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ABSTRACT
Many previous causal inference studies require no interference, that is, the potential outcomes of a unit
do not depend on the treatments of other units. However, this no-interference assumption becomes
unreasonable when a unit interacts with other units in the same group or cluster. In a motivating application,
a top Chinese university admits students through two channels: the college entrance exam (also known as
Gaokao) and recommendation (often based on Olympiads in various subjects). The university randomly
assigns students to dorms, each of which hosts four students. Students within the same dorm live together
and have extensive interactions. Therefore, it is likely that peer effects exist and the no-interference
assumption does not hold. It is important to understand peer effects, because they give useful guidance
for future roommate assignment to improve the performance of students. We define peer effects using
potential outcomes. We then propose a randomization-based inference framework to study peer effects
with arbitrary numbers of peers and peer types. Our inferential procedure does not assume any parametric
model on the outcome distribution. Our analysis gives useful practical guidance for policy makers of the
university. Supplementary materials for this article are available online.

ARTICLE HISTORY
Received January 2017
Revised April 2018

KEYWORDS
Causal inference;
Design-based inference;
Grade point average (GPA);
Interference; Optimal
treatment assignment;
Spillover effect.

1. Introduction

1.1. Causal Inference, Interference, and Peer Effects

The classical potential outcomes framework (Neyman 1923)
assumes no interference among experimental units (Cox 1958),
that is, the potential outcomes of a unit are functions of its own
treatment but not others’ treatments. This constitutes an impor-
tant part of Rubin (1980)’s Stable Unit Treatment Value Assump-
tion (SUTVA). In some experiments, interference is a nuisance,
and researchers try to avoid it by isolating units. Interference,
however, is unavoidable in many studies when units have inter-
actions with each other. Examples include vaccine trials for
infectious diseases in epidemiology (Halloran and Struchiner
1991, 1995; Perez-Heydrich et al. 2014), group-randomized tri-
als in education (Hong and Raudenbush 2006; Vanderweele
et al. 2013), and interventions on networks in sociology (An
2011; VanderWeele and An 2013), political science (Nickerson
2008; Ichino and Schündeln 2012; Bowers, Fredrickson, and
Panagopoulos 2013), and economics (Manski 1993; Sacerdote
2001; Miguel and Kremer 2004; Graham, Imbens, and Ridder
2010; Goldsmith-Pinkham and Imbens 2013; Arpino and Mat-
tei 2016). Ogburn and VanderWeele (2014) discussed differ-
ent types of interference. Forastiere, Airoldi, and Mealli (2016)
showed that ignoring interference can lead to biased inferences.
It is important to study the pattern of interference in some
applications, because it is of scientific interest and useful for
decision-making. For example, Sacerdote (2001) found signif-
icant peer effects in student outcomes (e.g., GPA and fraternity
membership) among students living in the same dorm of Dart-

CONTACT Peng Ding pengdingpku@berkeley.edu Department of Statistics, University of California, Berkeley, CA 94720.
Supplementary materials for this article are available online. Please go to www.tandfonline.com/r/JASA.

mouth College. Based on this, Bhattacharya (2009) discussed
the optimal peer assignment.

1.2. Motivating Application in Education

Our motivation comes from a dataset of a top Chinese univer-
sity. It contains a rich set of variables of the students: family
background, the channels through which they were admitted,
roommates’ information, GPAs, etc.

The university admits students through two primary
channels: the college entrance exam (also known as Gaokao)
and recommendation. Gaokao is an annual test in China to
assess students’ knowledge in various subjects. Every university
has its own minimal test score threshold to admit students.
Students from Gaokao study all subjects and often have broader
knowledge. Students from recommendation do not need to
take Gaokao. They win awards in national or international
Olympiads in mathematics, physics, chemistry, biology, or
informatics. They concentrate on a certain subject for the
corresponding Olympiad. They may even take some college
courses on that subject during their high school years. Most
of them choose majors related to the subject they focused on
in high schools. Overall, students admitted through these two
channels have different training and thus different attributes.
Students from recommendation generally perform better in
GPAs than students from Gaokao.

After entering the university, students usually live in four-
person rooms for four years. They often study together and
interact with each other. We know that two types of students,
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from Gaokao and recommendation, have different training in
high schools. It is then natural to ask the following questions. Is
it beneficial for students from Gaokao to live with students from
recommendation, or vice versa? Is there an optimal combination
of roommate types for the performance of a certain student?
Is there an optimal roommate assignment to maximize the
performance of all students? These questions are all about peer
effects among students.

1.3. Literature Review and Our Contribution

With interference, the potential outcomes of a unit can depend
on its own treatment and others’ treatments in various ways.
Therefore, causal inference with interference has different math-
ematical forms. Like many other causal inference problems,
there are at least two inferential frameworks for causal infer-
ence with interference: the Fisherian and Neymanian perspec-
tives. Under the Fisherian view, Rosenbaum (2007), Luo et al.
(2012), Aronow (2012), Bowers, Fredrickson, and Panagopou-
los (2013), Rigdon and Hudgens (2015), Athey, Eckles, and
Imbens (2018), and Basse, Feller, and Toulis (2019) proposed
exact randomization tests for detecting causal effects with inter-
ference, and constructed confidence intervals for certain causal
parameters by inverting tests. Choi (2017) discussed a related
approach under the monotone treatment effect assumption.
Under the Neymanian view, Hudgens and Halloran (2008) dis-
cussed point and interval estimation for several causal esti-
mands with interference under two-stage randomized experi-
ments on both the group and individual levels. Liu and Hudgens
(2014) then established the large sample theory for these esti-
mators. Aronow and Samii (2017), Basse and Feller (2018), and
Sävje, Aronow, and Hudgens (2017) extended the discussion
to other general contexts. The Fisherian and Neymanian views
are both randomization based in the sense that the uncer-
tainty in testing or estimation comes solely from the treatment
assignment mechanism, and all the potential outcomes are fixed
constants. When two-stage randomization is infeasible, we need
certain unconfoundedness assumptions to ensure identifiability
of causal effects. Tchetgen and VanderWeele (2012) proposed
an inverse probability weighting estimator. Perez-Heydrich et al.
(2014) applied this methodology to assess effects of cholera
vaccination. Liu, Hudgens, and Becker-Dreps (2016) studied the
theoretical properties. Other studies (Sacerdote 2001; Toulis and
Kao 2013) relied on parametric modeling assumptions.

Our framework for peer effects furthers the literature in
several ways. First, we define peer effects using potential out-
comes. Unlike in previous work (e.g., Sobel 2006; Hudgens and
Halloran 2008), our estimands do not involve averages over the
treatment assignment. We separate the causal estimands from
the treatment assignment. As Rubin (2005) argued, the former
are functions of the potential outcomes, and the latter induces
randomness and governs the statistical inference. Second, pre-
vious works discussed external interventions with known net-
works, clusters, or groups. Our hypothetical intervention is the
roommate assignment in the motivating application. It forms a
“network” among units, which further causes interference and
peer effects. We explain the distinction between the two types
of interference in detail in Section 2.5. Our setting is similar
to Sacerdote (2001)’s. However, we formalize the problem using

potential outcomes instead of linear models and allow for causal
interpretations without imposing model assumptions. Third,
we propose randomization-based point estimators, prove their
asymptotic Normalities, and construct confidence intervals. We
further derive the optimal roommate assignment to maximize
the performance of students. The inferential framework is Ney-
manian, similar to those of Hudgens and Halloran (2008) and
Aronow and Samii (2017). Fourth, we apply the new method to
the dataset from a top Chinese university and find important
policy implications. We relegate all the technical details to the
supplementary material.

2. Notation and Framework for Peer Effects

2.1. Potential Outcomes with Peers

We consider an experiment with n = m(K + 1) units, where
m is the number of groups and K + 1 is the size of each
group. Each unit has K peers in the same group. The group and
peers correspond to room and roommates in our motivating
application, where K = 3 is the number of roommates for
each student. Let Zi be the treatment assignment for unit i,
which is a set consisting of the identity numbers of his/her K
peers, that is, Zi = {j : units j and i are in the same group}.
In the motivating application, Zi is a set consisting of three
roommates of unit i. Let Z = (Z1, Z2, . . . , Zn) be the treatment
assignment for all units, and Z be the set of all possible values
of the assignment Z. Let Yi(z) be the potential outcome of unit
i under treatment assignment z = (z1, . . . , zn). This potential
outcome depends on treatment assignments of all other units.
Let Ai ∈ {1, 2, . . . , H} be the attribute or type of unit i. In
the motivating application, H = 2, and Ai = 1 if unit i is
from Gaokao, and Ai = 2 if unit i is from recommendation.
Under treatment assignment z, let Ri(zi) = {Aj : j ∈ zi}
be the set consisting of the attributes of unit i’s K peers, and
Gi(zi) = Ri(zi) ∪ {Ai} be the set consisting of the attributes
of all units in the group that unit i belongs to. We call Ri(zi)
and Gi(zi) the peer attribute set and group attribute set. Both
of them contain unordered but replicable elements. Therefore,
|Ri(zi)| = K and |Gi(zi)| = K + 1, where | · | denotes the
cardinality of a set. In the motivating application, if unit i is
from recommendation and has two roommates from Gaokao
and one from recommendation, then Ri(zi) = {1, 1, 2} ≡ 112
and Gi(zi) = {1, 1, 2, 2} ≡ 1122, where we use 112 and 1122 for
notational simplicity. In this case, Ri or Gi has a one-to-one map-
ping to the number of students from Gaokao within the room of
unit i.

Let I(·) be the indicator function. For unit i, Yi = Yi(Z) =!
z∈Z I(Z = z)Yi(z) is the observed outcome, and Ri =

Ri(Zi) =
!

zi I(Zi = zi)Ri(zi) is the observed peer attribute
set.

2.2. Group-Level SUTVA and Exclusion-Restriction-Type
Assumptions

Without further assumptions, the potential outcome Yi(z)
depends on the treatments of all units. This makes statistical
inference intractable. We invoke the following two assumptions
to reduce the number of potential outcomes.
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Assumption 1. If zi = z′i , then Yi(z) = Yi(z′), for any two
treatment assignments (z, z′) and any unit i.

Assumption 1 states that if a unit’s peers do not change,
then its potential outcome will not change. This assumption
requires no interference between groups but allows for interfer-
ence within groups. Under Assumption 1, each unit’s potential
outcomes depend only on its peers in the same group. Therefore,
we can write Yi(z) as Yi(zi), a function of the peers of unit
i. Assumption 1 is a group-level SUTVA, which is similar to
the “partial interference” assumption (Sobel 2006; Hudgens and
Halloran 2008).

Assumption 2. If Ri(zi) = Ri(z′i), then Yi(zi) = Yi(z′i), for any
two treatment assignments (z, z′) and any unit i.

Assumption 2 states that if the treatment assignment does
not affect the attributes of the peers of unit i, then it does not
affect the outcome of unit i. Therefore, the potential outcomes
of each unit depend only on its peers’ attributes instead of
its peers’ identities. Assumption 2 is similar to “anonymous
interaction” (Manski 2013). Assumption 2 implies that the peer
attribute set of a unit is the ultimate treatment of interest. We
are inferring the treatment effects of the peer attribute set.
Previous works often invoked Assumption 2, or a slightly weaker
form, for inferring peer effects among college roommates. For
example, in Sacerdote’s (2001) study from Dartmouth College,
the ultimate treatment was peers’ academic indices created by
the admission office, and in Langenskiöld and Rubin’s (2008)
study from Harvard College, the ultimate treatment was peers’
smoking behaviors.

Both Assumptions 1 and 2 are untestable based on the
observed data from a single experiment. They are strong
identifying assumptions. We will relax them in Section 7.

Under Assumptions 1 and 2, Yi(z) simplifies to Yi(Ri(zi)), a
function of the peer attribute set of unit i. Recall that Ri(zi) con-
tains K unordered but replicable elements from {1, 2, . . . , H}.
Let R be the set consisting of all possible values of Ri(zi).
Potential outcome of unit i, Yi(z), simplifies to Yi(r) for some
r ∈ R. Then the potential outcome is Yi(z) = Yi(Ri(zi)) =!

r∈R I{Ri(zi) = r}Yi(r), and the observed outcome is Yi =
Yi(Ri) =

!
r∈R I(Ri = r)Yi(r). Therefore, we can view the

elements in R as all possible values of the treatment levels, with
|R| =

"K+H−1
H−1

#
= (K+H−1)!

(H−1)!K! possible values. In our motivating
application, R = {r1, r2, r3, r4} = {111, 112, 122, 222} and
|R| = (3+2−1)!

(2−1)!3! = 4.
As a side note, motivated by the example of the Chinese uni-

versity, we consider the case with equal group sizes K+1. When
groups have different sizes, we need to modify Assumption 2.
For example, we can assume that the potential outcomes of a
unit depend on the proportions of his/her peers’ attributes. The
plausibility of this assumption depends on the context of the
application, and we leave it to future work.

2.3. Causal Estimands for Peer Effects

For units with attribute 1 ≤ a ≤ H, let n[a] and w[a] = n[a]/n be
the number and proportion, and Ȳ[a](r) = n−1

[a]
!

i:Ai=a Yi(r) be
the subgroup average potential outcome under treatment r. Let

Ȳ(r) = n−1!n
i=1 Yi(r) be the average potential outcome for all

units under treatment r. Therefore, Ȳ(r) =!H
a=1 w[a]Ȳ[a](r) is

a weighted average of Ȳ[a](r)’s. Comparing treatments r, r′ ∈ R,
we define τi(r, r′) = Yi(r)− Yi(r′) as the individual peer effect,

τ[a](r, r′) = n−1
[a]
$

i:Ai=a
τi(r, r′) = Ȳ[a](r)− Ȳ[a](r′) (1)

as the subgroup average peer effect for units with attribute a, and

τ (r, r′) = n−1
n$

i=1
τi(r, r′) = Ȳ(r)− Ȳ(r′) =

H$

a=1
w[a]τ[a](r, r′)

(2)

as the average peer effect for all units. We are interested in
estimating the average peer effects τ[a](r, r′) and τ (r, r′). They
are functions of the fixed potential outcomes and do not depend
on the treatment assignment mechanism.

For ease of reading, we summarize the key notation in
Table 1.

2.4. Treatment Assignment Mechanism

The treatment assignment mechanism is important for identify-
ing and estimating peer effects. We consider treatment assign-
ment mechanisms satisfying some symmetry conditions. First,
units with the same attribute must have the same probability to
receive all treatments. Second, pairs of units with the same pair
of attributes must have the same probability to receive all pairs of
treatments. Formally, we require that the treatment assignment
mechanism satisfies the following two conditions.

Assumption 3. For any r, r′ ∈ R,

(a) pr(Ri = r) = pr(Rj = r), if Ai = Aj;
(b) pr(Ri = r, Rj = r′) = pr(Rk = r, Rq = r′), if Ai = Ak and

Aj = Aq for i ̸= j, k ̸= q.

We will give two examples of treatment assignment mecha-
nisms satisfying Assumption 3.

2.4.1. Random Partitioning
Under random partitioning, we randomly assign units to m
groups of size K + 1, and all possible partitions of units have
equal probability. To be more specific, if a treatment assignment
z is compatible with a partition of units into m groups of size
K + 1, then pr(Z = z) = m!{(K + 1)!}m/{m(K + 1)}!;
otherwise, pr(Z = z) = 0. This formula follows from counting
all possible random partitions. To generate a random partition,
we can randomly permute n = m(K+ 1) units and divide them
into m groups of equal size K + 1 sequentially.

Random partitioning, however, can result in unlucky real-
izations of the randomization. We may have too few units with
attributes and treatments of interest. For illustration, we con-
sider the motivating education example with eight students, five
from Gaokao and three from recommendation. Assume that we
are interested in τ[1](r2, r3), the treatment effect of r2 = 112
versus r3 = 122 for students from Gaokao. Under random
partitioning, it is possible that no students from Gaokao receives
treatment r2 or r3. In that case, it is impossible to estimate
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Table 1. Notation and explanations.

Notation Definition Meaning, properties, or possible values

zi peer assignment of unit i a set of the identity numbers of his/her K peers
Ai unit i’s attribute Ai ∈ {1, 2, . . . , H}

n[a] number of units with attribute a
!H

a=1 n[a] = n
w[a] proportion of units with attribute a

!H
a=1 w[a] = 1 and 0 < w[a] < 1 (a = 1, . . . , H)

Ri(zi) unit i’s peer attribute set a set of the attributes of unit i’s K peers
R a set of all possible values of Ri(zi) |R| =

"K+H−1
H−1

#

Gi(zi) unit i’s group attribute set a set of attributes of all units in unit i’s group
G a set of all possible values of Gi(zi) G = {g1, . . . , gT }with T = |G| =

"K+H
H−1
#

Yi(z) unit i’s potential outcome under the original treatment z ∈ Z
Yi(r) unit i’s potential outcome under the ultimate treatment r ∈ R

τ[1](r2, r3) precisely. An example of such a realization is that four
students from Gaokao live in one room and the remaining one
student from Gaokao and three students from recommendation
live in the other room.

2.4.2. Complete Randomization
We propose another treatment assignment mechanism to avoid
the drawback of random partitioning. It requires predetermined
number of units for each attribute receiving each treatment.
We achieve this goal by fixing the numbers of groups. Recall
that the group attribute set Gi(zi) contains K + 1 unordered
but replicable elements from {1, . . . , H}. Consider the same
education example with five students from Gaokao and three
students from recommendation. We may hope that one room
has group attribute set 1112 and thus the other room has group
attribute set 1122. This results in three and two students from
Gaokao receiving treatments r2 and r3, respectively. Therefore,
this avoids other assignments with no students from Gaokao
receiving these treatments of interest.

We need additional symbols to describe complete random-
ization. Let G = {g1, . . . , gT} be the set consisting of all possible
group attribute sets, with cardinality T = |G| =

"H+K
H−1

#
=

(H+K)!
(H−1)!(K+1)! . In our motivating application, G = {g1, . . . , g5} =
{1111, 1112, 1122, 1222, 2222} with T = |G| = (2+3)!

(2−1)!(3+1)! =
5. Under treatment assignment z, the number of groups with
attribute set gt ∈ G is

Lt(z) = (K + 1)−1
n$

i=1
I
%

Gi(zi) = gt
&

,

where the divisor K + 1 appears because all K + 1 units in
the same group must have the same group attribute set. Let
L(z) = (L1(z), L2(z), . . . , LT(z)) be the vector of numbers of
groups corresponding to group attribute sets (g1, . . . , gT) under
assignment z.

Under complete randomization, the assignment z must sat-
isfy L(z) = l = (l1, . . . , lT) for a predetermined constant vector
l, and all such assignments must have equal probability. For any
gt ∈ G, let gt(a) be the number of elements in set gt that are equal
to a. If z is compatible with a partition of units into m groups and
L(z) = l, then

pr(Z = z) =
'T

t=1 lt! ×
'H

a=1
'T

t=1{gt(a)!}lt'H
a=1 n[a]!

; (3)

otherwise, pr(Z = z) = 0. The above formula (3) follows from
counting all possible complete randomizations. To generate a

complete randomization, we can first randomly partition the
n[a] units with attribute a into m groups, where each of the first l1
groups has g1(a) units, each of the next l2 groups has g2(a) units,
. . ., each of the last lT groups has gT(a) units. The partitions for
units with different attributes are mutually independent. Finally,
the first l1 groups will have group attribute set g1, . . . , and the
last lT groups will have group attribute set gT , satisfying the
requirement L(z) = l.

We revisit the education example with five students from
Gaokao and three students from recommendation. The treat-
ment of complete randomization has predetermined vector l =
(l1, l2, l3, l4, l5) = (0, 1, 1, 0, 0). Thus, one group has attribute set
g2 = 1112 and the other group has attribute set g3 = 1122.
We need to randomly assign three students from Gaokao and
one student from recommendation to group g2, and assign the
remaining students to group g3. Equivalently, for the five stu-
dents from Gaokao, we randomly assign three of them to group
g2 and the remaining two to group g3; for the three students from
recommendation, we randomly assign one of them to group g2
and the remaining two to group g3, independently of the group
assignments for students from Gaokao.

For 1 ≤ a ≤ H and r ∈ R, let n[a]r = |{i : Ai = a, Ri = r}|
be the number of units with attribute a receiving treatment r.
First, the units with attribute a receiving treatment r must have
group attribute set {a}∪r, which equals gt0 for some 1 ≤ t0 ≤ T.
Second, each group with attribute set gt0 contains gt0(a) units
with attribute a. Third, all of these gt0(a) units receive the same
treatment r. These facts imply that

n[a]r = Lt0(z)gt0(a) =
T$

t=1
I(gt = {a} ∪ r) · Lt(z)gt(a) (4)

depends only on the vector L(z). Thus, the n[a]r ’s are con-
stants under complete randomization. In the previous education
example with eight students, consider complete randomization
with predetermined vector l = (0, 1, 1, 0, 0). The numbers of
units from Gaokao receiving treatments r2 = 112 and r3 = 122
are constants n[1]r2 = 3 and n[1]r3 = 2. Therefore, complete
randomization can guarantee that at least some students from
Gaokao receive the treatments of interest.

Moreover, under random partitioning, if we conduct infer-
ence conditional on L(Z), then the treatment assignment mech-
anism becomes complete randomization with L(z) fixed at the
observed vector L(Z). Therefore, even under random partition-
ing, we can still conduct inference under complete randomiza-
tion if we condition on L(Z).
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Figure 1. Two types of interference with dashed circles indicating networks. (a) The
first type of interference with a fixed network and random external interventions.
(a1) and (a2) are two possible realizations, with random external interventions
(colors of the units) and a fixed network. (b) The second type of interference with
fixed attributes of all units and a random network. (b1) and (b2) are two possible
realizations, with fixed attributes (colors of the units) and a random network.

2.5. Connection and Distinction Between Existing
Literature and Our Article

We comment on the difference between the majority of the
existing literature and our article. We compare two types of
interference.

In Figure 1, (a1) and (a2) illustrate the first type. The gray
or white color of each unit denotes the external treatment (e.g.,
receiving vaccine or not). Each unit’s outcome depends not only
on its own treatment but also on treatments of other units in its
circle. Thus, units interfere with each other in the same dashed
circle. Importantly, the network structure is fixed.

In Figure 1, (b1) and (b2) illustrate the second type. The gray
or white color denotes the units’ attributes (e.g., from Gaokao or
recommendation in the motivating application). The outcome
of each unit depends on the attributes of other units in its
circle. Thus, units interfere with each other in the same dashed
circle. Unlike the first type, the units’ attributes are fixed but the
network structure is random.

A main difference between these two types comes from the
source of randomness. For the first type, the colors are random
and the dashed circles are fixed. For the second type, the colors
are fixed and the dashed circles are randomly formed. The recent
causal inference literature focused on the first type (Hudgens
and Halloran 2008; Aronow 2012; Liu and Hudgens 2014; Athey,
Eckles, and Imbens 2018). In this article, we formalize the
second type and propose inferential procedures based on the
treatment assignment mechanism.

3. Inference for Peer Effects under General Treatment
Assignment

3.1. Point Estimators for Peer Effects

Throughout the article, we invoke, unless otherwise stated,
Assumptions 1–3. For 1 ≤ a ≤ H and r, r′ ∈ R, let π[a](r) =
pr(Ri = r) be the probability that a unit i with attribute a
receives treatment r. Define

Ŷ[a](r) = {n[a]π[a](r)}−1
$

i:Ai=a
I(Ri = r)Yi, (5)

τ̂[a](r, r′) = Ŷ[a](r)− Ŷ[a](r′), τ̂ (r, r′) =
H$

a=1
w[a]τ̂[a](r, r′).

(6)

Proposition 1. For 1 ≤ a, a′ ≤ H and r, r′ ∈ R, the estimators
Ŷ[a](r), τ̂[a](r, r′), and τ̂ (r, r′) are unbiased for Ȳ[a](r), τ[a](r, r′),
and τ (r, r′), respectively.

The unbiasedness of Ŷ[a](r) follows from the Horvitz–
Thompson-type inverse probability weighting, and the unbi-
asedness of τ̂[a](r, r′) and τ̂ (r, r′) then follows directly from the
linearity of expectation.

3.2. Sampling Variances of the Peer Effect Estimators

For units with attribute 1 ≤ a ≤ H and r ̸= r′ ∈ R, define

S2
[a](r) = (n[a] − 1)−1

$

i:Ai=a

%
Yi(r)− Ȳ[a](r)

&2 ,

S2
[a](r-r′) = (n[a] − 1)−1

$

i:Ai=a

%
τi(r, r′)− τ[a](r, r′)

&2

as the finite population variances of the potential outcomes and
individual peer effects, and

Y[a](r)Y[a](r′) = {n[a](n[a] − 1)}−1
$$

i ̸=j:Ai=Aj=a
Yi(r)Yj(r′)

as the average of the products of the potential outcomes for pairs
of units with attribute a.

For 1 ≤ a, a′ ≤ H and r, r′ ∈ R, if i ̸= j are two units with
attributes a and a′, then π[a][a′](r, r′) = pr(Ri = r, Rj = r′) is
the joint treatment assignment probability, and

d[a][a′](r, r′) = √n[a]n[a′]
( pr(Ri = r, Rj = r′)

pr(Ri = r)pr(Rj = r′) − 1
)

= √n[a]n[a′]
(

π[a][a′](r, r′)
π[a](r)π[a′](r′)

− 1
)

(7)

measures the dependence between the two events {Ri = r} and
{Rj = r′}. We further need a few known constants depending
only on the treatment assignment mechanism. For 1 ≤ a, a′ ≤
H and r, r′ ∈ R, define

c[a][a′](r, r′)

=

⎧
⎪⎨

⎪⎩

d[a][a′](r, r′), if a ̸= a′,
(1− n−1

[a] )d[a][a](r, r′)− 1, if a = a′, r ̸= r′,
(1− n−1

[a] )d[a][a](r, r)+ π−1
[a] (r)− 1, if a = a′, r = r′,

(8)
and

b[a](r) = (1− n−1
[a] )
%

c[a][a](r, r)− d[a][a](r, r)
&
+ 1. (9)

These constants are useful for expressing the sampling variances
of the estimators in (6).

Theorem 1. Under Assumptions 1–3, for treatments r ̸= r′ ∈
R, the sampling variance of the subgroup average peer effect
estimator is

var
%
τ̂[a](r, r′)

&

= n−1
[a]
%

b[a](r)S2
[a](r)+ b[a](r′)S2

[a](r′)− S2
[a](r-r′)

&
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+ n−1
[a]

(
c[a][a](r, r)Ȳ2

[a](r)+ c[a][a](r′, r′)Ȳ2
[a](r′)

− 2c[a][a](r, r′)Y[a](r)Y[a](r′)
)

, (10)

and the sampling variance of the average peer effect estimator is

var
%
τ̂ (r, r′)

&

= n−1
H$

a=1
w[a]

%
b[a](r)S2

[a](r)+ b[a](r′)S2
[a](r′)− S2

[a](r-r′)
&

+ n−1
H$

a=1
w[a]
(

c[a][a](r, r)Ȳ2
[a](r)+ c[a][a](r′, r′)Ȳ2

[a](r′)

− 2c[a][a](r, r′)Y[a](r)Y[a](r′)
)

+ n−1
H$

a=1

$

a′ ̸=a
(w[a]w[a′])1/2

%
c[a][a′](r, r)Ȳ[a](r)Ȳ[a′](r)

+ c[a][a′](r′, r′)Ȳ[a](r′)Ȳ[a′](r′)
− c[a][a′](r, r′)Ȳ[a](r)Ȳ[a′](r′)
− c[a][a′](r′, r)Ȳ[a](r′)Ȳ[a′](r)

&
. (11)

From Theorem 1, the sampling variances of the peer effect
estimators depend on the finite population variances of poten-
tial outcomes and individual peer effects, the products of two
subgroup average potential outcomes, and the product aver-
ages Y[a](r)Y[a](r′)’s. In contrast to Ȳ[a](r)Ȳ[a](r′), the average
Y[a](r)Y[a](r′) excludes the product of two potential outcomes
of the same unit. Note that we cannot unbiasedly estimate
quantities involving Yi(r)Yi(r′) in general because we cannot
jointly observe the potential outcomes, Yi(r) and Yi(r′), for any
unit i and any treatments r ̸= r′.

Moreover, the sampling variance of τ̂ (r, r′) is a weighted
summation of the sampling variances of the τ̂[a](r, r′)’s, cor-
responding to the first two terms in (11), and the sampling
covariances between τ̂[a](r, r′) and τ̂[a′](r, r′), corresponding to
the last double summation in (11).

3.3. Estimating the Sampling Variances

From Theorem 1, to estimate the sampling variances, we need
to estimate the population quantities in (10) and (11). For 1 ≤
a ≤ H, define

s2
[a](r) =

n[a]π2
[a](r)

(n[a] − 1)π[a][a](r, r)

×

⎧
⎨

⎩
n[a] + c[a][a](r, r)

n2
[a]π[a](r)

$

i:Ai=a
I(Ri = r)Y2

i − Ŷ2
[a](r)

⎫
⎬

⎭ .

(12)

The following theorem is the basis for constructing variance
estimators.

Theorem 2. Under Assumptions 1–3, for 1 ≤ a, a′ ≤ H and
r, r′ ∈ R,

S2
[a](r) = E

%
s2
[a](r)

&
,

Ȳ2
[a](r) = E

1
n[a]Ŷ2

[a](r)− {b[a](r)− 1}s2
[a](r)

n[a] + c[a][a](r, r)

2

,

Y[a](r)Y[a](r′) = E
( n[a]

n[a] − 1
π[a](r)π[a](r′)
π[a][a](r, r′) Ŷ[a](r)Ŷ[a](r′)

)
,

if r ̸= r′,

Ȳ[a](r)Ȳ[a′](r′) = E
(

π[a](r)π[a′](r′)
π[a][a′](r, r′) Ŷ[a](r)Ŷ[a′](r′)

)
,

if a ̸= a′.

The estimators in Theorem 2 correspond to the sample
analogs of these finite population quantities, with carefully
chosen coefficients to ensure unbiasedness. Theorem 2 guar-
antees that we have unbiased estimators for all terms in
var{τ̂[a](r, r′)} and var{τ̂ (r, r′)} except the variance of the
individual peer effects S2

[a](r-r′). We cannot unbiasedly estimate
S2
[a](r-r′) from the observed data. This is analogous to other

finite population causal inference (Neyman 1923). Because the
coefficients of S2

[a](r-r′) in the variance formulas (10) and (11)
are both negative, we can ignore the terms involving S2

[a](r-r′)
and conservatively estimate the sampling variances by simply
plugging in the estimators in Theorem 2. Note that S2

[a](r-r′) = 0
holds under additivity defined below.

Definition 1. The individual peer effects for units with attribute
a are additive if and only if τi(r, r′) = Yi(r)− Yi(r′) is constant
for each unit i with attribute a, or, equivalently, S2

[a](r-r′) = 0.

Therefore, the final estimator for var{τ̂[a](r, r′)} is unbiased
under additivity for a, and the final estimator for var{τ̂ (r, r′)} is
unbiased under additivity for all 1 ≤ a ≤ H.

4. Inference for Peer Effects under Complete
Randomization

Under random partitioning, the formulas of π[a](r), π[a][a′]
(r, r′), d[a][a′](r, r′), b[a](r), and c[a][a′](r, r′) are complicated,
and so are the sampling variances of peer effect estimators.
We relegate them to the supplementary material. Fortunately,
they have much simpler forms under complete randomization.
In this section, we will focus on the inference under complete
randomization.

4.1. Treatment Assignment under Complete
Randomization

The randomness in the peer effect estimators comes solely from
the treatment assignments for all units, (R1, . . . , Rn). There-
fore, we need to first characterize the distribution of the treat-
ments under complete randomization. Intuitively, the symmetry
of complete randomization suggests that (R1, . . . , Rn) has the
same distribution as the treatment of a stratified randomized
experiment. The following proposition states this equivalence
formally.

Proposition 2. Under Assumptions 1 and 2, the complete ran-
domization defined in Section 2.4.2 induces a stratified random-
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ized experiment, in the sense that (1) for each 1 ≤ a ≤ H,
in the stratum consisting of n[a] units with attribute a, n[a]r
units receive treatment r for any r ∈ R, and any realization of
treatments for these n[a] units has the same probability; and (2)
the treatments of units are independent across strata.

Proposition 2 follows from the numerical implementation
of the complete randomization described in Section 2.4.2.
It implies the formulas of π[a](r), π[a][a′](r, r′), d[a][a′](r, r′),
b[a](r), and c[a][a′](r, r′). We give a formal proof in the sup-
plementary material. The group assignment for units with the
same attribute a induces a completely randomized experiment,
with n[a]r units receiving treatment r. Moreover, the group
assignments for units with different attributes are mutually
independent.

4.2. Point Estimators for Peer Effects

Proposition 2 characterizes the treatment assignment of com-
plete randomization, which allows us to express the peer effect
estimators in simpler forms.

Corollary 1. Under Assumptions 1 and 2, and under the com-
plete randomization defined in Section 2.4.2, for 1 ≤ a ≤ H
and r ̸= r′ ∈ R,

Ŷ[a](r) = n−1
[a]r

$

i:Ai=a,Ri=r
Yi, τ̂[a](r, r′) = Ŷ[a](r)− Ŷ[a](r′),

τ̂ (r, r′) =
H$

a=1
w[a]τ̂[a](r, r′). (13)

Therefore, under complete randomization, the unbiased esti-
mator of the subgroup average peer effect, τ̂[a](r, r′), is the
observed difference in outcome means under treatments r and
r′ for units with attribute a.

4.3. Sampling Variances of the Peer Effect Estimators

The sampling variances also have simpler forms under complete
randomization.

Corollary 2. Under Assumptions 1 and 2, and under the com-
plete randomization defined in Section 2.4.2, for 1 ≤ a ≤ H
and r ̸= r′ ∈ R,

var
%
τ̂[a](r, r′)

&
=

S2
[a](r)
n[a]r

+
S2
[a](r′)
n[a]r′

−
S2
[a](r-r′)

n[a]
,

var
%
τ̂ (r, r′)

&
=

H$

a=1
w2
[a]

3
S2
[a](r)
n[a]r

+
S2
[a](r′)
n[a]r′

−
S2
[a](r-r′)

n[a]

4

.

From Corollary 2, the variance formula of the subgroup
average peer effect estimator under complete randomization is
the same as that for classical completely randomized experi-
ments with multiple treatments (Neyman 1923). This follows
from the equivalence relationship in Proposition 2. Corollary 2
also implies that var{τ̂ (r, r′)} ≡ var{!H

a=1 w[a]τ̂[a](r, r′)} =!H
a=1 w2

[a]var{τ̂[a](r, r′)}. This follows from the mutual inde-

pendence of {τ̂[a](r, r′) : 1 ≤ a ≤ H} in an experiment stratified
on attributes.

From Corollary 2, the n[a]r ’s are the effective sample sizes.
On the one hand, this is intuitive because they are the sample
sizes of the stratified experiment described in Proposition 2.
On the other hand, this is counterintuitive because units in
the same group have correlated observed outcomes. However,
this correlation does not diminish the effective sample sizes
in contrast to the correlation in standard group-randomized
experiments. Units in the same group could potentially be in
a different group under a different realization of the treatment
assignment. The probability that two given units are in the same
group decreases as n increases, and so does the correlation
between their observed outcomes. To repeat, under complete
randomization, we analyze the data as if they are from a stratified
experiment, not from a group-randomized experiment.

4.4. Estimating the Sampling Variances

From Proposition 2, Ŷ[a](r) =
!

i:Ai=a,Ri=r Yi/n[a]r reduces to
the sample mean, and

s2
[a](r) =

n[a]r
n[a]r − 1

⎧
⎨

⎩
1

n[a]r

$

i:Ai=a,Ri=r
Y2

i − Ŷ2
[a](r)

⎫
⎬

⎭

= (n[a]r − 1)−1
$

i:Ai=a,Ri=r

5
Yi − Ŷ[a](r)

62
(14)

reduces to the sample variance of the observed outcomes for
units with attribute a receiving treatment r. Formula (14), cou-
pled with Corollary 2, simplifies the variance estimators under
complete randomization, which coincide with Neyman’s (1923)
conservative variance estimators under classical completely ran-
domized experiments with multiple treatments.

Corollary 3. Under Assumptions 1 and 2, and under the com-
plete randomization defined in Section 2.4.2, for 1 ≤ a ≤ H
and r ̸= r′ ∈ R, the variance estimators become

V̂[a](r, r′) =
s2
[a](r)
n[a]r

+
s2
[a](r′)
n[a]r′

,

V̂(r, r′) =
H$

a=1
w2
[a]

3
s2
[a](r)
n[a]r

+
s2
[a](r′)
n[a]r′

4

. (15)

Moreover, E{V̂[a](r, r′)} − var{τ̂[a](r, r′)} = n−1
[a]S2

[a](r-r′) ≥ 0,
which becomes zero under additivity for a, and E{V̂(r, r′)} −
var{τ̂ (r, r′)} = n−1!H

a=1 w[a]S2
[a](r-r′) ≥ 0, which becomes

zero under additivity for all 1 ≤ a ≤ H.

4.5. Asymptotic Distributions and Confidence Intervals for
Peer Effects

The asymptotic analysis embeds the n units into a sequence
of finite populations with increasing sizes. See Li and Ding
(2017) for a review of finite population asymptotics in causal
inference. Under complete randomization, if some regularity
conditions hold, then τ̂[a](r, r′) is asymptotically Normal. We
can then construct a 1 − α Wald-type confidence interval for
τ[a](r, r′): τ̂[a](r, r′) ± q1−α/2V̂1/2

[a] (r, r′), with q1−α/2 being the
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(1−α/2)th quantile of N (0, 1). Because the variance estimator
V̂[a](r, r′) in (15) overestimates the true sampling variance on
average, the confidence interval is asymptotically conservative,
with the limit of coverage probability larger than or equal to
the nominal level. Analogously, we can construct asymptotically
conservative confidence intervals for τ (r, r′). We formally state
the regularity condition as follows.

Condition 1. For any 1 ≤ a ≤ H, r ̸= r′ ∈ R, as n →∞,
(i) the proportions, w[a] and n[a]r/n[a], have positive limits,
(ii) the finite population variances of potential outcomes and

individual peer effects, S2
[a](r) and S2

[a](r-r′), have limits,
and at least one of the limits of {S2

[a](r) : r ∈ R} are
nonzero,

(iii) maxi:Ai=a |Yi(r)− Ȳ[a](r)|2/n[a] → 0.

Conditions (i) and (ii) are natural in most applications. In
our motivating application, GPA is bounded within [0, 4], and
therefore condition (iii) holds automatically (Li and Ding 2017).
We summarize the asymptotic results below.

Theorem 3. Under Assumptions 1 and 2, and under the com-
plete randomization defined in Section 2.4.2, if Condition 1
holds, then, for any 1 ≤ a ≤ H and r ̸= r′ ∈ R,
(a) τ̂[a](r, r′) and τ̂ (r, r′) are asymptotically Normal,
(b) the Wald-type confidence intervals for τ[a](r, r′) and τ (r, r′)

are asymptotically conservative, unless the peer effects are
additive for units with the same attribute.

4.6. Randomization-Based and Regression-Based
Analyses

Theorem 3 is purely randomization based without any modeling
assumptions of the outcomes. Regression-based analysis is also
popular in practice. Now we make a connection between them.
Suppose we fit a linear model for the observed outcomes

Yi = µ+ α[Ai] + βRi + λ[Ai]Ri + εi, (16)

where µ is the intercept, α[a] represents the main “effect” of
attribute a, βr represents the main effect of treatment r, and λ[a]r
represents the interaction between attribute a and treatment r.
The traditional linear regression assumes that the error terms
follow independent zero-mean (Normal) distributions and gen-
erate the randomness of the observed outcomes.

Under model (16), we need some constraints to avoid over-
parameterization:

!H
a=1 α[a] = 0,

!
r∈R βr = 0,

!H
a=1 λ[a]r =

0, and
!

r∈R λ[a]r = 0, for 1 ≤ a ≤ H and r ∈ R. Let µ[a]r =
µ+α[a] +βr+λ[a]r . Then we can interpretµ[a]r−µ[a]r′ as the
subgroup average peer effect of treatment r versus r′ for units
with attribute a. The least-squares estimators of the coefficients
are

µ̂ = 1
H|R|

H$

a=1

$

r∈R
Ŷ[a](r), α̂[a] =

1
|R|

$

r∈R
Ŷ[a](r)− µ̂,

β̂r =
1
H

H$

a=1
Ŷ[a](r)− µ̂, λ̂[a]r = Ŷ[a](r)− (µ̂+ α̂[a] + β̂r),

(1 ≤ a ≤ H, r ∈ R).

Then we have the following proposition.

Proposition 3. Under the linear model (16), for any 1 ≤ a ≤ H
and r ̸= r′ ∈ R, the least-squares estimator for the subgroup
average peer effect is

µ̂[a]r − µ̂[a]r′ = (µ̂+ α̂[a] + β̂r + λ̂[a]r)

− (µ̂+ α̂[a] + β̂r′ + λ̂[a]r′) = Ŷ[a](r)− Ŷ[a](r′)
= τ̂[a](r, r′),

with the Huber–White variance estimator

V̂[a],HW(r, r′) = n[a]r − 1
n[a]r

s2
[a](r)
n[a]r

+ n[a]r′ − 1
n[a]r′

s2
[a](r′)
n[a]r′

≈
s2
[a](r)
n[a]r

+
s2
[a](r′)
n[a]r′

= V̂[a](r, r′).

The linear outcome model (16) includes the interaction
between the unit’s attribute Ai and the treatment received
Ri. Under (16), both the point estimator and Huber–White
variance estimator for the subgroup average peer effect are
(nearly) identical to the randomization-based ones under
complete randomization. Complete randomization justifies this
regression-based analysis for peer effects. This result extends
Lin (2013) for covariate adjustment in classical completely
randomized experiments. However, such equivalence generally
does not hold if the treatment assignment is not complete
randomization, nor if we use the conventional variance
estimator in linear models assuming homoscedasticity of the
error terms.

Related to the discussion of effective sample sizes after Propo-
sition 2, we do not need to use cluster-robust standard errors
even though some units are in the same group or cluster. Our
inference depends solely on the random assignment of peers
in contrast to model-based inferences (e.g., Carrell, Sacerdote,
and West 2013). In our setting, randomization does not justify
cluster-robust standard errors. Our view is similar to Abadie
et al. (2017) in a different context.

Many econometric analyses of peer effects did not include
the interaction term (e.g., Sacerdote 2001; Carrell, Sacerdote,
and West 2013). Complete randomization does not justify them
in the presence of treatment effect heterogeneity. Sometimes,
peers’ outcomes also enter the right-hand side of the regression
in (16). It is then more difficult to interpret their least-squares
coefficients as causal effects estimators (Manski 1993; Angrist
2014).

4.7. Asymptotic Distributions and Confidence Sets for
Multiple Peer Effects

Below we study the joint asymptotic sampling distribution of
multiple average peer effect estimators. It is useful for construct-
ing confidence sets and testing significance of multiple average
peer effects simultaneously. For mathematical convenience, we
center the potential outcomes:

θi(r) = Yi(r)− |R|−1
$

r′∈R
Yi(r′),

θ[a](r) = n−1
[a]
$

i:Ai=a
θi(r) = Ȳ[a](r)− |R|−1

$

r′∈R
Ȳ[a](r′),
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θi(R) = (θi(r1), . . . , θi(r|R|))⊤,
θ[a](R) = (θ[a](r1), . . . , θ[a](r|R|))⊤.

Let θ̂[a](r) = Ŷ[a](r) − |R|−1!
r′∈R Ŷ[a](r′) be the centered

subgroup average potential outcome estimator, vectorized as
θ̂[a](R) = (θ̂[a](r1), . . . , θ̂[a](r|R|))⊤. For any r, r′ ∈ R,
the individual peer effect τi(r, r′), the subgroup average peer
effect τ[a](r, r′), and the subgroup average peer effect estimator
τ̂[a](r, r′) are the same linear transformations of θi(R), θ[a](R),
and θ̂[a](R), respectively. Therefore, it suffices to study the
joint asymptotic sampling distribution of the θ̂[a](R)’s for all
a, and construct confidence sets for θ[a](R)’s and their linear
transformations.

Define ( = I|R| − |R|−11|R|1⊤|R| as an |R|× |R| projection
matrix orthogonal to 1|R|. The theorem below summarizes the
results for the joint inference of multiple peer effects.

Theorem 4. Under Assumptions 1 and 2, the complete
randomization defined in Section 2.4.2, and Condition 1, (a)
θ̂[1](R), . . . , θ̂[H](R) are mutually independent; (b) θ̂[a](R) is
unbiased for θ[a](R) with sampling covariance cov{θ̂[a](R)} as
follows:

( diag
5

n−1
[a]r1

S2
[a](r1), . . . , n−1

[a]r|R|S
2
[a](r|R|)

6
(

− 1
n[a](n[a] − 1)

$

i:Ai=a

%
θi(R)− θ[a](R)

&

×
%
θi(R)− θ[a](R)

&⊤;

(c) θ̂[a](R)−θ[a](R) is asymptotically Normal with mean 0 and
covariance cov{θ̂[a](R)}; (d) the covariance estimator

7cov{θ̂[a](R)} = ( diag
5

n−1
[a]r1

s2
[a](r1), . . . , n−1

[a]r|R|s
2
[a](r|R|)

6
(

(17)

is conservative in expectation, unless the peer effects are additive
for units with attribute a.

From Theorem 4, we can then obtain the Wald-type
asymptotic conservative confidence sets for (θ[1](R)⊤, . . . , θ[H]
(R)⊤)⊤ and their linear transformations, including multiple
average or subgroup average peer effects as special cases.

5. Optimal Treatment Assignment Mechanism

5.1. Point Estimator for the Optimal Treatment
Assignment Mechanism

The results in previous sections are useful for decision-making.
We can use them to find the optimal treatment assignment
mechanism for a new population of size n′ = m′(K + 1). We
need to assume that the new population is similar to the one
in our data in some way. Otherwise, we cannot draw any con-
clusions in general. For instance, we assume that the subgroup
average potential outcomes in the new population are linear
transformations of those in our data, that is, Ȳ ′[a](r) = cȲ[a](r)+
ξ[a] for some c > 0 and ξ[a], for all 1 ≤ a ≤ H and r ∈ R. In
our motivating application, the new population usually consists
of the students coming next year. The scale parameter c and

shift parameter ξ[a] can explain the proportional change and the
absolute change of average GPAs across different years. These
changes are possibly due to the difference in qualities of students
and difficulties of exams across years.

We use complete randomization with L′(z) fixed at some vec-
tor l′ for the new population. Our goal is to find l′ = (l′1, . . . , l′T)
to maximize the expected total outcome. We are looking for the
optimal l′ of complete randomization, and the final assignment
Z′ is still random. For any 1 ≤ a ≤ H and r ∈ R, let n′[a]r
be the number of units with attribute a receiving treatment
r in the new population under complete randomization with
L′(z) fixed at l′. Proposition 2 and (4) have the following useful
implications. First, n′[a]r is a deterministic function of l′. Second,
within each stratum consisting of n′[a] units with attribute a,
we randomly assign n′[a]r units to treatment r for any r ∈ R.
Third, the treatments for units in different strata are mutually
independent. Based on these, the expected total outcome under
complete randomization with L′(z) = l′ is

E

⎛

⎝
n′$

i=1
Y ′i

⎞

⎠ =
H$

a=1
E

⎛

⎝
$

i:Ai=a
Y ′i

⎞

⎠ =
H$

a=1

$

r∈R
n′[a]rȲ ′[a](r)

= c
H$

a=1

$

r∈R
n′[a]rȲ[a](r)+

H$

a=1
n′[a]ξ[a], (18)

where the last equality follows from Ȳ ′[a](r) = cȲ[a](r) + ξ[a]
and

!
r∈R n′[a]r = n′[a]. Although the expected total outcome

(18) of the new population depends on the unknown constants
c > 0 and ξ[a]’s, the maximizer l′opt for this expected total
outcome is the same as that for

!H
a=1
!

r∈R n′[a]rȲ[a](r). More-
over, we can unbiasedly estimate

!H
a=1
!

r∈R n′[a]rȲ[a](r) by
replacing Ȳ[a](r) with the corresponding unbiased estimator
Ŷ[a](r), and then use l̂′opt that maximizes the unbiased estimator
!H

a=1
!

r∈R n′[a]rŶ[a](r) as an estimator for l′opt. From (4), the
objective function reduces to

H$

a=1

$

r∈R
n′[a]rŶ[a](r)

=
H$

a=1

$

r∈R

3 T$

t=1
I(gt = {a} ∪ r)l′tgt(a)

4

Ŷ[a](r)

=
T$

t=1

3 H$

a=1

$

r∈R
I(gt = {a} ∪ r)gt(a)Ŷ[a](r)

4

l′t , (19)

which is a linear function of l′ = (l′1, . . . , l′T). In (19), the
coefficient of l′t is the estimated total outcome of K + 1 units in
the group with group attribute gt . The constraints on l′ include
that all the l′t ’s are nonnegative integers, and the number of units
with attribute a implied by l′ is fixed:

3!T
t=1 gt(a)l′t = n′[a], (a = 1, . . . , H),

l′t ≥ 0, l′t is an integer, (t = 1, . . . , T).
(20)

Both the objective function (19) and the constraints (20) are
linear in l′. Therefore, finding the maximizer l̂′ is a linear integer
programming problem. When the sample size is not too large,
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we can enumerate all possible values of l′ to obtain the maxi-
mizer.

Bhattacharya (2009) discussed the optimal peer assignment
in a super population scenario where each unit has only one
peer (K = 1). In that case, the optimization problem becomes a
linear programming problem without the integer constraint.

5.2. Inference for the Optimal Assignment Mechanism

Section 5.1 gives a point estimator of the optimal treatment
assignment mechanism. The uncertainty of the point estimator
comes from the uncertainty of the Ŷ[a](r)’s. Below we construct
confidence sets for the optimal l′opt of complete randomization.
Note that

!
r∈R n′[a]r = n′[a] is fixed for all a. By the definitions

of θ[a](r) and θ̂[a](r), the true and estimated optimal treatment
assignment mechanisms satisfy

l′opt = arg max
l′∈L′

H$

a=1

$

r∈R
n′[a]rȲ[a](r)

= arg max
l′∈L′

H$

a=1

$

r∈R
n′[a]rθ[a](r), (21)

l̂′opt = arg max
l′∈L′

H$

a=1

$

r∈R
n′[a]rŶ[a](r)

= arg max
l′∈L′

H$

a=1

$

r∈R
n′[a]r θ̂[a](r),

where L′ denotes the set of all possible l′ satisfying the constraint
(20). Here, we represent l′opt using the centered subgroup average
potential outcomes, because the θ[a](r)’s have simpler asymptot-
ically conservative confidence sets, as shown in Theorem 4. For
any α ∈ (0, 1), let C[a](α) be the 1 − α Wald-type asymptotic
conservative confidence set for θ[a](R). Then a 1−α asymptotic
conservative confidence set for l′opt is

(
arg max

l′∈L′

H$

a=1

$

r∈R
n′[a]r θ̄[a](r) : θ̄[1](R) ∈ C[1](ᾱ), . . . ,

θ̄[H](R) ∈ C[H](ᾱ), ᾱ = 1− (1− α)1/H
)

. (22)

The confidence set in (22) involves solving infinite linear
integer programming problems, which are computationally
intensive. More importantly, the interpretation of the confidence
set in (22) seems unnatural for making decisions in the future
because the “confidence” statement is a property over repeated
sampling of the previous experiment. Ideally, we need to make
future decisions conditioning on the observed data rather than
averaging over them. Below we use the “fiducial distribution”
(Fisher 1935; Dasgupta, Pillai, and Rubin 2015) of l′opt.

We start with the asymptotic sampling distribution in
Theorem 4, and then swap the roles of the estimators and
estimands. Let θ̃[a](R) ≡ (θ̃[a](r1), . . . , θ̃[a](r|R|)) be a
multivariate Normal distribution with mean θ̂[a](R) and
covariance 7cov{θ̂[a](R)} in (17), independently for 1 ≤ a ≤ H.
The fiducial distribution of l′opt is the distribution of l̃′opt ≡

arg maxl′∈L′
!H

a=1
!

r∈R n′[a]r θ̃[a](r), with θ[a](r) in (21)
replaced by the random variable θ̃[a](r). When there exist
multiple maximizers for l̃′opt, we randomly choose one of them
with equal probability. Computationally, to simulate from
l̃′opt, we can first simulate the θ̃[a](R)’s independently from
Normal distributions and then calculate l̃′opt. Compared to
confidence sets, the “fiducial distribution” not only acts as a
computational compromise but also has a natural Bayesian
interpretation. We can view θ̃[a](R) as the Bayesian posterior
distribution of θ[a](R) based on the sampling distribution in
Theorem 4 under a flat prior. Consequently, l̃′opt is the Bayesian
posterior distribution of l′opt. Rigorously, this is not a full
Bayesian procedure but only a limited information Bayesian
procedure (Kwan 1999; Sims 2006). It uses “limited information”
from the asymptotic randomization distribution, but it does
not impose a full outcome model for all units. Therefore,
this “fiducial distribution” enjoys not only the robustness of
randomization inference without outcome modeling but also
the interpretability of Bayesian inference for decision-making.

6. Application to Roommate Assignment in a Top
Chinese University

6.1. Overview of the Data

The dataset consists of college students graduating in a recent
year from 25 departments of a top Chinese university. The uni-
versity assigns dorms to departments, and the departments then
assign students to dorms. The roommate assignment is close
to random partitioning for students of the same department,
gender, and graduating year.

Among these students, 73.9% of them were from Gaokao,
21.7% were from recommendation, and 4.4% were from other
ways (omitted in our analysis). For example, 43.2% students are
from recommendation in the mathematics department, 45.2%
in the physics department, 52.5% in the chemistry department,
22.4% in the biology department, and 28.4% in the informatics
department. The outcome is the freshman year GPA. The aver-
age freshman GPAs are 3.26 and 3.37 for students from Gaokao
and recommendation, respectively. On average, students from
recommendation do better than students from Gaokao during
the freshman year. We first want to understand the effect of
roommate types on students’ academic performance. We then
need to design an optimal roommate assignment.

6.2. Point and Interval Estimators for Peer Effects

The student room assignment is conditional on department,
gender, and the graduating year. We focus on the male stu-
dents from the Departments of Informatics and Physics sepa-
rately. These two departments have larger sample sizes. More-
over, there is a close connection between the training in high
school Olympiads and the freshman introductory courses in
these two departments. The informatics department has 104
students from Gaokao and 52 students from recommendation.
The physics department has 49 students from Gaokao and 43
students from recommendation. If we conduct inference condi-
tioning on the numbers of groups with different group attribute
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Table 2. Estimated peer effects with R = {r1, r2, r3, r4} = {111, 112, 122, 222}. τ̂ , τ̂[1] , and τ̂[2] are the point estimators, and the numbers in the parentheses are the
estimated standard errors. The bold numbers correspond to those peer effects significantly different from zero at level 0.05.

Department Estimator (r1, r2) (r1, r3) (r1, r4) (r2, r3) (r2, r4) (r3, r4)

Informatics τ̂ −0.117 0.008 − 0.313 0.125 −0.196 −0.321
(0.086) (0.109) (0.071) (0.101) (0.059) (0.089)

τ̂[1] −0.117 0.074 −0.285 0.191 −0.168 −0.359
(0.112) (0.152) (0.087) (0.145) (0.074) (0.127)

τ̂[2] −0.119 −0.125 −0.369 −0.006 −0.250 −0.244
(0.126) (0.120) (0.123) (0.092) (0.096) (0.088)

Physics τ̂ 0.172 −0.108 −0.095 −0.280 −0.267 0.013
(0.142) (0.140) (0.177) (0.103) (0.150) (0.148)

τ̂[1] 0.329 −0.099 0.017 −0.427 −0.311 0.116
(0.185) (0.167) (0.268) (0.145) (0.255) (0.243)

τ̂[2] −0.007 −0.119 −0.222 −0.112 −0.215 −0.103
(0.219) (0.231) (0.225) (0.145) (0.135) (0.153)
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Figure 2. Estimated average and subgroup average potential outcomes with
{r1, r2, r3, r4} = {111, 112, 122, 222}. The black, gray, and light-gray bars denote the
estimated average potential outcomes under different treatments for all students,
students admitted through Gaokao and recommendation, respectively, and the
solid lines denote the 95% confidence intervals. (a) Informatics (b) Physics.

sets, the treatment assignment mechanism is equivalent to com-
plete randomization. Recall that students from Gaokao have
attribute 1, and students from recommendation have attribute 2.
Under Assumptions 1 and 2, we have four treatments, contained
in R = {r1, r2, r3, r4} = {111, 112, 122, 222}.

Table 2 shows the estimated average peer effects for these two
departments with estimated standard errors based on Corol-
lary 3. Treatment r4 is significantly better than other treatments
for students in the informatics department. Treatment r3 is
significantly better than treatment r2 for students from Gaokao
in the physics department.

Figure 2 shows the estimated average potential outcomes
Ŷ(r) and Ŷ[a](r), as well as their 95% confidence intervals for

all possible a and r. It displays some interesting results. Students
from recommendation in both departments have higher average
GPAs if they have more roommates from recommendation.
However, this monotonic pattern does not apply to students
from Gaokao: in the informatics department, the average GPA
drops when the number of their peers from recommendation
increases from 1 to 2 (i.e., the treatment moves from r2 = 112
to r3 = 122); in the physics department, the average GPA
drops when the number of their peers from recommendation
increases from 0 to 1 (i.e., the treatment moves from r1 = 111 to
r2 = 112) and drops again when the number of their peers from
recommendation increases from 2 to 3 (i.e., the treatment moves
from r3 = 122 to r4 = 222). We observe some treatment effect
heterogeneity in different subgroups, although many results in
Table 2 are insignificant due to small sample sizes.

6.3. Optimal Roommate Assignment

We derive the optimal roommate assignment mechanism for
the same population as those in the informatics or physics
departments, separately. We estimate the optimal complete ran-
domization and obtain the fiducial distribution of lopt. Table 3
shows the estimators and fiducial distributions for the optimal
roommate assignments.

As Table 3 suggests, assigning students with the same
type together can maximize the academic performance of all
students. This may encourage separating students admitted
through different channels. However, the optimal treatment
assignment has huge uncertainty. The decision may be mis-
leading based on a point estimate of the optimal treatment
assignment. It is worth taking a look at the optimal treatment
assignments with the top five fiducial probabilities. Most of them
do suggest mixing students with different attributes. Moreover,
in practice, the average GPA is just a single measure of the
students’ performance, and other criteria may come into play
in practice. For example, if we consider both the average GPA
and the diversity of students in each room, it is better to mix
different types of students.

6.4. Future Research Directions Based on this Dataset

There are several interesting future research directions based
on this dataset. First, we used the largest two departments for
randomization-based inference, because large-sample approxi-
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Table 3. Fiducial distributions of optimal roommate assignments. Estimated optimal roommate assignments are in bold with G = {g1, . . . , g5} = {1111, 1112,
1122, 1222, 2222}. The “Prob.” columns denote the fiducial probability of the treatment assignment based on 104 draws, and the “Outcome” columns denote the unbiased
estimator for the expected total GPA under any treatment assignment mechanism.

Informatics Physics

Prob. Outcome l1 l2 l3 l4 l5 Prob. Outcome l1 l2 l3 l4 l5

0.488 505.60 26 0 0 0 13 0.555 306.29 12 0 0 1 10
0.209 504.96 2 32 0 0 5 0.160 301.61 2 0 20 1 0
0.159 504.27 0 34 1 0 4 0.132 302.36 9 0 0 13 1
0.091 504.03 0 34 0 2 3 0.059 300.49 1 1 21 0 0
0.015 502.70 0 33 0 5 1 0.049 301.89 8 0 2 13 0
0.009 496.64 0 26 13 0 0 0.022 305.17 11 1 1 0 10
0.009 488.71 13 0 26 0 0 0.010 300.82 8 1 0 14 0
0.008 498.42 22 0 0 16 1 0.004 288.48 1 15 0 0 7
0.007 497.95 21 1 0 17 0 0.004 302.99 10 3 0 0 10
0.003 501.62 0 32 1 6 0 0.003 287.62 0 13 0 10 0
0.002 501.84 1 31 0 7 0 0.002 298.31 0 3 20 0 0

mations for other small departments are unlikely to be reliable.
Second, we analyzed the data from different departments sepa-
rately. It would be interesting to analyze the dataset of the whole
university simultaneously, allowing the smaller departments to
borrow information from other larger departments. Third, the
dataset also contains other background information. It is our
future research to leverage these covariates to improve estima-
tion efficiency.

7. Discussion: Inference Without Assumptions 1 or 2

Assumptions 1 and 2 may be too strong and may not hold
in some applications. Below we discuss alternative inferential
strategies without them. We summarize the main results below
and relegate the technical details to the supplementary material.

7.1. Randomization Test

Without Assumptions 1 or 2, we can still use the randomiza-
tion tests under the sharp null hypothesis that the treatment
Z does not affect any units. This preserves the Type I error in
finite samples. However, rejecting the sharp null hypothesis may
not be informative for understanding peer effects. It is worth
extending previous randomization test strategies (Rosenbaum
2007; Luo et al. 2012; Aronow 2012; Bowers, Fredrickson, and
Panagopoulos 2013; Rigdon and Hudgens 2015; Basse, Feller,
and Toulis 2019; Athey, Eckles, and Imbens 2018) to our setting.

7.2. Other Estimands of Interest

We can unbiasedly estimate some other estimands without
Assumptions 1 or 2. For example, let YD

i (r) =
!

z∈Z pr(Z =
z | Ri = r)Yi(z) be a weighted average of unit i’s potential
outcomes, where the superscript D denotes the design. For
example, D = RP for random partitioning and D = CR for
complete randomization. Because the weight is nonzero only
for assignment z such that Ri(zi) = r, we can view YD

i (r)
as a summary of the potential outcomes Yi(z)’s when unit i
has K peers with attributes r. Moreover, if Assumption 1 holds,
YRP

i (r) = YCR
i (r) reduces to the average of the Yi(zi)’s for zi such

that Ri(zi) = r. Thus, we can view τD
i (r, r′) = YD

i (r)− YD
i (r′)

as an individual peer effect comparing treatments r and r′.

Define ȲD
[a](r) and τD

[a](r, r′) as the averages of YD
i (r)’s and

τD
i (r, r′)’s for units with attribute a, and τD(r, r′) as the average

of τD
i (r, r′)’s for all units. These estimands depend on the design

as emphasized by the superscript D. In contrast, the estimands
τ[a](r, r′) and τ (r, r′) in previous sections do not depend
on the design. Under treatment assignment mechanisms
satisfying Assumption 3, we can show that the estimators
Ŷ[a](r), τ̂[a](r, r′), and τ̂ (r, r′) in (5) and (6) are still unbiased
for ȲD

[a](r), τD
[a](r, r′), and τD(r, r′), respectively. However, we

do not have replications for any treatment levels to evaluate
their uncertainty.

In sum, Assumptions 1 and 2 can be strong in practice.
Without them, it is challenging to conduct repeated sampling
inference although it is possible to obtain meaningful point
estimates.

7.3. Distributional Assumptions on Potential Outcomes

An alternative approach imposes some distributional assump-
tions on the potential outcomes. In particular, instead of
assuming that the potential outcomes depend only on the peer
attribute set as in Assumption 2, we allow for some deviations
but need an additional distributional assumption on the error
terms.

Assumption 4. The potential outcome can be decomposed as
Yi(z) = Yi(Ri(zi))+ εi(z) with the error terms satisfying

(i) (ε1(z), . . . , εn(z)) are mutually independent with zero
mean, for any peer assignment z ∈ Z ;

(ii) all elements in {εi(z) : Ai = a, Ri(zi) = r, i = 1, . . . , n, z ∈
Z} have the same variance σ 2

[a]r, for any attribute 1 ≤ a ≤ H
and any peer attribute set r ∈ R.

Assumption 4 is weaker than Assumption 2, and reduces to
Assumption 2 when the εi(z)’s are all zero, that is, σ 2

[a]r = 0
for all a and r. Under Assumption 4, τ[a](r, r′) in (1) is still a
meaningful estimand, although it depends only on the main
terms instead of the potential outcomes. Moreover, it equals
the expectation of τD

[a](r, r′) defined in Section 7.2 by averaging
over the random error terms. Under complete randomization,
we show in the supplementary material that τ̂[a](r, r′) is still
an unbiased estimator for τ[a](r, r′), and the variance estimator
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V̂[a](r, r′) is still conservative in expectation for the sampling
variance of τ̂[a](r, r′).

7.4. Peer Effects for a Target Subpopulation

The last strategy is to focus on a smaller subpopulation for which
Assumptions 1 and 2 are more plausible.

7.4.1. Target Subpopulation, Potential Outcomes, and Peer
Effects

We formulate the approach of Langenskiöld and Rubin (2008)
using the potential outcomes introduced in this article. We
consider the following ideal setting. First, we select a “target”
subpopulation from units with attribute a. We assume that
the units in the target subpopulation have identity numbers
(1, 2, . . . , m)with m ≤ min(m, n[a]). Second, we assign all units
except the target subpopulation into m groups, with m ≤ m
groups containing K units and the remaining m − m groups
containing K+1 units. Third, we assign the m units in the target
subpopulation into these m groups with K units. Therefore, the
peer assignments for units in the target subpopulation are from
randomly permuting these m groups.

Let (ζ1, . . . , ζm) denote the units initially assigned to the m
groups, where ζk is the set consisting of the identity numbers
of the K units in group k (1 ≤ k ≤ m). Therefore, the peer
assignments for units in the target subpopulation, (z1, . . . , zm),
is a permutation of (ζ1, . . . , ζm), and the peer assignments for
units in the remaining m−m groups are fixed. Therefore, unit i’s
potential outcome simplifies to Yi(z1, . . . , zm, zm+1, . . . , zn) =
Yi(z1, . . . , zm) for 1 ≤ i ≤ m.

Following Langenskiöld and Rubin (2008), we introduce the
following two assumptions.

Assumption 5. If zi = z′i , then Yi(z1, . . . , zm) = Yi(z′1, . . . , z′m),
for any two peer assignments (z1, . . . , zm) and (z′1, . . . , z′m) and
for any unit 1 ≤ i ≤ m in the target subpopulation.

Assumption 5 requires that each unit’s potential outcomes
depend only on its own peers. Under Assumption 5, unit i’s
potential outcome simplifies to Yi(z1, . . . , zm) = Yi(zi) for 1 ≤
i ≤ m.

Assumption 6. If Ri(zi) = Ri(z′i), then Yi(zi) = Yi(z′i), for any
two peer assignments (z1, . . . , zm) and (z′1, . . . , z′m) and for any
unit 1 ≤ i ≤ m in the target subpopulation.

Assumption 6 requires that each unit’s potential outcomes
depend only on the attributes of its peers. Under Assumption 6,
unit i’s potential outcome simplifies to Yi(zi) = Yi(Ri(zi)) for
1 ≤ i ≤ m.

Langenskiöld and Rubin (2008) chose the attribute to be the
smoking behavior and the target subpopulation to be nonsmok-
ing freshman. They further dichotomized each of (ζ1, . . . , ζm)
into two categories: smoking or nonsmoking suites.

Under Assumptions 5 and 6, unit i’s potential outcome sim-
plifies to Yi(r) for some r ∈ R, for 1 ≤ i ≤ m in the
target subpopulation. Comparing two treatments r, r′ ∈ R, the
individual peer effect for unit i is τi(r, r′) = Yi(r) − Yi(r′), and

the average peer effect for units in the target subpopulation is
τtg(r, r′) = m−1!m

i=1 τi(r, r′). We want to infer τtg.

7.4.2. Construction of Target Subpopulation and Statistical
Inference

We first construct the target subpopulation and then infer
the peer effects for it. In the following, we assume complete
randomization. For the observed peer assignment Z, let m be
the number of groups with units of attribute a. For each of the m
groups, we randomly pick one unit with attribute a to constitute
the target subpopulation, and denote the remaining units in
these groups as (ζ1, . . . , ζm). To construct the ideal setting, we
conduct inference conditional on the group assignments for
all units excluding the target subpopulation. The remaining
randomness comes solely from the peer assignments of the
target subpopulation, which is a random permutation of
(ζ1, . . . , ζm). Moreover, under Assumptions 5 and 6, the
treatment assignment is a completely randomized experiment
with multiple treatments taking values in R = {r1, . . . , r|R|}.
Therefore, for the average peer effect τtg(r, r′), an unbiased
estimator is the standard difference-in-means for units receiving
treatments r and r′. We relegate the sampling variance and
variance estimator to the supplementary material.

7.4.3. Comparison and Connection to Our Approach
Compared to Assumptions 1 and 2, Assumptions 5 and 6 are
weaker because they make assumptions for a subset of units
and a subset of peer assignments, that is, the unique values in
(ζ1, . . . , ζm). However, under this ideal setting with Assump-
tions 5 and 6, we can only infer peer effects for the target
subpopulation instead of all units.

The construction in Section 7.4.2 generates a random
target subpopulation. Interestingly, averaging over all possible
constructions, the point estimator for τtg(r, r′) is the same as
τ̂[a](r, r′) in (13). We prove this result in the supplementary
material.

Supplementary Material

Appendix A1 gives supporting materials for Section 7. Appendix A2 gives
more technical details for general treatment assignment mechanisms.
Appendix A3 gives more technical details for complete randomization.
Appendix A4 gives more technical details for random partitioning.
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by Xinran Li, Peng Ding, Qian Lin, Dawei Yang, and Jun Liu

Appendix A1 gives supporting materials for Section 7.
Appendix A2 gives more technical details for general treatment assignment mechanisms.
Appendix A3 gives more technical details for complete randomization.
Appendix A4 gives more technical details for random partitioning.

A1. Analyzing peer effects without Assumptions 1 or 2

A1.1. Randomization tests

We use randomization tests for the significance of peer effects for the following reasons. First,
they provide additional evidence for the significance of peer effects. Second, randomization tests
are exact and valid for finite samples. Third, randomization tests do not require Assumptions
1–3, as long as the assignment mechanism is known. Fourth, as Fisher (1935) suggested, we can
use randomization tests to check the Normal approximations.

We can use randomization tests for the sharp null hypothesis for all units:

H0 : Yi(z) = Yi(z
0), for all z, z

0 and for all unit i,

or the null hypothesis for units with attribute a:

H0,[a] : Yi(z) = Yi(z
0), for all z, z

0 and for all unit i such that Ai = a.

H0,[a] is not sharp. But we can still conduct randomization test for H0,[a]. We choose test statistics
depending only on the outcomes of units with attribute a, and their randomization distributions
are known under H0,[a]. We can then obtain exact p-values under H0,[a].

We first discuss the choices of test statistics for the subgroup null H0,[a], and then the test
statistics for H0. A choice of test statistic for the subgroup null H0,[a] is

T[a] = max
r,r0

t̂[a](r, r
0) = max

r
Ŷ[a](r)� min

r
Ŷ[a](r). (A1)

Another choice of test statistic, F[a], is the F statistic from the analysis of variance of the linear
regression of Yi on Ri among units with attribute a. For the sharp null H0, we can use T =

maxr,r0 t̂(r, r
0), the F statistic F from the linear model (16), maxa T[a], and maxa F[a].

For the motivating application, Table A1 shows the p-values from randomization tests for H0

and H0,[a] with different test statistics. At significance level 0.05, the peer effects are not significant
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Table A1: p values of randomization tests for the subgroup null H0,[a] and the sharp null H0, with
test statistics for H0 shown in the parentheses.

Department Null hypothesis Test statistic for H0,[a] (H0)
T[a] (maxa T[a]) F[a] (maxa F[a]) (T) (F)

Informatics H0 0.2678 0.3640 0.1092 0.1468
H0,[1] 0.2390 0.3384
H0,[2] 0.0615 0.2050

physics H0 0.4553 0.0719 0.3431 0.0366

H0,[1] 0.3545 0.0360

H0,[2] 0.6994 0.7232

for students in the informatics department; the subgroup average peer effects are significant for
students from Gaokao in the physics department if we use the F statistic as the test statistic, and
the subgroup average peer effects are not significant for students from recommendation. We
ignore the multiple testing issue. Compared to Table 2, randomization tests reject only H0,[1]

for students from Gaokao in the physics department, which may be due to the lack of power of
randomization tests (Ding 2017).

Moreover, we check the randomization distributions of the t̂[a](r, r
0)’s under the sharp null

hypothesis. Under the sharp null hypothesis that the potential outcomes are not affected by
the treatment assignment, all potential outcomes are known and identical to the observed out-
comes. Therefore, the distributions of the subgroup peer effect estimators are known under
complete randomization. For students in the informatics and physics departments graduating
in 2013, Figures A1(a) and A1(b) show, respectively, the histograms of the subgroup peer effect
estimators under the sharp null hypothesis based on 105 treatment assignments from complete
randomization. From Figures A1(a) and A1(b), the Normal approximations work fairly well. For
our application, we do not know all potential outcomes and thus can not directly check the Nor-
mal approximations over repeated sampling of the treatment assignments. However, we view
Figures A1(a) and A1(b) as intuitive justifications for the Normal approximation of t̂[a](r, r

0) in
the Neymanian inference.

A1.2. Estimands, unbiased estimators, and optimal assignment mechanism

Even if Assumptions 1 or 2 fails, the estimators in (5) and (6) are still meaningful in the sense of
unbiasedly estimating some average potential outcomes. Recall the definitions in Section 7:

Y
D
i
(r) = Â

z2Z
pr(Z = z | Ri = r)Yi(z), tD

i
(r, r

0) = Y
D
i
(r)� Y

D
i
(r0),

Ȳ
D
[a](r) = n

�1
[a] Â

i:Ai=a

Y
D
i
(r), tD

[a](r, r
0) = n

�1
[a] Â

i:Ai=a

tD
i
(r, r

0), tD(r, r
0) = n

�1
n

Â
i=1

tD
i
(r, r

0).

Proposition A1. Under Assumption 3, Ŷ[a](r) has mean Ȳ
D
[a](r).
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Figure A1: Histograms of subgroup peer effect estimators under the sharp null hypothesis, based
on 105 draws from complete randomization. The lines are densities of Normal approximations.3



The conclusion follows from

E

n
Ŷ[a](r)

o
= {n[a]p[a](r)}�1 Â

i:Ai=a

E {I(Ri = r)Yi}

= {n[a]p[a](r)}�1 Â
i:Ai=a

E

(
I(Ri = r)Â

z

I(Z = z)Yi(z)

)

= {n[a]p[a](r)}�1 Â
i:Ai=a

Â
z

E {I(Ri = r)I(Z = z)}Yi(z)

= {n[a]p[a](r)}�1 Â
i:Ai=a

Â
z

pr(Ri = r, Z = z)Yi(z)

= {n[a]p[a](r)}�1 Â
i:Ai=a

Â
z

pr(Ri = r)pr(Z = z | Ri = r)Yi(z)

= n
�1
[a] Â

i:Ai=a

Â
z

pr(Z = z | Ri = r)Yi(z) = n
�1
[a] Â

i:Ai=a

Y
D
i
(r) = Ȳ

D
[a](r).

By the linearity of the expectation, t̂[a](r, r
0) and t̂(r, r

0) are unbiased for tD
[a](r, r

0) and tD(r, r
0),

respectively. However, without Assumptions 1 and 2, for a given treatment we do not have
replications of units, making it difficult to evaluate the uncertainty of these estimators. Similarly,
for the first type of interference, Hudgens and Halloran (2008) discussed the expectations of
the point estimators under general settings, but invoked “stratified interference” (analogous to
Assumption 2) to evaluate the uncertainty.

Moreover, the estimands tD
[a](r, r

0) and tD(r, r
0) are meaningful in many situations. In the

expression of Y
D
i
(r), the weight pr(Z = z | Ri = r) is nonzero only if Ri(zi) = r, i.e., the attributes

of unit i’s peers constitute r. Therefore, Y
D
i
(r) summarizes unit i’s potential outcomes when

he/she has K peers with attributes r. Consequently, tD
i
(r, r

0) measures the difference when unit
i has K peers with attributes r rather than r

0. Thus we can view tD
i
(r, r

0) as the individual peer
effect comparing treatments r and r

0, and tD
[a](r, r

0) and tD(r, r
0) as the corresponding average

peer effects. Below we further simplify Y
D
i
(r) under some special cases, making its meaning

more intuitive. When Assumption 1 holds, Y
D
i
(r) reduces to Âzi

pr(Zi = zi | Ri = r)Yi(zi); if
further the treatment assignment mechanism is random partitioning or complete randomization,
then the weight pr(Zi = zi | Ri = r) is a nonzero constant for zi such that Ri(zi) = r, and
Y

RP
i

(r) = Y
CR
i

(r) further reduces to the average of Yi(zi)’s for zi such that Ri(zi) = r. When both
Assumptions 1 and 2 hold, Y

D
i
(r) is the same as Yi(r) in the main paper, which does not depend

on the assignment mechanism D. In sum, Y
D
i
(r) is an extension of Yi(r).

We now consider the optimal complete randomization mechanism for the assignment of a
new population of size n

0 without Assumptions 1 or 2. Define similarly Y
D0
i
(r) and Ȳ

D0

[a] (r) for
the new population. By the same logic as (18), the expected total outcome under complete
randomization with L

0(z) = l
0 for the new population is

E

 
n
0

Â
i=1

Y
0
i

!
=

H

Â
a=1

E

 

Â
i:Ai=a

Y
0
i

!
=

H

Â
a=1

Â
r2R

n
0
[a]rȲ

CR0

[a] (r). (A2)
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To estimate the maximizer l
0
opt of (A2), we need to assume the new population is similar to the

one in our data. Let D0 denote the assignment mechanism for our observed data. The following
assumption is similar to the one in the main paper.

Assumption A7. Ȳ
CR0

[a] (r) = cȲ
D0
[a] (r) + x[a] for some constants c > 0 and x[a], for all 1  a  H

and r 2 R.

Under Assumption A7, (A2) reduces to

E

 
n
0

Â
i=1

Y
0
i

!
=

H

Â
a=1

Â
r2R

n
0
[a]rȲ

CR0

[a] (r) = c

H

Â
a=1

Â
r2R

n
0
[a]rȲ

D0
[a] (r) +

H

Â
a=1

n
0
[a]x[a],

implying that the maximizer l
0
opt of (A2) is the same as that of ÂH

a=1 Âr2R n
0
[a]rȲ

D0
[a] (r). We can

unbiasedly estimate Ȳ
D0
[a] (r) by Ŷ[a](r), and then estimate l

0
opt by simply plugging in the estimators

Ŷ[a](r)’s. Again, it is difficult to evaluate the uncertainty of the estimator for l
0
opt for the same

reason as that for the average peer effect estimators.
Below we give some comments on Assumption A7, which is key for inferring the optimal

complete randomization. Assumption A7 is a strong requirement of the similarity between the
new population and the one in our data, due to the dependence of Ȳ

CR0

[a] (r) and Ȳ
D0
[a] (r) on the

designs. Even if we assume that the new population is the same as the one in our data, As-
sumption A7, or, equivalently, Ȳ

CR
[a] (r) = cȲ

D0
[a] (r) + x[a], may fail because the values of Ȳ

CR
[a] (r) and

Ȳ
D0
[a] (r) depend on the assignment mechanisms, CR and D0, respectively. If the new population

is different from the one in our data, then Assumption A7 is even less plausible.
We summarize several concerns for inferring the optimal complete randomization in the ab-

sence of Assumptions 1 or 2. First, it is unnatural to infer the optimal peer assignment for a
new population, because the treatment is the set of the identity numbers of units varying across
populations. Second, the similarity assumption becomes stronger due to the dependence of the
estimands on the design. Third, it is difficult to evaluate the uncertainty of the point estimator.

A1.3. Distributional assumptions on potential outcomes

Under Assumption 4, we decompose Ŷ[a](r) into two parts:

Ŷ[a](r) = n
�1
[a]r Â

i:Ai=a,Ri=r

Yi = n
�1
[a]r Â

i:Ai=a,Ri=r

{Yi(r) + # i(Z)}

= n
�1
[a]r Â

i:Ai=a,Ri=r

Yi(r) + n
�1
[a]r Â

i:Ai=a,Ri=r

# i(Z) ⌘ Y̌[a](r) + #̌ [a](r),

where Y̌[a](r) ⌘ n
�1
[a]r Âi:Ai=a,Ri=r Yi(r) and #̌ [a](r) ⌘ n

�1
[a]r Âi:Ai=a,Ri=r # i(Z) are the main part and

deviance part, respectively. Let ť[a](r, r
0) = Y̌[a](r) � Y̌[a](r

0) and ď[a](r, r
0) = #̌ [a](r) � #̌ [a](r

0).
Correspondingly, we can decompose the subgroup peer effect estimator t̂[a](r, r

0) into two parts:
t̂[a](r, r

0) = ť[a](r, r
0) + ď[a](r, r

0).
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First, we discuss the sampling mean and variance of t̂[a](r, r
0). Under Assumption 4, we have,

for any 1  a  H and r 6= r
0 2 R,

E

n
#̌ [a](r) | Z

o
= E

(
n
�1
[a]r Â

i:Ai=a,Ri=r

# i(Z) | Z

)
= n

�1
[a]r Â

i:Ai=a,Ri=r

E {# i(Z) | Z} = 0,

Var
n

#̌ [a](r) | Z

o
= Var

(
n
�1
[a]r Â

i:Ai=a,Ri=r

# i(Z) | Z

)
= n

�2
[a]r Â

i:Ai=a,Ri=r

Var {# i(Z) | Z} = n
�1
[a]rs2

[a]r,

Cov
n

#̌ [a](r), #̌ [a](r
0) | Z

o
= (n[a]rn[a]r0)

�1 Â
i:Ai=a,Ri=r

Â
j:Aj=a,Rj=r0

E
�

# i(Z)# j(Z) | Z
 
= 0, (A3)

which immediately imply that E{ď[a](r, r
0) | Z} = 0 and Var{ď[a](r, r

0) | Z} = n
�1
[a]rs2

[a]r + n
�1
[a]r0s

2
[a]r0 .

Thus, marginally, ď[a](r, r
0) has mean 0 and variance n

�1
[a]rs2

[a]r + n
�1
[a]r0s

2
[a]r0 . Because ť[a](r, r

0) is
constant given Z, we have

Cov
n

ť[a](r, r
0), ď[a](r, r

0)
o
= E

h
E

n
ť[a](r, r

0)ď[a](r, r
0) | Z

oi
= E

h
ť[a](r, r

0)E

n
ď[a](r, r

0) | Z

oi
= 0,

which implies that Var{t̂[a](r, r
0)} = Var{ť[a](r, r

0)}+ Var{ď[a](r, r
0)}. Because the sampling vari-

ance of ť[a](r, r
0) is the same as that in Corollary 2 with Assumption 2, we can derive that

Var
n

t̂[a](r, r
0)
o
= Var

n
ť[a](r, r

0)
o
+ Var

n
ď[a](r, r

0)
o
=

S
2
[a](r)

n[a]r
+

S
2
[a](r

0)

n[a]r0
�

S
2
[a](r-r0)

n[a]
+

s2
[a](r)

n[a]r
+

s2
[a](r

0)

n[a]r0

=
S

2
[a](r) + s2

[a]r

n[a]r
+

S
2
[a](r

0) + s2
[a]r0

n[a]r0
�

S
2
[a](r-r0)

n[a]
.

Second, we discuss the variance estimator for t̂[a](r, r
0). We decompose the sample variance

of observed outcomes for units with attribute a receiving treatment r as

s
2
[a](r) = (n[a]r � 1)�1 Â

i:Ai=a,Ri=r

n
Yi � Ŷ[a](r)

o2
= (n[a]r � 1)�1 Â

i:Ai=a,Ri=r

n
Yi(r) + # i(Z)� Y̌[a](r)� #̌ [a](r)

o2

= (n[a]r � 1)�1 Â
i:Ai=a,Ri=r

n
Yi(r)� Y̌[a](r)

o2
+ (n[a]r � 1)�1 Â

i:Ai=a,Ri=r

n
# i(Z)� #̌ [a](r)

o2

+ (n[a]r � 1)�1 Â
i:Ai=a,Ri=r

n
Yi(r)� Y̌[a](r)

on
# i(Z)� #̌ [a](r)

o
. (A4)

Below we discuss the expectation of the three terms in (A4) separately. The expectation of the first
term is the same as that in Theorem 2 with Assumption 2. The expectation of the second term
is s2

[a]r, because, conditional on Z, it is the sample variance of independent zero-mean random
variables with variance s2

[a]r. The expectation of the third term is zero, because, conditioning on Z,
Yi(r)� Y̌[a](r) is a constant and # i(Z)� #̌ [a](r) has mean zero. Above all, E{s

2
[a](r)} = S

2
[a](r)+s2

[a]r.

6



The variance estimator is conservative because

E

n
V̂[a](r, r

0)
o
=

E{s
2
[a](r)}

n[a]r
+

E{s
2
[a](r

0)}
n[a]r0

=
S

2
[a](r) + s2

[a]r

n[a]r
+

S
2
[a](r

0) + s2
[a]r0

n[a]r0
� Var

n
t̂[a](r, r

0)
o

.

A1.4. Peer effects for a target subpopulation

First, we study the sampling variance and its estimator for the difference-in-means estimator
t̂tg(r, r

0). For any r, r
0 2 R and units in the target subpopulation, let Ȳtg(r) = m

�1 Âm

i=1 Yi(r)

and S2(r) = (m � 1)�1 Âm

i=1{Yi(r) � Ȳtg(r)}2 be the finite population average and variance of
individual potential outcome Yi(r)’s, and S2(r-r0) be the finite population variance of individual
peer effect ti(r, r

0)’s. The number of units in the target subpopulation receiving treatment r 2 R
is mr = Âm

k=1 I({Aj : j 2 zk} = r). Following Neyman (1923), the sampling variance of t̂tg(r, r
0) is

Var{t̂tg(r, r
0)} =

S2(r)
mr

+
S2(r0)

mr0
� S2(r-r0)

m
.

For any r 2 R, let s2(r) be the sample variance of observed outcome Yi’s for units receiving
treatment r. We can show that s2(r) is an unbiased estimator for S2(r). Therefore, a conservative
sampling variance estimator for t̂tg(r, r

0) is

dVar{t̂tg(r, r
0)} =

s2(r)
mr

+
s2(r0)

mr0
.

Moreover, under some regularity conditions, the Wald-type confidence interval is asymptotically
conservative.

Second, we show that, averaging over all possible constructions, the point estimator for
ttg(r, r

0) is the same as t̂[a](r, r
0) in (13). Because the point estimator for ttg(r, r

0) is the stan-
dard difference-in-means for units receiving treatments r and r

0, it suffices to show that the
average of m

�1
r Âm

i=1 I(Ri = r)Yi over all configurations of the target subpopulation is the same as
n
�1
[a]r Âi:Ai=a,Ri=r Yi, the average observed outcome for units with attribute a receiving treatment

r. This is true because (i) a unit with attribute a receiving treatment r must be in a group with
group attribute {a} [ r, (ii) any group with group attribute {a} [ r has the same number of
units with attribute a, and (iii) each configuration randomly picks one unit with attribute a in
these groups with group attribute {a} [ r and calculates their average observed outcome to get
m

�1
r Âm

i=1 I(Ri = r)Yi.

A2. Technical details for general treatment assignments

A2.1. Lemmas

Recall that S
2
[a](r) and S

2
[a](r-r0) are the finite population variances of potential outcomes Yi(r)’s

and individual peer effects ti(r, r
0)’s among units with attribute a. We further define S[a](r, r

0) as

7



the finite population covariance between the Yi(r)’s and the Yi(r0)’s among units with attribute a,
and eYi(r) = Yi(r)� Ȳ[Ai ](r) as the centered potential outcome of unit i by subtracting the average
potential outcome among units with the same attribute as unit i. We can then rewrite

S
2
[a](r) = (n[a] � 1)�1 Â

i:Ai=a

eY2
i
(r), S

2
[a](r, r

0) = (n[a] � 1)�1 Â
i:Ai=a

eYi(r)eYi(r
0), (A5)

and decompose the subgroup average potential outcome estimator as

Ŷ[a](r) = {n[a]p[a](r)}�1 Â
i:Ai=a

I(Ri = r)eYi(r) + {n[a]p[a](r)}�1 Â
i:Ai=a

I(Ri = r)Ȳ[a](r) ⌘ B[a](r) + C[a](r),

and decompose the subgroup average peer effect estimator as

t̂[a](r, r
0) = Ŷ[a](r)� Ŷ[a](r

0) ⌘ B[a](r) + C[a](r)� B[a](r
0)� C[a](r

0). (A6)

The following three lemmas characterize the covariances of the terms in (A6).

Lemma A1. For 1  a, a
0  H and r, r

0 2 R,

Cov{B[a](r), B[a0](r
0)} =

8
>>>><

>>>>:

0, if a 6= a
0;

�(n[a] � 1) p[a][a](r,r0)
n

2
[a]p[a](r)p[a](r0)

S[a](r, r
0), if a = a

0, r 6= r
0;

(n[a] � 1)p[a](r)�p[a][a](r,r)
n

2
[a]p

2
[a](r)

S
2
[a](r), if a = a

0, r = r
0.

Lemma A2. For 1  a, a
0  H and r, r

0 2 R, Cov{B[a](r), C[a0](r
0)} = 0.

Lemma A3. For any 1  a, a
0  H and r, r

0 2 R,

Cov{C[a](r), C[a0](r
0)} = (n[a]n[a0])

�1/2
c[a][a0](r, r

0)Ȳ[a](r)Ȳ[a0](r
0),

where c[a][a0](r, r
0) is defined in (8) in the main text.

Recall that Y[a](r)Y[a](r0) = {n[a](n[a]� 1)}�1 Âi 6=j:Ai=Aj=a Yi(r)Yj(r0) is the average of the prod-
ucts of the potential outcomes for pairs of two different units with the same attribute a. The
following lemma represents the finite population covariance S

2
[a](r, r

0) and the product of average

potential outcomes Ȳ[a](r)Ȳ[a](r
0) as functions of S

2
[a](r), S

2
[a](r

0), S
2
[a](r-r0) and Y[a](r)Y[a](r0).

Lemma A4. For 1  a  H, and r 6= r
0 2 R,

(a) 2S[a](r, r
0) = S

2
[a](r) + S

2
[a](r

0)� S
2
[a](r-r0);

(b) Ȳ[a](r)Ȳ[a](r
0) = Y[a](r)Y[a](r0) + (2n[a])

�1{S
2
[a](r) + S

2
[a](r

0)� S
2
[a](r-r0)}.

8



A2.2. Proofs of the lemmas

Proof of Lemma A1. Based on the definitions of p[a](r) and p[a][a0](r, r
0), for units i and j such that

Ai = a and Aj = a
0, the covariance between their treatment indicators is

Cov{I(Ri = r), I(Rj = r
0)} = pr(Ri = r, Rj = r

0)� pr(Ri = r)pr(Rj = r
0)

=

8
>>><

>>>:

p[a][a0](r, r
0)� p[a](r)p[a0](r

0), if i 6= j,

�p[a](r)p[a](r
0), if i = j, r 6= r

0,

p[a](r)� p2
[a](r) if i = j, r = r

0.

(A7)

Below we discuss three cases separately. (1) When a 6= a
0, any units i and j such that Ai = a and

Aj = a
0 must satisfy i 6= j. Therefore,

Cov{B[a](r), B[a0](r
0)} = Cov

2

4{n[a]p[a](r)}�1 Â
i:Ai=a

I(Ri = r)eYi(r), {n[a0]p[a0](r
0)}�1 Â

j:Aj=a0
I(Rj = r

0)eYj(r
0)

3

5

= {n[a]n[a0]p[a](r)p[a0](r
0)}�1 Â

i:Ai=a

Â
j:Aj=a0

eYi(r)eYj(r
0)Cov{I(Ri = r), I(Rj = r

0)}

=
p[a][a0](r, r

0)� p[a](r)p[a0](r
0)

n[a]n[a0]p[a](r)p[a0](r0)
Â

i:Ai=a

Â
j:Aj=a0

eYi(r)eYj(r
0),

where the last equality follows from (A7). We can further simplify Cov{B[a](r), B[a0](r
0)} as

Cov{B[a](r), B[a0](r
0)} =

p[a][a0](r, r
0)� p[a](r)p[a0](r

0)

n[a]n[a0]p[a](r)p[a0](r0)
Â

i:Ai=a

eYi(r) Â
j:Aj=a0

eYj(r
0) = 0.

(2) When a = a
0 and r 6= r

0, we need to consider the covariances between the treatment
indicators of two different units and those of the same unit:

Cov{B[a](r), B[a](r
0)} = Cov

2

4{n[a]p[a](r)}�1 Â
i:Ai=a

I(Ri = r)eYi(r), {n[a]p[a](r
0)}�1 Â

j:Aj=a

I(Rj = r
0)eYj(r

0)

3

5

= {n
2
[a]p[a](r)p[a](r

0)}�1 Â
i 6=j:Ai=a,Aj=a

eYi(r)eYj(r
0)Cov{I(Ri = r), I(Rj = r

0)}

+ {n
2
[a]p[a](r)p[a](r

0)}�1 Â
i:Ai=a

eYi(r)eYi(r
0)Cov{I(Ri = r), I(Ri = r

0)}

=
p[a][a](r, r

0)� p[a](r)p[a](r
0)

n
2
[a]p[a](r)p[a](r0)

Â
i 6=j:Ai=a,Aj=a

eYi(r)eYj(r
0)�

p[a](r)p[a](r
0)

n
2
[a]p[a](r)p[a](r0)

Â
i:Ai=a

eYi(r)eYi(r
0),

9



where the last equality follows from (A7). We can further simplify Cov{B[a](r), B[a](r
0)} as

Cov{B[a](r), B[a](r
0)} =

p[a][a](r, r
0)� p[a](r)p[a](r

0)

n
2
[a]p[a](r)p[a](r0)

Â
i:Ai=a

Â
j:Aj=a

eYi(r)eYj(r
0)

�
 

p[a][a](r, r
0)� p[a](r)p[a](r

0)

n
2
[a]p[a](r)p[a](r0)

+
p[a](r)p[a](r

0)

n
2
[a]p[a](r)p[a](r0)

!

Â
i:Ai=a

eYi(r)eYi(r
0)

= 0 �
(n[a] � 1)p[a][a](r, r

0)

n
2
[a]p[a](r)p[a](r0)

(n[a] � 1)�1 Â
i:Ai=a

eYi(r)eYi(r
0)

= �(n[a] � 1)
p[a][a](r, r

0)

n
2
[a]p[a](r)p[a](r0)

S[a](r, r
0),

where the last equality follows from (A5).
(3) When a = a

0 and r = r
0, we similarly consider two cases with i = j and i 6= j:

Var{B[a](r)} = Cov

2

4{n[a]p[a](r)}�1 Â
i:Ai=a

I(Ri = r)eYi(r), {n[a]p[a](r)}�1 Â
j:Aj=a

I(Rj = r)eYj(r)

3

5

= {n
2
[a]p

2
[a](r)}

�1 Â
i 6=j:Ai=a,Aj=a

eYi(r)eYj(r)Cov{I(Ri = r), I(Rj = r)}

+ {n
2
[a]p

2
[a](r)}

�1 Â
i:Ai=a

eYi(r)eYi(r)Cov{I(Ri = r), I(Ri = r)}

=
p[a][a](r, r)� p2

[a](r)

n
2
[a]p

2
[a](r)

Â
i 6=j:Ai=a,Aj=a

eYi(r)eYj(r) +
p[a](r)� p2

[a](r)

n
2
[a]p

2
[a](r)

Â
i:Ai=a

eY2
i
(r)

where the last equality follows from (A7). We can further simplify Var{B[a](r)} as

Var{B[a](r)} =
p[a][a](r, r)� p2

[a](r)

n
2
[a]p

2
[a](r)

Â
i:Ai=a

Â
j:Aj=a

eYi(r)eYj(r)

+

 
p[a](r)� p2

[a](r)

n
2
[a]p

2
[a](r)

�
p[a][a](r, r)� p2

[a](r)

n
2
[a]p

2
[a](r)

!

Â
i:Ai=a

eY2
i
(r)

= 0 +
p[a](r)� p[a][a](r, r)

n
2
[a]p

2
[a](r)

Â
i:Ai=a

eY2
i
(r)

= (n[a] � 1)
p[a](r)� p[a][a](r, r)

n
2
[a]p

2
[a](r)

S
2
[a](r),

where the last equality follows from (A5).

Proof of Lemma A2. Similarly to the proof of Lemma A1, we discuss three cases, and use (A7) to
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calculate the covariance between two treatment indicators. (1) When a 6= a
0,

Cov{B[a](r), C[a0](r
0)} = Cov

2

4{n[a]p[a](r)}�1 Â
i:Ai=a

I(Ri = r)eYi(r), {n[a0]p[a0](r
0)}�1 Â

j:Aj=a0
I(Rj = r

0)Ȳ[a0](r
0)

3

5

= {n[a]n[a0]p[a](r)p[a0](r
0)}�1 · Ȳ[a0](r

0) Â
i:Ai=a

Â
j:Aj=a0

eYi(r)Cov{I(Ri = r), I(Rj = r
0)}

=
p[a][a0](r, r

0)� p[a](r)p[a0](r
0)

n[a]n[a0]p[a](r)p[a0](r0)
Ȳ[a0](r

0) Â
i:Ai=a

Â
j:Aj=a0

eYi(r)

where the last equality follows from (A7). We can further simplify Cov{B[a](r), C[a0](r
0)} as

Cov{B[a](r), C[a0](r
0)} =

p[a][a0](r, r
0)� p[a](r)p[a0](r

0)

n[a]n[a0]p[a](r)p[a0](r0)
Ȳ[a0](r

0) · n[a0] Â
i:Ai=a

eYi(r) = 0.

(2) When a = a
0 and r 6= r

0,

Cov{B[a](r), C[a](r
0)} = Cov

2

4{n[a]p[a](r)}�1 Â
i:Ai=a

I(Ri = r)eYi(r), {n[a]p[a](r
0)}�1 Â

j:Aj=a

I(Rj = r
0)Ȳ[a](r

0)

3

5

= {n
2
[a]p[a](r)p[a](r

0)}�1 · Ȳ[a](r
0) Â

i 6=j:Ai=a,Aj=a

eYi(r)Cov{I(Ri = r), I(Rj = r
0)}

+ {n
2
[a]p[a](r)p[a](r

0)}�1 · Ȳ[a](r
0) Â

i:Ai=a

eYi(r)Cov{I(Ri = r), I(Ri = r
0)}

=
p[a][a](r, r

0)� p[a](r)p[a](r
0)

n
2
[a]p[a](r)p[a](r0)

Ȳ[a](r
0) Â

i 6=j:Ai=a,Aj=a

eYi(r)

�
p[a](r)p[a](r

0)

n
2
[a]p[a](r)p[a](r0)

Ȳ[a](r
0) Â

i:Ai=a

eYi(r),

where the last equality follows from from (A7). We can further simplify Cov{B[a](r), C[a](r
0)} as

Cov{B[a](r), C[a](r
0)} =

p[a][a](r, r
0)� p[a](r)p[a](r

0)

n
2
[a]p[a](r)p[a](r0)

Ȳ[a](r
0) · (n[a] � 1) Â

i:Ai=a

eYi(r)� 0 = 0.

(3) When a = a
0 and r = r

0,

Cov{B[a](r), C[a](r)} = Cov

2

4{n[a]p[a](r)}�1 Â
i:Ai=a

I(Ri = r)eYi(r), {n[a]p[a](r)}�1 Â
j:Aj=a

I(Rj = r)Ȳ[a](r)

3

5

= {n
2
[a]p[a](r)p[a](r

0)}�1 Â
i 6=j:Ai=a,Aj=a

eYi(r)Ȳ[a](r
0)Cov{I(Ri = r), I(Rj = r)}

+ {n
2
[a]p[a](r)p[a](r

0)}�1 Â
i:Ai=a

eYi(r)Ȳ[a](r
0)Cov{I(Ri = r), I(Ri = r)}

11



=
p[a][a](r, r)� p[a](r)p[a](r)

n
2
[a]p[a](r)p[a](r)

Â
i 6=j:Ai=a,Aj=a

eYi(r)Ȳ[a](r)

+
p[a](r)� p[a](r)p[a](r)

n
2
[a]p[a](r)p[a](r)

Â
i:Ai=a

eYi(r)Ȳ[a](r),

where the last equality follows from (A7). We can further simplify Cov{B[a](r), C[a](r)} as

Cov{B[a](r), C[a](r)} =
p[a][a](r, r)� p[a](r)p[a](r)

n
2
[a]p[a](r)p[a](r)

Â
i:Ai=a

eYi(r)⇥ (n[a] � 1)Ȳ[a](r)� 0 = 0.

Proof of Lemma A3. Similary to the proofs of Lemmas A1 and A2, we discuss three cases sep-
arately, and use (A7) to calculate the covariance between two treatment indicators. (1) When
a 6= a

0,

Cov{C[a](r), C[a0](r
0)} = Cov

2

4{n[a]p[a](r)}�1 Â
i:Ai=a

I(Ri = r)Ȳ[a](r), {n[a0]p[a0](r
0)}�1 Â

j:Aj=a0
I(Rj = r

0)Ȳ[a0](r
0)

3

5

= {n[a]n[a0]p[a](r)p[a0](r
0)}�1

Ȳ[a](r)Ȳ[a0](r
0) Â

i:Ai=a

Â
j:Aj=a0

Cov{I(Ri = r), I(Rj = r
0)}

=
p[a][a0](r, r

0)� p[a](r)p[a0](r
0)

n[a]n[a0]p[a](r)p[a0](r0)
Ȳ[a](r)Ȳ[a0](r

0)n[a]n[a0]

=
p[a][a0](r, r

0)� p[a](r)p[a0](r
0)

p[a](r)p[a0](r0)
Ȳ[a](r)Ȳ[a0](r

0),

where the last equality follows from (A7). Based on the definitions of d[a][a0](r, r
0) and c[a][a0](r, r

0)

in (7) and (8), we can further simplify Cov{C[a](r), C[a0](r
0)} as

Cov{C[a](r), C[a0](r
0)} =

 
p[a][a0](r, r

0)

p[a](r)p[a0](r0)
� 1

!
Ȳ[a](r)Ȳ[a0](r

0) =
d[a][a0](r, r

0)

(n[a]n[a0])1/2 Ȳ[a](r)Ȳ[a0](r
0)

=
c[a][a0](r, r

0)

(n[a]n[a0])1/2 Ȳ[a](r)Ȳ[a0](r
0).

(2) When a = a
0 and r 6= r

0,

Cov{C[a](r), C[a](r
0)} = Cov

2

4{n[a]p[a](r)}�1 Â
i:Ai=a

I(Ri = r)Ȳ[a](r), {n[a]p[a](r
0)}�1 Â

j:Aj=a

I(Rj = r
0)Ȳ[a](r

0)

3

5

= {n
2
[a]p[a](r)p[a](r

0)}�1
Ȳ[a](r)Ȳ[a](r

0) Â
i 6=j:Ai=a,Aj=a

Cov{I(Ri = r), I(Rj = r
0)}

+ {n
2
[a]p[a](r)p[a](r

0)}�1
Ȳ[a](r)Ȳ[a](r

0) Â
i:Ai=a

Cov{I(Ri = r), I(Ri = r
0)}
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=
p[a][a](r, r

0)� p[a](r)p[a](r
0)

n
2
[a]p[a](r)p[a](r0)

Ȳ[a](r)Ȳ[a](r
0)n[a](n[a] � 1)

�
p[a](r)p[a](r

0)

n
2
[a]p[a](r)p[a](r0)

Ȳ[a](r)Ȳ[a](r
0)n[a],

where the last equality follows from (A7). Based on the definitions of d[a][a](r, r
0) and c[a][a](r, r

0)

in (7) and (8), we can further simplify Cov{C[a](r), C[a](r
0)} as

Cov{C[a](r), C[a](r
0)} =

(⇣
1 � n

�1
[a]

⌘ p[a][a](r, r
0)

p[a](r)p[a](r0)
� 1

!
� n

�1
[a]

)
Ȳ[a](r)Ȳ[a](r

0)

=
n⇣

1 � n
�1
[a]

⌘
n
�1
[a] d[a][a](r, r

0)� n
�1
[a]

o
Ȳ[a](r)Ȳ[a](r

0)

=

⇣
1 � n

�1
[a]

⌘
d[a][a](r, r

0)� 1

n[a]
Ȳ[a](r)Ȳ[a](r

0)

=
c[a][a](r, r

0)

n[a]
Ȳ[a](r)Ȳ[a](r

0).

(3) When a = a
0 and r = r

0,

Var{C[a](r)} = Cov

2

4{n[a]p[a](r)}�1 Â
i:Ai=a

I(Ri = r)Ȳ[a](r), {n[a0]p[a0](r
0)}�1 Â

j:Aj=a0
I(Rj = r

0)Ȳ[a0](r
0)

3

5

= {n
2
[a]p

2
[a](r)}

�1
Ȳ

2
[a](r) Â

i 6=j:Ai=a,Aj=a

Cov{I(Ri = r), I(Rj = r)}

+ {n
2
[a]p

2
[a](r)}

�1
Ȳ

2
[a](r) Â

i:Ai=a

Cov{I(Ri = r), I(Ri = r)}

=
p[a][a](r, r)� p2

[a](r)

n
2
[a]p

2
[a](r)

Ȳ
2
[a](r)n[a](n[a] � 1) +

p[a](r)� p2
[a](r)

n
2
[a]p

2
[a](r)

Ȳ
2
[a](r)n[a],

where the last equality follows from (A7). Based on the definitions of d[a][a](r, r) and c[a][a](r, r) in
(7) and (8), we can further simplify Var{C[a](r)} as

Var{C[a](r)} =

(⇣
1 � n

�1
[a]

⌘ p[a][a](r, r)

p2
[a](r)

� 1

!
+ n

�1
[a] p�1

[a] (r)� n
�1
[a]

)
Ȳ

2
[a](r)

=
n⇣

1 � n
�1
[a]

⌘
n
�1
[a] d[a][a](r, r) + n

�1
[a] p�1

[a] (r)� n
�1
[a]

o
Ȳ

2
[a](r)

=

⇣
1 � n

�1
[a]

⌘
d[a][a](r, r) + p�1

[a] (r)� 1

n[a]
Ȳ

2
[a](r) =

c[a][a](r, r)

n[a]
Ȳ

2
[a](r).
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Proof of Lemma A4. For 1  a  H and r 6= r
0 2 R, by definition, we have

S
2
[a](r) + S

2
[a](r

0)� S
2
[a](r-r0) = (n[a] � 1)�1

"

Â
i:Ai=a

eY2
i
(r) + Â

i:Ai=a

eY2
i
(r0)� Â

i:Ai=a

n
eYi(r)� eYi(r

0)
o2
#

= (n[a] � 1)�1 ⇥ 2 Â
i:Ai=a

eYi(r)eYi(r
0) = 2S[a](r, r

0),

and

Y[a](r)Y[a](r0) + (2n[a])
�1

n
S

2
[a](r) + S

2
[a](r

0)� S
2
[a](r-r0)

o

= {n[a](n[a] � 1)}�1 Â
i 6=j:Ai=Aj=a

Yi(r)Yj(r
0) + n

�1
[a] S[a](r, r

0)

= {n[a](n[a] � 1)}�1 Â
i 6=j:Ai=Aj=a

Yi(r)Yj(r
0) + {n[a](n[a] � 1)}�1

(

Â
i:Ai=a

Yi(r)Yi(r
0)� n[a]Ȳ[a](r)Ȳ[a](r

0)

)

= {n[a](n[a] � 1)}�1

8
<

: Â
i:Ai=a

Â
j:Aj=a

Yi(r)Yj(r
0)� n[a]Ȳ[a](r)Ȳ[a](r

0)

9
=

;

= {n[a](n[a] � 1)}�1
n

n
2
[a]Ȳ[a](r)Ȳ[a](r

0)� n[a]Ȳ[a](r)Ȳ[a](r
0)
o
= Ȳ[a](r)Ȳ[a](r

0).

A2.3. Proofs of the theorems for general assignment mechanism

Proof of Theorem 1. First, we calculate the sampling variance of estimated subgroup average
peer effect. From (A6) and Lemmas A1–A3, the covariances, Cov{B[a](r), C[a](r)}, Cov{B[a](r), C[a](r

0)},
Cov{B[a](r

0), C[a](r)} and Cov{B[a](r
0), C[a](r

0), are all zero for r 6= r
0. Therefore, the sampling

variance of subgroup average peer effect estimator is

Var
n

t̂[a](r, r
0)
o

= Var
n

B[a](r) + C[a](r)� B[a](r
0)� C[a](r

0)
o

= Var
n

B[a](r)
o
+ Var

n
B[a](r

0)
o
� 2Cov

n
B[a](r), B[a](r

0)
o
+ Var

n
C[a](r)

o
+ Var

n
C[a](r

0)
o

� 2Cov
n

C[a](r), C[a](r
0)
o

= (n[a] � 1)
p[a](r)� p[a][a](r, r)

n
2
[a]p

2
[a](r)

S
2
[a](r) + (n[a] � 1)

p[a](r
0)� p[a][a](r

0, r
0)

n
2
[a]p

2
[a](r

0)
S

2
[a](r

0)

+ 2
(n[a] � 1)p[a][a](r, r

0)

n
2
[a]p[a](r)p[a](r0)

S[a](r, r
0) + n

�1
[a]

n
c[a][a](r, r)Ȳ2

[a](r) + c[a][a](r
0, r

0)Ȳ2
[a](r

0)� 2c[a][a](r, r
0)Ȳ[a](r)Ȳ[a](r

0)
o

.
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Replacing 2S[a](r, r
0) and Ȳ[a](r)Ȳ[a](r

0) by their expressions in Lemma A4, we can rewrite the
sampling variance of t̂[a](r, r

0) as

Var
n

t̂[a](r, r
0)
o

= (n[a] � 1)
p[a](r)� p[a][a](r, r)

n
2
[a]p

2
[a](r)

S
2
[a](r) + (n[a] � 1)

p[a](r
0)� p[a][a](r

0, r
0)

n
2
[a]p

2
[a](r

0)
S

2
[a](r

0)

+
(n[a] � 1)p[a][a](r, r

0)

n
2
[a]p[a](r)p[a](r0)

n
S

2
[a](r) + S

2
[a](r

0)� S
2
[a](r-r0)

o

+n
�1
[a]

n
c[a][a](r, r)Ȳ2

[a](r) + c[a][a](r
0, r

0)Ȳ2
[a](r

0)� 2c[a][a](r, r
0)Y[a](r)Y[a](r0)

o

�
2c[a][a](r, r

0)

n[a]

S
2
[a](r) + S

2
[a](r

0)� S
2
[a](r-r0)

2n[a]
. (A8)

We then combine the terms and calculate the cofficients of S
2
[a](r), S

2
[a](r

0) and S
2
[a](r-r0) in (A8),

separately. From the definitions of c[a][a](r, r
0) and b[a](r), we can simplify the coefficient of S

2
[a](r)

as

n
�1
[a]

(
(1 � n

�1
[a] )

 
p�1
[a] (r)�

p[a][a](r, r)

p2
[a](r)

+
p[a][a](r, r

0)

p[a](r)p[a](r0)

!
� n

�1
[a] c[a][a](r, r

0)

)
= n

�1
[a] b[a](r),

and similarly simplify the coefficient of S
2
[a](r

0) as n
�1
[a] b[a](r

0). We can also simplify the coefficient
of S

2
[a](r-r0) as

�
(n[a] � 1)p[a][a](r, r

0)

n
2
[a]p[a](r)p[a](r0)

+
c[a][a](r, r

0)

n
2
[a]

= �n
�1
[a] .

Therefore, (A8) reduces to

Var
n

t̂[a](r, r
0)
o

= n
�1
[a]

n
b[a](r)S

2
[a](r) + b[a](r

0)S2
[a](r

0)� S
2
[a](r-r0)

o

+n
�1
[a]

n
c[a][a](r, r)Ȳ2

[a](r) + c[a][a](r
0, r

0)Ȳ2
[a](r

0)� 2c[a][a](r, r
0)Y[a](r)Y[a](r0)

o
.

Second, we calculate the covariance between two estimated subgroup average peer effects.
For a 6= a

0 and r 6= r
0 2 R, according to Lemmas A1–A3, the covariances, Cov{B[a](r), B[a0](r)},

Cov{B[a](r), B[a0](r
0)}, Cov{B[a](r

0), B[a0](r)}, Cov{B[a](r
0), B[a0](r

0)}, Cov{B[a](r), C[a0](r)}, Cov{B[a](r),
C[a0](r

0)}, Cov{B[a](r
0), C[a0](r)} and Cov{B[a](r

0), C[a0](r
0)}, are all zero. Therefore the sampling

covariance between t̂[a](r, r
0) and t̂[a0](r, r

0) is

Cov
n

t̂[a](r, r
0), t̂[a0](r, r

0)
o

= Cov
n

B[a](r) + C[a](r)� B[a](r
0)� C[a](r

0), B[a0](r) + C[a0](r)� B[a0](r
0)� C[a0](r

0)
o

= Cov
n

C[a](r), C[a0](r)
o
+ Cov

n
C[a](r

0), C[a0](r
0)
o
� Cov

n
C[a](r), C[a0](r

0)
o
� Cov

n
C[a](r

0), C[a0](r)
o

= (n[a]n[a0])
�1/2

n
c[a][a0](r, r)Ȳ[a](r)Ȳ[a0](r) + c[a][a0](r

0, r
0)Ȳ[a](r

0)Ȳ[a0](r
0)
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�c[a][a0](r, r
0)Ȳ[a](r)Ȳ[a0](r

0)� c[a][a0](r
0, r)Ȳ[a](r

0)Ȳ[a0](r)
o

,

where the last equality follows from Lemma A3.
Third, we calculate the variance of the average peer effect estimator:

Var
�

t̂(r, r
0)
 
= Var

(
H

Â
a=1

w[a]t̂[a](r, r
0)

)
=

H

Â
a=1

w
2
[a]Var

n
t̂[a](r, r

0)
o
+

H

Â
a=1

Â
a0 6=a

w[a]w[a0]Cov
n

t̂[a](r, r
0), t̂[a0](r, r

0)
o

.

Using the variances and covariances between the subgroup average peer effect estimators, we
can simplify the variance of t̂(r, r

0) as

Var
�

t̂(r, r
0)
 

= n
�1

H

Â
a=1

w[a]

n
b[a](r)S

2
[a](r) + b[a](r

0)S2
[a](r

0)� S
2
[a](r-r0)

o

+n
�1

H

Â
a=1

w[a]

n
c[a][a](r, r)Ȳ2

[a](r) + c[a][a](r
0, r

0)Ȳ2
[a](r

0)� 2c[a][a](r, r
0)Y[a](r)Y[a](r0)

o

+n
�1

H

Â
a=1

Â
a0 6=a

(w[a]w[a0])
1/2

n
c[a][a0](r, r)Ȳ[a](r)Ȳ[a0](r) + c[a][a0](r

0, r
0)Ȳ[a](r

0)Ȳ[a0](r
0)

�c[a][a0](r, r
0)Ȳ[a](r)Ȳ[a0](r

0)� c[a][a0](r
0, r)Ȳ[a](r

0)Ȳ[a0](r)
o

.

Proof of Theorem 2. First, we prove that s
2
[a](r) defined in Section 3.3 is unbiased for the finite

population variance S
2
[a](r). Note that

E

n
Ŷ

2
[a](r)

o
= E

8
<

:{n[a]p[a](r)}�1 Â
i:Ai=a

I(Ri = r)Yi(r)⇥ {n[a]p[a](r)}�1 Â
j:Aj=a

I(Rj = r)Yj(r)

9
=

;

= {n
2
[a]p

2
[a](r)}

�1 Â
i 6=j:Ai=Aj=a

Yi(r)Yj(r)pr(Ri = r, Rj = r)

+{n
2
[a]p

2
[a](r)}

�1 Â
i:Ai=a

Y
2
i
(r)pr(Ri = r, Ri = r)

=
p[a][a](r, r)

n
2
[a]p

2
[a](r)

Â
i 6=j:Ai=Aj=a

Yi(r)Yj(r) +
p[a](r)

n
2
[a]p

2
[a](r)

Â
i:Ai=a

Y
2
i
(r),

where the last equality follows from the definitions of p[a](r) and p[a][a](r, r). We can then sim-
plify E{Ŷ

2
[a](r)} as

E

n
Ŷ

2
[a](r)

o
=

p[a][a](r, r)

n
2
[a]p

2
[a](r)

Â
i:Ai=a

Â
j:Aj=a

Yi(r)Yj(r) +
p[a](r)� p[a][a](r)

n
2
[a]p

2
[a](r)

Â
i:Ai=a

Y
2
i
(r)

=
p[a][a](r, r)

p2
[a](r)

Ȳ
2
[a](r) +

p[a](r)� p[a][a](r)

n
2
[a]p

2
[a](r)

Â
i:Ai=a

Y
2
i
(r). (A9)
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The mean of s
2
[a](r) is

E

n
s

2
[a](r)

o
=

n[a]p
2
[a](r)

(n[a] � 1)p[a][a](r, r)

"
n[a] + c[a][a](r, r)

n
2
[a]p[a](r)

Â
i:Ai=a

E {I(Ri = r)}Y
2
i
(r)� E

n
Ŷ

2
[a](r)

o#

=
n[a]p

2
[a](r)

(n[a] � 1)p[a][a](r, r)

"
n[a] + c[a][a](r, r)

n
2
[a]

Â
i:Ai=a

Y
2
i
(r)� E

n
Ŷ

2
[a](r)

o#

=
n[a]p

2
[a](r)

(n[a] � 1)p[a][a](r, r)

"
(n[a] � 1)p[a][a](r, r) + p[a](r)

n
2
[a]p

2
[a](r)

Â
i:Ai=a

Y
2
i
(r)� E

n
Ŷ

2
[a](r)

o#
,

where the last equality follows from the definition of c[a][a](r, r) in (8). Using (A9), we can further
simplify E{s

2
[a](r)} as

E

n
s

2
[a](r)

o
=

n[a]p
2
[a](r)

(n[a] � 1)p[a][a](r, r)

(
(n[a] � 1)p[a][a](r, r) + p[a](r)

n
2
[a]p

2
[a](r)

Â
i:Ai=a

Y
2
i
(r)

�
p[a][a](r, r)

p2
[a](r)

Ȳ
2
[a](r)�

p[a](r)� p[a][a](r)

n
2
[a]p

2
[a](r)

Â
i:Ai=a

Y
2
i
(r)

)

=
n[a]p

2
[a](r)

(n[a] � 1)p[a][a](r, r)

(
p[a][a](r, r)

n[a]p
2
[a](r)

Â
i:Ai=a

Y
2
i
(r)�

p[a][a](r, r)

p2
[a](r)

Ȳ
2
[a](r)

)

= (n[a] � 1)�1

(

Â
i:Ai=a

Y
2
i
(r)� n[a]Ȳ

2
[a](r)

)
= S

2
[a](r).

Second, we prove the unbiasedness of the estimator for Ȳ
2
[a](r). For 1  a  H and r 2 R,

accoring to (A9) and the unbiasedness of s
2
[a](r) for S

2
[a](r),

E

"
n[a]Ŷ[a](r)

2 � {b[a](r)� 1}s
2
[a](r)

n[a] + c[a][a](r, r)

#

=
n[a]E{Ŷ[a](r)

2}� {b[a](r)� 1}E{s
2
[a](r)}

n[a] + c[a][a](r, r)

=
n[a]

n[a] + c[a][a](r, r)

(
p[a][a](r, r)

p2
[a](r)

Ȳ
2
[a](r) +

p[a](r)� p[a][a](r)

n
2
[a]p

2
[a](r)

Â
i:Ai=a

Y
2
i
(r)

)
�

b[a](r)� 1
n[a] + c[a][a](r, r)

S
2
[a](r),

which, based on the definitions of c[a][a](r, r) and b[a](r), further reduces to

n[a]

(n[a] � 1)p[a][a](r, r) + p[a](r)

(
p[a][a](r, r)Ȳ2

[a](r) +
p[a](r)� p[a][a](r)

n
2
[a]

Â
i:Ai=a

Y
2
i
(r)

)

�
{p[a](r)� p[a][a](r, r)}

n[a]{(n[a] � 1)p[a][a](r, r) + p[a](r)}

(

Â
i:Ai=a

Y
2
i
(r)� n[a]Ȳ

2
[a](r)

)
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=
n[a]p[a][a](r, r)Ȳ2

[a](r) + {p[a](r)� p[a][a](r, r)}Ȳ
2
[a](r)

(n[a] � 1)p[a][a](r, r) + p[a](r)
= Ȳ

2
[a](r).

Third, we prove the unbiasedness of the estimator for Y[a](r)Y[a](r0). For 1  a  H and
r 6= r

0 2 R,

E

(
n[a]

n[a] � 1
p[a](r)p[a](r

0)

p[a][a](r, r0)
Ŷ[a](r)Ŷ[a](r

0)

)

=
n[a]

n[a] � 1
p[a](r)p[a](r

0)

p[a][a](r, r0)
E

8
<

:{n[a]p[a](r)}�1 Â
i:Ai=a

I(Ri = r)Yi(r)⇥ {n[a]p[a](r
0)}�1 Â

j:Aj=a

I(Rj = r
0)Yj(r

0)

9
=

;

=
n[a]

n[a] � 1
1

n
2
[a]p[a][a](r, r0) Â

i,j:Ai=Aj=a

Yi(r)Yj(r
0)pr(Ri = r, Rj = r

0)

=
1

n[a](n[a] � 1)p[a][a](r, r0)

8
<

: Â
i 6=j:Ai=Aj=a

Yi(r)Yj(r
0)pr(Ri = r, Rj = r

0) + Â
i:Ai=a

Yi(r)Yi(r
0)pr(Ri = r, Ri = r

0)

9
=

;

=
1

n[a](n[a] � 1)p[a][a](r, r0)

8
<

:p[a][a](r, r
0) Â

i 6=j:Ai=Aj=a

Yi(r)Yj(r
0) + 0

9
=

; = Y[a](r)Y[a](r0),

where the second last equality holds because pr(Ri = r, Ri = r
0) = 0 for r 6= r

0 2 R.
Fourth, we prove that, for a 6= a

0 and r, r
0 2 R, p[a](r)p[a0](r

0)/p[a][a0](r, r
0) · Ŷ[a](r)Ŷ[a0](r

0) is
unbiased for Ȳ[a](r)Ȳ[a0](r

0). For a 6= a
0 and r, r

0 2 R, any units (i, j) such that Ai = a and Aj = a
0

must satisfy i 6= j, and therefore

E

(
p[a](r)p[a0](r

0)

p[a][a0](r, r0)
Ŷ[a](r)Ŷ[a0](r

0)

)

=
p[a](r)p[a0](r

0)

p[a][a0](r, r0)
E

8
<

:n
�1
[a] Â

i:Ai=a

p�1
[a] (r)I(Ri = r)Yi(r)⇥ n

�1
[a0] Â

j:Aj=a0
p�1

a0 (r
0)I(Rj = r

0)Yj(r
0)

9
=

;

= {n[a]n[a0]p[a][a0](r, r
0)}�1 Â

i:Ai=a

Â
j:Aj=a0

Yi(r)Yj(r
0)pr(Ri = r, Rj = r

0)

= (n[a]n[a0])
�1 Â

i:Ai=a

Â
j:Aj=a0

Yi(r)Yj(r
0) = Ȳ[a](r)Ȳ[a0](r

0).

A3. More technical details about complete randomization

Proof of Proposition 2. We first show that the numerical implementation in Section 2.4.2 gener-
ates treatment assignments under complete randomization. For any treatment assignment z with
L(z) = z, by definition, there are lt groups with group attribute set gt for 1  t  T. Thus, there
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are ’T

t=1 lt! ways to arrange these m groups such that the first l1 groups have group attribute set
g1, the next l2 groups have group attribute g2, ..., and the last lT groups have group attribute gT.
Each of the ’T

t=1 lt! arrangements is a group assignment from the numerical implementation, and
all group assignments from the numerical implementation have the same probability. Therefore,
under the numerical implementation, any assignment z with L(z) = z corresponds to ’T

t=1 lt!
realizations and will have the same probability.

We then prove Proposition 2. From the above discussion, it is equivalent to consider the
distribution of (R1, . . . , Rn) under the group assignment generated from the numerical imple-
mentation. Under the numerical implementation, for each 1  a  H and the n[a] units with
attribute a, the l1 ⇥ g1(a) units in the first l1 groups must receive treatment g1 \ {a}, the next
l2 ⇥ g2(a) units in the next l2 groups must receive treatment g2 \ {a}, ..., and the last lT ⇥ gT(a)

units in the last lT groups must receive treatment gT \ {a}, and the assignments of the n[a] units
into these m groups have the same probability. From the relationship between n[a]r and Lt(z)gt(a)

in (4), the first conclusion (1) in Proposition 2 holds. The second conclusion (2) in Proposition
2 follows directly from the independence among the group assignments for units with different
attributes under the numerical implementation.

As a direct consequence of Proposition 2, we have the following results characterizing the
probability law of complete randomization, and we will use them in later proofs.

Proposition A2. Under Assumptions 1 and 2, and under complete randomization defined in
Section 2.4.2, for 1  a, a

0  H and r, r
0 2 R, we have p[a](r) = n[a]r/n[a], b[a](r) = n[a]/n[a]r,

c[a][a0](r, r
0) = 0, and

p[a][a0](r, r
0) =

8
>>>><

>>>>:

n[a]rn[a0 ]r0
n[a]n[a0 ]

;
n[a]rn[a]r0

n[a](n[a]�1) ;
n[a]r(n[a]r�1)
n[a](n[a]�1) ;

d[a][a0](r, r
0) =

8
>>><

>>>:

0, if a 6= a
0;

n[a]

n[a]�1 , if a = a
0, r 6= r

0;

� n[a](n[a]�n[a]r)

(n[a]�1)n[a]r
, if a = a

0, r = r
0.

The formulas of p[a](r) and p[a][a](r, r
0) are standard in completely randomized experiments

with multiple treatments, the formula of p[a][a0](r, r
0) with a 6= a

0 follows from the independence
between treatments of units with different attributes, and the formulas of d[a][a0](r, r

0), c[a][a0](r, r
0)

and b[a](r) follow from their definitions in (7)–(9).

Proof of Theorem 3. We first consider the point and interval estimator for the subgroup average
peer effect. Under complete randomization, for the n[a] units with attribute a, we are essentially
conducting a complete randomized experiments with n[a]r units receiving treatment r. Based
on Lemma A4 and the regularity condition (ii) in Condition 1, the finite population covariance
between potential outcomes S[a](r, r

0) has a limit. From Li and Ding (2017, Theorem 5), t̂[a](r, r
0)

is asymptotically Normal:

p
n[a]

n
t̂[a](r, r

0)� t[a](r, r
0)
o

d�! N
⇣

0, lim
n!•

n[a]Var{t̂[a](r, r
0)}

⌘
,
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where limn!• n[a]Var{t̂[a](r, r
0)} exists due to the convergence of proportions of units receiv-

ing different treatments n[a]r/n[a] and the finite population variances of potential outcomes and
individual peer effects S

2
[a](r) and S

2
[a](r-r0).

Moreover, according to Li and Ding (2017, Proposition 3), the sample variance of observed
outcomes in the subgroup consisting of units with attribute a receiving treatment r, s

2
[a](r), is

consistent for the population analogue S
2
[a](r), in the sense that s

2
[a](r)� S

2
[a](r)

p�! 0. Thus, the
variance estimator V̂[a](r, r

0) satisfies

n[a]V̂[a](r, r
0)� n[a]Var{t̂[a](r, r

0)}� S
2
[a](r-r0) =

n[a]

n[a]r

n
s

2
[a](r)� S

2
[a](r)

o
+

n[a]

n[a]r0

n
s

2
[a](r

0)� S
2
[a](r

0)
o

p�! 0.

Therefore, the Wald-type confidence interval for t[a](r, r
0) is asymptotically conservative.

Second, we consider the confidence interval for the average peer effect t(r, r
0). Based on

Slutsky’s theorem, t̂(r, r
0) is asymptotically Normal:

p
n
�

t̂(r, r
0)� t(r, r

0)
 
=

H

Â
a=1

p
w[a]

p
n[a]{t̂[a](r, r

0)� t[a](r, r
0)} d�! N

⇣
0, lim

n!•
nVar{t̂(r, r

0)}
⌘

.

Moreover, the variance estimator V̂(r, r
0) satisfies that

nV̂(r, r
0)� nVar{t̂(r, r

0)}�
H

Â
a=1

w[a]S
2
[a](r-r0) =

H

Â
a=1

w[a]

n
n[a]V̂[a](r, r

0)� n[a]Var{t̂[a](r, r
0)}� S

2
[a](r-r0)

o
p�! 0.

Therefore, the Wald-type confidence interval for t(r, r
0) is asymptotically conservative.

Proof of Theorem 4. We prove the three conclusions in Theorem 4 as follows.
First, let |R| dimensional column vectors

Yi(R) = (Yi(r1), . . . , Yi(rR))
>, Ȳ[a](R) = (Ȳ[a](r1), . . . , Ȳ[a](r|R|))

>, Ŷ[a](R) = (Ŷ[a](r1), . . . , Ŷ[a](r|R|))
>

consist of unit i’s all potential outcomes, all subgroup average potential outcomes, and all sub-
group average potential outcome estimators, respectively. Then

qi(R) = GYi(R), q[a](R) = GȲ[a](R), q̂[a](R) = GŶ[a](R).

Based on the equivalence relationship in Proposition 2 and the variance formula in Li and Ding
(2017, Theorem 3), the sampling covariance matrix of Ŷ[a](R) under complete randomization is

Cov{Ŷ[a](R)} = diag

(
S

2
[a](r1)

n[a]r1

, . . . ,
S

2
[a](r|R|)

n[a]r|R|

)
� 1

n[a](n[a] � 1) Â
i:Ai=a

{Yi(R)� Ȳ[a](R)}{Yi(R)� Ȳ[a](R)}>,

which implies the sampling covariance of q̂[a](R) = GŶ[a](R).
Second, the regularity conditions of Theorem 4 and Li and Ding (2017, Theorem 5) imme-
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diately imply the asymptotic Normality of pn[a]{Ŷ[a](R)� Ȳ[a](R)}, which further implies the
asymptotic Normality of pn[a]{q̂[a](R)� q[a](R)}.

Third, according to Li and Ding (2017, Proposition 3), s
2
[a](r) is consistent for S

2
[a](r). Moreover,

the second term in the covariance formula of q̂[a](R) is a positive semi-definite matrix. Therefore,
the Wald-type confidence set using variance estimator (17) is asymptotically conservative.

Note that the second term in the covariance formula of q̂[a](R) is actually the finite popula-
tion covariance matrix of (qi(r1), qi(r2), . . . , qi(r|R|))

> for units with attribute a scaled by n
�1
[a] , and

these centered individual potential outcomes qi(r)’s can be represented as linear functions of the
individual peer effects ti(r, r

0)’s. Thus, when the individual peer effects for units with the same
attribute are additive, the finite population covariance matrix of (qi(r1), qi(r2), . . . , qi(r|R|))

> for
units with attribute a are zero, and the Wald-type confidence sets for q[a](R) become asymptoti-
cally exact.

A4. More on random partitioning

In this section, we discuss details of random partitioning. In particular, we give the formulas
for p[a](r) and p[a][a0](r, r

0), based on which we can get the formulas for d[a][a0](r, r
0), c[a][a0](r, r

0)

and b[a](r), the unbiased point estimators for peer effects, the sampling variances of peer effects
estimators, and the corresponding variance estimators.

Each r 2 R is a set containing K unordered but replicable elements from {1, 2, . . . , H}. Let
r(a) be the number of elements in set r that are equal to a. If a itself belongs to r, let r \ {a} be
the set containing the remaining K � 1 elements, by deleting an element a from the set r.

Theorem A1. Under random partitioning, for 1  a, a
0  H and r, r

0 2 R, the probability that a
unit i with attribute Ai = a receives treatment r is

p[a](r) = pr(Ri = r) =
(

n[a]�1
r(a)

)’1qH,q 6=a (
n[q]

r(q)
)

(n�1
K
)

, (A10)

and the probability that two different units (i 6= j) with attributes Ai = a and Aj = a
0 receive

treatments r and r
0 is

p[a][a0](r, r
0) = pr(Ri = r, Rj = r

0) =
K

n � 1
· y[a][a0](r, r

0) +
n � K � 1

n � 1
· f[a][a0](r, r

0), (A11)

where

y[a][a0](r, r
0) =

8
>>>>><

>>>>>:

(
n[a]�1

r(a)
)(

n[a0 ]�1

r(a0)�1
)’1qH,q 6=a,a0 (

n[q]
r(q)

)

(n�2
K�1)

, if a
0 2 r, a 2 r

0, r \ {a
0} = r

0 \ {a}, a 6= a
0,

(
n[a]�2

r(a)�1
)’1qH,q 6=a (

n[q]
r(q)

)

(n�2
K�1)

, if a
0 2 r, a 2 r

0, r \ {a
0} = r

0 \ {a}, a = a
0,

0, otherwise,

(A12)
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and

f[a][a0](r, r
0) =

8
>>><

>>>:

(
n[a]�1

r(a)
)(

n[a]�1�r(a)

r0(a)
)(

n[a0 ]�1

r(a0)
)(

n[a0 ]�1�r(a
0)

r0(a0)
)’1qH,q 6=a,a0

⇢
(

n[q]
r(q)

)(
n[q]�r(q)

r0(q)
)

�

(n�2
K
)(n�2�K

K
)

, if a 6= a
0,

(
n[a]�2

r(a)
)(

n[a]�2�r(a)

r0(a)
)’1qH,q 6=a

⇢
(

n[q]
r(q)

)(
n[q]�r(q)

r0(q)
)

�

(n�2
K
)(n�2�K

K
)

, if a = a
0.

(A13)

We give some intuition to explain the formulas of p[a](r) and p[a][a0](r, r
0) under random

partitioning. First, in (A10), the denominator (n�1
K
) denotes the total number of possible peers

for unit i, and the numerator denotes the number of possible peers such that unit i receives
treatment r. Second, for any two different units i and j with attributes a and a

0, we consider two
cases according to whether units i and j are in the same group or not. The coefficients K/(n � 1)
and (n � K � 1)/(n � 1) in (A11) are the probabilities that units i and j are in the same group
and not in the same group, respectively. Correspondingly, y[a][a0](r, r

0) and f[a][a0](r, r
0) represent

the conditional probabilities that units i and j receive treatments r and r
0 given that i and j are

and are not in the same group.
When units i and j are in the same group, they have K � 1 common peers, and therefore, the

treatment Ri of unit i consists of unit j’s attribute and the K � 1 common peers’ attributes, and
the treatment Rj consists of unit i’s attribute and the K � 1 common peers’ attributes. Therefore,
y[a][a0](r, r

0) is positive if and only if a
0 2 r, a 2 r

0 and r \ {a
0} = r

0 \ {a}. In (A12), when
y[a][a0](r, r

0) 6= 0, the denominator (n�2
K�1) counts the number of possible K � 1 units in the same

group as units i and j, and the numerator counts the number of possible K � 1 units in the same
group as units i and j such that units i and j receive treatments r and r

0. In (A13), the denominator
(n�2

K
)(n�2�K

K
) counts the number of possible peers for units i and j, and the numerator counts the

number of possible peers for units i and j such that units i and j receive treatments r and r
0.

Proof of Theorem A1. First, we calculate p[a](r). Assume that unit i has attribute Ai = a. The
total number of possible peers of unit i is (n�1

K
), and the total number of possible peers of unit i

such that unit i receives treatment r is
✓

n[a] � 1
r(a)

◆
’

1qH,q 6=a

✓
n[q]

r(q)

◆
,

where (
n[a]�1

r(a)
) counts the number of possible choice of the peers of unit i with attribute a, and

(
n[q]

r(q)
) counts the number of possible choice of the peers of unit i with attribute q 6= a. Under

random partitioning, any other K units have the same probability to be in the same group as unit
i. Therefore, (A10) holds.

Second, we calculate p[a][a0](r, r
0). Assume that i 6= j are two units with attributes Ai = a and

Aj = a
0. Under random partitioning, we can decompose the probability pr(Ri = r, Rj = r

0) into
two parts according to whether units i and j are in the same group:

p[a][a0](r, r
0) = pr(Ri = r, Rj = r

0) = pr(j 2 Zi, Ri = r, Rj = r
0) + pr(j /2 Zi, Ri = r, Rj = r

0)
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= pr(j 2 Zi)pr(Ri = r, Rj = r
0 | j 2 Zi) + pr(j /2 Zi)pr(Ri = r, Rj = r

0 | j /2 Zi).
(A14)

Because any other K units have the same probability to be the peers of unit i, by symmetry,
pr(j 2 Zi) = K/(n � 1) and pr(j /2 Zi) = 1 � K/(n � 1). We then consider the two conditional
probabilities y[a][a0](r, r

0) ⌘ pr(Ri = r, Rj = r
0 | j 2 Zi), and f[a][a0](r, r

0) ⌘ pr(Ri = r, Rj = r
0 | j /2

Zi).
When units i and j are in the same group, units i and j are peers of each other and they

have K � 1 common peers. Therefore, they have positive probability to receive treatments r and
r
0 if and only if r and r

0 satisfy a
0 2 r, a 2 r

0, and r \ {a
0} = r

0 \ {a}. When a
0 2 r, a 2 r

0, and
r \ {a

0} = r
0 \ {a}, the total number of possible peers of units i and j such that units i and j

receive treatments r and r
0 is
8
<

:
(

n[a]�1
r(a)

)(
n[a0 ]�1
r(a0)�1)’1qH,q 6=a,a0 (

n[q]

r(q)
), if a 6= a

0,

(
n[a]�2
r(a)�1)’1qH,q 6=a (

n[q]

r(q)
), if a = a

0.

Note that the total number of possible peers of units i and j is (n�2
K�1). Because any possible peers

of units i and j have the same probability, by symmetry,

y[a][a0](r, r
0) = pr(Ri = r, Rj = r

0 | j 2 Zi)

=

8
>>><

>>>:

(n�2
K�1)

�1
(

n[a]�1
r(a)

)(
n[a0 ]�1
r(a0)�1)’1qH,q 6=a,a0 (

n[q]

r(q)
), if a

0 2 r, a 2 r
0, r \ {a

0} = r
0 \ {a}, a 6= a

0,

(n�2
K�1)

�1
(

n[a]�2
r(a)�1)’1qH,q 6=a (

n[q]

r(q)
), if a

0 2 r, a 2 r
0, r \ {a

0} = r
0 \ {a}, a = a

0,

0, otherwise.

When units i and j are not in the same group, the total number of their possible peers is
(n�2

K
)(n�2�K

K
), and the total number of their possible peers such that units i and j receive treat-

ments r and r
0 is

8
<

:
(

n[a]�1
r(a)

)(
n[a]�1�r(a)

r0(a)
)(

n[a0 ]�1
r(a0)

)(
n[a0 ]�1�r(a

0)

r0(a0)
)’1qH,q 6=a,a0

n
(

n[q]

r(q)
)(

n[q]�r(q)

r0(q)
)
o

, if a 6= a
0,

(
n[a]�2

r(a)
)(

n[a]�2�r(a)

r0(a)
)’1qH,q 6=a

n
(

n[q]

r(q)
)(

n[q]�r(q)

r0(q)
)
o

, if a = a
0.

Because any possible peers of units i and j have the same probability, by symmetry,

f[a][a0](r, r
0) = pr(Ri = r, Rj = r

0 | j /2 Zi)

=

8
>>><

>>>:

(
n[a]�1

r(a)
)(

n[a]�1�r(a)

r0(a)
)(

n[a0 ]�1

r(a0)
)(

n[a0 ]�1�r(a
0)

r0(a0)
)’1qH,q 6=a,a0

⇢
(

n[q]
r(q)

)(
n[q]�r(q)

r0(q)
)

�

(n�2
K
)(n�2�K

3 )
, if a 6= a

0,

(
n[a]�2

r(a)
)(

n[a]�2�r(a)

r0(a)
)’1qH,q 6=a

⇢
(

n[q]
r(q)

)(
n[q]�r(q)

r0(q)
)

�

(n�2
K
)(n�2�K

K
)

, if a = a
0.

We have computed the four terms in (A14), and Theorem A1 follows directly.
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