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We report a stable and efficient complex Langevin sampling scheme for performing approximation-free
numerical simulations directly on the path-integral coherent-states field theory for an assembly of
interacting bosons. We apply the method to generate the 4 line of critical phase transitions associated with
Bose-Einstein condensation in a model ¢* scalar field theory. The new approach enjoys near-linear scaling
in the resolved (d + 1) spatial and imaginary-time dimensions and should be particularly efficient for the

study of dense systems at low temperature.
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Introduction.—Low-temperature assemblies of identical
bosons exhibit fascinating quantum phenomena, including
superfluidity [1,2] and Bose-Einstein condensation [3-5].
The development of magneto-optical trapping [6] and
evaporative cooling techniques [7] have allowed ultracold
gases to be confined to different kinds of atom traps at
extreme low temperatures in the nK range. This has further
enabled a significant effort in creating optical lattices to
study fundamental many-body phenomena, including the
quantum critical point at the crossover from superfluid to
Mott insulator [8—11].

Computer simulations have an important role to play in
low-temperature physics in guiding experiment design
and interpreting outcomes. The dominant simulation
approach for finite-temperature, equilibrium quantum stat-
istical mechanics of identical bosons in continuous space is
provided by path-integral Monte Carlo [12] (PIMC) cal-
culations, which uses the position representation of the
thermal density matrix to sample particle degrees of free-
dom at a discrete set of imaginary times. Although the
PIMC method has been successfully applied to a wide
range of finite-temperature quantum many-body problems
[12-17], and advanced PIMC sampling algorithms have
been developed (e.g., the continuous-space worm algorithm
[18]), one drawback of PIMC theory remains the require-
ment to track the coordinates of every particle at numerous
imaginary-time intervals, and the need to explicitly sample
particle exchange permutations to correctly symmetrize the
thermal density matrix. This renders the method consid-
erably more demanding at low temperature and/or high
particle density.

Our work begins with the second-quantized description
of a many-boson partition function, with particle exchange
statistics embedded in the commutation relations of the
raising and lowering operators of the many-body Hilbert
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space. By transforming the path integral to the basis of
bosonic coherent states [19], a field-theory representation
emerges that is implicitly symmetric in the boson coor-
dinates, removing the requirement to explicitly sample
particle exchange permutations. However, the resulting
field theory contains a sign problem: the statistical weight,
which contains the exponential of an action functional that
is extensive with system size, has a wildly oscillating phase
with variations in the coherent-states fields, resulting in
exponentially vanishing normalization factors that render
sampling intractable. Since the action is analytic in the field
variables for such bosonic theories, complex Langevin
(CL) sampling proves to be a general technique to bypass
this sign problem [20,21] by adaptively sampling along
near-stationary-phase trajectories in an analytically con-
tinued field theory. Although there is no general guarantee
of convergence, it has been proven [22] that complex
Langevin simulations that converge to time-independent
ensemble averages are free of any bias. Despite the promise
of implicit symmetrization without a sign problem, the
adoption of the CL approach has been hindered by the
relative lack of stable and efficient algorithms, apart from
limited application to model systems in high-energy phys-
ics [23-25]. In this Letter, we introduce a new general
complex Langevin algorithm for sampling of the coherent-
states field theory of a low-temperature assembly of bosons
and demonstrate its application by mapping the A line of
critical phase transitions in a ¢* scalar field theory.

Methods.—The path-integral representation of the grand
partition function, E, in a basis of spinless-boson coherent-
state fields, ¢, (r), where n € [0,N,] is a discrete imagi-
nary-time index, can be written as

N,.—1
2w v.7) =[] / Dot )e-Stoit o], (1)
PN =0

n=0
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The grand-partition function involves a functional integral
over real and imaginary parts of the complex-valued fields,
@, (r), which are taken with periodic boundary conditions
in imaginary time, g _(r) = ¢o(r). The complex-conjugate
field is denoted @} (r). The action functional, S, contains

|

the link between imaginary time slices, one-body operators
for kinetic energy, external potential U.,, and chemical
potential y, and a two-body term for pair interactions
between bosons, v:

Sl{oi. o)) = Z [ @030 020) = 110+ (225 4 Vo) = 6)

N1
#53 [ e [ @i e =)o ), @

where ¢ =p/N, and p = 1/kgT. In this Letter, we
employ periodic boundary conditions in spatial coordinates
throughout.

Thermodynamic observables, e.g., O, can be written as
ensemble averages over field configurations O = (O, ¢*]),
of a coherent-states field operator O[p*,q], where the
average is taken with a complex-valued statistical weight
exp(—S). Example operators include the particle number,
Nip.¢*] = (1/N,) 307" [ dre;(x)g,(r), the density
matrix, p(r.r';[p,¢*]) = (1/No) 3205 @ (€)@, (1), and
the imaginary-time Green function, G,(r,v';[p,¢*]) =
@4 (r)@,_1 (). Note that while thermodynamic observables
are necessarily real-valued, instantaneous operator values
will be complex prior to ensemble averaging.

Since the action functional in Eq. (2) is complex valued
and extensive, the coherent-states field theory suffers from
a sign problem that renders traditional sampling methods
practically inapplicable. Complex Langevin [20,21]
dynamics is a fictitious stochastic dynamics that bypasses
the sign problem in sampling the complex-valued statistical
weight of the field theory. Within this approach, both
the real and imaginary parts of the field are treated as
independent and are individually analytically continued to
the full complex plane; a stochastic process then samples
field configurations, evolving to near-stationary-phase
trajectories, and operator averages are computed over the
fictitious time. Following our algorithmic development for
a similar form of classical polymer field theories [26],
we have found that an off-diagonal relaxation scheme that
decouples ¢ and ¢* to linear order allows for stable time
stepping of the complex Langevin equations. In this
scheme, the CL equations of motion become

_SHent {wa}]

Dpn(r) = ——5 vy T 1)
oitr) ==L H e

where ¢, and ¢, are understood to be independent,
complex-valued fields, and ¢ is the fictitious (Langevin)

|

time. These equations include relaxation terms from cross
functional derivatives of the action and driving noise.
In order to satisfy the fluctuation-dissipation theorem for
this dynamics selection, the Langevin noise terms must
be appropriately correlated: y,,(r,7) = (1/ \/E)(n,(ll)(r, 1)+
inglz)(r, 1)), real-valued Gaussian
random variables with variance <;7£f> (r, t)n%)(r’ ) =
26;0,m0(r —¥')6(¢t —1'), and y;(r, ) is the complex con-
jugate of y,(r, ). The scheme presented here is equivalent
to one obtained [24] by writing conventional CL equations
of motion [20,21] for real-valued fields u(r), v(r) that are
subsequently made complex, with ¢(r) o u(r) + iv(r)
and ¢*(r) o u(r) — iv(r).

We develop a pseudospectral method for sampling Eq. (3).
Functions of spatial coordinates are transformed according
to the Fourier convention g, = V~! [drf(r)exp(—ik.r),
where k are translation vectors of the reciprocal cell:
2zL7'(I,m,n) for I[,m,n € Z, assuming a cubic
simulation cell of side L. Similarly, functions of the discrete
imaginary-time variable are transformed to imaginary

where the # are

Matsubara frequencies using the Fourier convention g,, =
N1 Zi:/;f)l fnexp(—inew;) with w; =2zj/p for j€ Z.
The resulting continuous-time CL equations of motion, which
are approximation free in the N, — oo limit, are these:

Oy (t) = =Axwi;(t) + Faly,(r.1)]
- ’7:2 [E'Wn (I‘, Y [{(p;}7 {[pn}])wn—l (I’, t)]? (4)

Oy j(t) = —Ag i (1) + Falrn (x.1)]
= Folew,(r.t:[{on} Aea ) ens (r.0)]. (5)

where Ay; =1— (1 — eh?k*/2m + ep)e 2" i/N:, w, (r) =
Ue(r) + [ dr'v([e =) (€)1 (T, F [, (r)] denotes
the Fourier transform over both space and imaginary time, and
wij = Falea ()], y*; = Fale) (r)]. Note that while yy ;
and y ; denote two independent complex variables in the
complex Langevin sampling scheme, the linear coefficient
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Ag ; is precisely the complex conjugate of Ay ;. Importantly,
Egs. (4) and (5) provide insight into expected numerical time-
integration stability for finite N,. Analytic linear stability
demands that 9i(Ay ;) > 0, which is also the condition for the
ideal-gas quadratic action to be positive definite, required
for the Gaussian-integral identities used to construct the
partition function. It is thus easily demonstrated that
0 < e(h*k*/2m — p) < 2 is required for linear stability, so
that N, > B(h%k2,./2m — u)/2 defines a minimal number of
imaginary-time samples for the wave vector cutoff, k., in
the computational lattice.

To numerically propagate the pseudospectral equations
of motion in time by discrete steps At, we take the linear
coefficient Ay ; as an integrating factor over the Az interval
resulting in an exponential-time-differencing (ETD) algo-
rithm [27,28]. Values of nonlinear components are taken
from the previous time step over the whole At interval
resulting in a method that is weak first-order accurate with
excellent stability. Linear contributions to the equation of
motion are integrated exactly over the interval, hence
purely linear problems (i.e., those for which v = 0) are
in principle accurately propagated to all orders in At. The
resulting algorithm is

1+1 —Ay I
wi ! & ety

1 — e—AwAr
- [T] Folew (gl (r)] + R, (6)
J

. 1 — g_AﬂjA’
(WE;)(”') ~e Ak,-Af(l,,l*(j)(l) - |—
A

x Folew') (1)@}, (0)O] + (RE)*. (7)

where Ry ; is a complex-valued Gaussian noise integrated
over At to give a variance <R{;,j,R{(j> = VIN; 6 w6;
8 r{[1 — exp(—2Ag;At)/2A; ]}, and superscripts indicate
time step indices, [ = t/At. With the use of fast Fourier
transform (FFT) methods, this algorithm has a computa-
tional cost that scales approximately linearly with both
system volume and N, while the cost per CL time step is
independent of the number of bosons.

Results.—We begin by demonstrating that our sampling
scheme can reproduce the thermodynamics of an ideal
Bose gas with U, (r) =0, v(r) = 0. Figure 1 shows the
logarithm of the activity, In(z) = fu, vs a dimensionless
particle density that is independent of boson mass. We
compare to a reference result [29] (NA?/V) = Lis(z),
where A = h(2zmkgT)~'/? is the de Broglie thermal
wavelength, and Li is the polylogarithm function, which
is a good closed-form approximation to the exact density
if the ground-state population vanishes [i.e., outside Bose-
Einstein condensation (BEC)].

2.0

In(2)
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FIG. 1. Equation of state for a Bose ideal gas computed using
the coherent-states complex-Langevin sampling method (red
points). In(z) = fu is the logarithm of the activity, and the
phase-space density is made dimensionless using the thermal
wavelength A. The reference result is the 3/2 polylogarithm (see
body text). Error bars are stochastic errors of the mean.

For low densities, an ideal Bose gas behaves thermo-
dynamically as a classical assembly of distinguishable
particles obeying Boltzmann statistics. As the phase-space
density increases, quantum effects become increasingly
important. At NA3/V ~ 1, the average interparticle spacing
is on the order of the de Broglie thermal wavelength,
indicating an approximate crossover to quantum degen-
eracy and an increased importance of particle-exchange
statistics. All particle exchanges along the imaginary time
paths are properly counted by the coherent-states field
theory, without any special sampling requirements. The
crossover to BEC (not shown in Fig. 1) can be approxi-
mated by Lis/»(1) = 2.61, corresponding to the chemical
potential x4 — 07; beyond this limit the polylogarithm
approximation to the phase-space density breaks down,
because that result was derived assuming zero population
of the ground state. We note that in this example, CL
simulations are also restricted to ¢ < 0 because there is no
repulsion to stabilize against divergent particle numbers
obtained once y > ¢, where ¢ is the ground-state energy
of the one-body Hamiltonian (i.e., the action is unbounded,
and the BEC phase is not directly accessible to the
simulation when v = 0).

A ¢* scalar field theory results from a pair interaction
potential v(r) = vy6(r). The parameter v, can be chosen as
a pseudopotential to mimic a realistic interatomic potential
in a low-energy approximation by preserving the s-wave
scattering length, a,, as vy = 4xh’a;m~". In the present
case, we treat v, as an arbitrary model parameter and
compare CL simulation predictions for the A line of critical
phase transitions to analytic theory. The reference critical
temperature for this model, obtained from a renormaliza-
tion group analysis and mapping the critical behavior onto a
classical spin model [30-32], is
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_ 2zh? U 2/3
kpTe = m <21JOZ_,’(3/2)> ’ (8)

where { is the Riemann zeta function.

For our simulations of the ¢4 theory, we write the action
with a minimal set of parameters by choosing a non-
dimensionalization strategy that scales lengths by the
thermal wavelength, A, at a reference temperature,
T, so that T* =T/T,s and u* = u/kgTs remain
explicit in the action. We locate the critical temperature
using the Bose condensate fraction, (Ny)/(N), as an order
parameter, where N, = VN;! ZnN;B] Oh x—0Pn—1 k=0 and
@, @™ are the spatial Fourier transforms of ¢, ¢*. Although
the order parameter in the thermodynamic limit is nonzero
only for T < T,, in common with other critical phase
transitions, finite-size errors dramatically modify the value
in the region of 7, making the phase transition difficult to
extract, as shown in Fig. 2(a). We apply a finite-size scaling
analysis [33], shown in Fig. 2(b), to extract T.. This
approach is explained in detail in the Supplemental
Material [34], and two other forms of scaling analysis
are there shown to be consistent. Finally, Fig. 3 shows
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FIG. 2. (a) the Bose condensate fraction for various simulation
cell sizes (L = 3.05-7.61 in multiples of Ay), u* = 0.045, and
vy = 0.005, shows large finite-size errors. Errors of the mean are
smaller than the symbol size. Numerical discretization parameters
are At = 0.05, N, =50, and spatial collocation mesh spacing
Ax = 0.28 A, (b) Finite-size scaling analysis of the condensate
fraction allows T'; to be extracted. In this Letter, v = 0.671 and
p = 0.45 (see the Supplemental Material [34]).

the full p-dependent CL phase diagram for uvj =
vo/(kBTrefAfef) = (0.005 and 0.010 compared to Eq. (8).

A thorough analysis of factors affecting computational
cost is beyond the scope of the present Letter, but we report
here the approximate timing for a single simulation on a
single hardware platform for illustration. A large-cell
simulation sampled with a 32 x 32 x 32 spatial collocation
mesh and N, = 100 takes 10-15 ms per CL time step
on an NVIDIA Tesla V100 GPU [37]. We have found
2.5 x 10° time steps to yield an error of the mean of the
condensate fraction below 0.1%, requiring 7-11 hours on
the V100 GPU.

Canonical ensemble.—The field theory presented here is
formulated at fixed chemical potential, and direct control
of particle number is not immediately possible. However,
there are often situations where constraining particle
number is convenient or required, e.g., in limiting simu-
lations of bosons in an optical lattice to integer fill fractions
[I1]. In order to perform simulations in the canonical
ensemble, we write the canonical partition function as

ZIN.V.T) = / Dig.0*)5(N — Nlp.g" ). (9)

where S is equal to the action of Eq. (2) with 4 = 0, and
N{gp.@*] is the particle-number operator introduced pre-
viously. By writing the Dirac delta function in exponential
notation, a new scalar integration variable is introduced:

1 co . o —
Z(N, v, T) = E/ dW/D((p, (p*)e_SO_’W(N—N[!/’-(// ])‘

(10)

By identifying iw = fu, the new ensemble can be
sampled using the same CL equations as those for the
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FIG. 3. Critical temperature vs chemical potential, T (u*), for
the ¢* theory. Points are from complex Langevin (CL) simu-
lations and finite-size scaling analysis (see the Supplemental
Material [34]); lines are from Eq. (8).
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grand-canonical ensemble but with a complex-valued,
time-dependent chemical potential sampled according to
the following equation of motion:

A1) = 2,67 (N = Nlp.¢*]) + im, (1), (11)

where 7, is a real-valued Gaussian-distributed random
variable with variance (1, (t)n,(¢')) = 24,6(t — ¢') and A,
is a mobility coefficient that controls the rate of evolution of
u relative to the coherent-states fields. We time step this
equation—in tandem with the field CL equations—using
an explicit Euler-Maruyama algorithm. A numerical dem-
onstration of the particle-number-constraint method for the
ideal Bose gas is shown in the Supplemental Material [34].
The strategy described here constitutes a general way of
adding constraints in sampling the field theory.

Conclusions.—We have presented a new algorithm for
directly simulating the coherent-states path integral field
theory of interacting bosons using complex Langevin
dynamics and pseudospectral collocation with exponential
time differencing. We have demonstrated the method by
extracting the A line of critical phase transitions of a ¢*
scalar field theory. Although the field theory is formulated
and directly applied in the grand-canonical ensemble, we
have shown a route to simulations in the canonical
ensemble for the cases that require precise control of the
particle number.

The method presented here is broadly applicable to
bosonic quantum field theories. It immediately generalizes
to continuous space models with arbitrary pair interactions
and external confining potentials (e.g., optical lattices [11]).
Discrete lattice models, such as the Bose-Hubbard model,
require only minor modifications to the linear coefficients
Ay of Egs. (4) and (5) to reflect the discrete kinetic-energy
(hopping) operator. Similarly, a vast array of quantum-spin
lattice models (ferromagnetic, antiferromagnetic, without
frustration) in second-quantized form using the Schwinger
boson representation [38] should be accessible to the
present algorithm. Although convergence of the complex
Langevin trajectories is not guaranteed and is yet to be
tested on this diverse set of models, in the cases that
convergence is achieved the exponential of the action is
guaranteed to be correctly sampled and equilibrium proper-
ties can be computed without bias. Finally, by transforming
the current imaginary time dependence to a closed real-time
Keldysh contour [39], a broad range of finite temperature,
quantum dynamical phenomena could be explored. This
includes both real-time Green functions for linear response
properties and far-from-equilibrium dynamics.
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