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Summary

In causal mediation analysis, the definitions of the natural direct and indirect effects involve poten-
tial outcomes that can never be observed, so-called a priori counterfactuals. This conceptual challenge
translates into issues in identification, which requires strong and often unverifiable assumptions, including
sequential ignorability. Alternatively, we can deal with post-treatment variables using the principal stratifi-
cation framework, where causal effects are defined as comparisons of observable potential outcomes. We
establish a novel bridge between mediation analysis and principal stratification, which helps to clarify and
weaken the commonly used identifying assumptions for natural direct and indirect effects. Using princi-
pal stratification, we show how sequential ignorability extrapolates from observable potential outcomes
to a priori counterfactuals, and propose alternative weaker principal ignorability-type assumptions. We
illustrate the key concepts using a clinical trial.

Some key words: Causal inference; Identification; Potential outcome; Principal stratification.

1. Introduction

Mediation analyses decompose causal effects into channelled effects through some mediator that lies in
the pathway between the treatment and the outcome, and unchannelled effects not through this mediator.
We define channelled and unchannelled effects using the concepts of natural direct and indirect effects. The
latter effects raise identifiability issues because they are defined as comparisons between potential outcomes
of various types, on some of which data contain no or little information without strong assumptions.
Inferences on these effects usually rest on sequential ignorability, which combines ignorability of treatment
assignment given a set of pre-treatment covariates and ignorability of the mediator given the treatment and
pre-treatment covariates (Robins & Greenland, 1992). Under sequential ignorability, natural direct and
indirect effects can be identified from the data using the mediation formula (Pearl, 2001).

Sequential ignorability implies that, conditional on covariates, there is no unmeasured confounding of
the treatment-mediator, treatment-outcome and mediator-outcome relationships. Therefore, these assump-
tions require that the mediator be, at least in principle, regarded as an additional treatment and could
be potentially manipulated by an intervention. Sequential ignorability is not directly verifiable from the
observed data and its plausibility is not always well understood.
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We provide insight into sequential ignorability using the concepts of principal stratification (Frangakis
& Rubin, 2002) and principal ignorability (Jo & Stuart, 2009; Ding & Lu, 2017) in the case of a binary
mediator. We make the following contributions. First, we use principal ignorability to offer an alternative
interpretation of sequential ignorability, which may seem more natural in some settings. Second, we use
principal stratification to clarify the source of information on natural direct and indirect effects under
sequential ignorability. Third, we elucidate the relationship between sequential and principal ignorability
under an additional monotonicity assumption. Fourth, we propose a new set of assumptions to identify
natural direct and indirect effects, and investigate their relationships with sequential ignorability.

2. Notation, framework and identifiability in mediation analysis

2·1. Potential outcomes and causal effects

For each individual i characterized by covariates Xi, let Zi represent a binary treatment, with Zi = 1 for
those assigned to the active treatment and Zi = 0 for those assigned to the control. Let Yi(z) and Mi(z) be
the potential outcomes for a primary endpoint, Y , and a binary post-treatment intermediate variable, M ,
that we would observe under treatment level z (z = 0, 1) for unit i. In mediation analysis, M is referred to
as a mediator.

For each unit i the observed data include covariates Xi, the treatment Zi, and the observed values of the
mediator and outcome, which can be defined, by consistency, as M obs

i = Mi(Zi) = ZiMi(1)+ (1−Zi)Mi(0)

and Y obs
i = Yi(Zi) = ZiYi(1) + (1 − Zi)Yi(0).

The purpose of mediation analysis is to investigate the extent to which the mediator plays a role in
the effect of the treatment on the outcome. To formalize causal effects that can answer such a question,
Robins & Greenland (1992) and Pearl (2001) extended the above potential outcomes by introducing the
double-indexed notation Yi(z, m), which denotes the potential outcome for unit i that would occur if the
treatment were set to level z and if the mediator were manipulated to level m. Furthermore, we can define an
additional potential outcome, Yi(z, Miz′), where the level of the mediator is determined by an intervention
on the treatment. If z′ = z, then Yi(z) = Yi(z, Miz) under the composition assumption (VanderWeele, 2015).
We use Miz for Mi(z) in the nested potential outcomes.

The average causal effect conditional on covariates at level Xi = x, ace(x) = E{Yi(1) − Yi(0) | x}, can
be decomposed into the sum of a natural direct effect,

nde(z | x) = E{Yi(1, Miz) − Yi(0, Miz) | x} (z = 0, 1),

and a natural indirect effect,

nie(z | x) = E{Yi(z, Mi1) − Yi(z, Mi0) | x} (z = 0, 1),

as ace(x) = nde(z | x) + nie(1 − z | x) (Robins & Greenland, 1992; Pearl, 2001). The natural direct
effect nde(z | x) is the average effect of the treatment when the mediator is kept at the level that would
potentially be observed under treatment z, and the natural indirect effect nie(z | x) is the average effect of
a change in the mediator, achieved by a hypothetical intervention that sets the treatment to level z. All the
effects are defined conditional on covariates.

Throughout the paper, we use a randomized clinical trial, the morphine study (Borracci et al., 2013), to
convey the intuition behind the assumptions and illustrate how one can reason about their plausibility.

Example 1. Baccini et al. (2017) analysed the morphine study to assess the extent to which the effect of
preoperative oral administration of morphine sulphate on postoperative pain intensity is mediated by post-
operative self-administration of intravenous morphine sulphate by patients.A sample of patients undergoing
an elective open colon-rectal abdominal surgery were randomly assigned to receive either oral morphine
sulphate, Zi = 1, or oral midazolam, Zi = 0. The control is an active placebo with a sedative effect. For
each patient, we observe gender and age. For patient i under treatment z, the potential outcome Yi(z) is the
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Miscellanea 981

value of postoperative pain intensity, and Mi(z) is a binary indicator equal to 1 or 0 depending on whether
the patient self-administered a low or high level of morphine sulphate after surgery. Moreover, Yi(z, m)

and Yi(z, Miz′) denote the values of postoperative pain intensity for patient i that would occur if his/her
treatment was set to level z and if her/his postoperative morphine consumption was manipulated to levels
m and Mi(z′), respectively.

2·2. Identification issues and sequential ignorability

Potential outcomes of the form Yi(z, Miz′), with z |= z′, are referred to as cross-world counterfactuals
(Robins & Greenland, 1992) or a priori counterfactuals (Frangakis & Rubin, 2002). They can never be
observed in one experiment, because they result from hypothetically assigning each unit to two different
treatments simultaneously (Mealli & Mattei, 2012; Forastiere et al., 2016). Although we can hypothesize
their existence, a priori counterfactuals are conceptually different from potential outcomes of the form
Yi(z), which are observable potential outcomes. The potential outcome Yi(z, Miz′) is observable only if
either z = z′ or Mi(z) = Mi(z′), i.e., Yi(z) = Yi(z, Miz) = Yi(z, Miz′), and is actually observed when the
treatment received by unit i is Zi = z = z′. Although ignorability of the treatment suffices to identify the
marginal distributions of potential outcomes of the form Yi(z), and hence the average causal effect ace(x),
identification of the marginal distributions of a priori counterfactuals, and hence of natural direct and
indirect effects, requires additional assumptions that would allow extrapolation to a priori counterfactuals
based on the observed data.

There are different sets of identifying assumptions for the natural direct and indirect effects (Pearl, 2001;
Van Der Laan & Petersen, 2008; Hafeman & VanderWeele, 2011; Imai et al., 2010). Ten Have & Joffe
(2012) provides a review. The difference between them is subtle and, broadly speaking, they all couple the
ignorability of the treatment with the ignorability of the mediator conditional on covariates. Here we focus
on the assumptions used by Imai et al. (2010):

Assumption 1 (Ignorability of the treatment). {Yi(z, m), Mi(z′)} Zi | Xi for all z, z′, m = 0, 1;

Assumption 2 (Ignorability of the mediator). Yi(z, m) Mi(z′) | (Zi = z′, Xi) for all z, z′, m = 0, 1.

Imai et al. (2010) refer to Assumptions 1 and 2 together as sequential ignorability. Assumption 1 is the
ignorability of the treatment, and Assumption 2 states that the mediator is ignorable given the observed
treatment and covariates. Under Assumptions 1 and 2,

E{Yi(z, Miz′) | x} =
!

m=0,1

E(Y obs
i | Zi = z, M obs

i = m, x) × pr(M obs
i = m | Zi = z′, x), (1)

which is referred to as the mediation formula (Pearl, 2001). We see from (1) that the average of the potential
outcome Yi(z, Miz′) can be identified from the observed data by the conditional expectation of the observed
outcomes given treatment level z and the observed mediator, averaged over the conditional distribution of
the observed mediator given treatment level z′.

2·3. Principal stratification

Frangakis & Rubin (2002) introduced the principal stratification framework to deal with post-treatment
variables. A principal stratification with respect to a post-treatment variable M is a partition of units into
latent subpopulations, called principal strata, defined by the joint potential values of that post-treatment
variable under each level of the treatment. Denote by Gi = {Mi(0), Mi(1)} the principal strata membership.
Given a binary mediator, Gi ∈ {00, 01, 10, 11}. In Example 1, we call Gi = 00 pain-intolerant patients,
Gi = 01 compliant patients, Gi = 10 defiant patients, and Gi = 11 pain-tolerant patients.

A principal causal effect is a comparison between the potential outcomes within a particular principal
stratum. We focus on average principal causal effects, defined as pce(g | x) = E{Yi(1)−Yi(0) | Gi = g, x}.
The average causal effect is a weighted average of the principal causal effects, ace(x) ="g pce(g | x)πg|x,
where the summation is over g ∈ {00, 01, 10, 11} and πg|x = pr(Gi = g | x) is the conditional probability
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of the principal stratum g. Frangakis & Rubin (2002) call pce(11 | x) and pce(00 | x) dissociative effects,
and pce(01 | x) and pce(10 | x) associative effects. The subgroups 00 and 11, for which the mediator is not
affected by the treatment, provide information on the natural direct effect of the treatment. The subgroups
01 and 10, for which the mediator is affected by treatment, generally combine natural direct and indirect
effects (Mealli & Mattei, 2012). See VanderWeele (2008) for more discussion.

The principal strata membership is in general unknown, as we cannot observe both potential values of the
mediator in a single experiment. This inherent latent nature of principal strata jeopardizes the identification
of principal causal effects.

3. Generalized strong principal ignorability and the mediation formula

Principal ignorability was introduced for the identification of principal causal effects (Jo & Stuart, 2009;
Ding & Lu, 2017; Feller et al., 2017). Here, we generalize it for mediation analysis:

Assumption 3 (Generalized strong principal ignorability). Yi(z, m) Gi | Xi for all z, m = 0, 1.

Assumption 3 requires that the distribution of potential outcomes Yi(z, m) be the same across principal
strata, conditional on covariates. Because the heterogeneity across principal strata can be interpreted as
heterogeneity with respect to a latent variable (Forcina, 2006), Assumption 3 can also be seen as ruling
out the presence of unmeasured confounding of the mediator-outcome relationship (Ding & Lu, 2017). In
the following, we present results that help to clarify the relationship between Assumptions 2 and 3. While
the former involves marginal independence between the potential outcomes and the two potential values
of the mediator, the latter assumes joint independence. Therefore, Assumption 3 implies Assumption 2.
Thus, there can be situations where principal strata are heterogeneous, i.e., Assumption 3 does not hold,
but Assumption 2 holds. Even if the joint distribution of Mi(0) and Mi(1) depends on a latent variable also
affecting the outcome, the marginal distribution of the two potential mediators might be free of unmeasured
confounding. Then, the proposition below follows.

Proposition 1. Under Assumptions 1 and 3, the mediation formula (1) holds.

Proposition 1 implies that the average of a priori counterfactuals can be identified from the observed data
in the same way, that is, by the mediation formula (1), under either Assumptions 1 and 2 or Assumptions 1
and 3.AlthoughAssumption 3 is stronger thanAssumption 2, in some cases the plausibility ofAssumption 3
might be easier to justify, because it can help to think in terms of homogeneity across principal strata rather
than in terms of no unmeasured confounding of the mediator-outcome relationship.

In Example 1, Assumption 2 requires that, at least in principle, we can conceive an intervention on post-
operative morphine consumption, and assume that it is randomly assigned within each treatment group,
conditional on covariates. Thus, Assumption 2 rules out unobserved confounders that causally affect both
postoperative morphine consumption and pain intensity given the treatment and pre-treatment covariates.
Although hypothetical interventions on postoperative morphine consumption might be conceivable, they
might be unethical. Moreover, it might be difficult to argue that all relevant confounders of the relationship
between postoperative morphine consumption and pain intensity have been observed, especially in the
morphine study with only two covariates. It might be easier to envision the plausibility of Assumption 3,
which requires that the potential outcomes for pain intensity that would occur if the treatment were set to
level z and the postoperative morphine consumption were set to level m have the same distributions across
pain-tolerant, pain-intolerant, compliant and defiant patients with the same value of the covariates.

4. Interpretation of the mediation formula: extrapolation across principal strata

We aim at clarifying the extrapolation of information on a priori counterfactuals performed by the
mediation formula (1). In principle, the average potential outcome is a weighted average of the same
potential outcome across principal strata, with weights given by principal strata proportions. The following
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Miscellanea 983

proposition shows what part of the observed data and which type of units provide information on potential
outcomes Yi(z, Miz′), which can be a priori counterfactuals for some units if z |= z′.

Proposition 2. Under Assumption 1, if either Assumption 2 or 3 holds, then

E {Yi(1, Mi0) | x}

=
#
E{Yi(1) | Gi = 00, x} π00|x

π00|x + π10|x
+ E{Yi(1) | Gi = 10, x} π10|x

π00|x + π10|x

$
(π00|x + π01|x)

+
#
E{Yi(1) | Gi = 11, x} π11|x

π01|x + π11|x
+ E{Yi(1) | Gi = 01, x} π01|x

π01|x + π11|x

$
(π10|x + π11|x), (2)

E {Yi(0, Mi1) | x}

=
#

E{Yi(0) | Gi = 11, x} π11|x
π11|x + π10|x

+ E{Yi(0) | Gi = 10, x} π10|x
π11|x + π10|x

$
(π00|x + π01|x)

+
#
E{Yi(0) | Gi = 00, x} π00|x

π01|x + π00|x
+ E{Yi(0) | Gi = 01, x} π01|x

π01|x + π00|x

$
(π10|x + π00|x). (3)

Each term of (2) and (3) is a product of a weighted average of an observable potential outcome, Yi(1)

or Yi(0), and the sum of the proportion of two principal strata. This product reflects how information
on observable potential outcomes for specific principal strata is used for potential outcomes of the type
Yi(z, Miz′) for other principal strata.

In Example 1, according to (2), a weighted average of the observable potential outcomes for pain
intensity under oral morphine, Yi(1), for patients with Mi(1) = 0, who would self-administer a high
level of morphine sulphate, i.e., pain-intolerant patients Gi = 00 and defiant patients Gi = 10, provides
information on Yi(1, Mi0) for patients with Mi(0) = 0, who would self-administer a high level of morphine
sulphate under the placebo, i.e., compliant patients Gi = 01 and pain-intolerant patients Gi = 00. Moreover,
the distributions of Yi(1) for patients with Mi(1) = 1, i.e., pain-tolerant patients Gi = 11 and compliant
patients Gi = 01, are used to impute Yi(1, Mi0) for patients with Mi(0) = 1, i.e., defiant patients Gi = 10
and pain-tolerant patients Gi = 11. A similar interpretation applies to (3).

Proposition 2 also provides valuable insights into the meaning of the natural indirect effects. Specifically,
we have the following propositions, in which we use aceM (x) = E{Mi(1) − Mi(0) | x} to denote the
conditional average causal effect of the treatment on the mediation for notational simplicity.

Proposition 3. Under Assumption 1, if either Assumption 2 or 3 holds, then

nie(1 | x) = aceM (x) × [E{Yi(1) | Gi = 11 or 01, x} − E{Yi(1) | Gi = 00 or 10, x}], (4)

nie(0 | x) = aceM (x) × [E{Yi(0) | Gi = 11 or 10, x} − E{Yi(0) | Gi = 00 or 01, x}]. (5)

Proposition 3 decomposes the natural indirect effects into products of the average effect of the treatment
on the mediator and a comparison of potential outcomes across different principal strata.

Under Assumptions 1 and 2, if we further introduce homogeneity assumptions of the potential outcome
distributions across principal strata, then the second terms on the right-hand sides of (4) and (5) can be
interpreted as the average causal effects of the mediator on the outcome.

Proposition 4. Suppose Assumptions 1 and 2 hold. If Yi(1, m) Gi | Xi, then

nie(1 | x) = aceM (x) × E{Yi(1, 1) − Yi(1, 0) | x}. (6)

If Yi(0, m) Gi | Xi, then

nie(0 | x) = aceM (x) × E{Yi(0, 1) − Yi(0, 0) | x}. (7)

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article-abstract/105/4/979/5142335 by U
N

IVER
SITY O

F C
ALIFO

R
N

IA BER
KELEY user on 11 N

ovem
ber 2018



984 L. Forastiere, A. Mattei AND P. Ding

The independence assumption Yi(z, m) Gi | Xi for a fixed value of z is implied by Assumption 3, so
both (6) and (7) hold under Assumptions 1 and 3. Formulas (6) and (7) reflect the intuition of mediation:
the treatment affects the mediator, and then the mediator affects the outcome given the treatment level
Zi = z with either z = 0 or z = 1.

5. Monotonicity in mediation analysis

We now investigate the role of monotonicity in mediation analysis:

Assumption 4 (Monotonicity). Mi(1) ! Mi(0) for all i.

Assumption 4 rules out negative effects of the treatment on the mediator, but an alternative version
of monotonicity, ruling out positive effects of the treatment on the mediator, could be considered. The
plausibility of monotonicity in mediation analysis strongly depends on the substantive setting. In Example
1, monotonicity, ruling out the existence of defiant patients with Gi = 10, is likely plausible due to the
pharmacological characteristics of the active placebo under control. See also Baccini et al. (2017).

When the treatment and the mediator are both binary, the following proposition holds under the
monotonicity in Assumption 4.

Proposition 5. Under Assumptions 1 and 4, Assumptions 2 and 3 are equivalent.

Proposition 5 implies that, under ignorability of treatment assignment and monotonicity, sequential
ignorability and strong principal ignorability are equivalent, so we can use the mediation formula in (1)
to identify and estimate natural direct and indirect effects invoking either Assumption 2 or Assumption 3,
whichever is easier to justify in a specific case study. In Example 1, Assumption 1 holds by design and
Assumption 4 is very plausible. Therefore, we can identify the natural direct and indirect effects using (1),
if we can provide convincing arguments on the plausibility of either Assumption 2, i.e., no unmeasured
confounding between morphine consumption and pain intensity, or Assumption 3, i.e., homogeneity of the
distributions of the potential outcomes across pain-tolerant, pain-intolerant, and compliant patients.

6. Identification under generalized weak principal ignorability

Here we propose a set of alternative assumptions for identification of natural direct and indirect effects,
involving generalizations of weak principal ignorability assumptions (Jo & Stuart, 2009; Ding & Lu, 2017;
Feller et al., 2017) to potential outcomes of the form Yi(z, m):

Assumption 5. Yi(1, 1) Mi(0) | {Mi(1) = 1, Xi};

Assumption 6. Yi(1, 0) Mi(1) | {Mi(0) = 0, Xi}.

Assumption 5 is a generalized weak principal ignorability of Yi(1, 1) across strata Gi = 11 and Gi = 01,
andAssumption 6 is a generalized weak principal ignorability of Yi(1, 0) across strata Gi = 00 and Gi = 01.
Assumptions 5 and 6 together are weaker than Assumption 3, because the independence in Assumptions 5
and 6 refers to specific potential outcomes and is conditional on specific values of Mi(0) and Mi(1).

In general, we cannot rank sequential ignorability andAssumptions 5 and 6. However, when the treatment
and the mediator are both binary, relying on Proposition 5 we have the following result.

Proposition 6. Under Assumptions 1 and 4, Assumption 2 implies Assumptions 5 and 6.

Proposition 6 implies that the set of Assumptions 1, 4, 5 and 6 is weaker than the set of Assumptions
1, 4 and 2 or 3, and thus may be more plausible. Therefore, it might be valuable to investigate whether we
can identify natural direct and indirect effects under Assumptions 1, 4, 5 and 6.

Assumptions 5 and 6 involve homogeneity of two different potential outcomes, Yi(1, 1) and Yi(1, 0),
across two different sets of principal strata. In particular, Assumption 5 states that the distribution of
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Yi(1, 1) is the same for strata Gi = 11 and Gi = 01, i.e., pain-tolerant and compliant patients for whom
Yi(1, 1) = Yi(1, Mi1) = Yi(1). Assumption 5 implies that we can use the observed data to estimate the
distribution of Yi(1, 1) for the two principal strata that are mixed together in the observed set with Zi = 1
and M obs

i = 1, i.e., patients who are treated with preoperative oral morphine and who self-administer a
low level of morphine sulphate after surgery.

The second homogeneity in Assumption 6 refers to the potential outcome Yi(1, 0) across strata Gi = 00
and Gi = 01, i.e., pain-intolerant and compliant patients for whom Yi(1, 0) = Yi(1, Mi0). This homogeneity
has a slightly different flavour, because it allows for identifying the a priori counterfactual for compliant
patients Gi = 01 using information on Yi(1, 0) for pain-intolerant patients Gi = 00. Under Assumptions 1
and 4, we can estimate the distribution of Yi(1, 0) for Gi = 00 using information on the observed outcome
for units with Zi = 1 and M obs

i = 0, i.e., patients who are treated with preoperative oral morphine and who
self-administer a high level of morphine sulphate after surgery.

We formalize these arguments in the following proposition.

Proposition 7. If Assumptions 1, 4, 5 and 6 hold, then

E{Yi(1, Mi0) | x} =
!

m=0,1

E(Y obs
i | Zi = 1, M obs

i = m, x) × pr(M obs
i = m | Zi = 0, x),

nde(0 | x) =
!

m=0,1

E(Y obs
i | Zi = 1, M obs

i = m, x) × pr(M obs
i = m | Zi = 0, x)

− E(Y obs
i | Zi = 0, x),

nie(1 | x) =
%
E(Y obs

i | Zi = 1, M obs
i = 1, x) − E(Y obs

i | Zi = 1, M obs
i = 0, x)

&

×
%
E(M obs

i | Zi = 1, x) − E(M obs
i | Zi = 0, x)

&
.

In the Supplementary Material, we give analogous results for nde(1 | x) and nie(0 | x).

7. Discussion

Generalized strong principal ignorability in Assumption 3 implies ignorability of the mediator in
Assumption 2. Proposition 5, however, shows that under monotonicity, the two assumptions are equiv-
alent with a binary mediator. This allows us to derive alternative and weaker assumptions to identify
natural direct and indirect effects, namely the weak principal ignorability in Assumptions 5 and 6. Unfor-
tunately, monotonicity, ignorability of the mediator and weak principal ignorability assumptions are not
directly testable from the observed data, and they may be implausible in some contexts. Therefore, it is
valuable to think about what we can learn from the data about the causal estimands of interest when some
of the underlying critical assumptions cannot be invoked.
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S1. NDE(1 | x) AND NIE(0 | x) UNDER GENERALIZED WEAK PRINCIPAL IGNORABILITY

In §6 we proposed a set of alternative assumptions for identification of natural direct and indirect effects,

but focused only on NDE(0 | x) and NIE(1 | x). For completeness, here we derive similar results for

NDE(1 | x) and NIE(0 | x).

Assumption S7. Yi(0, 0) Mi(1) | {Mi(0) = 0, Xi}. 15

Assumption S8. Yi(0, 1) Mi(0) | {Mi(1) = 1, Xi}.

Assumption S7 is the generalized weak principal ignorability of Yi(0, 0) across strata Gi = 00 and

Gi = 01, and Assumption S8 is the generalized weak principal ignorability of Yi(0, 1) across strata Gi =
11 and Gi = 01. As Assumptions 5 and 6, Assumptions S7 and S8 are weaker than the generalized

principal ignorability in Assumption 3. Relying on Proposition 5, we have the following result analogous 20

to Proposition 6.

PROPOSITION S8. Under Assumptions 1 and 4, Assumption 2 implies Assumptions S7 and S8.

Assumptions S7 and S8 involve homogeneity of two different potential outcomes, Yi(0, 0) and Yi(0, 1),
across two different sets of principal strata. In particular, Assumption S7 states that the distribution of

Yi(0, 0) is the same for strata Gi = 00 and Gi = 01 for whom Yi(0, 0) = Yi(0,Mi0) = Yi(0). Although 25

the distribution of the potential outcome can be identified under Assumption 1, Assumption S7 allows

estimating from the observed data the distribution of Yi(0, 0) for the two principal strata that are mixed to-

gether in the observed set with Zi = 1 and M obs

i = 0. The second homogeneity in Assumption S8, refers

to the potential outcome Yi(0, 1) across strata Gi = 11 and Gi = 01 for whom Yi(0, 1) = Yi(0,Mi1).
This homogeneity has a slightly different flavor, because it allows for identifying the a priori counter- 30

factual for stratum Gi = 01 using information of Yi(0, 1) for Gi = 11, which, in turn, can be estimated

using information of the observed outcome for units with Zi = 0 and M obs

i = 1 under Assumption 1. We

formalize these arguments below analogous to Proposition 7.

C� 2016 Biometrika Trust
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PROPOSITION S9. If Assumptions 1, 4, S7 and S8 hold, then

E{Yi(0,Mi1) | x} =
X

m=0,1

E(Y obs

i | Zi = 0,M obs

i = m,x)⇥ pr(M obs

i = m | Zi = 1, x),

NDE(1 | x) = E(Y obs

i | Zi = 1, x)

�
X

m=0,1

E(Y obs

i | Zi = 0,M obs

i = m,x)⇥ pr(M obs

i = m | Zi = 1, x),

NIE(0 | x) =
�
E(Y obs

i | Zi = 0,M obs

i = 1, x)� E(Y obs

i | Zi = 0,M obs

i = 0, x)
 

⇥
�
E(M obs

i | Zi = 1, x)� E(M obs

i | Zi = 0, x)
 
.

S2. PROOFS35

S2·1. Proof of the mediation formula (3)

We review the proof of the mediation formula (3) under Assumptions 1 and 2:

E{Yi(z,Miz0) | x} =
X

m=0,1

E{Yi(z,m) | Mi(z
0) = m,x} ⇥ pr{Mi(z

0) = m | x}

=
X

m=0,1

E{Yi(z,m) | Zi = z0,Mi(z
0) = m,x} ⇥ pr{Mi(z

0) = m | x}

=
X

m=0,1

E{Yi(z,m) | Zi = z0, x} ⇥ pr{Mi(z
0) = m | x}

=
X

m=0,1

E{Yi(z,m) | Zi = z, x} ⇥ pr{Mi(z
0) = m | Zi = z0, x}

=
X

m=0,1

E{Yi(z,m) | Zi = z,Mi(z) = m,x} ⇥ pr{Mi(z
0) = m | Zi = z0, x}

=
X

m=0,1

E{Y obs

i | Zi = z,M obs

i = m,x} ⇥ pr(M obs

i = m | Zi = z0, x).

Assumption 1, ignorability of the treatment, implies Yi(z,m) Zi | {Mi(z0), Xi} and Mi(z0) Zi | Xi,

and ensures the second and the fourth equalities. Assumption 2, ignorability of the mediator, ensures

the third and fifth equalities. Consistency ensures the last equality with M obs

i = Mi(Zi) and Y obs

i =40

Yi(Zi,M obs

i ).

S2·2. Proof of Proposition 1: mediation formula (3) under Assumptions 1 and 3

Assumption 3 implies Assumption 2. Therefore, Proposition 1 follows from the proof in Section S2·1.

S2·3. Proof of Proposition 2

Consider E{Yi(1,Mi0) | x}. By consistency, the mediation formula (3) can be re-written in terms of45

potential outcomes as

E{Yi(1,Mi0) | x} =
X

m=0,1

E{Y obs

i | Zi = 1,M obs

i = m,x} ⇥ pr{M obs

i = m | Zi = 0, x}

= E{Yi(1) | Zi = 1,Mi(1) = 0, x} ⇥ pr{Mi(0) = 0 | Zi = 0, x}
+E{Yi(1) | Zi = 1,Mi(1) = 1, x} ⇥ pr{Mi(0) = 1 | Zi = 0, x}

= E{Yi(1) | Mi(1) = 0, x} ⇥ pr{Mi(0) = 0 | x}
+E{Yi(1) | Mi(1) = 1, x} ⇥ pr{Mi(0) = 1 | x},
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where the last equality follows from Assumption 1. By the law of total expectation and the law of total

probability, each term in the last equality can further be written in terms of principal strata. Formally,

E{Yi(1,Mi0) | x}
= [E{Yi(1) | Mi(0) = 0,Mi(1) = 0, x} ⇥ pr{Mi(0) = 0 | Mi(1) = 0, x}

+E{Yi(1) | Mi(0) = 1,Mi(1) = 0, x} ⇥ pr{Mi(0) = 1 | Mi(1) = 0, x}]⇥
X

m=0,1

pr{Mi(0) = 0,Mi(1) = m | x}

+[E{Yi(1) | Mi(0) = 0,Mi(1) = 1, x} ⇥ pr{Mi(0) = 0 | Mi(1) = 1, x}
+E{Yi(1) | Mi(0) = 1,Mi(1) = 1, x} ⇥ pr{Mi(0) = 1 | Mi(1) = 1, x}]⇥

X

m=0,1

pr{Mi(0) = 1,Mi(1) = m | x}

=


E{Yi(1) | Gi = 00, x}

⇡00|x

⇡00|x + ⇡10|x
+ E{Yi(1) | Gi = 10, x}

⇡10|x

⇡00|x + ⇡10|x

�
(⇡00|x + ⇡01|x)

+


E{Yi(1) | Gi = 01, x} ⇡01

⇡01|x + ⇡11|x
+ E{Yi(1) | Gi = 11, x}

⇡11|x

⇡01|x + ⇡11|x

�
(⇡10|x + ⇡11|x).

Similarly, we can prove the result for E{Yi(0,Mi1) | x}.

S2·4. Proof of Proposition 3 50

Consider NIE(1 | x). Define

w1 =
⇡11|x + ⇡10|x

⇡11|x + ⇡01|x
=

pr(M obs

i = 1 | Zi = 0, x)

pr(M obs

i = 1 | Zi = 1, x)
,

w2 =
⇡00|x + ⇡01|x

⇡00|x + ⇡10|x
=

1� pr(M obs

i = 1 | Zi = 0, x)

1� pr(M obs

i = 1 | Zi = 1, x)
=

pr(M obs

i = 0 | Zi = 0, x)

pr(M obs

i = 0 | Zi = 1, x)
.

The quantities 1/w1 and 1/w2 can be interpreted as causal effects of the treatment on the mediator on the

risk ratio scale. Replacing w1 and w2 in Proposition 2, we have

E{Yi(1,Mi0) | x} = w1 ⇥
⇥
⇡11|xE{Yi(1) | Gi = 11, x}+ ⇡01|xE{Y (1) | Gi = 01, x}

⇤

+w2 ⇥
⇥
⇡00|xE{Yi(1) | Gi = 00, x}+ ⇡10|xE{Y (1) | Gi = 10, x}

⇤
.

Therefore,

NIE(1 | x) = E{Yi(1) | x} � E{Yi(1,Mi0) | x}
=

X

g=11,01,00,10

⇡g|xE{Yi(1) | Gi = g, x}

�
⇣
w1 ⇥

⇥
⇡11|xE{Yi(1) | Gi = 11, x}+ ⇡01|xE{Yi(1) | Gi = 01, x}

⇤

+w2 ⇥
⇥
⇡00|xE{Yi(1) | Gi = 00, x}+ ⇡10|xE{Yi(1) | Gi = 10, x}

⇤ ⌘

= (1� w1)⇥
⇥
⇡11|xE{Yi(1) | Gi = 11, x}+ ⇡01|xE{Yi(1) | Gi = 01, x}

⇤

+(1� w2)⇥
⇥
⇡00|xE{Yi(1) | Gi = 00, x}+ ⇡10|xE{Yi(1) | Gi = 10, x}

⇤
,

which is a weighted combination of the average potential outcomes under treatment across principal strata

with weights depending on the proportions of the principal strata and the causal effects of the treatment

on the mediator. Because

1� w1 = 1�
⇡11|x + ⇡10|x

⇡11|x + ⇡01|x
=

⇡01|x � ⇡10|x

⇡11|x + ⇡01|x
=

E{Mi(1)�Mi(0) | x}
⇡11|x + ⇡01|x

1� w2 = 1�
⇡00|x + ⇡01|x

⇡00|x + ⇡10|x
= �

⇡01|x � ⇡10|x

⇡00|x + ⇡10|x
= �E{Mi(1)�Mi(0) | x}

⇡00|x + ⇡10|x
,
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we can further simplify the natural indirect effect as

NIE(1 | x) = E{Mi(1)�Mi(0) | x}

⇥


⇡11|x

⇡11|x + ⇡01|x
E{Yi(1) | Gi = 11, x}+

⇡01|x

⇡11|x + ⇡01|x
E{Yi(1) | Gi = 01, x}

�
⇡00|x

⇡00|x + ⇡10|x
E{Yi(1) | Gi = 00, x} �

⇡00|x

⇡00|x + ⇡10|x
E{Yi(1) | Gi = 10, x}

�

= E{Mi(1)�Mi(0) | x} ⇥ [E{Yi(1) | Gi = 11 or 01, x} � E{Yi(1) | Gi = 00 or 10, x}] .

Similarly, we can prove the result for NIE(0 | x).55

S2·5. Proof of Proposition 4

Consider the results in Proposition 3. For Gi = 11 or 01, we have Mi(1) = 1, and for Gi = 10 or 00,

we have Mi(1) = 0. If we invoke the potential outcomes with double index Yi(z,m) and use Yi(z) =
Yi(z,Miz), then we can rewrite the results in Proposition 3 as

NIE(1 | x) = E{Mi(1)�Mi(0) | x}
⇥[E{Yi(1, 1) | Gi = 11 or 01, x} � E{Yi(1, 0) | Gi = 00 or 10, x}],

NIE(0 | x) = E{Mi(1)�Mi(0) | x}
⇥[E{Yi(0, 1) | Gi = 11 or 10, x} � E{Yi(0, 0) | Gi = 00 or 01, x}].

Therefore, the proofs of (8) and (9) follow directly from applying the homogeneity assumptions60

Yi(1,m) Gi | Xi and Yi(0,m) Gi | Xi, respectively.

S2·6. Proof of Proposition 5

We need a lemma to prove Proposition 5.

LEMMA S1. Consider a general random variable R, and two binary random variables R1 and R0

satisfying monotonicity R1 � R0. The following independence relationships are equivalent:65

R R1 and R R0 () R (R1, R0) () R R1 | R0 and R R0 | R1.

Proof of Lemma S1. We need only to prove that

R R1 and R R0 =) R (R1, R0),

because other implication relationships are straightforward.

From R R1 we have pr(R | R1 = 1) = pr(R | R1 = 0), which can be decomposed as

pr(R | R1 = 1, R0 = 1)pr(R0 = 1 | R1 = 1) + pr(R | R1 = 1, R0 = 0)pr(R0 = 0 | R1 = 1)

= pr(R | R1 = 0, R0 = 1)pr(R0 = 1 | R1 = 0) + pr(R | R1 = 0, R0 = 0)pr(R0 = 0 | R1 = 0).

Monotonicity R1 � R0 further simplifies the above equation to

pr(R | R1 = 1, R0 = 1)pr(R0 = 1 | R1 = 1) + pr(R | R1 = 1, R0 = 0)pr(R0 = 0 | R1 = 1)

= pr(R | R1 = 0, R0 = 0). (S1)

Similarly, from R R0 we have pr(R | R0 = 1) = pr(R | R0 = 0), which can be decomposed as

pr(R | R1 = 1, R0 = 1)pr(R1 = 1 | R0 = 1) + pr(R | R1 = 0, R0 = 1)pr(R1 = 0 | R0 = 1)

= pr(R | R1 = 1, R0 = 0)pr(R1 = 1 | R0 = 0) + pr(R | R1 = 0, R0 = 0)pr(R1 = 0 | R0 = 0).

Monotonicity R1 � R0 further simplifies the above equation to70

pr(R | R1 = 1, R0 = 1) (S2)

= pr(R | R1 = 1, R0 = 0)pr(R1 = 1 | R0 = 0) + pr(R | R1 = 0, R0 = 0)pr(R1 = 0 | R0 = 0).
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Replacing pr(R | R1 = 0, R0 = 0) in (S2) by its expression in (S1), we have

pr(R | R1 = 1, R0 = 1)

= pr(R | R1 = 1, R0 = 0)pr(R1 = 1 | R0 = 0)

+ {pr(R | R1 = 1, R0 = 1)pr(R0 = 1 | R1 = 1) + pr(R | R1 = 1, R0 = 0)pr(R0 = 0 | R1 = 1)}
⇥pr(R1 = 0 | R0 = 0). (S3)

Combining the terms involving pr(R | R1 = 1, R0 = 1) and pr(R | R1 = 1, R0 = 0) respectively, (S3)

above implies

pr(R | R1 = 1, R0 = 1)⇥ {1� pr(R0 = 1 | R1 = 1)pr(R1 = 0 | R0 = 0)} (S4)

= pr(R | R1 = 1, R0 = 0)⇥ {pr(R1 = 1 | R0 = 0) + pr(R0 = 0 | R1 = 1)pr(R1 = 0 | R0 = 0)} .

Because

{1� pr(R0 = 1 | R1 = 1)pr(R1 = 0 | R0 = 0)}
�{pr(R1 = 1 | R0 = 0) + pr(R0 = 0 | R1 = 1)pr(R1 = 0 | R0 = 0)}

= 1� pr(R1 = 1 | R0 = 0)� pr(R1 = 0 | R0 = 0) = 0

implies 75

1� pr(R0 = 1 | R1 = 1)pr(R1 = 0 | R0 = 0)

= pr(R1 = 1 | R0 = 0) + pr(R0 = 0 | R1 = 1)pr(R1 = 0 | R0 = 0).

Therefore, (S4) implies that pr(R | R1 = 1, R0 = 1) = pr(R | R1 = 1, R0 = 0). Replacing pr(R | R1 =
1, R0 = 1) in (S1) by pr(R | R1 = 1, R0 = 0), we further deduce that pr(R | R1 = 1, R0 = 0) = pr(R |
R1 = 1, R0 = 1). Therefore, we have shown that

pr(R | R1 = 1, R0 = 0) = pr(R | R1 = 1, R0 = 1) = pr(R | R1 = 0, R0 = 0). (S5)

Because monotonicity R1 � R0 rules out (R1 = 0, R0 = 1), the above relationships in (S5) imply

R (R1, R0). ⇤ 80

Proof of Proposition 5. Suppose that Assumption 3 holds. Then Yi(z,m) Mi(z0) | Xi for all

z, z0,m = 0, 1, because Gi = {Mi(z),Mi(z0)}. Assumption 2 follows from

pr{Yi(z,m),Mi(z
0) | Zi = z0, Xi} = pr{Yi(z,m),Mi(z

0) | Xi}
= pr{Yi(z,m) | Xi} ⇥ pr{Mi(z

0) | Xi}
= pr{Yi(z,m) | Zi = z0, Xi} ⇥ pr{Mi(z

0) | Zi = z0, Xi},

where the first equality and the last equality follow from Assumption 1.

Vice versa, suppose that Assumption 2 holds. Assumption 1 implies

pr{Yi(z,m),Mi(z
0) | Zi = z0, Xi} = pr{Yi(z,m),Mi(z

0) | Xi}
pr{Yi(z,m) | Zi = z0, Xi} ⇥ pr{Mi(z

0) | Zi = z0, Xi} = pr{Yi(z,m) | Xi} ⇥ pr{Mi(z
0) | Xi},

which, coupled with Assumption 2, imply that Yi(z,m) Mi(z0) | Xi for all z, z0,m = 0, 1. Under As- 85

sumption 4, Mi(1) � Mi(0), and therefore Assumption 3 follows from Lemma S1, with R = Yi(z,m),
R0 = Mi(0) and R1 = Mi(1), conditional on Xi. ⇤

S2·7. Proof of Proposition 6

Proposition 5 ensures that, under Assumptions 1 and 4, Assumptions 2 and Assumption 3 are equivalent.

Therefore, we need only to show that Assumption 3 implies Assumptions 5 and 6. Assumption 3 can be

written as Yi(z,m) {Mi(0),Mi(1)} | Xi for all z,m = 0, 1, which further implies

Yi(z,m) Mi(0) | {Mi(1), Xi}, Yi(z,m) Mi(1) | {Mi(0), Xi},
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and, in particular, with specific values of z, m, Mi(0) and Mi(1),

Yi(1, 1) Mi(0) | {Mi(1) = 1, Xi}, Yi(1, 0) Mi(1) | {Mi(0) = 0, Xi}.

S2·8. Proof of Proposition 7

First, we prove the result for Yi(1,Mi0). We can write its conditional mean given Xi = x as a weighted90

average across principal strata:

E{Yi(1,Mi0) | x} = E{Yi(1,Mi0) | Gi = 00, x}⇡00|x + E{Yi(1,Mi0) | Gi = 01, x}⇡01|x

+E{Yi(1,Mi0) | Gi = 11, x}⇡11|x + E{Yi(1,Mi0) | Gi = 10, x}⇡10|x. (S6)

Under Assumption 4, ⇡10|x = 0 and other conditional probabilities of principal strata are identified by

⇡11|x = pr(M obs

i = 1 | Zi = 0, x)

⇡00|x = pr(M obs

i = 0 | Zi = 1, x)

⇡01|x = 1� ⇡11|x � ⇡00|x = pr(M obs

i = 1 | Zi = 1, x)� pr(M obs

i = 1 | Zi = 0, x).95

Identification of the conditional mean of Yi(1,Mi0) within stratum Gi = 00 follows from

E{Yi(1,Mi0) | Gi = 00, x} = E{Yi(1,Mi1) | Mi(0) = Mi(1) = 0, x}
= E{Yi(1,Mi1) | Mi(1) = 0, x}
= E{Yi(1,Mi1) | Zi = 1,Mi(1) = 0, x}
= E(Y obs

i | Zi = 1,M obs

i = 0, x),

where the first equality holds because Yi(1,Mi0) = Yi(1,Mi1) for Gi = 00, the second equality holds

because of Assumption 4, the third equality holds because of Assumption 1, and the last equality holds

because of the composition and consistency assumptions.

Identification of the conditional mean of Yi(1,Mi0) within stratum Gi = 01 follows from100

E{Yi(1,Mi0) | Gi = 01, x} = E{Yi(1,Mi0) | Mi(0) = 0,Mi(1) = 1, x}
= E{Yi(1, 0) | Mi(0) = 0,Mi(1) = 1, x}
= E{Yi(1, 0) | Mi(0) = 0,Mi(1) = 0, x}
= E(Y obs

i | Zi = 1,M obs

i = 0, x), (S7)

where the first equality holds by definition, the second equality holds because Yi(1,Mi0) = Yi(1, 0) for

Gi = 01, the third equality holds because of Assumption 6, and the last equality holds because of consis-

tency Y obs

i = Yi(Zi,M obs

i ).
Identification of the conditional mean of Yi(1,Mi0) within stratum Gi = 11 follows from

E{Yi(1,Mi0) | Gi = 11, x} = E{Yi(1,Mi0) | Mi(0) = 1,Mi(1) = 1, x}
= E{Yi(1, 1) | Mi(0) = 1,Mi(1) = 1, x}
= E{Yi(1, 1) | Mi(1) = 1, x}
= E{Yi(1, 1) | Zi = 1,Mi(1) = 1, x}
= E(Y obs

i | Zi = 1,M obs

i = 1, x), (S8)

where the first equality holds by definition, the second equality holds because Yi(1,Mi0) = Yi(1, 1) for105

Gi = 11, the third equality holds because of Assumption 5, the fourth equality holds because of Assump-

tion 1, and the last equality follows from consistency.
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Therefore, we can use the above ingredients to simplify (S6) as

E{Yi(1,Mi0) | x}
= E(Y obs

i | Zi = 1,M obs

i = 0, x)⇥ pr(M obs

i = 0 | Zi = 1, x)

+E(Y obs

i | Zi = 1,M obs

i = 0, x)⇥ {pr(M obs

i = 1 | Zi = 1, x)� pr(M obs

i = 1 | Zi = 0, x)}
+E(Y obs

i | Zi = 1,M obs

i = 1, x)⇥ pr(M obs

i = 1 | Zi = 0, x)

=
X

m=0,1

E(Y obs

i | Zi = 1,M obs

i = m,x)⇥ pr(M obs

i = m | Zi = 0, x). (S9)

Second, we turn to the identification of the natural direct effect NDE(0 | x):

NDE(0 | x) = E{Yi(1,Mi0) | x} � E{Yi(0,Mi0) | x} = E{Yi(1,Mi0) | x} � E{Yi(0) | x},

where the first term is identified by (S9) and the second term is identified by E(Y obs

i | Zi = 0, x) under

Assumption 1. 110

Third, we prove the result for the natural indirect effect NIE(1 | x). The following decomposition

NIE(1 | x) = E{Yi(1,Mi1) | x} � E{Yi(1,Mi0) | x}
= [E{Yi(1,Mi1) | Gi = 01, x} � E{Yi(1,Mi0) | Gi = 01, x}]⇥ ⇡01|x (S10)

holds under Assumption 4 because Yi(1,Mi1) = Yi(1,Mi0) for strata Gi = 11 and Gi = 00. We can

use (S7) to identify E{Yi(1,Mi0) | Gi = 01, x} in (S10) and use the following result to identify 115

E{Yi(1,Mi1) | Gi = 01, x} in (S10):

E{Yi(1,Mi1) | Gi = 01, x} = E{Yi(1, 1) | Mi(0) = 0,Mi(1) = 1, x}
= E{Yi(1, 1) | Mi(0) = 1,Mi(1) = 1, x}
= E(Y obs

i | Zi = 1,M obs

i = 1, x),

where the first equality holds because Yi(1,Mi1) = Yi(1, 1) for Gi = 01, the second equality holds be- 120

cause of Assumption 5, and the last equality follows from (S8). Therefore, (S10) reduces to

NIE(1 | x) ={E(Y obs

i | Zi = 1,M obs

i = 1, x)� E(Y obs

i | Zi = 1,M obs

i = 0, x)}
⇥ {pr(M obs

i = 1 | Zi = 1, x)� pr(M obs

i = 1 | Zi = 0, x)}.

S2·9. Proofs of Propositions S8 and S9

The proofs are similar to the ones of Propositions 6 and 7. 125


