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Abstract   Toughness of soft materials such as elastomers and gels depends on their ability to dissipate 

energy and to reduce stress concentration at the crack tip.   The primary energy dissipation mechanism is 

viscoelasticity.    Most analyses and models of fracture are based on linear viscoelastic theory (LVT) where 

strains are assumed to be small and the relaxation mechanisms are independent of stress or strain history.   

A well-known paradox is that the size of the dissipative zone predicted by LVT is unrealistically small.   

Here we use a physically based nonlinear viscoelastic model to illustrate why the linear theory breaks down.  

Using this nonlinear model and analogs of crack problems, we give a plausible resolution to this paradox.  

In our model, viscoelasticity arises from the breaking and healing of physical cross-links in the polymer 

network. When the deformation is small, the kinetics of bond breaking and healing are independent of the 

strain/stress history and the model reduces to the standard linear theory.   For large deformations, localized 

bond breaking damages the material near the crack tip, reducing stress concentration and dissipating energy 

at the same time.   The damage zone size is a new length scale which depends on the strain required to 

accelerate bond breaking kinetics.  These effects are illustrated by considering two cases with stress 

concentrations: the evolution of spherical damage in a viscoelastic body subjected to internal pressure, and 

a zero degree peel test. 

 

1. Introduction 

 Toughness of materials is due to energy dissipation and stress relaxation mechanisms at the crack 

tip.  The toughening mechanisms of stiff materials such as metals are based on plastic deformation.   Plastic 

flow is due to generation and motion of dislocations.   It is an irreversible process that occurs when the 



stress exceeds the yield strength.   Some elastic solids such as glass and ceramics have a limited ability to 

deform plastically and are brittle due to the high elastic stresses at the crack tip (in linear elastic solids, the 

stress has an inverse square root singularity as the crack tip is approached).   In metals, yielding occurs in 

a region surrounding the crack tip, shielding the crack from the high elastic stress field.   

 The dissipative mechanism commonly associated with soft materials such as rubbers and self-

healing hydrogels is viscoelasticity1,2.    Unlike metals, rubbers and gels consist of large flexible 

macromolecules interacting with their neighboring molecules by weak bonds.  A typical flexible polymer 

chain in these materials is coiled and highly entangled with other polymer chains and pervades a volume of 

space much greater than atomic dimensions. As a result, chains are subjected to long and short range forces.  

It is therefore not surprising that when subjected to stress, the dynamics of chain conformation covers a 

wide range of time scales – the physical basis of viscoelasticity.  Compared with metals, soft materials can 

sustain much larger strains before failure, sometimes in excess of 1000 percent.   Nevertheless, in cross-

linked networks, deformation is usually reversible: given enough time, the material recovers its shape after 

unloading to zero stress due to entropic elasticity, i.e. the coiled conformation of the molecule is 

energetically more favorable than any stretched conformation.   

 The viscoelastic model commonly used in mechanics is based on the Boltzmann superposition 

principle where the stress is a linear functional of the strain history.  For example, in simple shear, the shear 

stress ( ) t  at time t is related to the shear strain history ( ) ( )   −, ,t t t  by 

 ( ) ( )
t dt t t dt

dt
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where ( )t is the shear relaxation function.  The key feature of a linear viscoelastic solid is that the 

relaxation function is independent of stress and strain history and depends only on time.   In engineering 

applications, the relaxation function is represented by a Prony series with a finite number of terms, each 

term being associated with a particular relaxation time.   A simple way to define a nonlinear viscoelastic 

material is that all or some of its relaxation times depend on the history of stress and strain.  Here we 

emphasize that it is possible to include large strain kinematics in a linear viscoelastic constitutive model.  

For this case, eq.(1) is no longer linear – the nonlinearity comes entirely from large strain kinematics.   For 

example, the stress and strain history of a poly(vinylalcohol) (PVA) dual crosslinked hydrogel in uniaxial 

tension subjected to large stretches can be accurately predicted  using a “linear” viscoelastic model of the 

form3,4: 
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where   is the nominal stress,  is the stretch ratio and   is the shear relaxation function in eq.(1).   Note 

that eq.(2) is a nonlinear equation: the stress is not proportional to the stretch ratio.  For small strains where

1  , eq.(2) reduces to eq.(1).  While models of this type are often called nonlinear viscoelastic, they will 

be considered as linear viscoelastic in this work, since the relaxation function is independent of stress and 

strain history.   In other words, we separate nonlinearity due to the physics of relaxation from nonlinearity 

caused by large strain kinematics.    

 Linear viscoelastic fracture (LVF) has been extensively studied  starting from the seminal works 

of Knauss5 and Schapery6 in the seventies.  More recent contributions include works by de Gennes, Hui, 

Persson and Nguyen7–10.  More references can be found in a recent review by Knauss11.   There are two 

well-known paradoxes associated with LVF.   For a growing crack, the extended correspondence principle 

of Graham12 showed that the stress field at the crack tip has the same square root singularity as the elastic 

crack problem.   This result implies that there is a local energy release rate at the moving crack tip.   

However, the absence of a length scale in the linear viscoelastic model results in a local energy release rate 

that is independent of crack speed – a paradox.  An excellent summary of this paradox can be found in 

Rice13.   Readers interested in history are encouraged to read the spirited discussions of McCartney and 

Christiansen14,15.   This paradox was resolved by Knauss5 and Schapery6 who used a cohesive zone model 

(CZM) to remove the stress singularity.    The CZM also introduces a length scale which can be identified 

as the size of the dissipative zone.   The CZM, however, creates a different paradox as noted by the works 

of Mueller16 and Gent2.  For example, Gent and Lai2 interpreted their peel test data of rubber using Knauss’s 

theory and using the linear viscoelastic properties of their material to find that the size of the dissipation 

zone was only on the order of angstroms.   Finite element simulations of a peel test using a linear viscoelastic 

model with large strain kinematics by Rahulkumar et al.17 also support this conclusion.  More evidence of 

the very small size of the cohesive zone is summarized in a recent review by Knauss11.  Thus, this implies 

rather unphysically that a huge amount of energy is dissipated in a very small volume.  Gent2 suggested 

intermittent crack growth as a plausible explanation for this paradox.  Knauss18 suggested nonlinear 

viscoelasticity caused by dilation induced softening of the material near the crack tip.    Indeed, the 

strains/stresses near the crack tip are so large that it is unlikely that the material near the crack tip can be 

adequately described by linear viscoelasticity.  As we shall demonstrate below, nonlinear viscoelasticity 

introduces a length scale at the crack tip which can be related to the size of the dissipative zone.   



 As noted by Knauss11, most studies on nonlinear viscoelasticity constitutive models are one 

dimensional in character and cannot be used to study the complex multi-axial stress state near the crack 

tip.  Also, there are very few attempts to study fracture in soft materials where large deformation is 

coupled with nonlinear viscoelasticity.  Indeed, linear viscoelasticity works well only when the strains are 

small.  In soft solids, the nominal strains can easily exceed several hundred percent in a simple tension 

test, hence linear theory is not expected to work near the crack tip.      

 Our way of highlighting the different physics associated with linear and nonlinear viscoelasticity 

is to consider a polymer network connected by chemical and physical cross-links19.    In the past decade, 

gels made of this type of network have been widely studied for their useful properties such as high toughness 

and self-healing capability19–23.  The chemical cross-links in these networks are covalent bonds, and their 

failure is rate insensitive: they fail if they are stretched beyond a certain limit.   The physical cross-links are 

weaker bonds with a distribution in strength.   They can break and reattach or heal.  For this type of network, 

viscoelasticity is associated with the bond breaking and healing kinetics.   Linear viscoelasticity results 

when the bond breaking and healing kinetics are independent of the stretch on the chains and the breaking 

and healing process has achieved dynamic equilibrium.  For this case there is a one to one correspondence 

between the relaxation function and the stress/strain independent breaking kinetics19 (see also section 4.1).   

An example of a linear viscoelastic gel is the polyvinyl-alcohol (PVA) dual crosslinked gel with PVA 

chemically crosslinked by glutaraldehyde and physically crosslinked by Borax ions19,24.    Experiments have 

demonstrated that the (probably complex) bond breaking kinetics of this gel is insensitive to the stress acting 

on the physical cross-links.  Here we note that the use of a transient network to model viscoelasticity in 

solids has been known for a long time, starting with the seminal work of Green and Tobolsky25.  Since then, 

many researchers have used transient networks to model the time dependent behavior of rubbers and 

gels26,27.  How the dynamics of physical bonds controls the linear viscoelastic behavior of polymeric fluids 

has also been very well studied both theoretically28–30 and experimentally31,32.   

 However, molecular physics tells us that bond breaking and healing kinetics should be sensitive to 

stress/strain.    Indeed, linear viscoelasticity is counter-intuitive for this case since Eyring’s theory states 

that bonds dissociate faster when they are stretched33.    It is therefore not surprising that linear viscoelastic 

theory typically works well in the regime of small strains where the effect of stress on bond breaking can 

be neglected.   However, if the dynamics of bond breaking and healing are sensitive to stress/strain 

especially when deformation is large, then it is reasonable to expect the material behavior near the crack tip 

cannot be adequately described by linear viscoelasticity.   Of course, there are physical mechanisms other 

than breaking of physical cross-links that can lead to nonlinear viscoelasticity; indeed, our analysis does 

not rely on this physical assumption.   This assumption merely lends a physical picture on how nonlinear 

viscoelasticity differs from the linear theory.    



 The plan of this paper is as follows.  Section 2 summarizes some aspects of LVF theory relevant to 

this work.    In sections 3 and 4 we contrast linear and nonlinear viscoelasticity using a physically based 

model of chain breaking and healing kinetics.   We highlight the differences between these two models by 

showing that nonlinear viscoelasticity can lead to local damage or softening, and that such damage shields 

the crack tip from the high elastic stress field.  The size of the damage zone is a new length scale.  In section 

4 we introduce a special nonlinear viscoelasticity model and use it to study two problems with stress 

concentrations: the inflation of a spherical cavity subjected to internal pressure, and a zero degree peel test.  

We compare the solutions of these two problems based on nonlinear and linear theory.   Here we emphasize 

that our goal is not to study the physics of cavitation and adhesion – work on these topics can be found in 

[34,35] and the references within.  Our goal is to use these as examples of stress concentrations to contrast 

nonlinear and linear viscoelastic behaviors.   Discussion and summary are given in section 5.  

 

2. Brief Review of linear viscoelastic fracture (LVF) theory 

 We indicate certain peculiarities of LVT theory using examples.   Since many soft materials are 

close to being incompressible, we simplify the mathematics by assuming that the material is incompressible 

so that its mechanical behavior can be described by a single shear relaxation function.  A key feature of 

linear viscoelasticity is the correspondence principle which allows one to convert static viscoelastic 

solutions to elastic solutions36.   A simple example is a stationary traction free plane stress or plane strain 

crack in a linear viscoelastic body subjected to traction boundary conditions.    For this case, the stresses in 

the viscoelastic body are exactly the same as the stresses in an elastic body with identical geometry and 

subjected to the same traction, in particular, they are independent of the elastic modulus.  For example, 

consider a finite plane stress/plane strain crack of length 2a in an infinite linear viscoelastic solid. The body 

is initially stress free; at time t = 0+ a constant tension ( )122 2 0 =   =,x ,x t  is imposed at infinity.   

The correspondence principle states that the stress remains independent of time for t > 0 and is given by the 

elastic solution.   With respect to a polar coordinate system ( ),r   with origin at the crack tip, the in-plane 

crack tip stresses are given by 

 ( ) ( )0
2

ˆ, IKr
r

    


→ =  1 2, ,  =       (3) 

where IK a =  is the Mode I stress intensity factor and ( )ˆ
   are universal functions that describe 

the angular variation of the stress components37.  Thus, in problems where traction is prescribed, 

viscoelastic flow does not shield the crack tip from the high stress of the elastic solution.   Further, the 



strains will increase with time according to the creep function.   As a result, viscoelasticity increases the 

strain and does nothing to alleviate the stress field near the crack tip.   This in turn should not protect 

chemical bonds at the crack tip from failure. 

3. Nonlinear viscoelasticity 
 We construct a nonlinear viscoelastic solid by removing the assumption that the physical cross-

links can support arbitrarily large stresses/strains without increasing their breaking rate.  In this nonlinear 

theory, the breaking kinetics depend on the stretch of the chains between physical cross-links.  Before we 

dive into the details, let’s examine the consequence of this new theory.   Let us suppose that the rate of 

breaking of physical bonds increases rapidly when a chain between two physical cross-links is stretched 

beyond a critical level.    This means that near the crack tip, practically all the physical cross-links are not 

carrying load.  Thus the material near the crack tip relaxes much faster than the material away from the 

crack tip.   For concreteness, let’s compare two identical crack geometries A and B.  Both A and B are 

subjected to identical traction boundary conditions, for example, a finite crack in an infinite plate subjected 

to a constant remote tension 
 for time t > 0+.   The material occupying A is linear viscoelastic and the 

material occupying B is nonlinear viscoelastic.    We assume both materials have the same long and short 

time shear moduli.   Before load is applied, 0t   , the physical cross-links in A and B are in dynamic 

equilibrium and the short time modulus 0   is determined by the number of load bearing chemical and 

physical cross-links.   The long time modulus, 
, is. by definition, the modulus when all the physical cross-

links are broken.  In A, the stresses near the crack tip are given by eq.(3), with IAK a = , independent 

of material properties. However, in B, there is a region   surrounding the crack tip where relaxation 

occurs much faster – now material behavior is spatially inhomogeneous.   The consequence of this stress 

induced softening can be studied using the simple model illustrated in Figure 1.   Here we assume  is a 

circle of radius R centered at the crack tip.    Further, we assume that breaking of the physical cross-links 

occurs so fast that the material inside   behaves like an elastic solid whose elasticity is controlled by the 

chemical crosslinks, with the relaxed or plateau modulus 
.   Outside   the material has a shear modulus

  .    Since the material inside   is linear elastic, the stress field near the crack tip in B still has the 

same form given by eq.(3), but the stress intensity factor
IBK is expected to be much smaller than

IAK  (note 

0IBK →  as 0 →  (a hole)) since most of the load is shed to the stiffer region outside  : the material 

near the crack tip is shielded from the high stress field of specimen A.     



 
Figure 1. A finite plane stress or plane strain crack of length 2a  in an infinite body. Geometries of A 

and B are identical. A is linear viscoelastic (Fig. 1a) and B is nonlinear viscoelastic (Fig. 1b).  Both A 

and B have the same long and short time shear moduli and the same small strain response.    There is 

no damage zone in Fig. 1a in the sense that viscoelastic properties are the same everywhere (the 

physical cross-links can reform and bear load).   In Figure 1b, there is a damage zone (inside the green 

circle) where most of the physical bonds are not bearing load.   

 

 To understand this shielding effect more quantitatively consider a simple problem, that of a semi-

infinite Mode III crack in an infinite block of an elastic solid, as sketched in Figure 2.   The damage zone 

(where most of the physical cross-links are broken) is denoted by  .  Inside  , the material is linear 

elastic with a lower shear modulus 
.  The material outside the inclusion has shear modulus  .   

The boundary condition in the far field is  

 ( ) ( ), sin / 2
2
III

rz

K
r

r
  


→ =         (4) 



 
Figure 2. Semi-infinite Mode III crack subjected to a remote applied 

IIIK  field.   The damage zone is 

denoted by   and has shear modulus     , where   is the shear modulus of the undamaged 

material outside.   

 

This elasticity problem was solved by Steif38, the stress intensity factor in
IIIK  inside the soft inclusion is 

reduced by a factor of 2
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The external applied energy release rate 
ext  is   
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whereas the local energy release rate 
local  is 
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The ratio of the energy release rates is obtained by combining (6a,b),  
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ext

      (6c) 



Thus, the local energy release rate is also reduced; indeed, by almost twice the factor of reduction of the 

local stress intensity factor.   This reduction in energy release rate is due to the fact that energy is 

dissipated by the rapid breaking of physical cross-links due to the transition from  →  in  .  Note 

that an analysis for a Mode I crack was also carried out by Steif38, yielding similar results.   We use the 

Mode III crack as an example since the analytical expressions have simpler forms.   In addition, our focus 

is on explaining the fundamental physics that distinguishes linear and nonlinear viscoelasticity in stress 

concentration problems, so examples and analogies can be made across different modes of fracture.  

 Thus, our nonlinear viscoelastic model identifies a length scale (the size of  ) where material 

damage and rapid stress relaxation can occur.   Note that the correspondence principle does not hold since 

the material property is no longer independent of stress.   Further, if the crack grows, one would expect 

that the size of the damage zone as well as the strain and stress field inside it will depend on the crack 

speed; hence there is no need to use a cohesive zone model to introduce a length scale even though the 

crack tip stress can still be unbounded.    This is not surprising, the strain fields of growing cracks in 

elastic-plastic solids can have a weak singularity inside the plastic zone39.  The size of this damage region 

is directly related to the size of the dissipative zone: at this point we are unable to determine the size of 

this zone; to do so we need to use a nonlinear viscoelastic model, which is discussed below.    

 The above example is clearly over-simplified since in reality the transition from stiff to soft or the 

amount of softening is a smooth function of position.  In particular,   does not need to be a circle.   

Furthermore, the material outside of   is not elastic, since it can also relax with time, though at a slower 

rate.   In addition, we also assume small strains which is not usually the case for soft materials.   

Nevertheless, it supports our idea that: 

1. Nonlinear viscoelasticity shields the crack from the high stress field predicted by the linear theory, 

and reduces the local energy rate available for fracture.    

2. Local damage due to rapid bond dissociation gives rise to a new length scale which can be related 

to the size of the dissipation zone.   

In the following, we will introduce a specific nonlinear viscoelasticity model and use it as an example to 

quantify these ideas for two problems 

 

4. Two stress concentration problems: inflation of a spherical cavity by internal pressure and 

the zero degree peel test 

Ideally, we should compare the time dependent large deformation stress and strain fields near the 

tip of a crack for linear and nonlinear models.   However, this is a very difficult numerical problem for the 

nonlinear model since the entire history of deformation at every material point needs to be stored and the 



memory requirement is exceedingly large.   We avoid this difficulty by considering two well-known stress 

concentration problems as analogs:  The first is a spherical cavity in an infinite viscoelastic solid subjected 

to an internal pressure p > 0. The second is a zero degree peel test.   Here we note that the spherical cavity 

problem has been studied using both nonlinear elastic40,41 and viscoelastic models42,43.  Our focus here is 

not on cavitation phenomena but on highlighting the stress shielding effect of nonlinear viscoelasticity 

based on the model introduced below.  

4.1 Nonlinear viscoelastic model 

 In a series of papers, we have demonstrated that the mechanical behavior of a dual cross-linked 

PVA hydrogel can be modeled very well by a linear viscoelastic model provided that we account for large 

deformation3,44,45.   Here we extend this linear model to a nonlinear model by allowing the bond breaking 

kinetics to be dependent on the strain history.   To compare the two theories, it is necessary that both linear 

and nonlinear model have the same short and long time relaxation moduli; in addition, the nonlinear model 

should reduce to the linear model in the limit of small strains.   These conditions are imposed on the 

examples in 4.2 and 4.3.   

4.1.1  Review of the linear model 

First, we briefly summarize our linear viscoelastic model, details can be found in [3,44].  Let   

denote the molar fraction of chemical crosslinks and 0W  the strain energy per unit volume in the undamaged 

network.  We assume 0W  to be the same for both physical and chemical network.  For simplicity, we assume 

0W  to be the neo-Hookean strain energy density function, i.e.,  

( )0 1 3
2


= −netW I           (7) 

where 1I  is the trace of right Cauchy-Green tensor and net  is the modulus of the network if all the bonds 

bear load.   We assume the breaking and healing process has achieved dynamic equilibrium soon after the 

gel is made.  Thus, the healing rate is equal to the breaking rate and is denoted by the rate constant 
.  The 

breaking kinetics of physical crosslinks is specified by the function ( ),B t t   which is defined as the fraction 

of chains per unit reference volume which reattaches at   and survives till t t  , where t  is the current 

time.   Physically, ( ),B t t   is the survival probability of physical chains and its value at t t=   is 1 and at 

t =   is zero.   In the linear theory, ( ),B t t  is independent of the stretch experienced by the physical chains.  



For this case, ( ),B t t  is translational invariant, that is, ( ) ( ),B B ttt t  − = .  More importantly, the shear 

relaxation function ( )t  is completely determined by B  through the simple relation: 

 ( )net B
d t
dt


  = − ,        (8) 

where ( ) ( )0,B Bt t   == .  Equation (8) states that there is a one-to-one correspondence between linear 

viscoelasticity and chain breaking kinetics, so one can generate any relaxation function by specifying the 

appropriate survivability function.  In our linear viscoelastic model for the PVA gel, the survival probability 

function ( )B t  is  

 ( ) ( )

1
1

1 1
B

B B
B

tt
t



 

−

− 
= + − 
 

        (9) 

where B  is a material constant satisfying 2 1B   and 
Bt  is the characteristic time of breaking of 

physical crosslinks.  The shear relaxation function ( )t  in this case is obtained using eqs.(8,9) and is 

 ( ) ( )
2

2
BB

net net B
B

tt t


     


−

= +   −
.     (10a) 

The instantaneous modulus is 

( )0 0
2

B
net net

B

tt     


 = = +
−

.       (10b) 

The long time modulus is 

 ( ) nett     → = .         (10c) 

We emphasize that in the linear theory the survival probability is independent of the stress or strain acting 

on a chain.    For large deformation, the true stress tensor   is related to the deformation history by: 

( )0 tt t t
net net Bq t t dt    

→ →


−

 = − + + −B Bσ I      (11) 

where q  is the Lagrange multiplier that enforces incompressibility, I  is the identity tensor, and T=B FF  

is the left Cauchy-Green tensor.   Here the superscript tt →  in tt→B  indicates the deformation 

experienced by physical chains reattached at time t t   and survive till t. 



4.1.2 A nonlinear model 

 We now extend the linear model (11) to a nonlinear model (details are given in the appendix) by 

allowing the breaking rate to be strain dependent.   Specifically, the survivability function ( , )B tt   is no 

longer independent of the strain history.  Instead of eq.(9), it is determined by 
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where ( )
T

( , ) tr t tt tttH → → 
 




F F .     Physically, ( , )H t t  measures the square of the effective stretch of 

chains from the time they are born t to the current time t.   The dimensionless constant 0J  can be viewed 

as a critical strain above which breaking rate increase rapidly, and 0m   is a material constant that 

describes the breaking rate’s dependence on the deformation.   In particular, when deformation is small, or 

equivalently, ( ) 2
0( , ) 3 / 1H s Jt −  , eq.(12) reduces to eq.(9).   Hence the nonlinear theory reduces to 

the linear theory in the limit of small strains.   Clearly, the instantaneous and long time moduli are the same 

for both linear and nonlinear model.   

 A consequence of strain dependent bond breaking is that dynamic equilibrium cannot be achieved 

when the material is under load, so   in eq.(11) must be replaced by a history dependent healing rate 

which satisfies an integral equation. We denote the healing rate at any time t  by ( )t , but it is important 

to note that ( )t  is not only a function of the current time t, but also depends on the entire loading history.   

The integral equation for ( )t  is derived in the appendix.  In this nonlinear theory, eq.(11) is replaced by 

( ) ( )0 ,
tt t

net net B
tt tq t t d    →



→

−
= − + + B Bσ I     (13) 

Note that when 0J →  (or equivalently, at small strains) in eq.(12), the bond breaking kinetics is 

independent of the history of chain stretch and we recover the linear viscoelastic model eqs.(9-11).  We 

emphasize that both the linear and nonlinear model have the same long time and short time moduli.  

Furthermore, both models allow for large deformation.  Also, they have identical small strain rheological 

behaviors (such as loss and storage moduli) since ( ) 2
01 ( , ) 3 / 1

m
H s Jt +  −   in this limit.    



 We use a constant stretch rate uniaxial tension test to demonstrate the difference between these two 

models. Figure 3 compares the true stresses of this nonlinear viscoelastic model (determined by eqs.(12) 

and (13)) with the linear viscoelastic model using the material parameters:  

 0.03 = , 1.8B = , 4B Ht t = , 0 0.1J = , 1.7m = .    (14) 

where  , B  and B Ht t  are the parameters of the linear model and 0J  and m are the additional 

parameters of the nonlinear theory.  These parameters are chosen to emulate experimental data by Sun et 

al.23 on a polyampholyte gel.   In uniaxial tension test, the stress versus strain curves of this gel loaded at 

different stretch rates abruptly change slope at a critical strain that is approximately independent of the 

strain rate.  Sun et al.23 refer this critical strain as the yield strain.  Here we use our nonlinear model to 

approximately capture this behavior.   In Figure 3, the two models are identical when the stretches are 

small compared with the effective critical strain 0J .   For large stretches, the stress/strain dependent 

breaking kinetics significantly softens the material.   The nonlinear viscoelastic solid exhibits “history 

dependent yield” behavior where there is a rapid change in slope of the stress-stain curve, consistent with 

experiment.  In our model this “yield” behavior is associated with the rapid breaking of physical cross-

links when the effective strain 3H −  in eq.(12) is close to 0J .   Note that for different loading rates 

yield occurs at strains between 0.05 and  0.1, which is near 0J .  In the experiment of Sun et al.23, the yield 

strains at different strain rates are closer than our model.  A very rough estimate of the stress carried by 

the chains at “yield” is 0net J .   Hence we can identify a characteristic “yield stress” in shear by 

 0nY et J   .            (15) 

This is an upper estimate since net  is the shear modulus when all the chains are bearing load.   As shown 

in Figure 3, the “yield stress” is rate dependent since at slower rates, the physical bonds can break and the 

effective shear modulus goes down.    



 

Figure 3. Uniaxial tension test with constant loading rates 1 Bt  and 1 100 Bt  for linear and nonlinear 

viscoelastic models.  

 

4.2 Inflation of a cavity in a linear viscoelastic/nonlinear viscoelastic solid 

 The first case we study is the inflation of a spherical cavity in an infinite viscoelastic solid subjected 

to an internal pressure p > 0., Figure 4.  The stress free reference configuration is a traction free cavity with 

initial undeformed radius is A.    In the following, the deformed radius of the sphere is denoted by a.  As 

we shall see, this problem bears some similarity to a crack problem, in the sense that the hoop stress on the 

surface of the cavity becomes infinite at some critical pressure.  



 
Figure 4. Schematic of an infinite body with a spherical hole inside. An internal pressure of p  is applied 

to the spherical cavity. The cavity has initial radius A. 

 

First, recall that a cavity in an incompressible neo-Hookean body will become unstable and grow 

without bound when the internal pressure p reaches the critical value of 05 2/cp = , where 0  is the 

small strain shear modulus46,47.   In particular, the true hoop stress goes to infinity at 05 2/cp = .   Let 
  

denote the true hoop stress and define a stress concentration factor  

( )max k p          (16) 

The maximum true hoop stress occurs on the surface of cavity and is 

 2
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a a
         (17a) 

where a a A=  is the normalized deformed radius and is related to the applied pressure p  by 
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Equation (17b) implies that, as 05 2p →  , 0
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Note that (18) is valid only for large strains.  Here it is interesting to recall that in small strain theory, the 

stress concentration factor is exactly ½ 48.  As deformation becomes large, the stress concentration factor 



increases rapidly and approaches infinity when p  approaches 05 2 .   This result shows that large errors 

can occur using small strain theory in large deformation problems.   The infinitely large tensile hoop stress 

near the cavity surface predicted by eq.(18) suggests that small defects can grow into macroscopic cracks 

before instability can occur.    

4.2.1 Inflation of Cavity in a linear viscoelastic solid  

 Next, we replace the neo-Hookean solid by the linear viscoelastic model described in Section 4.1.1 

(the strains can still be arbitrary large).  The geometry is the same as Figure 4.  At time 0t += , a sudden 

pressure p is imposed on the cavity surface.   This pressure is held constant for all 0t  .   In the appendix, 

we show that the deformed radius ( )a t  satisfies the integral equation 
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 ,  (19) 

where ( )a a t A=  is the normalized current radius and ( ) t  is the relaxation function given by eq.(10a).   

The maximum hoop stress for this case also occurs on the cavity surface and is related to the history of 

cavity growth by  

( )
( ) ( )
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     (20) 

Note that if the relaxation function ( ) t  is a constant, then eq.(20) reduces to the case of a neo-Hookean 

solid. The linear viscoelastic case is easy to understand since the material is spatially homogeneous – at 

any instant in time, the material behaves like a homogenous neo-Hookean solid with shear modulus ( )t  

where ( )0 t    .   Since our goal is not to study instability,  the imposed pressure must be smaller 

than 5 2
 if the cavity were to remain stable for all times, where 

 is the long time shear modulus.   

Figures 5a,b show the normalized cavity radius and the stress concentration factor k  versus normalized 

time Bt t t  for an imposed pressure of 00.3p = .   These results are generated using the material 

properties listed in eq.(14) with 0 31.8 =  or 9.54p = .   Since 5 2p  , the cavity will grow 

without bound at some finite time.   Our choice of parameters is such that the cavity growth rate starts to 

increase rapidly around 410 Bt t= .    At this time, Figure 5b shows that the stress concentration factor 

increases rapidly and eventually becomes unbounded as the solid relaxes.  



  
(a) (b) 

Figure 5. Inflation of cavity in a linear viscoelastic solid: (a) Normalized cavity radius and (b) Hoop 

stress concentration factor as a function of time.  

 

4.2.2 Inflation of Cavity in a non-linear viscoelastic solid:  Shielding due to strain dependent bond 

breaking 

 We next consider the same geometry and loading condition as in the linear viscoelastic case, except 

the solid is now nonlinearly viscoelastic, with behavior given by eq.(13).  This case is much more complex, 

since there exists a time dependent shell region near the cavity where the material relaxes much faster (due 

to rapid bond breaking near the critical pressure).   This “soft” region is surrounded by a “stiffer” material.   

Therefore, stress will be shed to this stiff region, causing a reduction in hoop stress on the cavity surface 

compared with the linear case.   Unfortunately, there is no closed form solution and the problem must be 

solved numerically.   Details are given in the appendix.  Figures 6a-c compare the distribution of hoop stress 

at three different normalized times.   The simulations are carried out using the same material parameters 

(same long time and short time modulus and small strain behavior) for the linear and nonlinear models and 

the numerical values are given in eq.(14).   The pressure in these simulations is 0 0.3p  = .    The nonlinear 

viscoelastic solid shows two interesting features: the hoop stress near the surface of the cavity is much 

lower than the corresponding linear viscoelastic solid (recall that they have the same long and short time 

relaxation modulus and identical small strain behavior).    Much more surprising is that the hoop stress of 

the nonlinear case keeps decreasing with time and eventually turns compressive (see Figure 6c).   This 

suggests that nucleation of defects on the surface of the cavity, if it occurs, could be suppressed by shielding.   

It should be noted that cavity growth is faster for the nonlinear viscoelastic solid (see Figure A1 in the 

appendix) because stress shielding requires that the extra load be shed to a larger region.  In other words, 



nonlinear viscoelasticity reduces stress concentration by spreading deformation to a larger region.    This is 

similar to the toughening mechanism of double-network gels which reduce stress concentration by 

developing a damage zone surrounded by a region of undamaged material.    

   
(a) (b) (c) 

Figure 6. Distribution of normalized hoop stress 0   at different normalized times 

0.025, 0.25, 5Bt t =  of a linear and nonlinear viscoelastic solid. Material parameters are given in eq.(14), 

and the constant internal pressure is 0 0.3p  =  for all t > 0.   

 

 
Figure 7. Time evolution of the normalized damage zone size (A is the initial cavity radius). The damage 

zone expands as time increases and the material creeps. Smaller 0J  leads to larger damage zones. 

 

 Equation (12) and the definition of 0J  suggests a way to define the size of damage zone.  We expect 

that everywhere inside the damage zone the effective strain ( )1 , 3I R t −  is greater than the critical 



effective strain 0J .   Thus, the radius of the outer boundary of the damage zone, dR  is defined by 

( )1 0, 3dI R t J− =  .   The size of the damage zone ( )D t  is defined as the thickness of this shell which is 

dD R A − .    Figure 7 shows how this zone evolves with time for different critical effective strains 0J . 

As time increases and the material creeps, the cavity expands and overall deformation becomes larger, so 

the damage zone also expands. Also, the smaller the critical effective strain, the faster the physical bonds 

breaks under the same stress, and the softer the material, which leads to larger damage zone sizes. Thus, 

the damage zone size scales inversely with 0J . 

4.3 Zero degree peel test in a linear viscoelastic/nonlinear viscoelastic solid 

The cavity problem shows that significant stress concentration and shielding can occur in structures 

without cracks. In this section we study crack shielding by considering a simple one dimensional crack 

model, the zero degree peel test.   This test is often used by the adhesive industry to study the resistance of 

pressure sensitive tapes to shear49.   The geometry is shown in Figure 8. A thin adhesive layer of thickness 

h  is sandwiched between a rigid substrate and a thin stiff backing layer. The backing layer is linear elastic 

with plane strain modulus BE  and has thickness Bh . The layers are infinite in the x  and z  direction and 

we assume plane strain deformation so fields are independent of z , the out of plane coordinate. The peel 

arm has length L  and occupies 0L x−   . The adhesive layer is viscoelastic (linear or nonlinear) and is 

perfectly bonded to the stiff backing layer along the interface y h= , L x−    . The adhesive is bonded 

to the rigid substrate along the interface at 0y =  and 0x  . However, along 0y = , 0L x−    it is 

traction free. This traction free surface can be viewed as the face of an interface crack between the adhesive 

and the rigid substrate (see Figure 8). The crack tip is at 0x y= = . The tape is pulled horizontally in the 

negative x  direction in a zero degree peel test. 

 
Figure 8: Schematic of the zero degree peel test. L  is the length of the peel arm, , BL h h . The air gap 

between the peel arm and the substrate can be viewed as an interface crack. 

 



To simplify the calculations, we determine the stress and strain in the adhesive layer using a one 

dimensional shear-lag model.   Details of this model can be found in Hui et al50.   Here we briefly 

summarize ideas that are relevant to this work.   In this model, the linear elastic backing layer can only 

support in-plane tension, the spatial gradient of this tension is balanced by the interfacial shear stress   

exerted by the adhesive layer, which is related to the shear strain   of the adhesive layer by a viscoelastic 

model.  The shear strain is related to the horizontal displacement of the adhesive/backing interface u  by 

u h = .    A limitation of this model is that the singular field at the crack tip is regularized by the shear-

lag approximation.    Nevertheless, there is still a stress concentration at the “crack” tip and we can study 

how nonlinear viscoelasticity alters this stress concentration. 

We study crack shielding near the crack tip at x = y = 0.  In the following, we normalized all stress 

quantity by the small strain shear modulus of the networks, net .  All distances are normalized by a length 

parameter * /lt B B netl E h h  ; it represents the length of adhesive that carries shear and is called the 

effective load transfer length.   In practice, * 4 5/ 10 10B netE   − ,  so this length is on the order of hundreds 

of tape thickness. Normalized quantities will be topped with a bar.    

 As shown in Hui [50],the governing equation for the shear strain in the adhesive layer   is 

 ( )
2

2 ,x t
x





=


     0x        (21) 

where / net  = is the normalized shear stress in the adhesive layer and / ltx x l=  is the normalized x 

coordinate.   If the adhesive is linear viscoelastic, then the shear stress is related to the shear strain by 
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where   is given by eq.(10a).  In the nonlinear theory, we specialize eq.(13) for simple shear deformation 

and find: 

 ( ) ( ) ( ) ( ) ( ) ( ), , , , , ,
t

Bx t x t x s s t x t x s ds     
−

= +  −   .   (23) 



The adhesive layer is sheared by imposing a constant displacement rate Au  on the stiff backing layer at

x L= −  for 0t  .   We assumed that loading commences at 0t =  so that ( ), 0 0x t  = .  Using force 

balance, the displacement boundary condition  

 ( )/ , 0 /lt Ax L l t u t h = −  =        (24a) 

can be written as: 
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       (24b) 

where /A Au t h = .   

The solution of the linear theory is obtained by numerically solving eq.(21) with the shear stress on 

the RHS given by eq.(22).  The initial condition is: 

 ( ), 0 0x t = =           (25) 

The boundary conditions are eq.(24a) and the condition that strain vanishes at infinity.   The solution of the 

nonlinear theory is obtained by numerically solving eqs.(21) and (24b) with the RHS of eq.(21) given by 

eq.(23). The parameters used in all the simulations are given by eqn.(14).   Figure 9a-d plots the evolution 

of the shear stress and strain at different times for the linear and nonlinear case.  Recall that the linear and 

nonlinear model have the same small strain behavior as well as identical long and short time modulus.  For 

the nonlinear solid, it is clear that there is a region near the crack tip where the shear stress is lower than 

the linear solid.  The size of this “damage” zone increases with time. Time evolution of the maximum shear 

stress at the crack tip is shown in Figure 10a.    More importantly, the nonlinear viscoelastic solid has a 

much smaller maximum stress as the strain or time increase.   Reduction in stress confirms the shielding 

effect due to the rapid breaking of physical cross-links. The stress reduction factor 

( ) ( )max maxnonlinear linear
   is shown in Figure 10b. 



  
(a) (b) 

  
(c) (d) 

Figure 9. Shear stress profile in the zero-degree peel test at different times: 0.25,2.5,7.5,15Bt t = . The 

applied displacement rate divided by the tape thickness is 1 25 BAu h t= . The black dash-dotted curves 

are the stress profiles for the linear case, while the red solid curves are for the nonlinear case. The blue 

dashed line indicates the region where the stress of the nonlinear solid is lower than the linear one.    
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(a) (b) 

Figure 10. (a) Maximum shear stress at 0x = ;   (b) Stress reduction factor ( ) ( )max maxnonlinear linear
   as 

a function of normalized time. 

 

One way of rationalizing the results in Figure 9a-d is to use the concept of “yield stress” introduced earlier.  

The “yield stress” Y  in this simulation is 0 0 1.net netJ =  .   In Figure 9a,b, the maximum shear stress is 

less than Y  , for this case there is practically no difference between the linear and nonlinear model.   

However, when the maximum shear stress increases beyond 0 1. net , the damage zone appears and the cross-

over point between linear and nonlinear theory occurs slightly below 0 1. net .     

5. Summary and Discussion 

 Using a physical model based on bond breaking and healing kinetics, we present arguments and 

examples to highlight some of the pitfalls of employing LVF theory to model fracture.   We suggest that 

many of the paradoxes and difficulties associated with LVF can be resolved by allowing the relaxation 

times to be dependent on stress/strain histories.  For example, materials under high strains (near the crack 

tip) relax much faster, and the stresses carried by these damaged materials are substantially lower than a 

material that is linear viscoelastic, and this results in stress shielding.  We illustrate this crack-shielding 

effect by surrounding the crack tip by a soft elastic core.  To analyze this crack-shielding effect more 

quantitatively, we extend a linear viscoelastic model to a nonlinear one by including stress-dependent 

bond breaking kinetics; both models have the same short and long time behavior, and are identical under 

small strains.  We use a cavity subjected to internal pressure and the zero degree peel test to highlight the 

relevant physics.    

 At first glance, it seems counter-intuitive that the breakdown of most the physical bonds near the 

crack tip would not immediately lead to failure.   This is because fracture requires the failure of the entire 



network, which means that chemical crosslinked network will have to fail too.  However, as long as 

damage is confined, the chemical crosslinked network will not failure due to shielding.  Of course, 

eventually the damage zone will be large enough and the chemical network will fail, because the polymer 

chains reach a maximum extensibility that leads to fracture.  This is analogous to the situation of the 

tough rate independent double network gel discovered by Gong51.  As noted by Brown52, the increase in 

toughness is due to the breaking of the stiff network and is directly proportional to the size of the damage 

zone (which is controlled also by the maximum extensibility of the soft network).       

 The absence of a length scale for the dissipation zone near the crack tip is a severe limitation of the 

linear theory.  In LVF theory, a length scale is introduced using a cohesive zone model5,6 to eliminate the 

stress singularity.  The size of this zone scales with the size of the dissipative zone, which is found to be of 

atomic dimensions.   In the nonlinear theory, the rapid breaking of bonds near the crack tip introduces a 

physically relevant length scale in the bulk that can be identified with dissipation.   Specifically, the 

nonlinear viscoelastic model used in this work exhibits a rate dependent “yield stress”.    Many tough gels 

as well as pressure sensitive adhesives exhibit such “yield” behavior, see for example, [23,53,54].   In our 

model, the physical cross-links break much faster when they are stretched to a critical strain, thus the 

material “yields” at this critical strain, but the stress associated with this “yield” depends on the loading 

history (such as loading rate). Although the actual yield stress in shear Y  is history dependent, an upper 

estimate of Y is roughly 0net J , where net is the modulus of the undamaged network and 0J  is the 

effective critical strain where chain breaking rate increases rapidly.   Similar to elastic-plastic fracture in 

metals where a plastic zone size can be defined, this time dependent yield stress introduces naturally a new 

length scale in the fracture problem.   For example, let’s assume small scale yielding, that is, that damage 

is confined to a region that is very small in comparison with crack length, so that the stress intensity factor 

IK  of the linear theory controls the local nonlinear fields.   Then the size of the damage zone can be 

estimated by setting the effective strain equals to 0J .   Roughly, 

 
( ) ( )

2

0 2
0

2 2
I IK KJ D

t D t J   
  

  

      (26) 

where ( )t  is the relaxation modulus.   The smallest D is obtained by setting ( ) 0t =  in eq.(26).   Let 

us compare D  with the cohesive zone size 2 2
0Id K   in LVF.  A rough estimate is that the cohesive 

stress 0  equals the average stress needed to break all the chains crossing a unit surface area.   In the 

appendix, we show that this is roughly 4 GPa.   This is much greater than 0Y net J  .   For example, the 

undamaged network modulus of the polyampholyte gel23 is roughly 1MPa, and 0 0.1J  , thus 



0.1Y MPa  .   For the same stress intensity factor IK  , the ratio ( )
2 8

0/ / 10YD d    .   Thus the 

dissipation zone size is at least on the order of mms which is appropriate for soft, tough materials.  Indeed, 

in the cavity example studied the damage zone sizes are comparable to the characteristic size of the 

geometry.     

 We emphasize that nonlinear viscoelastic behavior can arise from a broad spectrum of mechanisms 

other than the stress dependent bond breaking and healing kinetics we considered in this work.  For 

example, Elziere et al55 have shown that the nonlinear viscoelastic behavior of poly(VinylButyral), a tough 

polymer used for the interlayer of laminated glass, is controlled by a completely different mechanism.  In 

this polymer, viscoelastic flow is inhibited by high strains.  The dissipative zone size in this case can be 

identified with the hardening region near the crack tip. A series of nanostructured waterborne adhesives 

designed with this nonlinear softening mechanism are intrinsically shielded from crack propagation54.   

Also, there are alternative bond breaking models where the bond breaking rate is affected by the stretch rate 

rather than the stretch experience by the polymer strands56,57.     

The fact that the cohesive zone size does not scale with the dissipative zone size does not mean that 

the cohesive zone model is not useful.   It merely points to the fact that dissipation and failure processes 

involve different physics.   These different mechanisms do not mean that these processes are weakly 

coupled.   Indeed, it is commonly assumed that the cohesive properties are independent of continuum crack 

tip fields while in reality there are significant interactions between separation process and local viscoelastic 

deformation.   The coupling of these two processes is a challenging problem that requires further study.  

Finally, we address an excellent question raised by an anonymous reviewer: what happens to the 

concept of fracture energy which is so widely used in fracture mechanics?  Although experimentalists use 

fracture mechanics concepts as an approximation in weakly viscoelastic materials, the use of fracture energy 

to quantify rate dependent fracture in general is full of theoretical difficulties.  This is because energy release 

rate is not well defined in viscoelastic solids (linear or nonlinear) except under very special circumstances, 

e.g. steady state crack growth under condition where the material away from the crack tip is fully relaxed 

and therefore elastic.    A difficulty is that dissipation occurs everywhere in the specimen, independent of 

whether a material point is close to or far away from the crack tip.    In addition, the mechanical energy at 

a material point depends on the entire history of loading and it is difficult to separate this energy into a 

dissipative and a non-dissipative part.   Even if this can be done, the amount of energy dissipated can be 

specimen dependent and strongly coupled to the intrinsic energy of fracture.    Due to these difficulties, we 

have avoided the use of fracture energy and focus on the effect of nonlinear viscoelasticity on dissipation 

near a crack tip. 
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Appendix 

A1. Healing rate in the nonlinear viscoelastic model and strain energy density 

As was described in our previous work [44], the healing rate ( )t  is assumed to be directly proportional to 

( )bn t  which is the number of physical cross-links per unit reference volume that are broken at the current 

time, i.e., 

 ( )
( )

0

1 b

H

n
t

t N
t

 = ,        (A1) 

where Ht is a characteristic time for healing which is assumed to be insensitive to chain stretch, and 0N  is 

the total number of bonds.  Because breaking rate is dependent on strain history, the steady state assumption 

of the linear theory where breaking and healing rates are equal is no longer valid.  The number of 

unconnected bonds bn  in eq.(A1) is dependent on the strain history: 

 ( ) ( )0 1 2 bN N N t n t= + +         (A2) 

where 
1 0N N=  is the number of chemically cross-linked bonds and ( )2N t is the number of surviving 

physical bonds.  We evaluate ( )2N t by summing all the healed bonds that survive to current time t.   This 

is calculated by noting that the number of physical bonds that are borne between t  and  +t dt  is by 

definition ( ) 0t N dt   , so the number of bonds that are connected is the integral of ( ) ( )0 ,Bt N dt t t     

from  = −t  to the current time , i.e., 

 ( ) ( ) ( ) 
−

  = 2 0 ,
t

BN t N t t t dt  .       (A3a) 

Combining eqs.(A1,A2,A3a) and divide the equation by 0N , we have 

 ( ) ( ) ( )   
−

   − = +1 ,
t

B Ht t t dt t t       (A3b) 

The total strain energy density at a material point in the stress-free reference configuration is 

   ( ) ( )  0 0( ) ( 0, ) , ( , )
t

BW t W H t t t t t W H t t dt 
−

    = = +     (A4) 



The 1st term is the strain energy per unit reference volume of the chemical cross-linked network.  The 2nd 

term is the strain energy per unit reference volume carried by the physical bonds.  To see this, we note that 

( ) ( ),Bt t t dt     is the molar fraction of physical chains that reattaches between ( ),t t dt  + and survives 

till t.   Since the strain energy density carried by these chains is  0 ( , )W H t t , the total strain energy density 

carried by all physical chains is the integral of ( ) ( )  0, ( , )Bt t t dt W H t t      from  = −t  to the current 

time t.  The relation between Cauchy (true) stress σ  and history of deformation can be computed using 

eq.(A4) and following the Coleman-Noll procedure. 

A2. Cavity Growth in a linear viscoelastic solid: eqs.(19,20) 

Using T−=P σF , eqs.(10a, 11), and the deformation gradient is the identity tensor for time less than zero, 

the first Piola-Kirchoff stress of the linear viscoelastic solid is 
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( )

( )
T T0 0 0

0

tt t t t tt
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+
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where ( )t  is defined by eq.(10a).  The deformation gradient 
10 0t tt t  −

→ → →

=  F F F  is 
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F .  (A6a) 

where we have used the incompressibility condition.  The ,R denotes partial derivative with respect to R. 

( ) ( ) ( )2 3 33 3 332det 1 ,dr r r r dr R dR r R t R a t A R c t
dR R R

=   =  =  = + − = +F  (A6b) 

where ( )a t  is the radius of the cavity at time t and  

( ) ( ) ( ) ( ) ( )3 3 3 3 3 3, , − = −  = +c t a t A r R t R r R t R c t .    (A6c) 

Because of symmetry, the only non-trivial equilibrium equations is in the radial direction.   This equation, 

in the reference configuration is 



2 2 0 −
+ =



RR RRP P P
R R

.       (A7) 

Substituting eqs.(A5, A6) into (A7) and using (A6c), the first term is 
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The second term in eq.(A7) is 
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Adding (A8a,b), eq.(A7) simplifies to 
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           (A9a) 

It can be shown (e.g. by direct differentiation) that the solution of (A9a) is  
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where ( )c t  is defined by (A6c) and ( )0q t is an arbitrary function of time only.  The PK-I radial stress is 

obtained by substituting (A9b) into (A5)  
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We determine ( )0q t  from (A9c) using the far field boundary condition 
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Combining eqs.(A9b, A10) along with the deformation gradient given by eq.(A6a), the true stresses are 
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The inner radius ( )a t  is determined by the boundary condition  
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We normalize all lengths by A , e.g. /r r A .  Then eq.(A12a) reduces to 
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which is eq.(19) divided by 2.  The instantaneous response due to the sudden pressure load is determined 

by setting 0t =  in eq.(A12b): 
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Equation (A13) is the same as the elastic solution given by eq. (17b) of a neo-Hookean solid with small 

strain modulus 0 = .   

A3.   Nonlinear case 



In the nonlinear case, the survivability function becomes 
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with 
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Note that ( ),B t t   is a function of radial coordinate R , and so is the healing rate   which is determined 

by eq.(A3b).  To explicitly express this dependence, we denote these quantities as ( ), ,B R t t  , ( ),R t , 

and ( ), ,H R st  respectively.  From eq.(13) and using T−=P σF , and assuming that there is no load for 

0t  , the nonzero PK-I stress components for the nonlinear viscoelastic solid are 
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and the equilibrium equation (A7) becomes 
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where 
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To integrate for q , we rewrite (A16a)  
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Combining eqs. (A15a, A17) and using T=σ PF , the true stress in the radial direction is 
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The unknown ( )0q t  in (A18) is determined by the far field boundary condition 
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Substituting (A19) back into (A18), the true radial stress is: 
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  (A20a) 

The other true stress components are obtained using (A19) and (A15b),  
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The unknown deformed radius ( )a t  is determined by the boundary condition 
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( )a t  is implicit in eq.(A21) through ( ) ( )
1
33 3 3,r R t R a t A = + −  . 

Note since the instantaneous modulus for the linear and nonlinear cases are the same, the 

instantaneous responses for both cases are identical. Hence eq.(A13) is valid. The equation to be solved 

numerically in the nonlinear case is eq.(A21), with ( ),,B R tt  , ( ), ,H R st , ( ),n R t  given by 

eqs.(A14a, A14b, A16b), respectively.  Equation (A21) must be solved together with eq.(A3b) (with 

( ), 0R t  =  ) to determine the unknown healing rate ( ),R t .  The solution is obtained iteratively:  

we start from 0t =  with 0a  determined by eq.(A13). For each time increment, we guess the next cavity 

radius ( )a t t+  and use this guess to find the healing rate ( ),R t t +  from eq.(A3b) or more 

precisely, 
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  − = +  + +1 , , , ,
t t

B HR t R t t t dt R t t t      (A22) 

Using the guessed value ( )a t t+  we evaluate ( )  + , ,B R t t using (A14b) and (A14a).    The updated 

healing rate ( ),R t t +   can now be found using (A22).   Once we know ( )a t t+ and ( ),R t t + , we 

can evaluate the RHS of (A21) at +t t  and determine the residue ( res ) which is the difference between 

this value and / netp   .  If the residue is too large, we will iterate with an updated guess of ( )a t t+

based on the residue (via a Newton-Raphson scheme).  Specifically, we take the first guess, ( )1a t t+  to 

be ( )a t , the 2nd guess to be ( ) ( ) ( )2 2a t t a t a t t+  = − −  . In general, 
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1 1
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k
k k k
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−
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−

.   We continue with this iteration scheme until the 

residue is smaller than 410 / netp −  .    

A4. Cavity growth for linear and nonlinear viscoelastic solids 



 
Figure A1. Time evolution of the normalized cavity radius ( A  is the initial cavity radius and ( )a t  is 

the current cavity radius). The black symbol is the linear viscoelastic case, whereas the three colored 

lines are the nonlinear viscoelastic cases with different 0J s. The cavity grows faster for the nonlinear 

viscoelastic solids. Smaller 0J  leads to faster cavity growth. 

Figure A1 shows the time evolution of the normalized cavity radius ( )a t . The cavity grows faster in a 

nonlinear viscoelastic solid (three colored lines) compared to the linear viscoelastic case (black symbol). 

The smaller the critical strain 0J , the faster the bonds breaks at a given strain, and the faster the cavity 

grows. 

A5. Estimate of cohesive stress for elastomers 

The areal density of chains crossing a surface,   , is roughly35 

  x xa N    

where a  is the size of a monomer, x is the density of cross-links and xN  is the number of monomers in 

a chain.  x  can be estimated from the small strain shear modulus,   by x Bk T = where Bk  is the 

Boltzmann constant and T the absolute temperature.  The cohesive stress c  can be estimated using 

c c cf −  where 910c cf Newtons−

−  is roughly the force needed to break a carbon-carbon bond.   
Thus, 

 c c c x
B

a f N
k T


 −  



At room temperature 298K  , 214 10Bk T J−  , the shear modulus of elastomers   is roughly
60.5 10 PA  , 90.5 10a m−   so 

 810c xN Pa   

If we take 1000xN = , then 93.5 10c Pa   .   

 


	Word Bookmarks
	Word Bookmarks
	OLE_LINK5
	OLE_LINK6
	OLE_LINK4


