mechanical behavior of such fiber 

reinforced “soft” composites (FRSCs).  We focus on unidirectional FRSCs with parallel fibers perfectly bonded 

to a soft elastic matrix.  We show such composites exhibit the Mullins effect typically observed in rubbers and 

double network (DN) gels.  We quantify size effect on mechanical properties by studying unidirectional 

composites consisting of finite length fibers.  We determine the stress concentration factors (SCFs) for a cluster 

of fiber breaks in this geometry and show that there is a transition from equal load sharing (ELS) to local load 

sharing (LLS).  We also determine the mean strength and work of extension assuming fibers obey Weibull 

statistics.  We discuss the application of fracture mechanics to this emerging class of composites.  We highlight 

similarities and differences between FRSCs and DN gels. 
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1. Introduction 

Fiber reinforced polymer (FRP) composites are widely used in many important technological applications.  

For example, approximately 50% of the wings and fuselage of the Boeing 787 Dreamliner and the Airbus A350 

XWB consist of carbon fiber reinforced epoxy matrix composites [1]. FRP composites have high strength to 



weight ratio and are generally more resistant to fracture and damage than traditional homogenous materials.  For 

example, failure of homogeneous solids is often preceded by the growth of a crack.  In composites, failure occurs 

by diffuse damage due to individual fiber breaks as the composite is loaded until clusters of breaks joined together 

causing failure. 

There is a vast literature on FRP composites.  Here we focus on an emerging class of FRP composites where 

the matrix is extremely soft and tough, namely fiber reinforced soft composites (FRSCs).  An early example is a 

composite consisting of a soft and tough alginate–polyacrylamide hydrogel reinforced with a random network of 

stainless steel fibers (steel wool) [2].  Feng et al. [3] use a model soft composite consisting of nylon fabric mesh 

adhesively bonded to VHB (very high bond) acrylic tapes to demonstrate the failure and toughening mechanism 

of double network (DN) gels.  King et al. [4], and Huang et al. [5,6] have discovered that extremely tough 

composites can be made by binding a woven glass fiber fabric with a matrix consisting of a polyampholyte (PA) 

hydrogel [7].  These works open the possibility of making very tough composites by replacing traditional stiff 

epoxy matrices with soft matrices such as DN and self-healing hydrogels.  The shear modulus of these soft 

matrices can be as low as kilopascals and they have much higher failure strain in a tension test in comparison 

with epoxy.  For example, the PA hydrogel used by King et al. [4] after deswelling contains about 50 wt% water, 

has a Young’s modulus of 0.1 MPa, failure strain of 30 and work of extension of 4 MJ/m3.  These type of 

composites have many potential applications since the properties of hydrogels can be tailored to include properties 

such as bio-compatibility [8,9], self-healing [10,11], low friction [12] and anti-fouling [13].  For example, soft 

composites can be used as a robotic hand to grip and interact with a large variety of objects [14].   

The FRSCs studied by King et al. [4] are made by bonding a woven glass fabric to a tough PA matrix.  From 

a theoretical standpoint, woven fabric is a difficult system to analyze due to the large number of variables such as 

weave geometry, compaction, bending rigidity and friction behavior of yarns [15–17].  As noted by Scelzo et al. 

[15], these variables “influence in-fabric behavior such as crimp interchange, shear transfer and interyarn normal 

forces”.  The lack of a comprehensive model predicting the mechanical behavior (such as tearing strength) of 

fabrics motivates us to study a simpler modeling system: a unidirectional composite consisting of parallel fibers 

bonded to a soft elastic matrix, as shown in Fig. 1.   

The analysis presented here borrows heavily from the vast literature on the mechanics of FRP composites.  

The readers who are unfamiliar with the mechanics of unidirectional composites may want to consult some of the 

excellent reviews on this topic, e.g., [18,19]. 

The plan of this paper is as follows:  Section 2 focuses on the mechanics of unidirectional FRSCs.  In this 

section we introduce the geometry of the composite to be studied and highlight the concept of load transfer length.   

We compute the stress concentration factor (SCF) on fibers next to a cluster of fiber breaks and relate this to the 

concept of local load sharing (LLS) [20–25] and equal load sharing (ELS) [26–28].  We also explore flaw 



sensitivity. Section 3 focuses on fiber statistics and their effects on composite strength and energy dissipation.  In 

particular, we show FRSCs exhibit the Mullins effect and use the chain-of-ELS-bundles model, which has been 

widely studied in the literature [18,23,27], as a model to show that the strength of FRSCs is not particularly 

sensitive to the composite size.  We end this section with a detailed discussion of fracture mechanics approach to 

FRSCs.  Section 4 consists of summary and discussion.  In the discussion we highlight differences and similarities 

between DN gels and FRSCs.  

 

2. Mechanics of unidirectional FRSCs 

2.1 FRSCs have extremely high modulus ratio – large load transfer length 

An important feature of FRSCs is that the fiber modulus fE  is typically five to six orders of magnitude 

greater than the shear modulus m  of the matrix.  For example, most soft matrices have a shear modulus on the 

order of 0.1 MPa or less, whereas fE  for E-glass fiber reinforced polymer (E-GFRP) composites is on the order 

of 75 GPa.  Thus, 9 5 5/ 75 10 /10 7.5 10f mE    =  .  Using high modulus carbon fibers where 240fE =  GPa, 

this ratio is even higher, 9 5 6/ 240 10 /10 2.4 10f mE    =  .  To gain perspective, the same ratio for an E-glass 

fiber reinforced epoxy matrix composite is about 9 9/ 75 10 /1.25 10 ~ 60f mE     , at least four orders of 

magnitude lower.  Thus, a distinguishing feature of FRSCs is their extremely high modulus ratio.     

Load transfer length 

When a fiber breaks in the composite (see Fig. 1), the segments of the fiber adjacent to the break unload and 

the original load carried by this segment is transferred to neighboring intact fibers, causing these fibers to overload 

and making them more susceptible to failure.   The size of this overload region is roughly the same as the length 

of the unloaded fiber segments and is an important length scale in composite theory [20,29]; we call this the load 

transfer length Tl .  For elastic fibers and matrix and assuming perfect bonding, Tl  is [20]    
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where w is the effective width between adjacent fibers, h is the effective matrix thickness, and fA  is the cross-

sectional area of a fiber (see Fig. 1).  In most situations, h is roughly the main dimension of the fiber.  For example, 

for fiber with a square cross-section, 2
fA h= .  The spacing w is related to the volume fraction of fibers in the 
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Since fV  is between 50% to 65% in most composites, the load transfer length is at least 100-1000 times the fiber 

diameter for FRSCs.   If we take a typical fiber diameter to be 20 microns, then Tl  is roughly between 2 mm to 3 

cm for stiff fibers and soft matrices; this dimension is comparable to the size of samples often used for mechanical 

testing in a laboratory.   

2.2 Stress concentration near fiber breaks: size effect 

Failure of composites is controlled by stress concentration near fiber breaks.  When the matrix is elastic, such 

models are often referred to as local load sharing (LLS) models, since the load transfer from a failed fiber tends 

to be concentrated on the closest unbroken fibers.  The seminal work of Hedgepeth [20] provides an exact solution 

for the stress distribution near fiber breaks in a unidirectional fiber-matrix composite consisting of a 2D planar 

sheet with a parallel array of infinitely long fibers ( )L =   perfectly bonded to an elastic matrix, as shown in Fig. 

1.  Since the size of typical samples in mechanical testing are on the order of centimeters, the fibers in a composite 

sample with an epoxy matrix can be considered as infinitely long in comparison with the load transfer length 

which is typically less than 0.1  mm.  This is not the case for FRSCs.  This motivates us to study size effect, that 

is, instead of infinitely long fibers, the length of fibers in our unidirectional composite is finite.  Specifically, the 

composite consists of a 2D array of parallel fibers of length 2L and Young’s modulus fE .  The fibers are perfectly 

bonded to an elastic matrix of shear modulus m . The composite is infinite in the x direction and has n consecutive 

fiber breaks (crack) along the center line 0y = .  A uniform vertical displacement   is imposed on the upper 

and lower surfaces of the composite plate at y L=  , thus the strain far away from the crack is / L =  .  All 

fibers have the same cross-sectional area fA . 



 

Fig. 1. Planar 2D composite with elastic fibers embedded in an elastic matrix. A group of n  consecutive fibers is 

broken, forming a crack-like structure. The height of the composite is 2L (in Hedgepeth L → ), and a uniform 

vertical displacement   is imposed on the upper and lower surface of the composite.  Integer k  is used to label 

fibers where k−    , and the n  contiguous broken fibers (crack) span 0 1k n  − . s  is the number of the 

intact fibers ahead of the last broken fiber along the crack plane. 

 

2.3 Flaw sensitivity  

Most homogeneous material such as metals, glasses and polymers are macroscopically isotropic and flaw 

sensitive.  Composites are designed to be flaw insensitive.   This is due to the large differences in elastic modulus 

between the fiber and matrix.  As we have already seen, the modulus ratio is roughly 100 even in traditional fiber-

epoxy composites.  This modulus disparity means that practically all the tension load is carried by the fibers.   The 

only situation where matrix comes into play is near a fiber break, where it transfers the lost load of the broken 

fiber to other intact fibers by deforming in shear [18,20,21].  In the following, we will study the effect of composite 

size and modulus ratio on flaw sensitivity.   

2.4 Discrete shear-lag model (DSLM) and continuum model (CM) for SCF 

There are two solution methods to the stress concentration problem.  The first is due to Hedgepeth [20] which 

we shall call the discrete shear-lag model (DSLM).  Details can be found in Hedgepeth [20] and Hikami and Chou 

[30]. The key idea is that fibers can support only tension and the matrix can only carry shear.  The fibers are 

discrete entities and are labeled by an integer k.  For example, ( )ku y and ( )kp y  denote the displacement and 

load of the k-th fiber in the 2D infinite array in Fig. 1.  The governing equations for normalized fiber displacements 

is an infinite system of ordinary differential equations (ODEs) given by [20] 
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The boundary conditions of the finite fiber length problem in Fig. 1 are [31]: 

( ) ( )0,0  0k kU k n = ,     ( ) ( )0 00 1kdU
d
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where 

/ Ty l = , k
k

T
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= , / L =  .          (3c) 

Numerical solution of DSLM model can be obtained by most boundary value problem (BVP) solvers (e.g., bvp4c 

in Matlab, or solve_bvp in Python).   

Alternatively, the unidirectional composite in Fig. 1 can be modeled as a plane stress orthotropic solid [32,33] 

with the stresses   related to the in-plane strains   by  
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where the ijC ’s are stiffness coefficients with units of stress.  For stiff fibers and soft matrices, 11 22C C  and 

12 66 22C C C  .  Using the rule of mixtures [32],  
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provided f mE  .  For the composite in Figure 1, Hui et al. [31] have shown that an excellent approximation 

is to neglect 11  with  
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where u is the displacement along the fiber direction.  The governing equation for the stress and deformation field 

u is [31–33] 
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2.5 Stress concentration factor (SCF) 



Linear elastic fracture mechanics (LEFM) predicts that the stress at a fiber break right next to the crack is 

infinite.  LEFM typically assumes that the material is isotropic, homogenous and elastic all the way to the crack 

tip.  However, fiber composites are inhomogeneous and anisotropic.  As a result, continuum solutions for cracks 

must be interpreted carefully due to the discreteness of fiber geometry near the crack tip.  Indeed, since fibers are 

the main load bearing agent, the relevant quantity is the stress concentration on unbroken fibers.   The theory of 

fiber stress concentration was first established by Hedgepeth [20].  He uses the DSLM to compute the SCF for an 

infinite sheet of unidirectional composite loaded by remote tension  .  His solution showed that the SCF 

,1 1 /L
nK  =

=  for the first fiber right next to a single fiber break is exactly 4/3, where 1  is the maximum stress 

on the first fiber to the right of the break.  The superscript ‘L’ in ,1
L
nK  indicates that fibers have length 2L; the first 

subscript denotes the number of breaks (n) in the cluster and the second subscript denotes fiber 1s =  ahead of the 

cluster. For the case of n consecutive breaks or a cluster of n breaks, the SCF on the fiber right next to the last 

break is found to be: 
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Note 1,1 4 / 3K = , 2,1 8 / 5K = , 3,1 64 / 35K = , 4,1 128 / 63K = , so by the fourth fiber break the SCF on the first intact 

fiber has more than doubled.  For very large n, the SCF approaches / 4n  asymptotically [18].  

Since the strength of fiber is non-deterministic, it is not always true that the highest stressed fiber fails first.  

It is therefore of interest to study ,
L
n sK  for 1s  .  The SCF ,n sK  was obtained by Hikami and Chou [30], i.e.  
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Although (7) and (8) are exact, they work only for infinitely long fibers ( L =  ) and they are rather cumbersome 

to use.  Recently, Hui et al. [31] used a continuum model (CM) based on equations (4-6) to obtain the following 

formula for the SCF for finite length fibers.  The geometry of the CM is shown in Fig. 2.  The SCF is found to 

be: 
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Fig. 2. Geometry of the continuum model. The fibers and matrix in Fig. 1 are homogenized and replaced by a 

highly anisotropic solid.  The fiber breaks are modeled as a traction free crack with length a. 

 

Fig. 3 compares the ,
L
n sK  for n = 1,2,3,4 with different normalized fiber length or composite height.  The 

cross symbols are the analytical solution given by (9) and the circles are numerical results obtained by solving 

the DSLM based on (3a, b).  It shows that the expression given by (9) can accurately predict the SCF for the full 

range of L, n and s.  In the limit of a plate with infinitely long fibers where / TL L l= → , the SCF given by (9) 

reduces to 
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Equation (10) is found to be very accurate (see Fig. 3 below, for 10L = ) and is much easier to use than (8).    



 

Fig. 3. ,
L
n sK  in the intact fiber s with different normalized length L . The solutions by DSLM and CM are plotted 

as circles and crosses, respectively.  (a) 1n = ; (b) 2n = ; (c) 3n = ; (d) 4n = . 

 

A surprising result is that ,n sK  for a composite with infinitely long fibers and finite crack length (i.e., finite 

number of fiber breaks) is independent of fiber size, matrix spacing and material properties.  However, this is 

NOT the case when fibers have finite length.  Recall in FRSCs, the load transfer length Tl  can be very large 

(centimeters), hence fiber length in a typical laboratory specimen can be less than or on the order of the load 

transfer length.  This brings up another important result.  Fig. 3 shows that for short composites, that is, if 1L  , 

all the unbroken fibers are under ELS, that is, all intact fibers bear the same load, at least for n =1,2,3,4.  This 

result is easy to see using (9): the numerator and denominator in (9) approach 1 exponentially fast when 0L → .  



2.6 Size effect and fracture mechanics 

To persuade the above idea further, we consider the limit of an infinitely long crack, that is, a→  in Fig. 2 

and Fig. 3.  The SCF for this case is obtained by taking n as it approaches infinity in (9) and is: 
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1 ,     1

21 exp
3

L
sK s

s
L


 = 
  

− − −  
  

.        (11) 

In particular, when 1/ 3L =  (short composite), the exponential factor in (11) is ( )exp −  for the first intact fiber 

ahead of the crack tip ( 1s = ). For the second intact fiber 2s = , this factor decreases to ( )exp 4− .  Hence, in 

short composites, the intact fibers are practically under ELS, irrespective of crack size.  In this regime, the 

composite is extremely flaw insensitive.  Since L  is on the order of centimeters for FRSCs, there is a significant 

range of specimen sizes where classical fracture mechanics breaks down: even long prefabricated cracks have no 

effect on fracture.  To emphasize this point, the energy release rate of the infinitely long crack ( a → ) in Fig. 2 

is ( )2 2
22 22/ 2 2C L C L  = .  However, for TL l , the system is under ELS, so failure of the sample is not affected 

by the pre-existing crack, so the use of energy release rate to characterize fracture is meaningless.  As we shall 

see below, failure of the cracked sample in this regime is governed by random fiber breakage.   

On the other hand, if L is much longer than the load transfer length (but still much less than the crack length), 

then a simple calculation using equation (9) (with n =  ) shows that the stress on the first fiber directly ahead of 

the crack tip ( 1s = ) is: 

 ( )22 22
31

T

Ls C
l

 


= = .          (12) 

Thus, the SCF on the first fiber ( 1s = ) increases as the square root of the height of the plate, consistent with 

LEFM.  In this limit, the use of fracture mechanics may be justified.  We will discuss the use of fracture approach 

in FRSCs after we discuss fiber statistics.  

3. Statistical analysis for FRSCs 

3.1 Fiber statistics  

If fiber strength is deterministic, that is, if all fibers in the composite break at some fixed critical stress f , 

then once one fiber breaks, all the fibers in the composite in Fig. 1 will break irrespectively of the size of the 

specimen.  The strength of the composite is unique and independent of size – this hypothesis is not supported by 

experiments.  Indeed, it has been well documented that the strength of fibers is not deterministic [18,19,34,35] 

due to the existence of randomly occurring flaws.  In particular, shorter fibers are stronger since they have less 

flaws.  This effect is incorporated in the Weibull statistic theory of fiber strength [36].  In this theory, flaws occur 



along the fiber following a compound Poisson process where the rate parameter (the average number of flaws per 

unit length with strength less than or equal to the stress acting on the fiber) depends on the stress acting on the 

fiber.  Specifically, the failure probability that a fiber of length L will break when subjected to a tensile stress less 

than or equal to   is  
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where 0  is the reference stress associated with a reference length 0L , 0   is the Weibull shape parameter and 

( )
1

0 0L L L 
 =  is the scale parameter for length L.  In the Weibull model, the mean strength of a fiber of length 

0L  is 0 = ( )0 1 1/  +  (  is the Gamma function). For most fibers, 3 12  , so ( )0.89 1 1/ 0.96  +  . 

The smaller the value of  , the higher the variability of fiber strength.  The expression ( )
1

0 0L L L 
 =  shows 

that the mean strength of a fiber L  changes with its length L according to  
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For example, decreasing the length of a fiber by a factor of 10 will increase its strength by 1/10  ; for 3 = , the 

strength increases by a factor of 2.15.  

3.2 Failure strength for Short FRSCs: Mullins effect 

The last example illustrates that both mechanics and fiber statistics can significantly affect composite failure.  

Here we highlight fiber statistics on the failure process.  We consider a soft unidirectional composite plate 

consisting of N parallel fibers with equal lengths L, Young’s modulus fE  and cross-section area fA  (see Fig. 4 

below).  For the time being, we shall assume a short composite, that is, TL l .  From the previous section, 

unbroken fibers are to an excellent approximation under ELS.  The strength of these fibers, js , 1 j N  , in units 

of stress, are assumed to be independent and identically distributed random variables obeying Weibull statistics, 

that is, the probability of failure is given by (13).  In the following, we assume js  are arranged in increasing order, 

that is, 1j js s−  .    



 

Fig. 4. A composite of N parallel fibers (shaded) with length L bonded to a soft matrix (white) in a displacement-

controlled tension test.    

 

Consider a displacement-controlled test where the composite plate is held between rigid grips and the grips 

are pulled apart by imposing a vertical displacement of / 2  (see Fig. 4).  Before loading, all fibers are intact.  

As the sample is displaced to some 1 =  , the weakest fiber (first fiber) fails first.  Because of equal load sharing, 

the stress along every fiber is uniform and hence the break can occur any place along the fiber.  Once a fiber 

breaks, the entire segment of the fiber unloads (since TL l ) rapidly so the energy loss is 
2
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.  In a 

displacement-controlled test where the composite is held between rigid grips, the stiffness of the composite is the 

sum of the stiffness of the total number of unbroken fibers.   For example, just before the first fiber breaks, the 

total load in the composite is 1 /f fNE A L .  After breaking, the load drops by exactly 1 /f fE A L .  When i out 

of N fibers are broken, the stiffness of the composite is   

 ( ) /N i f fk N i A E L− = − ,          (15) 

and the total load is related to the applied displacement   by 

 ( )i N iP k − =   .           (16) 

Equation (16) holds before the next ( )1i + -th fiber breaks.   

The nominal or composite stress   is the total force P divided by the total cross-sectional area of the fibers 

fNA  (the extreme softness of the matrix allows us to neglect the load carried by it).   Just before and after the i-

th fiber breaks where the displacements are both i =  , the nominal stresses are  
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where /i i L =   is the composite strain and the superscripts ‘-’ and ‘+’ express the stress just before and just 

after the i-th fiber break.  By (17b), the fraction of surviving fibers ( ) /N i N−  decreases with i and eventually 

reaches zero when i N= .  On the other hand, the applied strain i  or i increases with i, so there must exist a 

maximum load maxP  or maximum nominal stress max  at some maxi i N=  .  From (17a), the maximum nominal 

or composite stress is simply 

 max
max 1 2 1

1 2 1max , , , ,N N
f

P Ns s s s
NA N N N

 −

− 
 =  

 
,       (18) 

where we have used f i iE s = . The total energy dissipated for a composite with i fiber breaks, i , is 

 2

12

i
f

i j
jf

A L
s

E =

 =   .           (19) 

The energy density (energy per unit volume) dissipated in a displacement-controlled test is the area under the 

nominal stress   versus strain   curve.   This energy density is often thought of as being the work of extension 

(per unit volume).     

Since the nominal stress drops every time a fiber breaks, the nominal stress-strain curve of this composite is 

saw-tooth like.  Fig. 5 plots this curve for a composite consisting of 5 fibers ( 5N = ).  To illustrate this idea, the 

failure stresses of the fibers are chosen, in some convenient units, to be ,js j=  1,2,3,4,5j =  respectively.  Also, 

the fiber cross-sectional area fA  is 1 in some chosen unit.  The first fiber breaks when 1 1s = =  unit.  

Immediately after the break, the load drops to 4 and the nominal stress drops to 4/5 (see (17b)).   To break the 

second fiber, the stress on the unbroken fibers has to increase to 2, which requires a total load of 8 or a nominal 

stress of 8/5.  Immediately after the second fiber fails, the load drops by 2, and the nominal stress suddenly 

decrease from 8/5 to 6/5.  Following this line of reasoning, one sees that for this particular specimen the peak load 

is 9, corresponding to a peak nominal stress of 9/5.  The situation is shown in Fig. 5.      

If we unload and reload the composite at a point on the stress/strain curve without exceeding the stress where 

the next weakest fiber fails (e.g., 9 / 5  ), then the composite is linearly elastic with a reduced modulus.  This 

is illustrated in Fig. 5.  Here the red dotted line illustrates the path taken during unloading/reloading after the 

second fiber fails.   The modulus for this case reduces by the factor of 3/5.  This behavior is identical to the Mullins 

effect in rubber [37] and in DN hydrogels [38,39].  Here we note the close analogy with DN gels.  In DN gels, it 

is the breaking of the sacrificial bonds in the stiff network that dissipates energy and reduces the gel modulus.  In 



general, the stress and strain curve in Fig. 5 will vary from sample to sample since the fiber breaking stress is 

random.   In the following, mean nominal stress is defined as the nominal stress averaged over a large number of 

identical samples.   Finally, it should be noted that the Mullins effect is a characteristic of FRP composites with 

elastic matrices and does not depend on the whether or not the composites are short or long.   

 

Fig. 5. A composite consisting of 5 fibers under ELS.  The fiber strengths are 1, 2, 3, 4, and 5.  After the second 

fiber breaks, if one unloads, then the sample unloads along the red line with reduced modulus.  If one stops 

unloading at any point on the red line and reloads, the stress and strain follows the red line as long as the maximum 

load is below the failure load of the third fiber. 

 

3.3 Failure stress and strain for short composites 

Fig. 5 is for a small number of fibers.  For large N and fibers that obey Weibull statistics, Daniels theory [26] 

shows that the mean nominal stress   and the applied strain   is: 

( )exp /f f LE E


    = −
  

.          (20) 

In addition, Daniels shows that the failure strength of an ELS bundle consisting of a large number of fibers of 

equal length L is normally distributed.   Specifically, the failure probability ( ),G L  that the composite fails for 

a nominal stress less than or equal to   is  

( ) max, ,
N

G L N  


 

 −
=  

 
,  ( )

2 /21
2

z
rz e dr



−

−

 =  ,        (21) 

where max  is the mean strength of the composite and N
  is the standard deviation.  In general, max  and N

  

depend on fiber statistics and bundle size.  Using the Weibull model, Coleman [40] showed that  



1/ 1/
max L e    − −= ,           (22a) 

( )1/ 1/ 1/1L
N e e

N
  

  − − −= − .          (22b) 

Note that the failure statistics of the composite is normal or Gaussian and is not the same as the failure statistics 

of its constituents (Weibull).   

3.4 Energy Dissipation for short composites 

An important consequence of the Mullins effect is that the energy dissipated by hysteresis in a cyclic test is 

the sum of the energies release by sudden unloading of broken fibers.  In a displacement-controlled test, the 

sample fails in a stable fashion, and the total mean energy loss per unit volume of the composite (for N → ), 
D

lossW , is given by the integral under the stress-strain curve given by (20).  For short composites where TL l  ,  

 ( ) ( ) ( )
2 2 2

/ 2/ 1

0 0 0

1 2 /LsD x qL L L
loss

f f f f

W se ds xe dx q e dq
E E E E

    


 

  
− −− −= = = =    .   (23a) 

The superscript ‘D’ indicates it is displacement controlled.  Equation (23a) shows that the mean energy loss 

density or work of extension depends on the shape parameter  .   Using the properties of Gamma function, D
lossW  

for large and small shape parameter   is: 
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    

.   (23b,c) 

As expected, for large shape parameters, (23b) shows that the loss energy density is given by the standard 

elasticity solution where all fibers fails at the same stress.  However, as the shape parameter approaches zero 

(fibers with extreme variability), the energy density increases and approaches infinity.  In this regime, energy 

loss is dominated by fibers with high strength.  Interestingly, the pre-factor in the loss energy density ( )1 2 / −   

has an absolute minimum of approximately 0.443 at 4.33 = .    

In a force-controlled test, the composite fails at peak load, and the mean energy loss per unit volume is  

 ( ) ( )

1/ 1/ 1/2 2 2
/ 2/ 1

0 0 0

1 2 1,
L

LsF x qL L L
loss

f f f f

W se ds xe dx q e dq
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 

   
   


   

− −

− −− −  
= = = =  

 
   .  (24) 

where   is the Incomplete Gamma function [41], and the superscript ‘F’ indicates it is force-controlled.  Fig. 6 

plots the normalized mean energy loss function versus the shape parameter  .   



 

Fig. 6. Normalized energy loss per unit volume of a short composite versus the Weibull shape parameter.   For 

very large   (not shown), both curves approach 1.  The solid line is for displacement control whereas the dotted 

line is for force controlled. 

 

3.5 Brittle-Ductile transition 

Plots of stress   versus strain   for different shape parameters (20) is shown in Fig. 7 below.  A simple 

calculation using (22a) shows that the minimum mean failure stress max  occurs at 1 = .   For large  , failure 

is brittle as the load drops abruptly after the peak load.   For small  , the composite exhibits a stress-strain 

behavior similar to ductile metals and DN gels which yield and soften after yield.   Fig. 7 shows that this ductile 

and brittle transition can be controlled by fiber statistics.  To check our analytic result (20) which is strictly valid 

for a very large number of fibers, we generate random variables following a Weibull distribution with different 

shape parameters  , and use the strategy in section 3.2 to obtain the stress-strain curve of a finite composite where 

5000N = .  Fig. 7 plots the normalized nominal stress-strain curve for different shape parameters.  Details on 

simulations are given in the Supporting Information (SI).    



 

Fig. 7. Normalized mean nominal stress / L   versus fE   where   is the strain imposed on the short composite.  

The mean stress is normalized by L  and the strain is normalized by /f LE  .  The dotted curve is the asymptotic 

result given by (20) ( N → ).  The solid lines are obtained by simulation.  

 

Percentage of fiber failure and loss of stiffness 

The strength distribution of fibers is reflected by the percentage of fiber failure at the peak load.  Equation 

(15) shows that the loss of stiffness of the composite is directly proportional to the number of broken fibers which 

we denote by i.  For a large number of fibers, the ratio of the composite stiffness is ( )/ /N i Nk k N i N− = −  

( ) / fE  =  .   This ratio can be computed using (20): 

 ( ) ( ) ( )/ / exp / / 1 exp /N i N f L f Lk k N i N E i N E
 

   −
   = − = −  = − −
      

   (25a) 

In particular, at peak load where 1/ /L fE  −=  the fraction of fiber break at peak load, denoted by ( )/
peak

i N  

is 

 ( ) 1// 1 e
peak

i N −= − .             (25b) 

As expected, for a large shape parameter, that is, 1  , none of the fibers break before the peak load.   However, 

for 9 = , only 10% of the fibers break at peak load.  In general, the fraction of fiber break at peak load is a 

monotonic decreasing function of  , as shown in Fig. 8.      



 

Fig. 8. The percentage of fiber break at peak load versus Weibull shape parameter.    

3.6 Failure of large composites ( )TL l   

Next we consider the failure of “large” composites consisting of N parallel fibers with length TL l .  As 

before, these fibers are assumed to be perfectly bonded to the soft elastic matrix.  Similar to the previous example, 

the initial state of the composite is assumed to be free of cracks or fiber breaks.  Upon loading, fiber break occurs 

at random locations.  Unlike the previous section which considers short composites, the fibers in the composite 

here are NOT under ELS once fibers break.   Indeed, the stress on a broken fiber can recover at distance 

sufficiently far from the break, so certain sections of a broken fiber can carry the full load.  This means that 

multiple breaks can occur along a single fiber.  Following Rosen [27], we model the composite as a chain of 

/ Tm L l=  “short” ELS composites, each having N fiber elements of characteristic length equal to the load transfer 

length Tl , and with the tensile load-carrying capability of the matrix being neglected.  Rosen’s model is often 

referred to in the literature to as the chain-of-ELS-bundles model, where in our context each bundle is understood 

to be short composite.  We denote the composites strength of each short composite by 1 2, , , mS S S  respectively.  

We assume that these strengths are independent and identically distributed random variables with common 

distribution function given by ( ), ,TG l N  in (22).  This assumption implies that the strength of the chain is 

 1 2min , , , mS S S  meaning that the chain fails if the weakest short composite (or bundle) fails.  The failure 

probability is ( )1 1 , ,
m

TG l N− −   .  Thus, the probability function H for the strength of the chain or composite 

strength is  

 ( ) ( ), , 1 1 , ,
m

TH N m G l N = − −   .         (26) 



For large number of fibers, the mean strength ( )max m  of a chain made up of m bundles can be computed using 

(26) and is found to be (see SI) 

 ( ) ( )max max 1 2 N mm m   = = + ,         (27a) 

where 

 ( )
21

/ 2 0
m

m
m erfc e d   



− −

−

=    .        (27b) 

Here 1m =  means evaluating quantities at the length TL l=  (the composite in this case is a bundle under ELS). 

Hence ( )max 1m =  can be obtained by setting L  to be 
Tl

  in (22a,b). It should be noted that the second term in 

(27a) is negative (see SI), meaning that the mean strength decreases as the size of the composite (m) increases.  

A plot of ( )max m  versus   for 1000N =  is shown in Fig. 9(a).  The minimum occurs at 1 .  Fig. 9(b) plots 

the percentage change of ( )max m , i.e., ( ) ( )

( )
max max

max

1
100

1
m m

m
 



− =


=
 versus the Weibull shape parameter.  Since 

  for most fibers is between 3 and 12, the percentage change is less than 5% for 100m = .  Note, for FRSCs, 

100m =  corresponds to a composite size on the order of 2 meters.   

 

Fig. 9. (a) ( )max /
Tl

m   versus the shape parameter  , the solid lines are equations (27a,b) and the symbols are 

simulation results.   (b) Percentage difference between the mean strength for a chain of m bundles and a single 

bundle ( ) ( )

( )
max max

max

1
100

1
m m

m
 



− =


=
 versus  . 



 

To compute the mean energy density loss function, we need an expression similar to (20) for the mean stress 

versus strain.   Unfortunately, we have not been able to derive such an expression.   Hence, we use simulations to 

find this stress-strain curve.   We index an element (bundle) of the chain by i, ( )1,2, ,i m=  and denote the 

stress-strain curve of the i-th element or bundle by ( )iC .   The procedure is as follows.  In step 1, we numerically 

generate m stress-strain curves ( )iC , ( )1,2, ,i m= .  In step 2, we obtain a stress-strain curve by finding the lower 

boundary of all ( )iC .   We repeat these two steps 1000 times and compute the mean of all resulting stress-strain 

curves and we denote this curve by C*.   In all our simulations, the number of fibers is chosen to be 1000N = .  

More details can be found in the SI.  Finally, it should be noted that if the number of fibers N goes to infinity, 

then each ( )iC is given exactly by (20).  Indeed, since N
  goes to zero as N goes to infinity, 

( ) ( )max max 1m m → =  for any finite chain.   

In the SI, we show that a good approximation for the mean energy density in a force-controlled test is to 

rescale ( )max m  by dividing it by ( )max 1m = , i.e., ( ) ( )max max/ 1m m  = .  We expect this factor to be less than 

1.  For force-controlled test (denote by the superscript F), we found numerically that 

 ( )
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( )
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1
1

F F
loss loss

m
W m W m

m
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
= =

=
.         (28) 

For displacement-controlled test, the mean energy loss per unit volume is approximately: 
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, (29a) 

where   is the largest root of the equation 

 ( ) ( ) ( )max max 01 exp /f fm m E E


     = − = −
  

.       (29b) 

It should be noted that the refinements offered by (28) and (29a, b) are for 100m  .  For m < 100, the mean 

strength and energy density for large composites can be well approximated by (22-24).  This means that the mean 

strength of reasonably large composites ( 100m  ) are roughly the same as short composites (i.e., one bundle).  

This result is relevant since it highlights the important role of the soft matrix in maintaining the strength of the 

composite.  Indeed, if the soft matrix were replaced by air, the strength of the composite would have gone down 

by a factor of ( )
1/ 1//Tl l m −= .  For example, if we take 3 =  and 100m = , the mean strength decreases by 78%.  

As demonstrated by King et al. [4], neat composites without a soft matrix has significantly less strength and 

energy dissipation.  However, it must be emphasized that King et al.’s neat composite is a woven fabric which 



has much more complicated micro-mechanics than the unidirectional composites in this study.  Here we 

emphasized that the Rosen model of failure is very crude in this context.  This model is likely going to break 

down before the peak load.  We will discuss the limitation of this model in the discussion.   

4. Fracture mechanics of FRSCs 

Traditional fracture testing of homogeneous materials is usually done by loading a sample containing a pre-

crack until crack growth occurs.  From such tests one determines a quantity called fracture toughness which is 

supposed to be independent of specimen geometry.   For fiber-reinforced composites, such tests have limited 

utility since cracks in these composites occur due to fiber breaks and their spatial positions are randomly 

distributed.  It is only at the very end of the composite’s life that fiber breaks coalescence into a large “crack” 

failing the sample.  Indeed, fracture rarely occurs on a single plane – the crack path is tortuous.   Therefore, 

reliable predictions based on fracture testing in composites with a pre-crack should be interpreted with great care.   

As an example, let us compare two pure shear crack samples with a semi-infinite crack (see Fig. 2).  The first 

sample, Sample 1, has a height 1 TL l  and the second sample, Sample 2, has 2 TL l .   In the short fiber 

specimen (Sample 1), the fibers are stronger by a factor of ( )
1/

2 1/L L  , and all the unbroken fibers are under ELS.   

As discussed previously, the failure mode of the shorter fiber specimen is highly diffuse and random – there is no 

crack growth and no well-defined fracture plane.   The specimen fails in two phases: in the first, fibers fail in 

random locations dictated by flaw statistics.  At the end of the first phase, almost all the fibers fail.  In a traditional 

composite, the composite will fail virtually immediately as the load drops to almost zero, and the matrix has no 

load-carrying ability thereafter.  However, in a displacement-controlled test, the FRSCs will not fail even though 

it suffers a huge reduction in stiffness.   This is because the soft matrix is very tough and can sustain very large 

strains before failure.  The second phase of failure is dominated by matrix failure and fiber pull-out.  The mean 

failure strength and failure strain in the first phase is given by (22a, b) respectively with 12L L= .  

We next estimate the fracture energy to fail Sample 1.  We could have divided the fracture energy by the total 

uncracked area of the sample and call this the fracture energy per unit area, fG .  However, as noted earlier, fG  

has nothing to do with the critical energy release rate since the fibers ahead of the crack is subjected to ELS.  In 

this regime the crack plays no role.  Because of this, the appropriate indicator is the work of extension fW  which 

is the energy needed to fail a unit volume of the sample.   To estimate fW , we first find the energy per unit volume 

dissipated by the sudden unloading of fibers in an ELS sample.  Our previous analysis (see (23a)) shows that 

 ( )
2

2 /D L
loss

f

W
E





=  .           (30) 



However, there is an additional contribution to fW .  For the specimen to fail, the matrix has to fail. Since the 

matrix can sustain very large stretches before failure, it is possible that substantial additional strain is needed to 

fail the composite, even though the load has dropped drastically because the fibers are not carrying load.  In this 

regime the specimen loses the constraint provided by the intact fibers and is subjected to very large deformation.   

As a result, the stress state on the matrix is highly complex and the shear-lag model is not applicable. In this 

regime, a possible failure mode is pulling out of broken fibers from the matrix. Clearly, this process also 

contributes to energy dissipation.  We denote the energy contribution (per unit volume) due to pull-out by pulloutW .   

We roughly estimate pulloutW  by assuming the location of fiber breaks follows a uniform distribution, so that the 

mean distance of breaks measured from the center line of specimen or the crack plane ( 0y = ) is 1 / 2L ; that is, 

on average, the fiber pull-out length is approximately 1 / 2L .  We further assume fiber pull-out is achieved by 

propagating a shear crack in the matrix and that the soft matrix has a fracture toughness of mG , which for tough 

soft gels, is on the order of 3000 to 5000 J/m2.   This assumption is consistent with the very limited experimental 

data on the mechanism of fiber pull-out in FRSCs.  In tear tests performed on a woven glass fabric impregnated 

with a soft PA gel, it was found that fiber pull-out results from matrix failure rather than the growth of an interface 

crack [4].   Thus, an upper estimate of the contribution to the work of extension due to fiber pull-out is: 

 1 / 2pullout f mW G L c ,           (31) 

where c is the circumference of the matrix crack and f  is the number of fibers per unit volume.  A rough estimate 

is 4c h , where h is the radius of the fiber.  Substituting this into (31),  

 12pullout f mW G L h .           (32) 

Combining (30) and (32), the work of extension fW  is 

 ( )
2

12 / 2D L
f loss pullout f m

f

W W W G L h
E


 


= + =  + .       (33) 

It is important to note that fW  is specimen size dependent since both lossW  and pulloutW  depends on the length of 

fibers.  The uncertainty in (33) is pulloutW  – it is possible that (33) overestimates the energy density.  For example, 

the matrix can fail in a different way due to the high constraint of the fibers. 

An order of magnitude estimate can be made on D
lossW  and pulloutW  based on the experiments of Huang et al. 

[6].  A rough estimate of D
lossW   is about 7 33 10 J/m  where we have used 

1
240L =  MPa and Ef = 5.5 GPa, with 

  sufficiently large so that ( )1 2 / 1/ 2 −   .  To estimate pulloutW , we use 3 23.5 10 J/mmG =   for the fracture 



energy of the PA gel [6] 9 -36.5 10 mf =  , 1 20mmL = , 7μmh = , resulting in 6 36.4 10 J/mpulloutW =  .  Note that 

the energy dissipated from fiber breakage and from pull-out is roughly on the same order of magnitude.  This 

result is consistent with recent tearing test performed on the weaved glass fiber composite [6].  Here we mention 

the recent work by Wang et al. [42] who use a very different system, and find that the energy dissipated in their 

composite correlates well with the energy release by the sudden breaking of fibers.   

Next, consider the case of a “large” composite 2 TL l  with a long pre-crack (Sample 2).  For this case the 

fibers are weaker.  As shown in section 2.7, stresses are concentrated at the crack tip when 2 / 1TL l  .   Hui et 

al. [31] have recently shown that the fiber stress in the specimen in Fig. 2 can be accurately predicted by: 
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where  

 ( )2 2 2/ 2 / 3 / /z L s L iy L = − + ,   1i = − .          (34b) 

In (34a,b), / Ty y l= , 2 2 / TL L l=  and Re denotes the real part of a complex number.  Recall that s denotes the 

fiber number directly ahead of the crack tip.  Here we note that the stresses given by the continuum crack solution 

(34a) have a square root singularity as one approach the crack tip.  Since the continuum solution does not account 

for the discrete geometry, the position of the crack tip must be interpreted carefully so the stress on the fiber 

calculated using the continuum model is in close agreement with the DSLM.  In our previous work [31], we found 

that this condition is satisfied when z is related to the fiber number s by (34b).   The accuracy of our analytic 

results given by (34a,b) is verified by a finite element method.  Details are given in the SI.  

Note 2 / 1TL l   implies that, near the crack tip, (34a) can be approximated by: 

 22
2

1Re
/f C

z L
 


 .          (35) 

This is because near the crack tip, 2/z L  is small, hence ( )21 exp /z L− − 2/z L .  The factor 

22 22 /IK C L   in (35) corresponds to the stress intensity factor of the crack.   Because the factor   >> 1, 

the stress intensity factor is small unless the specimen is very large – reflecting the flaw insensitivity of soft 

composites.   For large enough specimens, it is possible that failure occurs by the growth of the preexisting crack.   

However, even in this regime, the crack does not propagate along a well-defined plane (e.g. the plane containing 

the initial pre-crack).   This is because the strength of fibers is statistically distributed and the stress acting on all 

fibers are finite.  Hence, during loading, a diffuse zone of fiber breakage forms and engulfs the crack tip.  We 

shall call this the damage zone.   



Let us estimate the shape of the damage zone d  by setting f  in (34a) to 
2L , the scale parameter for the 

fibers in Sample 2.   In other words, we determine the boundary of the damage zone by finding where fiber stress 

reaches 
2L , which is close to the mean strength of the fiber.  For each value of the applied nominal stress 22C  , 

we solve (34a) to find the location z where 
2f L = .  This procedure generates a curve which is the boundary of 

d  for the applied strain. Fig. 10 plots the shape of the damage zone d  for specimens with 

2 2 / 5,10,100TL L l =  for different applies strains.  The vertical axis y  in Fig. 10 is in the fiber direction and 

distance on this axis is normalized by Tl .  The horizontal axis is s.  Recall integer value of s represent a fiber and 

in Fig. 10 fibers are indicated by gray bars.  As expected, increasing the applied strain increases the size of the 

damage zone.  Since the continuum solution is meaningless if 1s   ( d  has to contain at least one fiber), we do 

not plot any curve that is contained in a circle of radius 1 centered at the crack tip.  This means excluding 2 1L   

(i.e., Sample 1) since for this case the stress concentration is so small that no damage zone will form until 

222 / 1LC   → .  Indeed, even for 2 5L = , the smallest damage zone (this damage zone contains only one fiber 

directly ahead of the crack tip) occurs at 
222 / 0.5LC   = .  The stress concentration for the case of 2 10L =  is still 

not sufficient to apply LEFM, since the smallest damage zone appears at 
222 / 0.4LC   = .  For 2 100L = , the 

stress concentration is now large enough, so the smallest damage zone occurs at 
222 / 0.1LC   = .  This is the 

regime where LEFM is applicable.  Recall for LEFM to be applicable, the following constraints should be 

satisfied: (1) the applied stress should be much less than the fiber breaking stress; (2) the damage zone should be 

large enough to include relevant micromechanics but small enough so that the singular field still dominates.   For 

our case, the first condition is satisfied if  

 
222 LC   .            (36) 

In other words, the applied nominal stress must be much less than the mean stress for fiber break.  The second 

condition requires that there is at least one fiber inside the damage zone and 2 2 / 1TL L l  .  A necessary 

consequence of LEFM is that the shape of the damage zone should be determined by the asymptotic field (36), 

which can be rewritten as: 

 ( )
2

22 1 cos
2 l

CLR 


 

 
= + 

 
 where ( )

2 22 / 3R s y= − + , 2 / 3cos s
R


−

= .   (37) 

Equation (37) indicates that the shape of the damage zone is a limacon.  Shapes of the damage zone predicted by 

the asymptotic field (35) are plotted as dashed lines in Fig. 10 for comparison with the full field solution.   



The results in Fig. 10 shows that fracture mechanics is not applicable to specimens with 10L  .  For 100L = , 

deviation occurs when 
222 / 0.3LC     as the asymptotic solution (35) underestimates the size of the damage 

zone.   Note that the damage zone for 22 / 0.3lC   =  contains only 3 fibers with lengths between 1.7 to 1.9 Tl .  

Unless these fibers all fail on the crack plane, which is unlikely, the size of the damage zone may be too small to 

fail the sample.  Thus, failure of the sample would require larger values of 22C  ; however, in this case the damage 

is no longer controlled by the elastic “singular” field, and hence the amount of damage will depend on the 

specimen geometry.   As a result, the concept of fracture toughness breaks down.   Surprisingly, the shape and 

size of the damage zone is reasonably well approximated by the asymptotic theory even for large values of 

222 / LC    where LEFM theory is expected to breakdown.    



 

Fig. 10.  Shapes of damage zone at different nominal stress levels 
222 / LC    for different normalized fiber lengths 

(a): 2 5L = , (b): 2 10L = , (c): 2 100L = .  Solids lines are generated by solving (34a) with 
2f L =  and dotted 

lines are the asymptotic solution based on (35).  

 

Let us consider the case of 2 100L = .  The size of the damage zone (see Fig. 10(c)) for 
222 0.2 LC  =  engulfs 

one fiber directly ahead of the crack tip.  This fiber is likely going to break somewhere inside the damage zone 



and the crack can propagate by breaking one fiber at a time.  The energy dissipated by propagating the crack a 

unit area is roughly  

 D
loss TG W l ,            (38) 

the energy release by elastic unloading of fibers, where we have neglected the energy contribution due to fiber 

pull-out. 

 

5. Summary and Discussion  

We study the mechanical behavior of unidirectional FRSCs.  Fibers are assumed to be well-bonded to the 

soft matrix and obey Weibull statistics.  The long load transfer length in FRSCs means that the size of the 

composite (in our case the fiber length) is an important geometric parameter.  We also highlight the relevance of 

fiber statistics to the failure strength and work of extension.  Our main results can be summarized as follows: 

(a) The long load transfer length due to stiff fiber and soft matrix dramatically reduces stress concentration.  Since 

stiff fibers store huge amounts of energy before they break and the length between breaks is on the order of the 

load transfer length, the energy dissipation due to fiber breaks is large.   

(b) FRSCs exhibit Mullins effect commonly observed in rubbers and DN gels. 

(c) The mean failure stress max for composites with fiber less than 100 times its load transfer length is well 

approximated by the mean failure stress of a composite with fiber length equal to or less than the load transfer 

length, i.e., 1/ 1/
max Tl

e   − −= .  However, this result can underestimate the composite strength since it is 

obtained using the chain-of-ELS-bundles model, which neglects interactions between fiber breaks in different 

sections (i.e., different bundles). However, a full-scale simulation without this assumption is an extremely difficult 

problem and is beyond the scope of this work.   

(d) A lower bound of work of extension is the energy loss due to fiber breaks.  This energy density is given by 

(23a) or (24), with L  in these equations replaced by 
Tl

 .  This is a lower estimate since fiber pull-out due to 

matrix failure is not included.  For tough soft matrices, the energy dissipation due to fiber pull-out can be quite 

significant and is on the same order of magnitude as the energy dissipated by fiber breaks.  These results are 

consistent with the few experiments on soft composites.  For example, Huang et al. [6] have found that fiber 

breakage and matrix failure contributed equally to energy dissipation of their woven fiber PA gel composite. 

Wang et al. [42] have made a model composite by bonding stiff polydimethylsiloxane (PDMS) fibers to a softer 

PDMS matrix and found that the toughness of the composite is much higher than its constituents.  They attribute 

this increase in toughness to the release of strain energy associated with fiber breaks, which is consistent with our 

model.    



(e) In principle, the composite can exhibit a brittle to ductile transition when the shape parameter is smaller than 

one.   In practice, shape parameter for fibers is usually greater than 3. 

(f) FRSCs are extremely flaw insensitive and fracture mechanics must be used with great care.  Indeed, due to the 

long load transfer length, fracture of composites with pre-cracks are size/sample sensitive.  The size dependence 

of fracture energy is demonstrated by recent tearing experiments by Huang et al. [5,6]. Their experiments 

indicated that the tearing energy is not a material property as it increases with the width of the composite 

(consisting of a glass fabric bonded to PA gel) until the width reaches and exceeds a load transfer length which 

is on the order of centimeters.  This observation is again consistent with the model presented here.   

It is important to note that our model assumes good adhesion between the fiber matrix interface.  This is the 

case with the woven fiber PA gel composite [4,5].  In fact, the matrix/fiber interfaces are so strong that failure 

invariably occur in the matrix [6].  In contrast, the interfaces are very weak in the steel wool/gel composites of 

Illeperuma et al. [2], as a result, both composite strength and toughness are compromised.   

There is a close connection between the DN gel discovered by Gong et al. [43] and FRSCs.  The DN gel is a 

molecular soft composite since it is essentially a stiff polymer network embedded in a soft polymer network.  Like 

FRSCs, DN gels exhibit the Mullins effect due to the breaking of the stiff network [38,39].  The energy loss of 

broken chains in the stiff network is analogous to the energy loss due to fiber breaks in FRSCs.  However, unlike 

the highly aligned fibers in our unidirectional composite, the stiff network in DN gels is three dimensional with a 

spatial distribution of chemical crosslinks.  As a result, the load transfer mechanics between the stiff network and 

the soft network is much more complex and is poorly understood.  For example, the stiff network, being 3D, will 

not be under equal load sharing in the absence of the 2nd network.  It is interesting to note that, since the molecular 

weight between crosslinks in the DN gel is not a fixed number, the stretches needed to break chains in the stiff 

network is statistically distributed.  To push the analogy further, this translates to very small Weibull parameter 

in our FRSCs. Indeed, the stress versus strain curve of DN gels exhibit yielding and softening behavior similar to 

that of FRSCs for 0.45 = .  Here we note that tough DN gels typically exhibit a yield stress followed by necking.   

The stress strain curve often has a long plateau after the yield point before the network strain hardens [38,43,44].   

Because the matrix is so soft in comparison with the fibers, this plateau and upturn of the stress-strain curve does 

not occur in our FRSCs. 

Based on our model, we propose the following design criteria:   

(a) Use high strength fibers to increase energy dissipation lossW . 

(b) Utilize fibers of appropriately long length, because fibers in short composites do not reach their maximum 

load bearing capability and toughness can also be compromised due to pull-out.  

(c) Ensure good interfacial adhesion to allow for effective load transfer. 



(d) Incorporate an elastic matrix that is soft in small strains, but strain hardens rapidly at large strains.   

The last criterion requires explanation.  As mentioned at the end of Section 3, the Rosen model is crude and 

likely fails near the peak load.  For a composite with a large number of fibers, the peak loads for different “short” 

composites or links are close to each other.  This means that when the weakest link reaches the peak load, the 

next weakest link is not so far from it.  This is particularly true if the number of fibers is large since in the limit 

of large number of fibers the variance vanishes.  However, because the bundles are in series, this weaker link can 

never reach its peak load unless the matrix can take up some of the lost tensile load due to fiber breakage in the 

weakest link.  Since the matrix is still highly constrained by the stiff fibers at peak load; and because it is so soft, 

the tension load carried by the matrix is negligibly small in comparison with the load loss due to the breaking of 

fibers.  This means that next weakest link can never reach peak load unless two conditions are satisfied: (1) the 

volume fraction of fiber is sufficiently low (2) the matrix strain hardens substantially at larger strains.  If these 

conditions are satisfied, then the soft composites can exhibit yield behavior since links can fail consecutively at 

increasing strains.    

There are obvious limitations in our model.  The matrix is assumed to be elastic, whereas many tough gels 

yields at moderate strains.  Note this does not invalidate our analysis since the composite strain remains very 

small as long as a small fraction of fibers remain intact.  However, large strains will affect how the composite 

fails, e.g. during fiber pull-out.  Our micro-mechanical model for fiber pull-out is extremely crude since little is 

known about this mode of failure in FRSCs.  To illustrate ideas, we confine our analysis to a simple geometry 

and the composite is subjected to uniaxial tension.  For example, we do not consider 3D composite structures 

which are important for applications.  Also, many hydrogels are viscoelastic [45] or even visco-plastic and this 

will affect load transfer between the fiber and matrix.  We do not consider systems where debonding of the 

gel/fiber interface can occur near a fiber break.  In these systems, the load transfer mechanics are more complex 

and fiber pull-out can occur prematurely before fibers can break if the interfaces are weak.  Nevertheless, we 

believe that many of the fundamental issues are addressed and hope this work will stimulate interest in this 

emerging area.  
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1. Derivation of (27a,b) 
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Integration by parts implies that 
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Substituting (S2) into (S1a), ( )max m  is 

( ) ( )
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Note, for the chain-of-ELS-bundles model, max is evaluated at the length TL l=  , so that ( )max max 1m = = . 

Next, we show ( )
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2. Simulations in sections 3.5 and 3.6 

To simulate the stress-strain behavior of one ELS bundle with large N, we first need to generate N  random 

variables, js  (1 j N  ), which obey Weibull statistics.  We use the random sampling routine, weibull, in the 

package numpy of Python to draw samples from a Weibull distribution. In section 3.2, we have illustrated a 

procedure to generate the saw-tooth like stress-strain curve for five fibers.  We follow this procedure with 

1000N =  fibers.   This procedure results in Fig. 7 in the main text with different Weibull shape parameters  . 

We use the following procedure to obtain the stress-strain curves for several chains of ELS bundles. We index a 

bundle of chain by i ( )1,2, ,i m= , and denote the stress-strain curve for the i-th bundle by ( )iC . To illustrate 

this idea, we use 2m =  and 1 =  as an example.  In Step One, we numerically generate 2m =  stress-strain 

curves ( )iC  (i =1,2), as indicated by the blue and yellow solid lines in Fig. S1(a).  In Step Two, we obtain a stress-

strain curve by finding the lower boundary of all ( )iC , denoted by C  and indicated by the black solid line in Fig. 

S1(b).  We repeat the above two steps 1000 times and compute the mean of all 1000 curves C ; we denote this 

curve by C* (red solid line in Fig. S1(c)).  In all our simulations, the number of fibers is chosen to be 1000N = .   



 
Fig. S1. The procedure to obtain stress-strain curve for the chain-of-ELS-bundles model. 

 

Once we obtain the stress-strain curve C*, we can use it to compute the mean energy density loss function. In 

Fig. S2 we plot the stress-strain curve for a several chains of ELS bundles with 10m =  and 1 = . The peak value 

of C* is denoted by ( )max m , and it’s asymptotic value for very large N is given by equation (27a,b) in the main 

text.  First, we divide the curve C  into two regions: the region before the peak value ( )max m  is region 1 and 

the region after, region 2.  These two regions are divided by the vertical gray dashed lines in Fig. S2.  For Region 

1, the curve C  is found to be approximately equal to the asymptotic solution scaled by ( ) ( )max max/ 1m m  = , 

where ( )max 1m =  is evaluated at the load transfer length Tl  in equation (22a) in the main text.  For Region 2, 

the curve C  is approximately equal to the asymptotic solution (for an equal load sharing bundle, 1m = ) shifted 



downwards by ( ) ( )max max1m m = −  until it intersects the x-axis. As shown in Fig. S2, this approximation 

(black dotted line) is in good agreement with C .  To further verify this approximation, we use different 

combinations of m  and  . It demonstrates as long as 1000m   and 0.7  , our approximation deviates little 

from numerical results.   

Therefore, in a force-controlled test the mean energy loss density can be well approximated by the area of the 

curve in region 1, i.e., 

( )
( )

( )
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1
1

F F
loss loss

m
W m W m

m



= =

=
.         (S5) 

For the displacement-controlled test, the mean energy loss density comes from Region 1 and 2. For Region 1, it 

is identically equal to ( )F
lossW m , i.e., 

( ) ( ),Region 1D F
loss lossW m W m= .          (S6) 

For Region 2, we need to subtract this area by shifting down the asymptotic curve by ( ) ( )max max1m m = − . The 

intersection position, , of our approximation (black dotted line) with the x-axis is given by the solution of  

( ) ( ) ( )max max 01 exp /f fm m E E


     − = = −
  

,       (S7) 

where the LHS of (S7) is the amount shifted downward, and RHS is the asymptotic solution for one ELS bundle.  

Also, we notice that the vertical gray line intersects the x-axis at the position 1/ /
Tl fE  − . Hence, the contribution 

from the Region 2 is approximately  

( ) ( ) ( ) ( ) ( )
1/
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loss loss loss
f

W m W m W m m m
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 
  

− 
 = = − = − = − −       

 

   (S8) 

where the first term of ( ) ( )1 1D F
loss lossW m W m= − =  in RHS corresponds to the area under the asymptotic curve in 

Region 2, and the second term is the amount we need to subtract due to shift. 



 
Fig. S2. Stress-strain curve for a chain of ELS bundles with 10m =  and 1 = . 

 

3. Comparison of equations (34a,b) with finite element solution 

To demonstrate the accuracy of our analytical results in Fig. 10, we simulate one case with 2 5L =  (normalized 

height of composite equals to 5 times the load transfer length, see Fig.10(a)) by finite element method (FEM). 

The finite element model is shown schematically in Fig. S3, and was implemented using the commercial FEM 

software ABAQUS. The composite, loaded under plane stress conditions, contains 100 square cross-section fibers, 

and half of these fibers (50 on the left) are broken in the middle to mimic the long pre-crack.  Due to symmetry, 

only the upper half domain is modeled. The ratio of Young’s modulus of fiber ( fE ) to the shear modulus of 

matrix ( m ) is 4/ 10f mE  = . The Poisson’s ratios of fiber and matrix are 0.3 and 0.49, respectively. The thickness 

of the square cross-section fiber ( h ) is equal to the width between adjacent fibers ( w ). The height of the half 

composite is 2 500L h= . In such way, the load transfer length is 100Tl h= , and 2 2 / 5TL L l= = . On the top edge, 

a vertical displacement 2L =  is imposed, where   is the average applied strain.  The crack tip is located on 

the left edge of the first intact fiber.  On the bottom edge and behind the crack tip, it is traction free; in front of 

the crack tip, the vertical displacement and shear traction are prescribed to be zero. To avoid rigid body motion, 

the horizontal displacement at the crack tip is set to zero. To balance the accuracy and efficiency of the 

computation, we choose a fine mesh near the crack tip, while far away the element size increases rapidly. Our 

convergence test shows that further refinement of mesh does not affect the FE results. 

We extract the average normal stress 
2

FEM
L  along the first intact fiber (s=1) and plotted 

2

FEM/f LE  as a function 

of its vertical coordinate y  in Fig. S4 (solid line). Our theoretical prediction 
222 / LC   where 

2L  is given by 

(34a) with s = 1 is also plotted for comparison. As it shows, our results agree very well with the FEM. 



 

Fig. S3. Schematic of finite element model and boundary conditions. Fibers are highlighted in blue. 

 
Fig. S4. Comparison of our theoretical results with FEM results along the first intact fiber. 

 


