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With many pretreatment covariates and treatment factors, the classical
factorial experiment often fails to balance covariates across multiple factorial
effects simultaneously. Therefore, it is intuitive to restrict the randomization
of the treatment factors to satisfy certain covariate balance criteria, possibly
conforming to the tiers of factorial effects and covariates based on their rela-
tive importances. This is rerandomization in factorial experiments. We study
the asymptotic properties of this experimental design under the randomiza-
tion inference framework without imposing any distributional or modeling
assumptions of the covariates and outcomes. We derive the joint asymptotic
sampling distribution of the usual estimators of the factorial effects, and show
that it is symmetric, unimodal and more “concentrated” at the true factorial
effects under rerandomization than under the classical factorial experiment.
We quantify this advantage of rerandomization using the notions of “central
convex unimodality” and “peakedness” of the joint asymptotic sampling dis-
tribution. We also construct conservative large-sample confidence sets for the
factorial effects.

1. Introduction. Factorial experiments, initially proposed by Fisher (1935) and Yates
(1937), have been widely used in the agricultural science (see textbooks by Cochran and Cox
(1950), Hinkelmann and Kempthorne (2007), Kempthorne (1952), Cox and Reid (2000)) and
engineering (see textbooks by Box, Hunter and Hunter (2005), Wu and Hamada (2011)).
Recently, factorial experiments also become popular in social sciences (e.g., Angrist, Lang
and Oreopoulos (2009), Branson, Dasgupta and Rubin (2016), Dasgupta, Pillai and Rubin
(2015)). The completely randomized factorial experiment (CRFE) balances covariates under
different treatment combinations on average. However, with more pretreatment covariates
and treatment factors, we have higher chance to observe unbalanced covariates with respect
to multiple factorial effects. Many researchers have recognized this issue in different ex-
perimental designs (e.g., Bruhn and McKenzie (2009), Fisher (1926), Hansen and Bowers
(2008), Student (1938)). To avoid this, we can force a treatment allocation to have covari-
ate balance, which is sometimes called rerandomization (e.g., Cox (1982, 2009), Morgan
and Rubin (2012)), restricted or constrained randomization (e.g., Bailey (1983), Grundy and
Healy (1950), Yates (1948), Youden (1972)).

Extending Morgan and Rubin (2012)’s proposal for treatment-control experiments,
Branson, Dasgupta and Rubin (2016) proposed to use rerandomization in factorial experi-
ments to improve covariate balance, and studied finite sample properties of this design under
the assumptions of equal sample sizes of all treatment combinations, Gaussianity of covariate
and outcome means, and additive factorial effects. Without requiring any of these assump-
tions, we propose more general covariate balance criteria for rerandomization in 2X factorial
experiments, extend their theory with an asymptotic analysis of the sampling distributions of
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the usual factorial effect estimators and provide large-sample confidence sets for the average
factorial effects.

Rerandomization in factorial experiments have two salient features that differ from reran-
domization in treatment-control experiments. First, the factorial effects can have different
levels of importance a priori. Many factorial experimental design principles hinge on the
belief that main effects are often more important than two-way interactions, and two-way in-
teractions are often more important than higher-order interactions (e.g., Bose (1947), Finney
(1943), Wu (2015)). Consequently, we need to impose different stringencies for balancing co-
variates with respect to factorial effects of different importance. Second, covariates may also
vary in importance based on prior knowledge about their associations with the outcome. We
establish a general theory that can accommodate rerandomization with tiers of both factorial
effects and covariates.

Second, in treatment-control experiments, we are often interested in a single treatment
effect. In factorial experiments, however, multiple factorial effects are simultaneously of in-
terest, motivating the asymptotic theory about the joint sampling distribution of the usual
factorial effect estimators. In particular, for the joint sampling distribution, we use ‘““central
convex unimodality” (Dharmadhikari and Jogdeo (1976), Kanter (1977)) to describe its uni-
modal property, and “peakedness” (Sherman (1955)) to quantify the intuition that it is more
“concentrated” at the true factorial effects under rerandomization than the CRFE. These two
mathematical notions for multivariate distributions extend unimodality and narrower quantile
ranges for univariate distributions (Li, Ding and Rubin (2018)), and they are also crucial for
constructing large-sample confidence sets for factorial effects.

In sum, our asymptotic analysis further demonstrates the benefits of rerandomization in
factorial experiments compared to the classical CRFE (Branson, Dasgupta and Rubin (2016)).
The proposed large-sample confidence sets for factorial effects will facilitate the practical use
of rerandomization in factorial experiments and the associated repeated sampling inference.

The paper proceeds as follows. Section 2 introduces the notation. Section 3 discusses sam-
pling properties and linear projections under the CRFE. Section 4 studies rerandomization
using the Mahalanobis distance criterion. Section 5 studies rerandomization with tiers of fac-
torial effects. Section 6 contains an application to an education dataset. Section 7 concludes
with possible extensions. The online Supplementary Material (Li, Ding and Rubin (2019))
contains all technical details.

2. Notation for a 2K factorial experiment.

2.1. Potential outcomes and causal estimands. Consider a factorial experiment with n
units and K treatment factors, where each factor has two levels, —1 and +1. In total there
are 0 = 2K treatment combinations, and for each treatment combination 1 < qg < 0, let
1(q) = (11(q), 12(q), ..., 1k (q)) € {—1, +1}X be the levels of the K factors. We use potential
outcomes to define causal effects in factorial experiments (Dasgupta, Pillai and Rubin (2015),
Splawa-Neyman (1923), Branson, Dasgupta and Rubin (2016)). For unit i, let Y;(g) be the
potential outcome under treatment combination g, and Y; = (Y;(1), ¥;(2), ..., Y;(Q)) be the
Q dimensional row vector of all potential outcomes. Let Y (q) =Y_7_, Yi(q)/n be the average
potential outcome under treatment combination ¢, and Y=({Y1),YQ2),...,Y(Q)) bethe O
dimensional row vector of all average potential outcomes. Dasgupta, Pillai and Rubin (2015)
characterized each factorial effect by a Q dimensional column vector with half of its elements
being —1 and the other half being +1. For example, the average main effect of factor & is

P _ 2 2 _
n=3 Y Hulg)=1}Y(q) — o Y Hulg)=—-1}¥(g)

g=1 g=1



RERANDOMIZATION IN 2K FACTORIAL EXPERIMENTS 45

1 2 _ 1.
=5;72¥umer:ﬁ:ﬂ%k (1<k<K),
g=
where g, = (g1, .-, 8k0) = (1), k(2), ..., (Q)) is called the generating vector for
the main effect of factor k. For an interaction effect among several factors, the g-vector is
an elementwise multiplication of the g-vectors for the main effects of the corresponding fac-
tors. There are in total F = 2K — 1 = Q — 1 factorial effects. Let gr=1(gr1,--.,8f0) €
{—1, +1}Q be the generating vector for the f'th factorial effect (1 < f < F). Foruniti, 7,y =
2-(K=Dy, g is the fth individual factorial effect, and 7; = (7;1, ..., i)' is the F dimen-
sional column vector of all individual factorial effects. Let 7y = 2~ (K-Dyg r be the fthaver-
age factorial effect, and T = (71, ..., TF)’ be the F dimensional column vector of all average
factorial effects. The definitions of the factorial effects imply z; = 2~ (K=1) quzl b,Yi(q)

and T =2~ (K-D Zqul b, Y (¢), with coefficient vectors

811 g12 g10

821 822 &2
@.1) b= =T L be=|"

8F1 8F2 8FQ

Intuitively, the kth main effect compares the average potential outcomes when factor & is
at +1 and —1 levels, and the interaction effect among two factors compares the average
potential outcomes when both factors are at the same level and different levels. We can view
a higher order interaction as the difference between two conditional lower order interactions.
For example, the interaction among factors 1-3 equals the difference between the interactions
of factors 1 and 2 given factor 3 at 41 and —1 levels. See Dasgupta, Pillai and Rubin (2015)
for more details. Below we use an example to illustrate the definitions.

EXAMPLE 1. We consider factorial experiments with K = 3 factors, and use (1, 2, 3) to
denote these three factors. Table 1 shows the definitions of the g /s and the b, ’s. Specifically,
the first three columns (g, g, g3) represent the levels of the three factors in all treatment
combinations, and they generate the main effects of factors (1, 2, 3). The remaining columns
(84, ..., g7) are the elementwise multiplications of subsets of (g, g5, g3) that generate the
interaction effects. The coefficient vector b, consists of all the elements in the gth row of
Table 1.

TABLE 1
gf'sand by ’s for 23 factorial experiments

1 2 3 12 13 23 123

-1 -1 —1 +1 +1 +1 —1 b}
-1 -1 +1 +1 -1 -1 +1 b,
—1 +1 —1 —1 +1 —1 +1 by
-1 +1 +1 -1 -1 +1 -1 b,
+1 -1 —1 —1 —1 +1 +1 by
+1 —1 +1 —1 +1 —1 -1 by
+1 +1 -1 +1 -1 —1 -1 b’
+1 +1 +1 +1 +1 +1 +1 by

81 82 83 84 85 86 87
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2.2. Treatment assignment, covariate imbalance and rerandomization. For each unit i,
x; represents the L dimensional column vector of pretreatment covariates. For instance, in
the education example in Section 6, college freshmen receive different academic services and
incentives after entering the university, and their pretreatment covariates include high school
grade point average, gender, age and etc. Let Z; be the treatment assignment, where Z; = g
if unit ; receives treatment combination g. Let n, be the number of units under treatment
combination ¢, and Z = (Zy, ..., Z,) be the treatment assignment vector for all units. In
the CRFE, the probability that Z takes a particular value z = (21, ...,2,) is ni!---ng!/n!,
where > " | l{z; =q} =ng forall g. Let x = n~! > i1 x; be the finite population covariate
mean vector; for 1 <g < Q, let f:(q) = n;l Zi:z,- —q Xi be the covariate mean vector for units
that receive treatment combination ¢g. For 1 < f < F', the L dimensional difference-in-means
vector of covariates with respect to the fth factorial effect is

0
~ 2 A 1 A 1 2
(2.2) Ty, f= 0 > grqX(q) = Sk > x(q)— KT > x(q).
g=1 q:8rq=1 q:8rq=—1

Let T, = (%;’1, s i';’ ) be the LF dimensional column vector of the difference-in-means

of covariates with respect to all factorial effects. Although 7, has mean zero under the CRFE,
for a realized value of Z, covariate distributions are often imbalanced among different treat-
ment combinations. For example, we consider a CRFE with K = 2 factors, L = 4 uncor-
related covariates and equal treatment group sizes ny = n/Q. In this case, with asymptotic

probability 1 — (1 — 5%)4(22_1) ~ 46.0%, at least one of the difference-in-means in (2.2) with
respect to a covariate and a factorial effect standardized by its standard deviation is larger than
1.96, the 0.975-quantile of N (0, 1). This holds due to the asymptotic Gaussianity of T, with
zero mean and diagonal covariance matrix, implied by Proposition 1 discussed shortly.

Rerandomization is a design to prevent undesirable treatment allocations. When covari-
ate imbalance occurs for a realized randomization under a certain criterion, we discard this
unlucky realization and rerandomize the treatment assignment until this criterion is satisfied.
Generally, rerandomization proceeds as follows (Morgan and Rubin (2012)): first, we collect
covariate data and specify a covariate balance criterion; second, we continue randomizing the
units into different treatment groups until the balance criterion is satisfied; third, we conduct
the physical experiment using the accepted randomization. A major goal of this paper is to
discuss the statistical analysis of the data from a rerandomized factorial experiment.

There are three additional issues on covariates. First, covariates are attributes of the units
that are fixed before the experiment. Second, the covariates can be general (discrete or con-
tinuous). We can use binary indicators to represent discrete covariates. Third, the covariates
can include transformations of the basic covariates and their interactions. This enables us to
balance the marginal and joint distributions of the basic covariates. See Baldi Antognini and
Zagoraiou (2011) and Li, Ding and Rubin (2018) for a related discussion in the treatment-
control experiment.

2.3. Additional notation. To facilitate the discussion, for a positive semidefinite matrix
A € R™™ with rank pg, and a positive integer p > po, we use All,/ 2 e R™*P {0 denote a
matrix such that A},/ 2(A},/ 2)/ = A. Specifically, if A = TA’T” is the eigen-decomposition
of A where I' e R"*P0 T'T = I,, and A =diag(Ay, ..., Ap,), then we can choose A},/Z =

(T'A, 0,5 (p—py))- The choice of A;,/ 2 is generally not unique. In the special case with p =m,
we use A'/? to denote the unique positive-semidefinite matrix satisfying the definition of
A,% 2 We use ® for the Kronecker product of two matrices, and o for elementwise multipli-

cations of vectors. We say a matrix M| is smaller than or equal to M, and write as M| < M,
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if M, — M is positive semidefinite. We say a random vector ¢ (or its distribution) is symmet-
ric, if ¢ and —¢ have the same distribution. We say a random vector is spherically symmetric,
if its distribution is invariant under orthogonal transformations. In the asymptotic analysis, we
use ~ for two sequences of random vectors converging weakly to the same distribution, after

scaling by /n.

3. 2X completely randomized factorial experiments. The sampling distributions of
factorial effect estimators under rerandomization are the same as their conditional distribu-
tions under the CRFE given that the treatment assignment vector satisfies the balance crite-
rion. Therefore, we first study the joint sampling distribution of the difference-in-means of
the outcomes and covariates under the CRFE. It depends on the finite population variances
and covariances: Sy = (n — 1! T Yi(q) — Y(¢)}? and Sk = (n — 1)1 T Yi(q) —
Y (¢)}{Yi (k) — Y (k)} for potential outcomes, Sy = (n — 1)~! (i —1)(r; — 1) for
factorial effects, Syy = (n — 1)_1 Zl'.lzl(xi — X)(x; — x)' for covariates and Sgx = S;yq =
(n—1"1 " Yi(q) — Y(¢)}(x; — %) for potential outcomes and covariates. The covari-
ance Sy, is known without any uncertainty. However, other variances or covariances (e.g.,
Sqk> Sz¢ and S, x) involve potential outcomes or individual factorial effects and are thus
unknown.

3.1. Asymptotic sampling distribution under the CRFE. Let Yl.obS = Zqul {Z; =

q}Yi(q) be the observed outcome of unit i, and Y (q) = nq_1 YiiZi=q YiObs be the average
observed outcome under treatment combination g. For 1 < f < F, the difference-in-means
estimator for the fth average factorial effect is

. 2 0 2 1 A 1 2
tr=p28Y@=5 2 Y@—5y 2. Y@

q=1 9:8f¢=1 7:8fg=—1

Let T = (71,...,Tr) be the F dimensional column vector consisting of all factorial effect
estimators.

In the finite population inference, the covariates and potential outcomes are all fixed, and
the only random component is the treatment vector Z. In the asymptotic analysis, we further
embed the finite population into a sequence with increasing sizes, and introduce the following
regularity conditions.

CONDITION 1. As n — 00, the sequence of finite populations satisfies that for each
l<q#k=<0Q:

(1) the proportion of units under treatment combination q, ng/n, has a positive limit,
(i) the finite population variance and covariances Sqq, Sqk, Sxx and Sy x have limiting
values, and Sy and its limit are nondegenerate,
(ii) maxi<i<n|Yi(q) =Y (@)I*/n — 0 and maxi<i<y |x; — %|3/n — 0.

PROPOSITION 1. Under the CRFE, (' — 7/, 1?;)/ has mean zero and sampling covari-
ance matrix

V =2 2K-1) XQ: nl bqb;Sqq (bqb;) ® Sg.x ! (S” 0)
o T \(bgb,) ® Sxq  (bgb)) ® Sxx 0 0
— (V‘[T er)
- er Vxx '

Under the CRFE and Condition 1, (z' — 1/, ,.) ~ N(0, V).
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Proposition 1 follows from a finite population central limit theorem (Li and Ding (2017),
Theorems 3 and 5), with the proof in Appendix A2 of the Supplementary Material (Li, Ding
and Rubin (2019)). Proposition 1 immediately gives the sampling properties of any sin-
gle factorial effect estimator. Let S; 11y be the fth diagonal element of S;;, and V; Ty =

7 —2(K-1) Zquln;lSqq - Stm
ased for 7 with sampling variance V; FTpe and T FTr N, V, T f). Moreover, S;; cannot
be unbiasedly estimated from the observed data, and it equals 0 under the additivity defined

below. Under the additivity, the individual treatment effect does not depend on covariates,
that is, there is no treatment-covariate interaction.

be the fth diagonal element of V ;. Then 7, is unbi-

DEFINITION 1. The factorial effects are additive if and only if the individual factorial
effect t; is a constant vector for all units, or, equivalently, S;; = 0.

Under the CRFE, the observed sample variance 5,4 = (n, — D=y Zi=q1 Yl-Obs —Y(q))?
is unbiased for S,,, because the units receiving treatment combination ¢ are from a simple
random sample of size nq Similar to Splawa-Neyman (1923), we can conservatively estimate

Vi by 27 2(k-1) Z 1n_lb b 75995 and then construct Wald-type confidence sets for .
Both the sampling covarlance estlmator and confidence sets are asymptotically conservative
unless the additivity in Definition 1 holds. It is then straightforward to construct confidence
sets for any linear transformations of .

3.2. Linear projections. First, we decompose the potential outcomes. Let Y, i” (9) =
Y(q) + SqxSyx ! (x; — X) be the finite population linear projection of the ¥;(q)’s on the x;s,
and YL(q) =Yi(q) — Yi” (g) be the corresponding residual. The finite population linear pro-

jection of 7; on x; is then 'L’l“ =2~ (K=D ZQ b Yi” (g), and the corresponding residual is

rf =2~ (k-1 Zc?:l b, Yl.L (g). Let qu, Squ, S|| and S#T be the finite population variances

and covariances of Y"(¢), Y (¢), " and t=, respectively. Define

0
Vi =272 D% "nbb, - Sy, —n7'S,

TT’
g=1

0
Vi =2 KD S g st st
q=1
as analogues of the sampling covariance V ;; in Proposition 1, with the potential outcomes
Yi(q)’s replaced by the linear projections Yl-” (g)’s and the residuals YiL (g)’s, respectively.
We have V,, = V! + VL.
Second, we decompose the factorial effect estimator 7.

THEOREM 1. Under the CRFE, the linear projection of T — T on Ty is V,xV o Tx, the
corresponding residual is T — T — ViV 11,' x and they have sampling covariances:

Cov(V rx Vxx Ty)= y!

TT’

Cov(VixViy rx,r—r—VTxV Tx) =0.

Cov(t — 17— Vth Ty)= Vi

TT’

Theorem 1 follows from Proposition 1 and some matrix calculations, with the proof in
Appendix A2 of the Supplementary Material (Li, Ding and Rubin (2019)). Let V.! _ and

Tfo
s! s, be the fth diagonal elements of V! and S!_, respectively. The multiple correlation in
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the following corollary will play an important role in the asymptotic sampling distribution of
T under rerandomization. We summarize its equivalent forms below.

COROLLARY 1. Under the CRFE, the sampling squared multiple correlation between
Ty and Ty has the following equivalent forms:

I 2K-H @ —lq¢l —1¢l
Vejey 2 O ming Sag — 1 S0y

R% =Cor* (T4, %x) =
f fotx (K ~1 _
Vipr, 272K 1)ZqQ=1nq Sqq —n1Sz,1,

It reduces to R% = 51”1 /S11, the finite population squared multiple correlation between Y (1)
and x under the additivity in Definition 1.

The proof of Corollary 1 is in Appendix A2 of the Supplementary Material (Li, Ding and
Rubin (2019)).

4. Rerandomization using the Mahalanobis distance. As shown in Section 3.1, al-
though 7, has mean 0, its realized value can be very different from 0 for a particular treat-
ment allocation. Rerandomization can avoid this drawback. In the design stage, we can force
balance of the covariate means by ensuring 7 to be “small.”

4.1. Mahalanobis distance criterion. A measure of the magnitude of 7, is the Maha-
lanobis distance M = .V !%,. We further let a be a positive constant predetermined in
the design stage. Using M as the balance criterion, we accept a treatment assignment vector
Z from the CRFE if and only if M < a. Below we use ReFM to denote 2K rerandomized
factorial experiments using M as the criterion, and M to denote the event that the treatment
vector Z satisfies this criterion. From Proposition 1, M is asymptotically XI% > and there-
fore the asymptotic acceptance probability is p, = P( X% r =< a) under ReFM. In practice,
we usually choose a small threshold a, or equivalently a small p,, for example, p, = 0.001.
However, we do not advocate choosing p, to be too small, because an extremely small p,

may lead to too few configurations of treatment allocations in ReFM.

4.2. Asymptotic sampling distribution of T under ReFM. Rerandomization in the de-
sign stage accepts only the treatment assignments resulting in covariate balance, which con-
sequently changes the sampling distribution of 7. Understanding the asymptotic sampling
distribution of 7 is crucial for conducting the classical repeated sampling inference of 7. In-
tuitively, T has two parts: one part is orthogonal to 7, and thus unaffected by ReFM, and the
other part is the linear projection onto T and thus affected by ReFM. Let € ~ N (0, I ) be
an F dimensional standard Gaussian random vector, and &, , ~ D | D'D <a be an LF
dimensional truncated Gaussian random vector, where D = (D1, ..., D) ~ N0, I.F).
In addition, & and &  , are independent. The following theorem shows the asymptotic sam-
pling distribution of 7.

THEOREM 2. Under ReFM and Condition 1,
N . 1/2 1/2
(4'1) T—T |M~(Vi_r) / €+(V'|L|'1)L/FCLF,a'

Theorem 2 holds because the sampling distribution of T under rerandomization is the
same as the conditional distribution of T given M < a. Its proof is in Appendix A3 of the
Supplementary Material (Li, Ding and Rubin (2019)). We emphasize that, although the ma-

trix (VQT)IL/ }% may not be unique, the asymptotic sampling distribution (4.1) is. Therefore,
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the asymptotic sampling distribution of T — 7 under ReFM depends only on L, F, a, Vit
and VL. Theorem 2 immediately implies the asymptotic sampling distribution of a single
factorial effect estimator. Let &g ~ N (0, 1), npp.q ~ D1 | D'D < a be the first coordinate of
$1F.q>and € and npp 4 be independent.

COROLLARY 2. Under ReFM and Condition 1, for 1 < f < F,

(4.2) 2= M Ve (V1= R 2o+ RS k).

The proof of Corollary 2 is in Appendix A3 of the Supplementary Material (Li, Ding and
Rubin (2019)). The marginal asymptotic sampling distribution (4.2) under ReFM has the
same form as that under rerandomized treatment-control experiments using the Mahalanobis
distance (Li, Ding and Rubin (2018)).

4.3. Review of the central convex unimodality. In this subsection, we review a generaliza-
tion of unimodality to multivariate distributions and apply it to study the asymptotic sampling
distribution (4.1). This property will be important for constructing conservative large-sample
confidence sets later.

Although the definition of symmetric unimodality for univariate distribution is simple and
intuitive, it is nontrivial to generalize it to multivariate distribution. Here we adopt the central
convex unimodality proposed by Dharmadhikari and Jogdeo (1976) based on the results of
Sherman (1955), which is also equivalent to the symmetric unimodality in Kanter (1977). For
a set B of distributions on R, we say that B is closed convex if it satisfies two conditions:
(1) for any distributions v{, vy € B and for any A € (0, 1), the distribution (1 — A)v; + Av; isin
B, and (ii) a distribution v is in B if there exists a sequence of distributions in 3 converging
weakly to v. For any set C of distributions, let the closed convex hull of C be the smallest
closed convex set containing C. A compact convex set in Euclidean space R™ is called a
convex body if it has a nonempty interior. A set L C R is symmetric if X ={—a : a € K}.
Below we introduce the definition.

DEFINITION 2. A distribution on R is central convex unimodal if it is in the closed

convex hull of U, where U is the set of all uniform distributions on symmetric convex bodies
in R™.

The class of central convex unimodal distributions is closed under convolution, marginal-
ity, product measure and weak convergence (Kanter (1977)). A sufficient condition for the
central convex unimodality is having a log-concave probability density function (Kanter
(1977), Dharmadhikari and Joag-Dev (1988)). The following proposition states the central
convex unimodality of the asymptotic sampling distribution of T — 7 under ReFM.

PROPOSITION 2. The standard Gaussian random vector €, the truncated Gaussian ran-
dom vector § | p , and the asymptotic sampling distribution (4.1) are all central convex uni-
modal.

Proposition 2 follows from the log-concavity of the densities of ¢ and ¢, , and the
closedness of the class of central convex unimodal distributions under linear transformation
and convolution. Its proof is in Appendix A3 of the Supplementary Material (Li, Ding and
Rubin (2019)).
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4.4. Representation for the asymptotic sampling distribution of T. In this subsection, we
further represent (4.1) using well-known distributions to gain more insights. Let X% Fa”™

xi Fl X% r =< a be a truncated x 2 random variable, S be an LF dimensional random vector
whose coordinates are independent random signs with probability 1/2 of being £1 and 8 be
an L F dimensional Dirichlet random vector with parameters (1/2,...,1/2). Let /B be the
elementwise square root of the vector 8, and v r, = P(sz+2 < a)/P(XzF <a)<l.

PROPOSITION 3. &, is spherically symmetric with covariance vy oI LF. It follows
$LFa™~ XLFa"SO© VB, where (XLF.qa, S, B) are jointly independent.

Proposition 3 follows from the spherical symmetry of the standard multivariate Gaussian
random vector, with the proof in Appendix A3 of the Supplementary Material (Li, Ding and
Rubin (2019)). Proposition 3 allows for easy simulations of the asymptotic sampling dis-
tribution (4.1), which is useful for the repeated sampling inference discussed shortly. For
simplicity, in the remaining paper, we assume that V ;, is invertible whenever we mention
its inverse; otherwise we can focus on a lower dimensional linear transformation of 7 (Li,
Ding and Rubin (2019)). Let R = V;,l / ZVL ;Tl/ % be the matrix measuring the relative
sampling covariance of 7 explained by ., and R = T'TI’T"” be its eigen-decomposition,
where ' € RF*F is an orthogonal matrix and IT*> = diag(nlz, ey n%) e RF*F is a diagonal
matrix with nonnegative elements. The eigenvalues (nlz, ces n%) are the canonical correla-
tions between the sampling distributions of T and 7, under the CRFE, which measure the
association between the potential outcomes and covariates. Under the additivity in Defini-
tion 1, 7712 =...= 71[27 = Sl”1 /S11. The following corollary gives an equivalent form of (4.1)

highlighting the dependence on the canonical correlations (7712, cees 7112,).

COROLLARY 3. Under ReFM and Condition 1, (4.1) is equivalent to

4.3) t—1 | MAVIAT{(1 - 1?) e + (1, 0rxL—1)F)LF.a}-

The proof of Corollary 3 is in Appendix A3 of the Supplementary Material (Li, Ding
and Rubin (2019)). The second term in (4.3), affected by rerandomization, depends on the
canonical correlations (7112, s n%) and the asymptotic acceptance probability p, of ReFM.
Below we use a numerical example to illustrate such dependence.

EXAMPLE 2. We consider the case with L =1, K =2 and F = 3, and focus on the
standardized distribution (I3 — I1%)!/2¢ + I1¢ 5 ,, which depends on n? = diag(nlz, n22, n32)
and p, = P(x3 < a). First, we fix (73,75, pa) = (0.5,0.5,0.001). Figure 1(a) shows the
density of the first two coordinates of ¢5 , for different 7112. As 7712 increases, the density
becomes more concentrated around zero, showing that the stronger the association is between
the potential outcomes and covariates, the more precise the factorial effect estimators are.

Second, we fix (7‘[12, 71'22, 7132) = (0.5, 0.5,0.5). Figure 1(b) shows the density of the first two
coordinates of {5 , for different p,. As the asymptotic acceptance probability p, decreases,
the density becomes more concentrated around zero, confirming the intuition that a smaller
asymptotic acceptance probability gives us more precise factorial effect estimators. Note that
the first & component in the asymptotic sampling distribution (4.3) does not depend on p, and
is usually nonzero. For example, when V#T is positive definite, I r — R = V;Tl / zVir ;Tl /2
is positive definite, as well as the coefficient of & in (4.3). Therefore, the gain of ReFM by
decreasing p, usually becomes smaller as p, decreases.
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4.5. Asymptotic unbiasedness, sampling covariance and peakedness. In this subsection,

we further study the asymptotic properties of T under ReFM. First, the factorial effects es-
timator T is consistent for 7. Because covariates are potential outcomes unaffected by the
treatment, the difference-in-means of any observed or unobserved covariate with respect to

any factorial effect has asymptotic mean zero.
Second, we compare the asymptotic sampling covariance matrices of 7 under ReFM and

the CRFE, which also gives the reduction in asymptotic sampling covariances of difference-

in-means of covariates as a special case.

Under Condition 1, the asymptotic sampling covariance matrix of T under

THEOREM 3.
ReFM is smaller than or equal to that under the CRFE, and the reduction in asymptotic

sampling covariance is (1 —vpF q)n Vﬂ,. Specifically, the percentage reduction in asymptotic
sampling variance (PRIASV) of T is (1 — v F,a)Rfc.

Theorem 3 follows from Theorem 2 and Proposition 3, with the proof in Appendix A4
of the Supplementary Material (Li, Ding and Rubin (2019)). Rigorously, the reductions in
Theorem 3 should be (1 — vLF,a)lim,Hoo(nVL) and (1 —vprq)lim,— oo RZ. However,
for descriptive simplicity, we omit the limit signs. From Theorem 3, the larger the squared
multiple correlation R; is, the more PRIASV of the factorial effect estimator is through
ReFM. When a is close to zero, or equivalently the asymptotic acceptance probability p, is
small, the asymptotic sampling variance of 7 reduces to V; (1 — R%), which is identical
to the asymptotic sampling variance of the regression adjusted estimator under the CRFE

discussed in Lu (2016).

Third, we compare the peakedness of the asymptotic sampling distributions of 7 under
ReFM and the CRFE, because of its close connection to the volumes of confidence sets for t.
Birnbaum (1948), Bickel and Lehmann (1976) and Shaked (1985) proposed some measures
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of dispersion for univariate distributions. Sherman (1955) and Giovagnoli and Wynn (1995)
generalized them to multivariate distributions. Marshall, Olkin and Arnold (2009) discussed
some related properties. Here we use the definition in Sherman (1955).

DEFINITION 3. For two symmetric random vectors ¢ and ¥ in R™, we say that ¢ is
more peaked than ¥ and write as ¢ > ¢, if P(¢p € K) > P(¢ € K) for every symmetric
convex set L C R™.

From Definition 3, intuitively, the more peaked a random vector is, the more “concen-
trated” around zero it is. Therefore, when comparing two experimental designs, the one with
more peaked sampling distribution of the causal estimator gives more precise estimate for the
true causal effect. That is, peakedness measures the efficiencies of the designs.

As a basic fact, the ordering of peakedness directly implies the ordering of the covariance
matrices.

PROPOSITION 4. For two symmetric random vectors ¢ and ¥ in R™ with finite second
moments, if ¢ > ¥, then Cov(¢p) < Cov(y).

Proposition 4 follows from some algebra, with the proof in Appendix A5 of the Sup-
plementary Material (Li, Ding and Rubin (2019)). For two Gaussian vectors ¢ and ¢,
Cov(¢p) < Cov(y) also implies ¢ > ¥. The reverse of Proposition 4 does not hold for gen-
eral random vectors. For example, we compare a standard Gaussian random variable g and a
truncated Gaussian random variable &y ~ gg | 0.5 < 83 < 1. Both random variables are sym-
metric around zero and Var(§p) < 1 = Var(eg). However, &y is not more peaked than &g,
because P (|&p| <0.5) =0 < P(|eg] <0.5).

The following theorem shows that the difference-in-means estimator is more “concen-
trated” under ReFM than under the CRFE.

THEOREM 4. Under Condition 1, the asymptotic sampling distribution of T — T under
ReFM is more peaked than that under the CRFE.

Theorem 4 holds because the truncated Gaussian random vector &  , is more peaked than
the standard Gaussian random vector. Its proof is in Appendix A5 of the Supplementary Ma-
terial (Li, Ding and Rubin (2019)). First, Theorem 4, coupled with Proposition 4, implies the
asymptotic sampling covariance of 7 is smaller under ReFM than under the CRFE. Second,
Theorem 4 shows that asymptotically, T — T has larger probability to be in any symmetric
convex set under ReFM than under the CRFE. For a positive definite matrix A € R”*? and
c>0,let O(A,c)={p: WA~ 'u <c}. The following theorem implies that, for the special
class of symmetric convex sets, {O(V ¢, ¢) : ¢ > 0}, the asymptotic probability that T —

lies in O(V 4¢, ¢) is nondecreasing in the canonical correlation 777’s.

THEOREM 5. Under ReFM, assume Condition 1. Let ci—y be the solution of
lim, 500 P{T — T € O(Vig,Cl—q) | M} =1 — «a for any a € (0, 1). It depends only on
(L, K, a) and the canonical correlation nkz s, and is nonincreasing in these canonical corre-

lations for fixed (L, K, a).

Theorem 5 is a multivariate extension of Theorem 2 of Li, Ding and Rubin (2018), with
the proof in Appendix A5 of the Supplementary Material (Li, Ding and Rubin (2019)). The
set O(V ¢, C1—¢) in Theorem 5 is a 1 — o asymptotic quantile region of T — 7 under ReFM.
From Theorem 5, with larger canonical correlation 7;’s, ReFM leads to more percentage
reduction in volume of the 1 — @ asymptotic quantile region O(V ¢, c1—g) of T — 7.
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Moreover, we can establish similar conclusions as Theorems 4 and 5 for any linear trans-
formation of 7. This follows from two facts: (i) the peakedness relationship is invariant under
linear transformations (Dharmadhikari and Joag-Dev (1988), Lemma 7.2), that is, for any
C e RP*™ if ¢ > ¥, then C¢ > C¥; (ii) the asymptotic sampling distribution of any linear
transformation of T has the same form as 7, that is, a linear combination of a standard Gaus-
sian random vector and a truncated Gaussian random vector. For conciseness, we relegate the
discussion to Appendix A5 of the Supplementary Material (Li, Ding and Rubin (2019)), and
consider only a single factorial effect estimator in the main text. In this case, the comparison
between peakedness of two univariate asymptotic sampling distributions under ReMF and
the CRFE reduces to the comparison of the lengths of quantile ranges (Li, Ding and Rubin
(2018)).

COROLLARY 4. Under Condition 1, for any 1 < f < F and a € (0, 1), the threshold

Cl—q for the 1 — a asymptotic symmetric quantile range [—c|—q thf/gf, Cl—u Vflf/fzf] of ff —Tf

under ReFM is smaller than or equal to that under the CRFE, and is nonincreasing in R%.

The proof of Corollary 4 is in Appendix AS of the Supplementary Material (Li, Ding and
Rubin (2019)). From Corollary 4, with larger squared multiple correlation R%, ReFM leads
to more percentage reductions in lengths of the asymptotic quantile ranges of T — 7.

4.6. Conservative covariance estimator and confidence sets under ReFM. The asymp-

totic sampling distribution (4.1) of # under ReFM depends on V1, and (Vﬂ,)lL/ g =

Vix V;xl / 2, which further depend on Squ, SL and S, x S;xl / 2. Under treatment combination
g, define 54, as the sample variance of observed outcomes, s, x as the sample covariance be-
tween observed outcomes and covariates, Sy (g) as the sample covariance of covariates and

qu = Sqq — Sq, xSy (q)s x,¢ as the sample variance of the residuals from the linear projection
of observed outcomes on covariates. We estimate VL by

(4.4) Vi o2k ”Zn—l L b,b),

TT

1/2 1/2

Ve by Vep = 27260520 0ol(byb)) @ {54055’ ()8} and (V)7

1/ . We can then obtain a covariance estimator and construct confidence sets for t
or 1ts hnear transformations. When the threshold a is small, {; ¢, is close to zero, and
the distribution (4.1) of 7 is close to the Gaussian distribution with mean t and covari-
ance matrix VL Therefore, for a parameter of interest Ct, we recommend confidence

sets of the form Ct + O(C V C/ ¢). We choose the threshold ¢ based on simulation
from the estimated asymptotic samphng distribution, and let ¢|_, be the 1 — « quantile of

AL _ . . . . . NI
(AC ) (CV_,.C) 1(C¢) with ¢ following the estimated asymptotic sampling distribution of
T—T.

by er X

THEOREM 6. Under ReFM and Condition 1, consider inferring Ct, where C has

~ Al
full row rank. The probability limit of the covariance estimator for Ct, CV__C' +
v F.qC V,xV_ Ve C', is larger than or equal to the sampling covariance, and the 1 — «

confidence set, Ct + O(C V . C', ¢i1_q), has asymptotic coverage rate > 1 —a, with equality
holdmngS — 0 asn— oo.
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Theorem 6 holds because the ordering of peakedness still holds by adding an indepen-
dent central convex unimodal random vector. Its proof is in Appendix A6 of the Supplemen-
tary Material (Li, Ding and Rubin (2019)). The above confidence sets will be similar to the
ones based on regression adjustment if the threshold a is small. Theoretically, we can extend
Theorem 6 to general symmetric convex confidence sets, and we relegate this discussion to
Appendix A6 in the Supplementary Material (Li, Ding and Rubin (2019)).

5. Rerandomization with tiers of factorial effects. From Corollary 1, under the addi-
tivity in Definition 1, the squared multiple correlations between 77 and 7, are the same for
all f: R?=...= R% =S 1”1 /S11. From Section 4.5, under the additivity in Definition 1, the
improvement of the fth factorial effect estimator 7 under ReFM compared to the CRFE is
asymptotically the same for all f. However, in practice, we are sometimes more interested
in some factorial effects than others. For example, the main effects are often more impor-
tant than higher-order interactions. Therefore, we need a balance criterion resulting in more
precise estimators for the more important factorial effects.

5.1. Tiers of factorial effects criterion. Let F ={1,2,..., F'} be the set of all factorial
effects. We partition F into H tiers (Fi,..., Fy) with decreasing importance, where the
Fp’s are disjoint and F = U{le Fp. The cardinality Fj, = |F}| represents the number of
factorial effects in tier 4. For example, we can partition F into three tiers: F contains the K
main effects, /> contains the (12() interaction effects between two factors and JF3 contains the
remaining factorial effects with higher-order interactions.

Define y%k = Corr?(? f, Tx,k). When the fth factorial effect is more important, we would
like to put more restriction on the difference-in-means vector Ty ; with larger squared multi-
ple correlation V%k- Although general results for the relative magnitudes of the y]%k’s appear
too complicated, below we give a proposition under the additivity, which serves as a guideline
for the choice of the balance criterion.

PROPOSITION 5. Under the CRFE, assume the additivity in Definition 1. The squared
multiple correlations satisfy maxi<k<r V]%k = y]%f = R%- = Sl”l/S” for 1 < f < F. The
squared multiple partial correlation between Ty and Ty given Ty ¢ is zero, that is, the
residuals from the linear projections of Ty and Ty on Ty y are uncorrelated. If further

nl:.--:nQ=n/Q,theny%k=Of0rk7éf.

Proposition 5 follows from some algebra, with the proof in Appendix A2 of the Supple-
mentary Material (Li, Ding and Rubin (2019)). From Proposition 5, with the additivity and
under the CRFE, 7 explains T in the linear projection only through 7, ;. Therefore, it is
desirable to impose more restriction on the difference-in-means of covariates with respect to
more important factorial effects under rerandomization.

5.2. Orthogonalization with tiers of factorial effects. For 1 <h < H, let T,[F] be the
subvector of T, consisting of the difference-in-means of covariates T, ; with respect to
factorial effect f € Fj,. From Section 5.1, the smaller the 4 is, the more restriction we want
to impose on T, [F;]. However, due to the correlations among the T, [F]’s, restrictions on
one also restrict others. For example, balancing T[] partially balances 7 ,[F>]. Therefore,
instead of unnecessarily balancing for all factorial effects in tier 4, we balance only the part
that is orthogonal to the factorial effects in previous tiers.

Let B =2 2K-D Zqul nq_lbqb;. From Proposition 1, the sampling covariance of 7

under the CRFE, V,, = B®S xx» contains two components: B determined by the coeffi-
cient vector b,’s and Syyx determined by the covariates. Below we introduce a blockwise
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Gram-Schmidt orthogonalization of the coefficient vector b,’s, taking into account the tiers
of factorial effects. Let J5 = UP_, Fi be the factorial effects in the first & tiers. We use
b,[Fx] and b, [ F7] to denote the subvectors of b, with indices in Fj and F7, and B [Fh, F7]
and B[fﬁ’ F71 to denote the submatrices of B with indices in Fn x Fy and Fy x F. For
each 1 < ¢ < Q, we define the orthogonalized coefficient vector ¢, = (c/q[l], el c;[H 1) as
cg[11=by[F1],andfor2 <h < H,

(5.1) ¢y [h) = by[Fil — BLFn, Fit/{ BIFi—, Fiegl) ™ by [ Fil.

The difference-in-means vector of covariates with respect to orthogonalized coefficient vec-
tors is

0[1] o {€qll]
(5.2) b= : |[=27%D> | : |®x@.
0,[H] 7=1 \¢,[H]
By construction, C=2"2K-D ZQ 1cqc is block diagonal, and thus the sampling co-

variance of 8, under the CRFE, C ® Syy, is also block diagonal. The following proposition
summarizes these results.

A A/ . .
PROPOSITION 6. Under the CRFE, (7' — 7/, 0.,)" has mean zero and sampling covari-
ance:

Cov(t — 7,0,[h]) = W [h] =272K ‘>Zn 1) ® Syx,

Cov(fy[h]) = Wyx[h] =27 2K=D Z n, " (cqlhlc)[h]) ® Sxx.
=

and Cov(@y[h), 0.[h]) =0 if h # h.

Proposition 6 follows from some algebra, with the proof in Appendix A2 of the Supple-
mentary Material (Li, Ding and Rubin (2019)). From Proposition 6, (@x[1], ..., 0[H]) are
mutually uncorrelated under the CRFE, and thus are essentially from a blockwise Gram—
Schmidt orthogonalization of (Tx[Fi], ..., Tx[Fu]). We define the Mahalanobis distance in
tier i as

(5.3) My =0, [h](Wexlh]) '0,[h] (1 <h < H).

Let (aj,...,an) be H positive constants predetermined in the design stage. Under reran-
domization with tiers of factorial effects, denoted by ReFMTFE, a randomization is accept-
able if and only if M} <aj, for all 1 < h < H. Below we use Tr to denote the event that
the treatment vector Z satisfies this criterion. From the finite population central limit theo-
rem, asymptotically, My, is XI% By and (M1, ..., Mp) are jointly independent. Therefore, the
asymptotic acceptance probability under ReFMTFE is p, = l’[;’flz1 P( X% F, < an). We usually
choose small a;,’s. The magnitude of a;,’s depend on the relative importance of the factorial
effects in all tiers. See Morgan and Rubin (2015) for a related discussion.
With equal treatment group sizes, M}, has a simpler form.

PROPOSITION 7. When ny = --- =ng =n/Q, the coefficient c4[h] in (5.1) reduces
to by[Fy], the difference-in-means of covariates ] «[h] in (5.2) reduces to T[Fy] and the
Mahalanobis distance My, in (5.3) reduces to My =n/4 -3 rcr, i';,fS;x] Ty, f.
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Proposition 7 follows from some algebra, with the proof in Appendix A2 of the Supple-
mentary Material (Li, Ding and Rubin (2019)). In Proposition 7, if further each tier contains
exactly one factorial effect, ReFMTF reduces to the rerandomization scheme discussed in
Branson, Dasgupta and Rubin (2016).

5.3. Asymptotic sampling distribution of T. In this subsection, we study the asymptotic
sampling distribution of T under ReFMTE. Let WL [h] = Wi [h1(W 2 [h]) "' W1 [h] be the

A

sampling covariance matrix of T explained by 0 [%] in the linear projection under the CRFE.
Extending earlier notation, let € ~ A (0, I ¢), and $rrya, ™~ Dhl D}l Dj, < aj, be a truncated
Gaussian vector with LFj, dimensions, where Dy, = (Dp1, ..., Dp.rr,) ~ N0, ILF,). In
addition, (&, 81 r, 4, ---»> L Fy ay) are jointly independent.

THEOREM 7. Under ReFMTE and Condition 1,

H
(5.4) T | T~ (VE) e+ S (Wi /E ¢y o
h=1

The proof of Theorem 7, similar to that of Theorem 2, is in Appendix A3 of the Supple-
mentary Material (Li, Ding and Rubin (2019)).

Let W,”ft ;L] be the fth diagonal element of W!_[h]. The squared multiple correlation
between 77 and 0[h] under the CRFE is then p}[h] = WT” oT f[h] /Vire, When treatment
group sizes are equal, ,o%[h] reduces to pJZC [A] = X kker, y%k for all f; if further the addi-
tivity holds, ,ojzc [/] reduces to S{'l/ S11 if f € Fp, and zero otherwise. Because the 9x [A]’s
are from a blockwise Gram—Schmidt orthogonalization of 7,, the squared multiple corre-
lation between 7; and T, can be decomposed as R} = 2;17:1 ,0]% [A#]. The following corol-
lary shows the marginal asymptotic sampling distribution of a single factorial effect estima-
tor. Let g9 ~ N(0, 1), NLE,a, ~ D1 | D;th < ay, be the first coordinate of SLFy.ap and

(€0, NLFy,ay» - - -+ NLFy,ay) be jointly independent.

COROLLARY 5. Under ReFMTr and Condition 1, for 1 < f < F,

H
(55) ff —Tf | 7%‘ ~ \/V‘[f‘(f (\/1 - R% -&0 + Z vV /szf[h] : nLFh,ah>-
h=1

The proof of Corollary 5 is in Appendix A3 of the Supplementary Material (Li, Ding and
Rubin (2019)).

5.4. Asymptotic unbiasedness, sampling covariance and peakedness. Based on the
asymptotic distributions in Section 5.3, we study the asymptotic properties of the facto-
rial effect estimators. First, (e, ¢, Fray > SLFya H) are all central convex unimodal from
Proposition 2, and thus the asymptotic sampling distribution (5.4) of T under ReFMTF is
also central convex unimodal. The symmetry of the asymptotic sampling distributions en-
sures that the factorial effect estimator 7 is consistent for T under ReFMTg, which implies
that the difference-in-means of any observed or unobserved covariate with respect to any
factorial effect has asymptotic mean zero.

Second, we compare the asymptotic sampling covariance matrices of T under ReFMTg
and the CRFE. For each 1 <h < H,let vpp, o, = P(X{ g, 40 <an)/P(Xfp, <an) <1.
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THEOREM 8. Under Condition 1, T has smaller asymptotic sampling covariance un-
der ReFMTF than that under the CRFE, and the reduction in asymptotic sampling covari-
ance is n Z;?:l(l — ULFh,ah)Wﬂf[h]- Specifically, for each 1 < f < F, the PRIASV of 7 is

S (= VLR, @) pFR.

Theorem 8 follows from Theorem 7 and Proposition 3, with the proof in Appendix A4 of
the Supplementary Material (Li, Ding and Rubin (2019)). When the threshold a;,’s are close
to zero, the asymptotic sampling variance of 7 reduces to Vi, (1= R2), which is identical
to the asymptotic sampling variance of the regression adjusted estimator under the CRFE (Lu
(2016)).

Third, we compare the peakedness of asymptotic sampling distributions of 7 under
ReFMTFE and the CRFE.

THEOREM 9. Under Condition 1, the asymptotic sampling distribution of T — T under
ReFMTE is more peaked than that under the CRFE.

The proof of Theorem 9, similar to that of Theorem 4, is in Appendix A5 of the Sup-
plementary Material (Li, Ding and Rubin (2019)). We then consider the specific symmetric
convex set O(V ¢, ¢). Unfortunately, considering joint quantile region for t is technically
challenging in general, and we consider the case where the following condition holds.

CONDITION 2.  There exists an orthogonal matrix T € RF*F such that
L'V 2wl mv 2T =diag(wfy, ..., 0hF) (1<h<H),

where (a)ﬁl, e a)% ) are the canonical correlations between T and 0,[h] under the CRFE.

Condition 2 holds automatically when H = 1. Moreover, the additivity in Definition 1
implies Condition 2 for general H > 1. The following proposition states this result. By con-
struction, b, = Wc¢,, where ¥ € RE*F is the common linear transformation matrix for all

1 < g < Q. Recall that B =272K-D ZqQ=1 n;lbqb/q, and C =27 2K-D Z(]Qzl nq_'cqc’q.

PROPOSITION 8.  Under the additivity in Definition 1, Condition 2 holds with orthogonal
~—1/2_ ~1/2 R A
matrixI' = B / v(C / , and the canonical correlations between T and 0[h] have exactly

Fy, nonzero elements, which are all equal to 51”1 /S11-

Proposition 8 follows from some algebra, with the proof in Appendix A5 of the Supple-
mentary Material (Li, Ding and Rubin (2019)).

THEOREM 10. Under ReFMTE, assume that Conditions 1 and 2 hold. Let ¢1—_y be the
solution of limy, s oo P{T —T € O(V¢¢,c1—q) | Tr} =1 —a. It depends only on L, Fy’s, ap’s
and (w%l, el a)%F)’s, and is nonincreasing in w%ffor I1<h<Handl1 < f<F.

The proof of Theorem 10, similar to that of Theorem 35, is in Appendix A5 of the Supple-
mentary Material (Li, Ding and Rubin (2019)).

Because the peakedness relationship is invariant under linear transformations, and any
linear transformation of T has an asymptotic sampling distribution of the same form as 7, we
can establish similar conclusions as Theorems 9 and 10 for any linear transformations of 7.
We relegate the details to Appendix AS of the Supplementary Material (Li, Ding and Rubin
(2019)), and consider only the asymptotic sampling distribution of a single factorial effect
estimator below.



RERANDOMIZATION IN 2K FACTORIAL EXPERIMENTS 59

e
<

X 4+ D> o
AXAXN
o
abhwN

0.8

percentage
0.6

i

F1G. 2. PRIASV of main effect estimators divided by R%-.

COROLLARY 6. Under Condition 1, for any 1 < f < F and o € (0, 1), the threshold
Cl—q for 1 — a asymptotic symmetric quantile range [—c|—q Vzlf/rzf, Cl—a V,lf/,zf] of ff —Tf
under ReFMTE is smaller than or equal to that under the CRFE, and is nonincreasing in
,O}[h]for 1<h<H.

The proof of Corollary 6 is in Appendix A5 of the Supplementary Material (Li, Ding and
Rubin (2019)). From Corollary 6, with larger squared multiple correlation p%[h], ReFMTE
yields more percentage reductions of quantile ranges.

The example below shows the advantage of ReFMTg over ReFM.

EXAMPLE 3. We consider experiments with K factors and L dimensional covariates.
Assume the additivity in Definition 1, which implies that R} is the same for all factorial
effects f. Suppose that we are more interested in the K main effects than the interaction
effects. We divide the F effects into 2 tiers, where tier 1 contains the F; = K main effects
and tier 2 contains the remaining F» = 2X — 1 — K interaction effects. From Proposition 5,
we can derive ,0,%[1] = R} and ,0,%[2] = 0 for the main effect 1 <k < K. We compare two
rerandomization schemes with the same asymptotic acceptance probability: ReFM with p, =

0.001 and ReFMTF: with thresholds (a1, a2) satisfying P(x7p, <a1) =0.002 and P(x} p, <
ap) =0.5. Figure 2 shows the PRIASYV, divided by R%, of the main effect estimators for both
rerandomization schemes. It shows that the advantage of ReFMTF increases as the numbers
of factors and covariates increase.

5.5. Conservative covariance estimator and confidence sets under ReFMTg. We es-

. A1l A
timate V&, by Vi, in (44), Weelh] by Weelh] = 272K-D¥0 yolp,el[h]) ®

{sq,xs;,g/z(q)S,lcéz}, and (Wﬂ,[h])lL/lgh by Wrx[h](Wxx[h])_l/z. We can then obtain a co-

variance estimator and construct confidence sets for T or its linear transformations. Sim-
ilar to ReFM, for a parameter of interest Ct, we recommend confidence sets of the
. N . .
form Ct + O(CV . C ', ¢), where we choose the threshold ¢ by simulating random draws
from the estimated asymptotic sampling distribution. Let ¢{_, be the 1 — o quantile of
A1 . . . . . .. .
(Cp)y (v, C’ )_1(C¢) with ¢ following the estimated asymptotic sampling distribution
of T — 7 under ReFMTE.
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THEOREM 11. Under ReFMTg and Condition 1, consider inferring Ct, where C has

full row rank. The probability limit of the covariance estimator, C ‘A/TLTC/ + 251:1 VLFy.a,C X
W,x [R)(W e [h]) ! Wx, [h1C’, for Ct is larger than or equal to the actual sampling covari-

~ AL ~ .
ance, and the 1 — a confidence set, Ct + O(C V”C’ , Cl—a), has asymptotic coverage rate
> 1 — «, with equality holding ifSiT — 0 asn — oo.

The proof of Theorem 11, similar to that of Theorem 6, is in Appendix A6 of the Supple-
mentary Material (Li, Ding and Rubin (2019)). The above confidence sets will be similar to
the ones based on regression adjustment if the threshold aj,’s are small (Lu (2016)). More-
over, we can also extend Theorem 11 to general symmetric convex confidence sets (Li, Ding
and Rubin (2019)).

6. An education example. We illustrate the theory of rerandomization using a dataset
from the Student Achievement and Retention Project (Angrist, Lang and Oreopoulos (2009)),
a 22 CRFE at one of the satellite campuses of a large Canadian university. One treatment fac-
tor is the Student Support Program (SSP), which provides students some services for study.
The other treatment factor is the Student Fellowship Program (SFP), which awards students
scholarships for achieving a target first year grade point average (GPA). There were 1,006
students in the control group receiving neither SSP nor SFP (i.e., (=1, —1)), 250 students
offered only SFP (i.e., (—1,+1)), 250 students offered only SSP (i.e., (+1, —1)) and 150
students offered both SSP and SFP (i.e., (41, +1)). We include L = 5 pretreatment covari-
ates: high school GPA, gender, age, indicators for whether the student was living at home
and whether the student rarely put off studying for tests, and exclude students with missing
covariate values. This results in treatment groups of sizes (856, 216, 208, 118) for treatment
combinations (—1, —1), (=1, +1), (+1, —1) and (+1, +1), respectively.

To demonstrate the advantage of rerandomization, we compare the CRFE and ReFMTF in
terms of the sampling distributions of the factorial effects estimator. However, the sampling
distributions depend on all the potential outcomes including the missing ones. To make the
simulation more realistic, we impute all of the missing potential outcomes based on simple
model fitting. Specifically, we fit a linear regression of the observed GPA on the levels of
two treatment factors, all covariates and the interactions between these covariates, and then
impute all the missing potential outcomes based on the fitted model. We further truncate all
the potential outcomes to [0, 4] to mimic the values of GPA. Note that the generating models
for the missing potential outcomes are not linear in the covariates. For the simulated data
set, the sampling squared multiple correlations between factorial effect estimators and the
difference-in-means of covariates are (RZ, R%, R%) = (0.247,0.244,0.245).

We divide the three factorial effects into two tiers, where tier 1 contains F; = 2 main
effects, and tier 2 contains F, = 1 interaction effect, and choose thresholds (ap, a;) such that
P( XI% F S ap) =0.002 and P( X% Jo az) = 0.5. Table 2 shows the empirical and theoretical
percentage reductions in the sampling variances and the lengths of 95% symmetric quantile
ranges for the three factorial effect estimators under ReFMTE, compared to the CRFE. From
Table 2, the asymptotic approximations work fairly well, and ReFM T improves the precision
of the two average main effects estimators more than that of the average interaction effect
estimator.

We then consider confidence sets for the two average main effects (t1, t2) under both de-
signs. The empirical coverage probabilities of 95% confidence sets discussed in Sections 3.1
and 5.5 under the CRFE and ReFMTF are, respectively, 96.4% and 96.5%, showing that
both confidence sets are slightly conservative. Moreover, the percentage reduction in the av-
erage volume of 95% confidence sets under ReFMTE compared to the CRFE is 20.5%, and
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TABLE 2
Comparison of the factorial effect estimators between the CRFE and ReFMTE. The second and third columns
show the percentage reductions in variances, and the fourth and fifth columns show the percentage reductions in
the lengths of 95% quantile ranges

Reduction in variance Reduction in quantile range
Factorial effect Empirical Theoretical Empirical Theoretical
Main effect of SSP 20.2% 21.2% 10.7% 11.2%
Main effect of SFP 20.4% 20.9% 10.8% 11.1%
Interaction effect 14.4% 14.9% 7.7% 7.8%

the corresponding percentage increase in sample size needed for the CRFE to obtain 95%
confidence set of the same average volume as ReFMTF is about 25.8%.

To end this section, we investigate the dependence of the PRIASVs on the choices of
thresholds (ai, az). Let pan = P( X% F, < an) be the asymptotic acceptance probability for
tier & (h = 1, 2). Fixing the overall asymptotic acceptance probability p, = p,1pa2 at 0.001,
Figure 3 shows the PRIASVs of all factorial effect estimators as functions of p,;. We can
see that (1) more stringent restrictions on the first tier of factorial effects (i.e., the two main
effects) lead to larger PRIASVs of the corresponding estimators, but (2) the PRIASV of the
estimator of the second tier of factorial effect (i.e., the interaction effect) is a nonmonotone
function of p,i. Therefore, in practice, we are facing a trade-off, which depends on the a
priori relative importance of the factorial effects.

7. Extension. When covariates have varying importance for the potential outcomes, we
can further consider a balance criterion using tiers of covariates, that is, rerandomized fac-
torial experiments with tiers of both covariates and factorial effects. We discuss this balance
criterion and demonstrate its advantage in Appendix Al of the Supplementary Material (Li,
Ding and Rubin (2019)).
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SUPPLEMENTARY MATERIAL

Supplement to “Rerandomization in 2X factorial experiments” (DOI: 10.1214/18-
AOS1790SUPP; .pdf). We study the theoretical properties of 2X rerandomized factorial ex-
periments with tiers of both covariates and factorial effects, and prove all the theorems, corol-
laries and propositions.
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Appendix A1l studies the theoretical properties of 2% rerandomized fac-
torial experiments with tiers of both covariates and factorial effects.

Appendix A2 shows the sampling covariances, asymptotic sampling dis-
tributions, and squared multiple correlations under the CRFE. It includes
the proofs of Theorem 1, Corollary 1, and Propositions 1, 5-7 and Al.

Appendix A3 proves the asymptotic sampling distributions of 7 under
ReFM, ReFMTEr and ReFMTcr. It includes the proofs of Theorems 2, 7
and Al, Corollaries 2, 3, 5 and Al, and Propositions 2 and 3.

Appendix A4 compares the asymptotic sampling covariances of 7 under
rerandomizations and the CRFE. It includes the proofs of Theorems 3, 8
and A2.

Appendix A5 compares the peakedness of the asymptotic sampling dis-
tributions under rerandomizations and the CRFE. It includes the proofs of
Theorems 4, 5, 9 and 10, Corollaries 4 and 6, and Propositions 4, 8 and A2.

Appendix A6 proves the asymptotic conservativeness of covariance esti-
mators and symmetric convex confidence sets under rerandomizations. It
includes the proof of Theorem 6.

A1l. Tiers of both covariates and factorial effects.

A1.1. Tiers and orthogonalized covariates. When covariates have vary-
ing importance for the potential outcomes, Morgan and Rubin [2015] pro-
posed rerandomization with tiers of covariates in treatment-control experi-
ments. It is important to consider the tiers of covariates with tiers of factorial
effects. We first partition the covariates into T tiers with decreasing impor-
tance, and use x;[t] to denote the L; dimensional covariates in tier ¢. Let
zi[t] = (xi[l], ..., ;[t]) be the covariates in the first ¢ tiers, S, g, be the fi-
nite population covariance of the covariates in the first ¢ tiers, and S [t =[]
be the finite population covariance between x[t] and [t — 1]. We then apply
a block-wise Gram-Schmidt orthogonalization to the x;[t]’s: e;[1] = ;[1],
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and

—1 TR
eil] = zilt] = Sy e S e @ill 1, 2<t<T)
where e;[t] is the residual from the linear projection of the covariates @;[t]
in tier ¢ onto the space spanned by the covariates in previous tiers. Li et al.
[2018] call e;[t] the orthogonalized covariates in tier t.

A1.2. Tiers of covariates and factorial effects criterion. Using the no-
tation in Section 5, we partition the F' factorial effects into H tiers with
decreasing importance, i.e., F = UhH:1 Fi, and the corresponding block-wise
Gram-Schmidt orthogonalization of (by[F1], ..., bq[Fr])is (¢4[1], ..., cq[H])
defined in (5.1). Let ep(q) = nq_l i 7i—q €ilt] be the mean of the orthogo-
nalized covariates in tier ¢ under treatment combination ¢. The difference-
in-means of orthogonalized covariates in tier ¢ with coefficients ¢,’s is

~

R ee[t} [1] Q Cq [1]
(A1) Oy=| = |[=27"DX 1 | eeyle), (1<t<T)

A~

0 [H] =1 \¢q[H]
Let S¢e[ be the finite population covariance of the orthogonalized covari-

ates in tier ¢, and S, ¢ be the finite population covariance between the
Yi(q)’s and e;[t]’s.

N N

PROPOSITION Al.  Under the CRFE, (7' —7',0,y),...,0¢7)) has mean
zero and sampling covariance:

Cov <+ — 7,0, [h]) = Wrepy[h] 2K Zn ) ® Sl
q=1
. Q
Cov (ee[t} [h]> = Wegepg[h] = 272570 “nt eyl [h) @ Sefgern,
q=1

and Cov(éem [h], ée[f] [A]) =0 ift #1 or h # h, i.e., éem [h]’s are mutually

uncorrelated.

From Proposition A1, we define the Mahalanobis distance for orthogonal-
ized covariates in tier ¢ with respect to factorial effects in tier h as

My = 9;[,:] [h] (W egep [R]) 19e[t] [hl, 1<h<H1<t<T).
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TABLE Al
Mahalanobis distances: covariates and factorial effects in different tiers

Factorial effects
Tier 1 Tier2 --- Tier H
Tier 1 M1,1 M1,2 MI,H
. Tier2 M21 M22 MQH
Covariates ’ ’ ’
Tier T' MT,l MT72 e MT,H

Table A1 displays the Mahalanobis distances for all tiers of covariates and
factorial effects. As discussed in Section 5, we should balance more the or-
thogonalized covariates with respect to more important factorial effects, e.g.,
putting decreasing restrictions on My 1, M; o, ..., My g for a given t. With
the pre-assumed importance of covariates, we should also balance more the
covariates in more important tiers, e.g., putting decreasing restrictions on
My, Myy, ..., Mgy for a given h. Generally, the restrictions on the Maha-
lanobis distances in Table Al should decrease from left to right and from
top to bottom, i.e., if h < h and t < t, we should put more restriction on
My, than that on M;;. This implies a partial order of importance on the
set S = {(t,h) : 1 S’t < T,1 < h < H} of all combinations of tiers of
covariates and factorial effects. In practice, we can divide the set S into J
tiers (S1,...,Sy) with decreasing importance, which are coherent with the
partial order on S.

EXAMPLE Al. A choice of the S;’s is the triangular tiers, where J =
min{T, H}, and

Sj={(t,h):h+t=j+1,1<h<H1<t<T}, (1<j<J-1)
S;y={({th):h+t>J1<h<H1<t<T}.

Let (aq,...,ay ) be J positive constants predetermined in the design stage.
Under rerandomized factorial experiments with tiers of covariates and fac-
torial effects, denoted by ReFMTcr, we accept only those treatment assign-
ments with Z(t,h)esj My < aj, for all 1 < j < J. Below we use Tcr to
denote the event that the treatment vector Z is accepted under ReFMTcr.
From the finite population central limit theorem, asymptotically, M, is
XQLch, and the M; ;,’s are jointly independent. For each 1 < j < J, let \; =
Z(t,h) es; L, F},. The asymptotic acceptance probability under ReFMT¢F is
then p, = szl P(Xij < aj).

By the same logic as Proposition 7, with equal treatment groups sizes,

M, reduces to M) = n/4 - Zfefh %e[thSe[i]e[t]%e[t},fa where Tepr =
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2~ (K1) Equl gfqé[t](q) is the difference-in-means of orthogonalized covari-
ate e[t] with respect to the fth factorial effect.

A1.3. Asymptotic sampling distribution of 7. For each tier S, let Urelj] €
RE*Aj be a matrix consisting of the columns of matrices {W eyl } e myes;
Ueelj] € R be a block diagonal matrix with {W eler [Pl }t,n)es; as the
diagonal components, and U!_[j] = Urelj](Ueelj]) 'Uer[j] be the sam-
pling covariance matrix of 7 explained by {9e[t] [A]}(t,n)es, in the linear pro-
jection under the CRFE. Let € ~ N(0,Ir), and ¢y o, ~ D; | D;D; < aj,
where D = (Dj1,...,Dj;)" ~ N(0,Iy;). Inaddition, (€, ¢y, a5+ +5Cxa,)
are jointly independent.

THEOREM Al. Under ReFMTcr and Condition 1,

1/2

1/2 J
(A2)  F-r|Tor < (V) e+ D (UL G
j=1 ?

Let UJfo [] be the fth diagonal element of U_[5], and BJ% [7] = Uﬁfo 71/ Vaprs
be the proportion of variance of 74 explained by {9e[t] [h]}(t.n)es, in the lin-
ear projection. Because the {ée[t] [h]}(t,n)es,’s are essentially from a block-
wise Gram—Schmidt orthogonalization of 7, we have Z}']:1 ﬂjg [7] = Rfc. Let
g0 ~ N(0,1), nz; .0, ~ Dj1 | D;Dj < a; be the first coordinate of Crja;0
and (€0, 7,415 - - -, ,a,) b€ jointly independent. Theorem Al immediately
implies the following asymptotic sampling distribution of a single factorial
effect estimator.

CoOROLLARY Al. Under ReFMTcr and Condition 1, for 1 < f < F,

J
(A3) 7y — 74 | Tor ~ \/VTfo \/1 — R 2o+ 3 (871 My
=1

Al.4. Asymptotic unbiasedness, sampling covariance and peakedness. First,
the asymptotic sampling distribution (A2) is central convex unimodal. There-
fore, the factorial effect estimator 7 is asymptotically unbiased for 7 under
ReFMTcr, and the difference-in-means of covariates with respect to any
factorial effect has mean zero asymptotically.

Second, we consider the asymptotic sampling covariance of 7 under ReFMT¢p.

THEOREM A2. Under Condition 1, T has smaller asymptotic sampling
covariance matriz under ReFMTcg than that under the CRFE, and the
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reduction in asymptotic sampling covariance is anzl(l - U)\jﬂj)UD.T [7]-
For each 1 < f < F, the PRIASV of 77 is Z}]:1(1 — vAj’a].)ﬂj%[j].

Third, we consider the peakedness of (A2).

THEOREM A3. Under Condition 1, the asymptotic sampling distribution
of T — 7 under ReFMTcp is more peaked than that under the CRFE.

We then consider specific symmetric convex sets of form O(V rr, ¢). Sim-
ilar to Section 5.4, due to some technical difficulties, we consider only the
case under the following condition.

CONDITION Al. There exists an orthogonal matriz T' € RF*F such that

'V PUL IV T = diag(kdy, ... k2p), (1<j<J)

where (Iﬁ?l, e HJQF) are the canonical correlations between T and {ée[t] (A} e,n)es;

under the CRFE.

Condition A1l holds automatically when J = 1. Moreover, the following
proposition shows that the additivity is a sufficient condition for Condi-
tion Al. Recall that ¥ is the linear transformation from ¢, to by, B =
2—2(K-1) ZqQ:1 n;lbqb’q, and C = 27 2(K-1) 25:1 n;lcqc;.

PRrOPOSITION A2. Under the additivity in Definition 1, Condition A1
holds with orthogonal matriz I' = B_I/Q\Il C 1/2.

THEOREM A4. Under ReFMTcr, assume that Conditions 1 and Al
hold. Let c1—q be the solution of limy, oo P{T — 7 € O(V rr,c1-0) | Ter} =
1 — a. It depends only on K, \;’s, a;’s, and (/{?1, ceey /{?F) ’s, and is nonin-

creasingm/ijszorlgjgjandlgng.

Because the peakedness relationship is invariant under linear transforma-
tions, and any linear transformation of 7 has asymptotic sampling distribu-
tion of the same form as 7, we can establish similar conclusions as Theorems
A3 and A4 for any linear transformations of 7. We relegate the details to
Appendix A5, and consider only the marginal asymptotic sampling distri-
bution of a single factorial effect estimator here.

COROLLARY A2. Under Condition 1, for any 1 < f < F and a €

(0,1), the threshold c1—o for 1 — a asymptotic symmetric quantile range

[—clfaVTlf/T%,,cl,aVTIf/%] of 7¢ — 75 under ReFMTcr is smaller than or equal

to that under the CRFE, and is nonincreasing in B]%(j), forany 1 <j <.J.
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EXAMPLE A2. We consider again the setting in Example 3 in the main
text, and further assume that the finite population partial covariance between
potential outcome Y (1) and other covariates given the first covariate is zero,
i.e., only the first covariate is important. We divide the covariates into two
tiers, where tier 1 contains only the first covariate and tier 2 contains the
remaining covariates, and then construct triangular tiers in Example Al,
where 81 consists of the combination of main effects and first covariate with
A = K, and 52 consists of the remaining combinations of factorial effects
and covariates with Ay = (25 — 1)L — K. We choose thresholds (a1, az) such
that P(Xil < ap) =0.002 and P()&2 < ag) = 0.5. Then for the main effect
1 < k <K, B[1] = R} and BE[2] = 0. Figure Al shows the PRIASV,
divided by R?, of the main effect estimators for ReFMTyr and ReFMTcr.
It shows that the advantage of further using tiers of covariates increases as

numbers of factors and covariates increase. O
“ELTEE R
Rtk
o X . .
S A .
\\ \\\ \o\\
S ] * -
£° X A &
8 .
2 . °
S A
o K=2 N B
© | A K=3 .
© |+ K=4 - ReFMT: .
X K=5 ReFMTor
2 4 6 8
L

Fig Al: PRIASV of main effect estimators under ReFMTp and ReFMTcr,
divided by R}

A1.5. Conservative covariance estimator and confidence set under ReFMT cp.

We define s o[ and Sefe[](q) as the sample covariances of the observed out-
comes and orthogonalized covariates under treatment combination ¢q. We es-

. oL % _ — _
timate V£, by Vi in (4.4), Woepg[h] by W oeg[h] = 27250 52 | 1 (bych 7))@
{sq,e[t]s;[i]/j[t](q)Si{f]e[t]}, U re[j] by Urelj] consisting of the corresponding

~ ) 1 1/2 . Ty — ~ . T\ —
Worel [A]’s, and (Ul,.[]]))\é = Ure[j](Ueels]) 12 by Ureljl(Ueels]) 12,
We can then obtain a covariance estimator and construct confidence sets
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for 7 or its lower dimensional linear transformation. Similar to ReFM,
for a parameter of interest C'7T, we recommend to use confidence sets of

the form CT + (’)(CV.J,:.,_C/,C), and choose the threshold ¢ by simulating
the estimated asymptotic distribution. Let ¢;_, be the 1 — a quantile of
(C’(ﬁ)’(CViTC")_l(Cq')) with ¢ following the estimated asymptotic sam-
pling distribution of ¥ — 7 under ReFMT ¢cr.

THEOREM Ab. Under ReFMTgr and Condition 1, consider inferring
Ct, where C has full row rank. The probability limit of covariance estimator
for CT, CV.J,._.,.C’ + Z}]:1 v,\ﬁajC’Ij-,-e[j](Uee[j])_lﬁe-,-[j]C’, is larger than
or equal to the actual sampling covariance, and the 1 — « confidence set,
Cf'—i—(’)(CViTC’, ¢1—a), has asymptotic coverage rate > 1— v, with equality
holding if S£, — 0 as n — co.

The above confidence sets is similar to the ones based on regression ad-
justment if the threshold a;’s are small [Lu, 2016]. Moreover, we will extend
Theorem A5 to general symmetric convex confidence sets in Appendix AG6.

A2. Sampling properties under the CRFE.

A2.1. Lemmas for matrices. For any positive integer m, we use 1,, to
denote an m dimensional column vector with all elements one, I, to denote
an m x m identity matrix, and J,, to denote an m x m matrix with all
elements one.

LEMMA Al. Let A, B,C and D be four matrices.

(1) (A2 B) =A'® B'.

(2) If A and B have the same dimension, then (A+ B)®C =A® C +
B®C,andC®(A+B)=C® A+C® B.

(3) If one can form the matriz products AC and BD, then (A® B)(C ®
D) = (AC)® (BD).

(4) If A and B are invertible, then (A® B)™' = A~ @ B™%.

Recall that g; = (gr1,---,97q)" is the generating vector for the fth fac-
torial effect, by = (giq,---,9rg) is the coefficient vector for the treatment
combination ¢, and B = 272(K-1) Zqul nq_lbqbf].

LEMMA A2. Forany1l<q,k<Q,

(A1) 2_2(K_1)nq_1n,:1bgB_lbk = nq_l x1{g=k} —n"t
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PROOF OF LEMMA A2. Let B = (by,...,bg) = (gq,--.,9p) € RFXQ
and N = diag(ni,...,ng) € R9*C. Then B = 2~ 2K-1 Zqul ny tbybl, =
2 2E-HU)BN~'B’, and 2*2(K*1)n;1n,;1b’q}§_1bk is the (g, k)th element of
matrix C = N"'B' (BN"'B) "' BN,

First, we show that there exists a constant ¢ such that C = N~! 4+ ¢J Q-
By definition, BC = BN ~'B’ (BN—lB’)‘1 BN~!= BN~!. Thus,

(A2) 0=B(C-N1Y=(gy,...,9r) (C—N1).

By the properties of generating vectors, (1¢,g1,...,gr) constitute an or-
thogonal basis of R?. Equation (A2) implies that each column of C — N~}
is orthogonal to g4,...,gr, and thus has to be clgx1 for some constant c.
Because C — N1 is a symmetric matrix, C — N ! must be ¢J @ for some
constant c.

Second, we show that ¢ = —n~! and C = N~ — nflJQ. On the one
hand, C = N~ ! + cJ g implies

Q
tr(CN) =tr(I) +c-tr(JgoN) :Q+can =Q+cn;
q=1

on the other hand, the definition of C implies
t(CN)=u{N"'B'(BN"'B) ' B} =t {BN"'B'(BN"'B) "'}
=F=Q—1.
Therefore, c= —n~}, C = N~ — n‘lJQ, and Lemma A2 holds. O

LEMMA A3. If two matrices A and B in RPX™ satisfy AA' = BB’,
then there exists an orthogonal matriz T € R™*™ such that A = BT.

PrOOF OF LEMMA A3. First, we consider the case with p = m, i.e., A
and B are square matrices. From the polar decomposition, A = (AA’)l/QI‘l
and B = (BB')'/?Ty, where T'y and T'y are orthogonal matrices. Therefore,

BT,T, = (BB')'/?I,I%T = (AA)V?T = A,

where T,y is an orthogonal matrix. Thus, Lemma A3 holds when p = m.
Second, we consider the case with p < m. Define two square matrices:

A = < A > S Rmxm’ B, = ( B > € R™*™,
O(m—p)Xm O(m—p)xm
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We can verify AjA] = BiB). From the first case for square matrices,
there exists an orthogonal matrix I' € R™*™ guch that A; = BT, which
immediately implies A = BT'. Thus, Lemma A3 holds when p < m.

Third, we consider the case with p > m. Let W € RP*P0 be a matrix
whose columns are an orthonormal basis of {x : A’z = 0} C RP, and
W, € RP*(P=P0) be the matrix such that W = (W1, W) € RP*P is an
orthogonal matrix. We can verify WA = 0p,xm. Because

W(B(WB) = W{BB'Wqy =W AA'Wq = 0p)xp,,

we have W{B = 0p,xm. Because {zx : A’z = 0} is of dimension at least
p — m, we have pg > p — m and therefore p — pg < m. Because the two
matrices W/ A and W/ B in RP—P0)*™ gatisfy W/ AA'W | = W BB'W 1,
from the second case, there exists an orthogonal matrix T' € R"™*™ such
that W] A = W/ BT. Thus,

w! W' BT W'A W' A
! _ 1 _ 1 _ 1 _ 1 _ !/
WBT = <wa) Br = <WaBr> = <om) = (WaA) =W

Because W is an orthogonal matrix, we have BI' = A. Thus, Lemma A3
holds when p > m. ]

A2.2. Covariances between T and 7.

PROOF OF PROPOSITION 1. We first write the vector (7/,77,) as a lin-
ear combination of average observed outcomes and covariates:

(A3)

0 bq?(Q) 0 R
( T ) — 9—(K-1) Z 914%(q) — 9—(K-1) Z < b, Orx«r, > Y(q)
+m g=1 g=1 0FL><1 bq & IL %(q) ’
9rqx(q)

We can view covariates as “outcomes” unaffected by the treatment, and view
(Yi(q),x})" as the potential outcome vector under treatment combination g.
Using Li and Ding [2017, Theorem 3], (7', 7,)" has sampling mean

Q _
2—(1(—1)2( by OpFxL ) <Y(Q)> _ ( T >
= Orrx1 bo®Ip x Orrxi)’

and sampling covariance matrix

Q
2 HK=D§ ot by Opxr Seq  Sqa b, Opr \
p 9 \Oppx1 by ®IL) \Szq Szx) \Orrx1 by @I
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_n—l STT 0
0O O
Q / '
i) Zn—l ( bybySqq bySga - (bg® IL) /)
q by®I) - Spgby, (bg@IL)Seq(by®Ip)

q:
_nfl STT 0
0o 0/
From Lemma A1,

quq,w : (bq ® IL)/ = (bq ® Sq,w) (b; ® IL) = (bqbig) ® Sq,w’
(bg @ IL)Saza(by @ IL) = (by®@IL)(1® Sae)(b, @ IL) = (beb]) ® Sae.

Therefore, we deduce the mean and sampling covariance o (#/,#%,) in the
form of Proposition 1. The asymptotic Gaussianity of (7/,77,)" follows di-
rectly from Condition 1 and Li and Ding [2017, Theorem 5] O

PROOF OF PROPOSITION 6. We first rewrite
N Q _ Q IS _
(Tt T) ) bqw )= bV (a) ) _g-e 3 <bq 0 ) V() -Y(0))
0 =1 i( ) | 0 ¢® I; x q)

From Li and Ding [2017, Theorem 3], (' — T’,é;)’ has mean zero and
sampling covariance

Q
—2(K-1) anl by 0 Seg Sqa) (b 0 I _ ol Srr 0
1 0 c,@Ip Szq Sza 0 c,@Ip 0 O
_ 2(K-1) Z -1 b b/S (ch;) ® Sq,a: _ -l S+ 0
cqb' ® Sw a (cqcy) @ Sax 0 0/

From the Gram-Schmidt orthogonalization of the ¢,’s,

0 o cql1]cgy[1] [ ]0 . 0

T cq[2]cy[2 0

q; q ©4% g q : :
0 0 cq[H]cy[H]

Therefore, Proposition 6 holds. 0
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PRrROOF OF PROPOSITION Al. We first rewrite

T byY (a) — by (q)
Oc] < cy e (q)
‘ — 9—(K-1) Z q (1]
. q=1 K
Oc(1] cq ® erry(q)
(b o 0\ (V@)Y
_ o (=03 0 el O en(9)
q=1 : .
0 0 cq @I, e (q)
From Li and Ding [2017, Theorem 3], (7' — T/,é;m, . .,@;[T])’ has mean

zero and sampling covariance

b, 0 0
Q
71)27@;1 0 Cq(?ILl 0
g=1 : : . :
0 0 oo ®Ip,
’
Sqq Sq7e[1} oo Sq,e[T] bq O e O
Se[l],q Se[l]e[l} .. 0 . 0 ¢c,®Ip, ... 0
SelTlq 0 o Se[Tie[r] 0 0 =Y §
S+ 0 ... 0
0 O 0
—n1 .
0 O 0
o b b/ S (bl}?i]) ® Sq,e[l] c. (chi]) ® Sq,e[T]
DY ® Sem (cqcq) @ Seftjen] - - 0
q=1 : /
( b ) ® Se[T} 0 R (chq) & Se[T]e[T}
S 0 ... 0
o ... 0
—n1 '
o 0 ... 0

Therefore, Proposition A1 holds. O
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A2.3. Linear projections and squared multiple correlations.

PROOF OF THEOREM 1. From Lemma A1, the sampling covariance ma-
trix of 7 explained by 7, in the linear projection satisfies

ViaVaiVar

Q
24<K1>{ ny " (0gb) © Sy ¢ (B® Saa) {Zn (bib}) ®ka}
q=1

Q @ (e
S S S o e (57 0 522) { S ) 5,
q=1 k=1 q=1
Q Q .
=2 K-D Y {n(;l(bqb;) B~ - ngl(bkb;)} © (Sq2SzwSar)
q=1 k=1
Q Q
:2—2(K—1)Zz{bq( —2(K-1), q lb’B b) } (Squ SM),

where in the last equality the Kronecker product reduces to the matrix
product because S ;SzsSz « is a scalar. Using Lemma A2, we have

ViaVaaVar
Q Q Q

— 9—2(K-1) Z(nq’lbqb') (Squ Zznﬂb b - S @S;ism,k)
q=1 =

q=1 k=1
Q Q Q
—2(K—-1) an_lbqb; . S(!q _pl 9 (K-D) Z —1 (2—(K—1) Z&c,k%)
q=1 q=1 k=1
Q
HEEDN b - Spy — ' Sr 2 SpaSar

Q
—2(K-1) Z nt;lbqb; . Sl!q — nils_‘,‘_T = V.Hr.,_

Therefore, the sampling covariance of the residual from the linear projection
of T on 7T, satisfies

Vor = ViaValiVier

Q
= Ve = Vi =220 0 tpb) - (Sqq —~ qu> —n! <STT — SL)
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Q
—2(K-1 —1p 3/ ol 1ol _yrL
=27 2D N " Tbgb), - Sy —n TS =V
q=1

Theorem 1 holds. O

PrOOF OF COROLLARY 1. From Proposition 1 and Theorem 1, under
the CRFE, the variance of 7 is V;.;., and the variance of 7y explained by 7

FTE
in the linear projection is VT‘JLT 4 Therefore, the squared multiple correlation
between 77 and T is
I —2(K-1 Q —1¢l —1qll
ey = Va2 Sy Sy = S
Vipry  272(K-1) Zqul nq_lsqq - n_lsrfvf
Under the additivity, S11 = --- = Sgg., Sﬂl = ... = SgQ, and STfo =
Slfo = 0, which further imply R?c = S},/S11. O

ProoF oF PROPOSITION 5. Under the additivity, from Proposition 1,
the sampling variance and covariances are Var(7¢) = 9—2(K-1) Zqul nq_15’11,
Cov(Tak) = 2-2(K-1) Zqul nq_lsm;, and Cov(7f, T k) = 9-2(K-1) 222:1 nq_lgfqgquLw.
Let gg = 1¢. By the property of 2K factorial experiments, for any 1 < f, k <
F, there exists 0 < m < F such that g; o g;, = g,,,, recalling that o denotes
element-wise multiplication. Define fxk as the index such that g fog;, = g .-
Let wg = nq_l / 28:1 n,;l be the weight inversely proportional to the number
of units under treatment combination q. We can simplify the variance of 7
explained by 7 under the CRFE as

Cov(7f, Tz.k)Cov 1 (Fo.1)Cov(Fo i, Tf)

Q Q e
= (St ) (S (S0t
q=1 q=1

q=1
Q Q 2

= 27200 ngt | Do waggana | St
q=1 q=1

Therefore, the squared multiple correlation between 7; and 7, ; satisfies

2 = Cov (77, 7A':c,k)Cov_1 (T2k)Cov(Ta ks Tr)
T Var(7y)

2
0 (5, (52 mara) s
22K 0 ngtsy
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0 2 2

= qugf*k:,q Sty /S = Z (O Z wy | S11/S1
g=1

@:Gfxk,q=1 @G frk,q=—1
2

qu Si1/Su = Si1 /81,

IN

where the equality holds if fxk =0, i.e., k = f. Using Corollary 1, we have
’712% < ,y?f =R2 = S{‘l/SH. Moreover, because fy?f = R?, under the CRFE,
the variance of 7y explained by T, is the same as that explained by 74 s.
Therefore, the squared multiple partial correlation between 7¢ and 7, given

T f is zero. If ny = -+ = ng = n/Q, then wy = -+ = wg = Q !, and
thus Z(?Zl WoG fakg = Q7 222:1 Gfsk,g = 0 if & # f. Therefore, 'yj%k = 0 for
k# f. O

PROOF OF PROPOSITION 7. With equal treatment group sizes, from the
definition of coefficient vector b,, we have

0 Q
72(K71)Zn;1bqb; — (4/@2)(71/@)71 qub;
g=1 !

=4/(nQ) - (b1,...,bg) - (bl,...,bQ)'
=4/(nQ) - (917‘--7917),‘(917'--7917)-

By the property of 2% factorial experiments, these generating vectors satisfy
that, for 1 < f #k < F, g’fgk =0 and g’fgf = Q. Thus, B further reduces
to B =4/(nQ) - QIr = (4/n)Ip, which is a diagonal matrix. Therefore, in
(5.1), B[]:h,]:ﬁ] — 0, and ¢,[h] reduces to by[F,]. Consequently, 8[h] in
(5.2) reduces to 74[F]. Because

Q
Wy |h] = 272E-D anl(cq[h]c; [h]) © Sz

K”Zn—l o[ Ty Fn]) ® Saa = B[Fn, Fi] ® Saa

:4/n‘IFh®Smma

we can simplify M}, as

~/

My, = 0, [h] (W ag[h]) ™ Oa[h] = 74 [Fo] (4/n - Ip, @ Saa) ™ Tl Fil
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=n/4- Y, 1Seatas
fE€Fn

Therefore, Proposition 7 holds. O
A3. Asymptotic sampling distributions of 7.

A3.1. Lemmas for central convex unimodality. We use B, (r) to denote
the ball in R™ with center zero and radius 7.

LEMMA A4. The class of central convex unimodal distributions is closed
under convolution, marginality, product measure, and weak convergence.

PROOF OF LEMMA A4. See Kanter [1977], Dharmadhikari and Joag-Dev
[1988] and Dai [1989). 0

The following two lemmas extends Lemma A4 to all linear transforma-
tions. Although this extension is straightforward, we give a proof below for
completeness.

LEMMA A5, Ifp € R™ is central convex unimodal, then for any p > 1,
(¥',07,,.1) € R™ P is central convex unimodal.

Proor oF LEMMA A5. For any random vector ¢ uniformly distributed
on a symmetric convex body K C R™, we define ¢, € R™"P as the random
vector uniformly distributed on K x By(r) C R™*P. Because K x B,(r) is
a symmetric convex set, ¢, is central convex unimodal. As r goes to zero,
¢, converges weakly to (¢',0/,)". Therefore, (¢',0,,,,)" is central convex
unimodal. By taking mixtures and weak limits, we deduce Lemma A5. [J

LEMMA A6. Ifp € R™ is central convex unimodal, then for any matriz
C € RP*™ Chap € RP is central conver unimodal.

Proor oF LEMMA AG6. First, we consider the case where C is an m X
m invertible matrix. For any random vector ¢ uniformly distributed on a
symmetric convex body K C R™, C¢ is uniformly distributed on CK =
{Czx : x € K}. By taking mixtures and weak limits, we can know that
Lemma A6 holds when C' is an m x m invertible matrix.

Second, we consider the case where C' has full row rank, i.e., rank(C) =
p < m. In this case, there exists an (m —p) x m matrix C such that (C’,C")
is an m X m invertible matrix. From the first case, we know for any central
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convex unimodal random vector ¢ € R™, (C’,C’)'4 is also central con-
vex unimodal. From Lemma A4, its subvector C1) is also central convex
unimodal.

Third, we consider a general matrix C of rank p;. Let W be a matrix
permuting the rows of C' such that the first p; rows of WC is linearly
independent, and the remaining ps = p — p; rows of W are all linear
combinations of the first p; rows, i.e., (WC) = (C},C}), where C; €
RPrx™m - Cy € RP2X™ rank(C1) = p1, and Cy = I'Cy. Thus,

e a1 (C1 a1 [ Ci a1 [ C1vY
C¢—W1(WC)¢—W1<CQ>¢—W1<rcl>w—W1(rcl¢)

w1 (Im 0p1xpz) (Cld’> =T <Cﬂ/’> )
r Ipz 0P2><1 Op2><1
From the second case, C11 is central convex unimodal. From Lemma A5~,

((C1%)',0,,41) is also central convex unimodal. Because the p x p matrix T’
is invertible, from the first case, we know C'¢) is central convex unimodal. [

LEMMA AT7. Let 4, and ¥4 be two independent m dimensional random
vectors. If both ¥, and 1Py are central conver unimodal, then 1, + 1y is
central convex unimodal.

PROOF OF LEMMA A7. See Dharmadhikari and Joag-Dev [1988, Theo-
rem 2.20]. O

LEMMA A8. If a random vector in R™ has a log-concave density, then
it 1s central convex unimodal.

PrROOF OF LEMMA A8. See Kanter [1977, Lemma 3.1] and Dharmad-
hikari and Joag-Dev [1988, Theorem 2.15]. O

A3.2. Properties of the truncated Gaussian random vectors.

PROOF OF PROPOSITION 2. For any m, the densities of € and ¢, , are

~ Hx'x <a}

f(x) = (2m) ™ exp (-2'z/2), g(z)= m(%)_mﬂ exp (—a'z/2)

and the log-densities of € and ¢, , are

log f(2) = —(m/2) log(27) — @'z/2,
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—log {P(x2, < a)} — (m/2)log(2r) — 'x/2, if 2’z <a,
1ogg<m>:{ {POG, < @)} — (m/2) log(2m) — '/ _
—00, otherwise.

It is straightforward to show that both log f(-) and log g(-) are concave func-
tions. From Lemma A8, both € and (,, , are central convex unimodal. Be-
cause both € and ¢y, are central convex unimodal, using Lemma A6, both

(VL,)Y2%e and (V.‘,‘_T)i/;C LFq are central convex unimodal. From Lemma
A7, we have Proposition 2. O

PROOF OF PROPOSITION 3. First, we prove that (rp, is spherically
symmetric. Let D ~ N(0,Ipr). For any orthogonal matrix I', T'D ~ D,
and thus,

(Lpa~D|D'D<a~TD|(TD)TD <a~TD|D'D<a~T(p,.

Second, from Morgan and Rubin [2012, Theorem 3.1], Cov(¢15,) = viFalLF-
Third, we show the representation for {1 ,. By the spherical symmetry of
the standard Gaussian random vector D, (D/D)_l/QD ~U=(Uy,...,Urp)
is uniformly distributed on the LF dimensional unit sphere, D'D follows
X% > and they are independent. Therefore,

D|D'D<a ~ (D'D)'?-(D'D)"?D|D'D <a ~ xipaU.

Let sign(U;) be the sign of U;. Given (|Ui], ..., |ULr|), the sign vector (sign(Uy),
...,sign(Urr)) has the same probability to be any value in {—1,1}". Thus,
(sign(Uy),...,sign(Urr)) ~ S, and it is independent of (|Uil,...,|ULr|)-
Because U ~ (D'D)~Y/2D, and (D?,...,D? ) are independent and iden-
tically Gamma distributed with shape parameter 1/2 and rate parameter
1/2, we have

(UZ,...,U?p) = (D'D)~ - (D3,...,D% ) ~ Dirichlet(1/2,...,1/2) ~ 3.
Therefore, U = (sign(U),...,sign(Urr)) o (|U1],...,|ULr|) ~ S o /B,
which further implies ¢, ~ XLFa - S © VB O

The following lemma helps to simplify the asymptotic sampling distribu-
tions of 7 under the CRFE, ReFMTr and ReFMTcF.

LEMMA A9.  Let G0 ~ D | D'D < a be an m dimensional truncated
Gaussian random vector, where D ~ N(0,1,,). If two matrices A and B
in RP*™ satisfy AA" = BB’, then A, , ~ B(,, .-

ProOOF OF LEMMA A9. From Lemma A3, there exists an orthogonal ma-
trix I' € R™*™ guch that A = BT'. From Proposition 3, by the spherical
symmetry of Cma, Acm@ = BT(,, 4 ~ BCp 0 O
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A3.3. Asymptotic sampling distributions of T under ReFM. To prove
Theorem 2, we need the following three lemmas. We further introduce the
following regularity condition for a general covariate balance criteria de-
pending only on T, and V 4.

CONDITION A2. Let B ~ N(0,A). For any A > 0, the 0-1 function
K(VNT 2, NV gz) = 6(To, V) satisfies

(a) K is almost surely continuous,

(b) Var{B | k(B,A) = 1}, as a function of A, is continuous,

(¢) P{x(B,A) =1} >0,

(d) k(p,A) =k(—p,A), for all p.

We can verify that the balance criteria for ReFM, ReFMTy and ReFMT g
depend only on 7, and V 4, and satisfy Condition A2.

LEMMA A10. Let (/nT',/nTl,) be a random vector following N'(0,nV').
Then as n — oo, under Conditions 1 and A2, the two conditional distribu-
tions, n(7' — 1, 70) | K(Tx, Vaz) = 1 and /n(7',75) | 6(Tz, Vaz) = 1,
converge weakly to the same distribution, i.e.,

(Z;T) B(Far Vaa) =1~ (T)

Tz
PrOOF OF LEMMA A10. The proof of this lemma is almost identical to
Li et al. [2018, Proposition Al and Corollary Al]. We omit it. O

K(Tz, Vae) = 1.

PrROOF OF THEOREM 2. From Lemma A10, under Condition 1, ¥ —
T | M~ F | F,Vars < a, where (7/,7,) ~ N(0,V). The linear
projection of ¥ on T4 is V.,-EV;OIZ%E, and the corresponding residual is

Fe =7 — V2V 17, From Theorem 1, 7. has variance VL . Let D =

V;i/Q?w ~ N(0,I.r) be the standardization of 7. We can then simplify

the asymptotic sampling distribution of 7 under ReFM as:
FoT|M A FIFVaTe<a ~ Tet ViaViaaTa | ToViaaTa < a

~ Fet ViaVad?D | D'D<a

1/2 _
~ (Vi_‘r> €+ VTmeﬂlc/QCLF,av
where € ~ N(0,IF) is independent of ¢ p,. From Theorem 1, vl =

VieViViar = Vg V;iﬂ(V.,-mV;al;m)’. Using Lemma A9, we have V.,-mV;imCLEa ~
(V,‘,‘_T)lL/}z CLrq- Therefore, Theorem 2 holds. O
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PROOF OF COROLLARY 2. Let ey = (0,...,0,1,0,...,0)" be an F di-
mensional unit vector with fth element one. From Theorem 2,

FroT M &€ (Vif) €+ef(v“l"7')2/FCLFya

where ¢ = (e’fV.”rTe )~1/2e! (VH )1/ is a unit vector with length one. By
the spherical symmetry of C LFq in Proposition 3, ¢'¢p, ~ nrra [Li et al.,
2018, Lemma A1l]. By the definition of R?c in Corollary 1, we can further
simplify the asymptotic sampling distribution of 7 as

TpoTr Mo \/e}VrTef — ey Virer st /€ Varer irra

[ I
~ VTfo V’T‘fo €0+ VTf’Tf 77LF,a

~ \/ TITf (\/1 Vﬂ"j‘ch/‘/Tfo €0t V‘F‘J‘c‘rf/v’rfo : 77LF,a>

~ \/VTfo (\/1 — R} g0 + \/Rifc'ULF,a> :

Therefore, Corollary 2 holds. O

PROOF OF COROLLARY 3. Recall that R = V,2°V! v /? = TTI*T
is the eigen-decomposition of R, where I' € R¥*F is an orthogonal ma-
trix, and II? € RF*F is a diagonal matrix containing the eigenvalues of R.
Let @ = T 'T'V7Y2V, . Vol/? Then QO = I 'I'RTII! = I, and
V;.,l-/ 2V.,-mV;913/ 2 — TTIN is the singular value decomposition of V -+ 1/2 V2V
Note that V , 1/2VJ‘ V2 =Ip-—R-= I'(Ir — II*)T’. We can simplify
the asymptotic dlstrlbutlon (4.1) as

12 -
ForiM A (Vi) e+ ViaVad "o,

_ 1/2 - -
_ 1/2 { 1/2 ‘/L €+ V7-71-/2VT:13V:!:;3 2<LFa}

/ _ —
N 1/2 { 1/2VL 1/2> €+ Vq-ql-/QVmel:/QCLF,a}
_ oyl {D(Ip —TI? I"}l/2 €+ FHQCLF,a}
VY2 {I‘ 1/25—|—FHQCLFa}'

Beca1~1§e QY = Ip, there exists a matrix Q € R(L_l)FXLIi /such that
(¥, Q) € RUXLE s orthogonal. From Proposition 3, (€,2)¢pp, ~

—-1/2
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¢ Therefore, we can simplify the asymptotic distribution (4.1) as
FoTIM & VT - T) e £ TN, 1y |
~ VYT {(IF — I1?)"/%¢ + (I1, 0) (3) CLF,Q}
~ VT {(Ip ~ 1) 4 (TL,0)C1py } -
Therefore, Corollary 3 holds. 0
A3.4. Asymptotic sampling distribution of T under ReFMTE.

PROOF OF THEOREM 7. Let (#,0.,) = (¥,0,[1],...,0.[H]) be aran-

[
dom vector following Gaussian distribution with mean zero and covariance

matrix

Vs Wora[l] ... WiglH]
War[l] Waell] ... 0
W:,;;[H] 0 W:c:a:[H]

From Lemma A10, under Condition 1,
For|Te & 7 | {00 (Weolt) " Ol <ar 1 <h<HJ,

where 6, [h]’s are mutually uncorrelated. The linear projection of 7 on [
is Zthl W ra[R)(W 2z[h]) “10.[h]. Let 7¢ be the corresponding residual,
which, by the identical covariance structure between (%’,é;)/ and (7 —

T, é;)’ , has the same covariance as the sampling covariance of 7., the resid-
ual from the linear projection of 7 on 0. Because 0, and 7, are linear
transformations of each other, 7 is the same as the residual from the linear
projection of # on #. Thus, from Theorem 1, Cov(7¢) = Cov(7¢) = V£,
Let € = (V£.)"Y/2%. ~ N(0,Ir) be the standardization of 7¢, and Dj, =
(W 22|h])"1/?6[h] be the standardization of 4[h]. We have

e Y
/

< F ( {010 (Waalh) ™ Oulh] < anh=1,... . H |

H
Tt Y W W (W) 0alh] | {04 (0] (Waalh]) " 0u[0] < a1 < h < H}

h=1
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H
~ (VE) e+ Wog[h](Walh])"/2Dy | {D),Dy < ap, 1 <h<H}
h=1

H
~ (VI £ 3" Woralh](Waalh)) ™ /2C 5, -
h=1

Because W_[h] = W o[h](W 2z[h]) /2 {W 15 [h](W »e[h])~1/2} by defi-
nition, Theorem 7 holds by Lemma A9. O

PROOF OF COROLLARY 5. Recall that ey is a unit vector with the fth
coordinate being one. From Theorem 7, the asymptotic sampling distribu-
tion of 7y under ReFMTr is

=7 | Tr

1/2

C e (Vi) ey e (wm) ¢
f Pt LF), LFy,ap
H
~ o€ f -r-ref'€0+Z\/ fW-Hm- ef'CZCLFh,ah

\/VTfo <\/1 VagrsVepry 50+Z Wor [0/ Ve, 'C;ZCLFhﬂlh)

where ¢, = (e’fW.‘,‘__r [hles)~1/2e! (WH [h]) /F is a unit vector with length

one. By the definitions of R?c and the pfc[h] s, and the spherical symmetry
of the C1p, 4,’s from Proposition 3,

H
| Te & Vs, (Vl_R?fOJFZ\/%WLFh’%)'
h=1

Therefore, Corollary 5 holds. O

A3.5. Asymptotic sampling distribution of T under ReFMTcp.

PROOF OF THEOREM Al. For each tier Sj, let 8¢[j] be the concatena-
tion of Oe[ﬂ [h] with (t,h) € Sj, and 66 = (5;[1], .8 [J]). From Proposition

rre

A1, under the CRFE, (7' — 7/, 3;)’ has sampling mean zero and sampling
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covariance matrix

Vir Urell] ... UrelJ]

Uerll] Uell] ... 0
(A1) : : L

U] 0 .. Ueel]

Let (7, 5;)’ be a Gaussian random vector with mean zero and covariance
matrix (Al). From Lemma A10, under Condition 1,

ForTor & 7 | {OuliWUeei) el S a0f =1, T}

Using the same logic as the proof of Theorem 7, we can simplify the asymp-
totic sampling distribution of 7 under ReFMTcF as

VELY

J
. . 1/2 .
For|Tor & (Vi) e+ D Ureli] Weelil) ¢y
j=1
Because by definition Usre[f](Ueels]) ™/ {Ureljl(Ueels]) "2} = UL, [jl,
from Lemma A9, Theorem A1 holds. O

PROOF OF COROLLARY Al. Recall that ey is a unit vector with the fth
coordinate being one. From Theorem Al, the asymptotic sampling distribu-
tion of 7y under ReFMTcrF is

T —7r | Tor

J
) 1/2 . 1/2
~ e (Vi) s+Ze} (UL ) oy
=1
J
~ o e/fvi‘ref €0+ Z \/ e/fU“l"‘r[j]ef ) c;'C)\j,aj
j=1

E I
\/ TFTf \/1 qu—f/VTfo €0 + UTfo Tfo +C; C)\J,aj )

where ¢ = (e ’U” Cliles)~1?%€ (UH [])1/2 is a unit vector with length one.
]

By the deﬁmtlons of R2 and f[ j|’s, and the spherical symmetry of ¢
from Proposition 3,

Jvaa

J
Tr—71r | Tecr ~ \/VTf‘rf \/1_R3”'50+Z ﬁl%[j]'m‘j’aj
=1

Therefore, Corollary A1 holds. O
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A4. Reduction in asymptotic sampling covariances. We use Var,
and Cov, to denote the variance and covariance of the asymptotic distribu-
tions of sequences of random variables and random vectors, respectively.

Proor orF THEOREM 3. First, we calculate the reduction in the asymp-
totic sampling covariance of 7. From Proposition 1, Cova{v/n(7 — 1)} =
lim,, oo NV rr = limy, oo nV -+ limy, o0 nV . For notational simplicity,
we omit the limiting signs. From Theorem 2 and Proposition 3,

Cova{vV/n(+ — 1) | M}

= Cov { (nV7L'7-> 1/2 s} +n (Vﬂ-)lL/j Cov (¢Lra) { (Vﬂ-)lL/;}/

ke (V) (1))

= nV‘Jr_‘r t VLFa - nV“l"T

Therefore, the reduction in asymptotic sampling covariance is (1—vy, F,a)nVl,_
Second, we consider the PRIASV of 7. From Proposition 1 and Corollary
2, the asymptotic sampling variance of 77 are

Var, {V/n(7y — 1)} = nVrirps
Var, {\/ﬁ(%f —7f) | ./\/l} =nVrr (1 - R?« + Rfc “ULF.aq)
=nVyr {1— (1 —vipa)R7}.
Therefore, the PRIASV of 7 is (1 — vLF’a)R?g. O

ProoF oF THEOREM 8. First, we calculate the reduction in the asymp-
totic sampling covariance of 7. From Theorem 7 and Proposition 3,

Cova{fﬁ' —7) | Te}
=nVi + nz <WH >1 Cov(Crr,a) {<WTT[h])2/F2h},

= nVJ‘ + nZULFh ahW.‘,‘.T[h].

Because 74 and 8, are linear transformations of each other, the sampling co-
variances of 7 explained by %4 and 8, are the same, i.e., VI _ Zh  WL_In).
Thus,

Cova{Vn(F —T)} =nVE +nVi =nVi +n Z wl_|
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Therefore, the reduction in asymptotic sampling covariance of 7 is
Cova{Vn(F —7)} = Cova{Vn(# = 7) | T} =n 350, (1 = vir, a,) Whr[h].

Second, we consider the PRIASV of 7. From Proposition 1 and Corollary
5, the asymptotic sampling variance of 7y under the CRFE and ReFMTg
are

Vara {\/ﬁ(%f - Tf)} = nVTfo;

H
Vary {Vn(7y = 77) | T} = nVrr, (l —Rj+) p%[h]vma» -

h=1

By definition of p?[h] and the fact that VI _ = Zthl W!_[h], we have
Rfc = Zthl pfc [h]. Therefore, the PRIASV of 74 under ReFMTF is

anfo — nVTfo (1 - R?‘ + Zthl p?[h]vLF}uah)

nVrprs
H H

=R} = pHhvrma, = O (1 = vLE, a5 ).
h=1 h=1

O

PrROOF OF THEOREM A2. Note that the {ée[t] [h]}(t,n)es,’s are from a
block-wise Gram—Schmidt orthogonalization of 7,. The proof is similar to
that of Theorem 8. We omit it. O

A5. Peakedness of the asymptotic sampling distributions.

A5.1. Lemmas and propositions for peakedness. Recall that we say a
random vector ¢ € R™ is more peaked than another random vector ¢ € R™
and write as ¢ > v, if P(¢ € K) > P(¢ € K) for every symmetric convex
set K C R™.

LEMMA All.  If two m dimensional symmetric random vectors ¢, and
¢y satisfy ¢y = ¢, then for any matrix C € RP*™ C¢; >~ C,.

LEMMA A12. Let 1, ¢, and ¢y be three independent m dimensional
symmetric random vectors. If ¥ is central symmetric unimodal and ¢ >~ ¢,

then 1 + ¢y = 9 + ¢y.



RERANDOMIZATION IN 2¥ FACTORIAL EXPERIMENTS 25

PROOF OF LEMMAS A1l AND A12. See Dharmadhikari and Joag-Dev
[1988, Lemma 7.2 and Theorem 7.5]. O

The following lemma states that truncating a standard Gaussian random
vector within a ball makes it more peaked. Although the result seems intu-
itive, the proof below is a little tedious due to some technical reasons.

LeEMMA A13. Lete ~N(0,I,) and ¢, , ~¢€|e'e <a. Then ¢, , ~ €.

ProOOF OoF LEMMA A13. For any symmetric convex set K, let ||e]l2 =
(e'€)'/? be the ly-norm of e, and G(r) = P(e € K | |le]l2 = r) be the
conditional probability that e is in K given the length of €. Let ¢ be a
random vector uniformly distributed on m dimensional unit sphere. By the
spherical symmetry of €, we can simplify G(r) as

&
]2

6r) =P (el 15 €K | lela=r) = PO € K) = Pl € 771K,
where r 'K = {r~lxz:x € K}. Forany r; > ry > 0,if & € rfllC, then rma €
K. By the symmetric convexity of K, we then have ro& = ro/71 - (&) € K,
ie., & € ry K. Thus, r{ 'K C r5 'K, which further implies G(r1) < G(r2).
Therefore, G(r) is a nonincreasing function of r € [0, 00). We can represent
the probabilities that ¢,, , and € belong to K, respectively, as follows:

Pp.€K)=PleecK|ee<a)=E{PecK|ee<a,le|z)]|ee<a}
=E{G(lle]2) | €'e < a} =E{G(xm) | xin < a},

and P(e € K) = E{G(xm)}- By the monotone nonincreasing property of
G(r), we have

= P(x2, < a)E{G(xm) | x4 < a} + P(x23, > a)E{G(xm) | x4 > a}
< P(x2, < a)E{G(xm) | xpn < a} + P(x2, > a)G(Va)
< P(X2, < aE{G(xm) | X4 < a} + P(X2, > )E{G(xm) | x4 < a}

=E{G(xm) | xon < a} = P(Cmq € K).
Therefore, Lemma A13 holds. O

PROOF OF PROPOSITION 4. From Lemma All, for any vector ¢ € R™,
c ¢ = 1. Thus,

Var(dg) = E{(¢'9)’} = /OOO 1-P{(ce)* <t}]at
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oo
= / {1-P(dpe|-tt])}dt
OOO
< / {1—-P (¢ € [—t,t])} dt = Var(c'y).
0
Because the above inequality holds for any ¢, Cov(¢) < Cov(9)). O
Ab.2. Propositions for simultaneous diagonalization.
PROOF OF PROPOSITION 8. Recall that ¥ is the matrix such that b, =
Wc,. By the construction of the ¢;’s,

O — 92K~ 1>Zn dlag{é[l,l],...,é[H,H]}

is a block diagonal matrix, and B = WCW®’. Partition C into C = (C[,1],...,C|[, H]).
From Proposition 6, under the additivity, we have

Q
WTm[ 2K~ UZTL ®Slm—2 2K-1) an \IICq )®Sl,w
q=1

= (‘I’C[, h]) ® St

Q
Waalh] = 27257 N " n 1 (cy[hl ey [h]) @ Sza = Clh, h] ® Saa

Thus, under the additivity, for each 1 < h < H, W _[h] reduces to

er [h] = Wra[h] W

xrxr

(MW ar[I]

~ ~ —1
—{wern (em) " CLIYw o (5128,1501)
= 5}, - ¥ - diag(0,...,0,C|h,h],0,...,0) - ¥
— sl .w. ¢ diag(0,...,0,If,,0,...,0)- ¢ @'

Under the additivity, V., = 272(K-1) Zle nglbgbl - S11 = Si1 - B. Thus,

Ve PW v
= 5. * B~ 1/2{5” - C'* diag(0,...,0,15,,0,...,0)- &' w'} 5 P

/511 —-1/2

oC"” - diag(0,...,0,1p,.,0,...,0) - C'*w' B~
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=T - diag(0,...,0,8],/S11 - I,,0,...,0) - T,

where T’ = 3_1/2\116’1/2. Because

1/2 1/2 ~,1/2 —-1/2 —-1/2 —-1/2

rr' = 5w ¢ Py BT = BT (wew) B = B BB = 1),

we have that T' is an orthogonal matrix. Note that diag(0,...,0,S{,/S11 -

Ip,,0,...,0) is a diagonal matrix with exactly F}, nonzero elements, which
are all equal to 51”1 /S11. Therefore, Condition 2 and Proposition 8 hold. [

Proor orF PROPOSITION A2. Recall ¥ is the matrix such that b, =

Wc,. From the proof of Proposition 8, C = 272K~ Zqul n;l(cch) is a

block diagonal matrix, and B = WC®¥’. From Proposition Al, under the
additivity, W ey[h] and W gepy[h] reduce to

W‘re[t] [h] =27 AK=D) v Zn cl ® Sl,e[t] = (‘Ilé[’ h]) ® Sl,e[t}
Q
W efgepy[h] = 27251 an [1]) ® Sefgef) = Clh, h] @ Sepyefy

which then implies

Il _
W eiigeln[h] = Wrein[FIW ey

~ -1 , . !
= {‘I'C[, n(Clanl) — (CLA) \I'} (S1.eS ey Seln1)
<51 e[t]S e[t ]Se[t],1> - diag(O, ce ,0, é[h, h], ()7 ey 0) . ‘I’/
= S},[t] - ® - diag(0, ...,0,C[h,h],0,...,0) - &
— sl w. 61/2.diag(o,...,o,IFh,o,...,o)-61/2 L

(W, oy h]

Te[t

linear projectlon of potential outcome Y (1) on orthogonalized covariates in
tier t. Because V . reduces to V - = S11 B under the additivity, we have

Sejy),1 1s the finite population variance of the

“1/2 “1/2
=4 We[t}e[t] [h] Vs

sh/s - B2 {\Ifém - diag(0,...,0,15,,0,...,0)- 61/2\11’} B

I /81 - B~ wE? - diag(o,...,0,Ip,,0,...,0)- ¢ e’ B
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where Q[h] = diag(O0,...,0, S{1[]/S11-IF,,0,...,0) is a diagonal matrix,
and I' = 371/2\11(3'1/2 is an orthogonal matrix. By definition, we then have

v Pul v

=V > Wigenhl v’ - > Vri/QWH[t]e[t][ NV
(t,h)ES; (t,h)ES;

= > TQuRT =T | > Quhl|T, (1<j<))
(t,h)€S; (t,h)€S;

where 3, 4)e s, [h] is a diagonal matrix. Therefore, Condition Al and
Proposition A2 hold. O

A5.3. Peakedness under ReFM.

PROOF OF THEOREM 4. Let D ~ N(0, Ir). From Lemma A13, {1 p, >

D. From Lemma All, (V! _ )1/2CLF0, (vIi_ )1/2D From Proposition 2,
e is central convex unimodal. From Lemma A6, (VL)% is also central
convex unimodal. Then, from Lemma A12,

(VI e+ (VI oCira = (VE) e+ (VI)ED ~ N(0,V.,).
Therefore, Theorem 4 holds. ]
To prove Theorem 5, we need the following three lemmas.

LEMMA Al4.  Let e,n ~ N(0,1) be two independent standard Gaussian
random variables. For any 1> p>p>0,a >0 and c > 0,

P(]\/l—p2'50+p'77|§c|n2§a> 2P(|\/1—52-50+ﬁ'17]§c‘772§a).

PrOOF OF LEMMA A14. It follows directly from Li et al. [2018, Lemma
A3], and is also a special case of Das Gupta et al. [1972, Theorem 2.1]. [

The following lemma extends the above lemma to the multivariate case.

LEMMA A15. Let € and m be two independent m dimensional standard
Gaussian random vectors, (p1,...,pm) be m constants in [0,1], and A be
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a diagonal matriz with diagonal elements (p1,...,pm). For any r > 0, the
probability

P {(Im — AY2e 4 A e B(r) | n'n < a}

is nondecreasing in (pi, ..., pm). Specifically, for any constants (p1,...,pm)
and (p1,...,pm) i [0,1], if pj > p; for 1 < j <m, then for any r >0,

— A? 1/2€+An€5’ ()\n’nga}

P{r
(A1) > P{(Ip—A")Pe+ AneBu(r) [ n'n <a}.

where A = diag(p1, ..., pm) and A= diag(p1,-- -, Pm)-

Proor or LEMMA A15. To prove Lemma A15, it suffices to prove that
for any constants (p1,...,pm) and (p1, ..., pm) in [0,1], if there exists 1 <
k < m such that p, > py and p; = p; for j # k, then (A1) holds for any
r > 0. By symmetry, we consider only the case with k = 1. Let n ~ N(0, I,;,)
independent of €, and e_1 = (e2,...,&y) and n_; = (n2,...,Mm) be the
subvectors of € and 1 excluding the first coordinates. Define

T

V1 —p3 -2+ pame

B(T)s—hn—lupQ?"')pm): € : EBm(T) CR:

\/1_p7271‘5m+pm77m

which is either an empty set or a symmetric closed interval on the real line.
For any r > 0, e_; and n_;,

P{(Iy— A% + An € Bu(r) | n'n < ae1,my }

P{\/l —ptoertprom €Bre_1,m_1,02, -, pm) | 1f < a—n’mw-mn}

{\/ 1 _ﬁ% '61_‘_51 /IS B(ras—hn—lvﬁ%-'-aﬁm) ’77% < a_77I177—175—1777—1}

A2)
P{(Ir— &%)+ Ane Bulr) [n'n < a,e-1,m_ ),

v
o)

/\

where the second last inequality follows from Lemma A14. Taking expecta-
tions of both sides of (A2), we obtain (Al). O



30 X. LI, P. DING AND D. B. RUBIN

LEMMA Al16. Let By and By be two m X m positive semi-definite ma-
triz, € ~ N(0,1,,) be a standard Gaussian random vector, and ¢, , ~ D |
D’'D < a be a truncated Gaussian random vector, where p > m and a > 0.
Define ¢ ~ (Bo)Y?e + (B, )1/2 Cpa- If B = Bg + By is positive defi-
nite, then for any o € (0,1), the threshold c1_o for 1 — a quantile region
{p: W/ B tyu <ci o} of ¢ depends only on (m,p,a) and the eigenvalues of
B '2B,B~'2, and is nonincreasing in these eigenvalues.

PROOF OF LEMMA A16. Let B~Y/2B;B~'/?2 = TA’I" be the eigen-
decomposition of 371/231371/2, where T € R™*™ is an orthogonal matrix,
and A? = diag(p?, ..., p2,) is a diagonal matrix. From Lemma A9,

I'B™2¢ ~T'B~'2(By)? e+ I'B~2(B1)}* ¢,
~ (P’Bfl/ZBOBfl/Qr)l/Qs + (1“’31/23131/21“>;/2 Cha
~ I (I, -TAT) T} e 4 (PTATT) ¢,
~ (I =A%) e+ (A%) "¢,
~ (I =A%) e+ (8,00m) Gy

Let n ~ N(0,1,,), & ~ N(0,I,_,,), and (n,£) be independent. From the
definition of ¢, ,, for any r2 >0,

1/2 1/2

P(¢/B'p <1?)

= P{T'B™?¢ ¢ B.(r)}

{ — A?) 1204 (A, 00 (p-m)) Cpa € Bm(T)}
(-1 mo@ e v

1/2E+A’I’]€B (r)\n'n-#—{féa}

P

= P{n
(A3)
—E[P{(In— A%)"e + An € B(r) [ <a— €€} [+ €€ <a].

From Lemma A15, for any given &, the conditional probability,
P{(In— A% + An € Ba(r) | n'n < a—€€.¢)

is nondecreasing in the diagonal elements of A2. Therefore, the quantity in
(A3) depends only on (m,p,a) and the eigenvalues of B '2B,B~'/2 and
is nondecreasing in these eigenvalues. Therefore, Lemma A16 holds. O
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PrROOF OF THEOREM 5. It follows directly from Lemma A16. O

COMMENT ON LINEAR TRANSFORMATIONS OF 7 UNDER ReFM. From The-
orem 4 and Lemma All, for any C € RPXF with p < F, the asymptotic
sampling distribution of C'7 under ReFM is more peaked than that under
the CRFE. From Theorem 2 and Lemma A9,

C#r-71)|M ~ C (Vir>1/2 e+C (Vi) o Cir
< (Cvifc’)l/g&( 12 C’) CLRas

where & ~ N(0, I,,). From Lemma A16, if CV . C’ is invertible, then for any
a € (0, 1), the threshold ¢;_, for 1—a quantile region {u : g/ (CV -C") "t <
¢1—q } of the asymptotic sampling distribution of C+ depends only on (p, LF, a)
and the canonical correlation between CT and 7., and is nonincreasing in
these canonical correlations. O

PROOF OF COROLLARY 4. Because 7y is a one dimensional linear trans-
formation of 7, Corollary 4 follows directly from the above comment on
general lower dimensional linear transformations of + under ReFM. O

A5.4. Peakedness under ReFMTE.

PROOF OF THEOREM 9. For each 1 < h < H, let D;, ~ N(0,ILp,),
and (g,D1,...,Dp) be jointly independent. From Proposition 2, both &
and Cpp, ,, are central convex unimodal. From Lemma A6, both (Vi)

and (W _ [h])lL/},%hC LF,.a, are central convex unimodal. Thus, by Lemma A7,

< > 28 + Z WH 1L/}zhCLFh,ah

is central convex unimodal. From Lemma A13, g, 4, = Dp, which, based

on Lemma A11, further implies that (W.‘,‘_T[l])i/ﬁlCLFhal - (WL 1 ])1/2 D;.

Thus, from Lemma A12,

H
1/2
n w! 1/2
(V.,..,-) €+ hE_l( T [h] )LFh CLFh,,ah

1/2
o (Vi7> (WH 1/2 D1 n Z W” 1L/1«%hCLFh,ah
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~ (Vi W ) €+ZWH D5 o

Because (V& + WL _[1])"2e+ 17 ,(Wl_ [h])lL/ﬁh CLF,.q, 18 central convex

unimodal, and (WL [2)/2 CLryay = (W [2])1/2 D2, we have

1/2 <A )2
V ) €+ Z W LFhCLFmah
h=1

1/2 1/2

- (VL + Wi )1/2 e+ Z (W) C L
1/2
> (V.,L.T + W.‘,‘.T ) "VVH LF2D2 + Z WH LFhCLFh,ah

1/
v (VW wi) €+Z (W) 5, S

Implementing the above procedure iteratively, we finally have

I 1/2
1/2
(v+) E+Z (W W)/, G, - (ViﬁZWTT[hJ) e~ N(0,Vrr),
h=1

where the last formula follows from V! = S W [h] in the proof of
Theorem 8. O

To prove Theorem 10, we need the following three lemmas.

LEMMA A17. Let eg ~ N(0,1), g0y ~ Du1 | DiDy < ay, where Dy =
(Di1y ..oy D,) ~ N(0,I,), a; is a nonnegative constant that can be in-
finity, and (€0, Mky,ars Mhgsans - - - > Mhpoap) OT€ jointly independent. Let {p;}, T+1
and {ﬁt}?ﬁl be two nonnegative constant sequences satisfying Ztﬂ'll p? =

ZtTJrllﬁtQ—l. If ps > py for all 1 <t < T, then for any ¢ > 0,

T T
P <|PT+1EO + Zptﬁkt,at\ < C) >P <|/3T+1€0 + Zﬁtnkt,at| < C) :

t=1 t=1

PrROOF OF LEMMA A17. It follows from Li et al. [2018, Lemma A10]. [
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The following lemma extends the above lemma to the multivariate case.
We introduce the following condition for a set of matrices with the same
number of rows.

CONDITION A3. The H matrices {A), € R™*PrHL - satisfy that

(a) there is at most one nonzero element at each column and each row of
Ay for1<h<H;

(b) the elements of Ay, are all nonnegative for 1 <h < H;

(c) Z,Ijzl ApA) € R™™ has all elements less than or equal to 1 (note

that (a) implies that Zthl ApAL € R™™ s q diagonal matriz).

LEMMA A18.  Let (€,Cp, a1 »Mpy.ap) be H + 1 independent random
vectors, where € ~ N(0,I,,), €, o, ~ Dn | DDy < ay is a truncated
Gaussian random vector with ap, > 0 and Dy, ~ N(0,1I,,). Assume {A}, €
R™<Pu} T satisfy Condition AS. For anyr >0,1<h<H,and1 <k<m
the probability

H 1/2 H
P (Im -y A@%) e+ AnCyyap € Bulr)
h=1 h=1

is nondecreasing in the nonzero elements of the Ay’s, that is, for any two
sets of matrices Ap,’s and Ap,’s satisfying Condition A3 with the positions of
possible nonzero elements being the same, if all elements of Ayp’s are larger
than or equal to Ay’s, then

H 1/2 H
P (Im — Z AhA’h) €+ Z AnCp, ay € Bm(r)
h=1

h=1

H 1/2 H
(A4) > P (1m -3 AhA;> e+ Ay, an € Bm(r)
h=1 h=1

Proor oF LEMMA A18. It suffices to prove that for any two sets of ma-
trices Ap’s and Ap’s satisfying Condition A3 with the positions of possible
nonzero elements being the same, if there exists 1 < k < m such that for all
1 <h<H, (a) Ay and Ay, differ only in the kth row, and (b) the elements
in the kth row of A, are larger than or equal to that of Ay, then (A4) holds
for any r > 0. First, by symmetry, we consider only the case with k£ = 1.
Second, without loss of generality, we assume that the possible nonzero el-
ements in the first rows of A’s and Ap’s are all in the first columns. This
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is because permuting the columns of Ay will not change the distribution of
ApCp, q,» a fact implied by the spherical symmetry of ¢, ..

Let Ap; be the (1, 1)th element of Ay, and Ay, _; be the submatrix of Aj,
excluding the first column and the first row. Define similarly Ap; and Ah7,1.
Let e_1 = (e2,...,em) and Dy 1 = (Dpa, ..., Dy, ) be the subvectors of €
and Dy, excluding the first elements. We define a subset in R as follows:

B(?", €_1, Dh,—17 Ah,—l)

X
= T 1/2 € Bn(r) ¢,
{ ((Iml - aaay ) e sl Ahv_lnh,q) ( )}

which depends on e_1, Dy 1 and Ay for all 1 < h < H, and is either an
empty set or a symmetric closed interval on the real line. For any » > 0 and
(e-1,D1,-1,...,Dy,—1),

h=1

H 1/2 H
P { (Im — Z AhA;L> €+ Z ALDy, € B, (r) | D%Dh < ah,El,D;hl,Vh}

H 1/2 H
=P { (1 - Z A;%) €1+ ZAMDM € B(r,e_1,Dy_1,A 1) | D3y < ap, — D,}L7_1Dh,—135—laDh,—1}
h=1

H 1/2 H
>P { (1 - Z A}%l) €1+ ZAthhl € B(r,e_1,Dp—1,An 1) | D}, < ap — D'h,_th,—1,€—1,Dh,—1}
h—1

(A5)

H 1/2 H
=P { (Im — ZAhA;L> €+ ZAhDh S Bm(T) | D;LDh < ah,el,Dh,l,Vh} 5
h=1 h=1

where the second last inequality follows from Lemma A17. Taking expecta-
tions of both sides of (A5), we obtain (A4). O

The following lemma extends Lemma A16 to general case with H > 1.
Moreover, even when H = 1, Lemma A19 is still more general then Lemma
A16 by only requiring p; > rank(B), instead of p; > m in Lemma A16.

LEMMA A19. Let (By,Bi,...,Bp) be H+1 positive semi-definite ma-
trices in R™*™ with ranks (Yo0,71,---,7H), € ~ N(0,I,,) be a standard
Gaussian random wvector, and Cph,ah ~ Dy, | D'hDh < ap, be a truncated
Gaussian random vector, where Dy, ~ N (0, I,,) andpp, > v, (h=1,2,...,H).
Define ¢ ~ (Bg)'/?e + Zthl(Bh)ll’{LQCph,ah‘ If B = Ztho By, is invert-
ible, and there exists an orthogonal matriz T' such that for all 1 < h < H,
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I'B~'2B,B YT = Q% is a diagonal matriz, then the threshold c1_o for
1 — « quantile region {p : wWBlu < Ci1—a} of ¢ depends only on m, the
pr’s, the ap’s, and the eigenvalues of B~ 12B,B~1/?
in these eitgenvalues.

, and is nonincreasing

PrOOF OF LEMMA A19. By definition,

H H
I'B'?2B,B~'?’T =T’ (Im -y B—1/2BhB—1/2> r=1I,-Y Q.

h=1 h=1
Thus, from Lemma A9, the distribution of ¢ satisfies

H
I'B~'2¢ ~ 1/B1/? {(30)1/25 + Z(Bh);;/fgphﬂh}
h=1

Ph

P —172p\ /2 - ~1/2 _12p) V2
h=1

H 1/2 H
1/2
~ (Im - Z Qi) €+ Z (Q%)pi Cph,ah‘
h=1

h=1

For each 1 < h < H, if p, > m, we further define Q;, = (2, 00 (p—m) )
otherwise, p, < m, Bj has rank at most pp and thus B_1/2B;LB_1/2 has
at most p, nonzero eigenvalues, we further define €, = Qnl,Zy] as the
submatrix of €, consisting of the |Z;| = pj columns with possible nonzero
eigenvalues. Thus, by the construction of €’s, we have Q) € R™*Pr and
thl;l = Q2 e, Q) = (Q%)Zln/l2 Therefore, we can further simply the
distribution of I‘/Bfl/2¢ as

Ho 1/2 LA
I'B 2¢p ~ (Im—zﬂhﬂh> e+ Uy
h=1

h=1

For any r» > 0, we have

P(¢'B ¢ <i?) =P {F’B_1/2¢ € Bm(r)}

H 1/2 H
(A6) =P (Im — thz;> e+ Yy, 0, € Bmlr)
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Because the matrices €),’s satisfy Condition A3, from Lemma A18, the
quantity in (A6) depends only on m, pp’s, ap’s, and the eigenvalues of
B~ 12B, B~1/?g and is nondecreasing in these eigenvalues. Therefore, Lemma
A19 holds. O

Proor oF THEOREM 10. It follows directly from Lemma A19. O

COMMENT ON LINEAR TRANSFORMATIONS OF 7 UNDER REFMTF. From
Theorem 9 and Lemma Al1, for any C € RP*F with p < F, the asymptotic
sampling distribution of C'+ under ReFMTF is more peaked than that under
the CRFE. From Theorem 7 and Lemma A9,

CH-71)|Ts ~ C (Vif) ey hiC (WTT[thL/; LFyan
=1
~ ((‘)Vﬁ,c’)l/2 £+ i (CWL[h]C’> :/jh CLFuan:

h=1

where & ~ N (0, I,,). Based on Lemma A19, we can know that if the condition
in Lemma A19 holds for B;, = CW.‘,‘_T[h}C”, then for any o € (0, 1), the
threshold ¢;_, for 1 — a quantile region {p : p/(CV +C') "1y < c1_4} of
the asymptotic sampling distribution of C'7 depends only on p, LF}’s, ap’s,
and the canonical correlation between C'7 and 9w[h]’s, and is nonincreasing
in these canonical correlations. O

PROOF OF COROLLARY 6. Because 77 is a one dimensional linear trans-
formation of 7, Corollary 6 follows directly from the above comment on
general lower dimensional linear transformations of + under ReFMTp. [

The proofs of Theorems A3, A4, and Corollary A2 under ReFMT ¢, as
well as the comment on lower dimensional linear transformations of 7, are
almost the same as those under ReFMTE and thus omitted.

A6. Asymptotic conservativeness in inference.

A6.1. Asymptotic conservativeness of sampling covariance estimators. We
need the following two lemmas to prove the asymptotic conservativeness of
the sampling covariance estimators.
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LEMMA A20. Under either ReFM, ReFMTE, or ReFMTcr, if Condi-
tion 1 holds, then for any 1 < r,k < Q, 1 <Il,m < L, and any (4;, B;)
equal to (Yi(r),Yi(k)), (Yi(r), za) or (zit, Tim),

sap(q) —Sap=o0p(1), (¢=1,2,...,Q)

where sap(q) is the sample covariance between the A;’s and the B;’s under
treatment combination q, and Sap is the corresponding finite population
covariance.

ProoOF OF LEMMA A20. The proof is similar to the proof of Lemma A15
in Li et al. [2018]. We omit it. O

LEMMA A21. Under either ReFM, ReFMTgr, or ReFMTqp, if Condi-
tion 1 holds, then for each 1 < q < @Q,

sf]‘q — Sj‘q =0p(1), Sgz—Sqa=0p(1), Szz(q) — Sza = 0p(1).

PRrROOF OF LEMMA A21. From Lemma A20, sqq, Sq,z and sz (q) are con-
sistent for Syq, Sq 2 and Sz, respectively. Because squ = Sqq—Sq.2575(0) 8z 4
and Slﬁl = Syq — SqaSzaSxzq, we know that s% is also consistent for S

qq qq’
and therefore Lemma A21 holds. O

L —
T —

9—2(K-1) Z(?Zl nglbqbg . Sj;z > VL . Under ReFM, from

Define V
Lemma A21, V__ is consistent for Vi.,.,

V.,-wV;gl;/ 2, Therefore, the sampling covariance estimator is asymptotically
. ~ L . ~ 1
conservative. Under ReFMTF or ReFMTcr, V . is also consistent for V

T
and the estimated coefficients of the Crp, ,,’s or €y, 4.’ are consistent for
the true ones. Therefore, the sampling covariance estimators under ReFMTg

and ReFMTcr are also asymptotically conservative.

and VTwV;glg/ 2 is consistent for

A6.2. Asymptotic conservativeness of the confidence sets. We need the
following lemma to prove Theorem 6,

LEMMA A22. Let V1 and Vo be two positive semi-definite matrices in
R™*™ sqatisfying that V1 < Vg, and €1 and €9 be two Gaussian random
vectors with mean zero and covariance matrices V1 and Vo. Then €1 = €.

PROOF OF LEMMA A22. Let €3 ~ N (0, V3 — V) be independent of e7.
From Proposition 2 and Lemma A6, € is central convex unimodal. Because
0 > g3 and €3 + €1 ~ €9, from Lemma Al2, e ~ 0+ €1 > €3+ &1 ~ €9.
Lemma A22 holds. O
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PROOF OF THEOREM 6. The proof of the asymptotic conservativeness
of covariance estimator for C'+ follows directly from the discussion in A6.1,
and thus we consider only the asymptotic conservativeness of confidence
sets for C7 here. Let £, £ and £ be three F' dimensional random vectors
following the asymptotic sampling distribution of ¥ — 7 under ReFM, the

1 .
L and the esti-

TT TT)

asymptotic sampling distribution with V£_ replaced by V

mated asymptotic sampling distribution:

Lo~ (V¢+)U2€*‘(VFT>Zﬁ<LRa ~ (V¢+)U2€+—V;mv:;”cLRw

(¥}

~ (Viq-)lﬂ €+ (qu-)l/; CLra ™ (‘N/ir)lm €+ VTfBV;imCLF,av
£~ (V) et VeaVaun,

Under Condition 1, from the discussion in Section A6.1, by Slutsky’s the-
orem, £ ~ L. Note that (VL )/2¢ » (ViT)l/Qe from Lemma A22, and
V,.mV;alc/ 2C LF,q 18 central convex unimodal from Proposition 2 and Lemma
A6. From Lemma A12, £ = L. Above all, £ = £ ~ L.

From Slutsky’s theorem, (CViTC’)*l/QC/j ~ (C’V,L_.,_C’)*UQCEA. From
the continuous mapping theorem, (C’EN)’(C'f/.,l.,.C")_lC’£~ ~ (C’EA)’(CVi_TC/)_lcﬁ.
Thus, the 1 — o quantile of (Cﬁ)/(CViTC’)_lCﬁ, ¢1—q, is consistent for
the 1 — a quantile of (Cﬁ)’(Cf/iTC/)_lcﬁ, ¢1_a. Because £ = L, and the
set of form {p : (C’u)’(Cf/i.rC')*lCu < ¢} is symmetric convex, ¢j_q, the
1 — a quantile of (CC)’(CVi‘TC’)_lCE, is smaller than or equal to ¢1_,.

Above all, ¢_, is consistent for ¢;_, > ¢1_o. Therefore, the 1 — a confi-

dence set for T is asymptotically conservative. When S+, = o(1), we have

Vi - ‘N/,L_.,_ = 0(1), which implies £ ~ L. Thus, & _o = ¢1_o + 0(1), and

the 1 — « confidence set for 7 becomes asymptotically exact. O

Note that both Zthl Wz [N (W gz [h])_l/ZCLFh,ah and Ej:l Urelj](Uee [j])_l/QCA]-,aj
are central convex unimodal. The proofs for the asymptotic conservativeness
of symmetric convex confidence sets of form C7T + O(CV.,L.,_C’ ,c) for Cr
under ReFMTg and ReFMT ¢ are almost the same as ReFM. Thus we omit
the proofs of Theorems 11 and Ab5.
Moreover, under for ReFM, ReFMTr, or ReFMTcr, we consider 1 — «
confidence set C+ + O for Ct, where O can depend on (Vi,_, Vo, Vza)
and satisfies that P(£ € O) =1 — a. If O is a symmetric convex set, then
the confidence set is generally asymptotically conservative, and the proof is
similar to the proof of Theorem 6.
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