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Abstract

Difference-in-differences is a widely used evaluation strategy that draws causal inference from observational
panel data. Its causalidentification relies on the assumption of parallel trends, which is scale-dependent and
may be questionable in some applications. A common alternative is a regression model that adjusts for the
lagged dependent variable, which rests on the assumption of ignorability conditional on past outcomes. In
the context of linear models, Angrist and Pischke (2009) show that the difference-in-differences and lagged-
dependent-variable regression estimates have a bracketing relationship. Namely, for a true positive effect,
if ignorability is correct, then mistakenly assuming parallel trends will overestimate the effect; in contrast,
if the parallel trends assumption is correct, then mistakenly assuming ignorability will underestimate the
effect. We show that the same bracketing relationship holds in general nonparametric (model-free) settings.
We also extend the result to semiparametric estimation based on inverse probability weighting. We provide
three examples to illustrate the theoretical results with replication files in Ding and Li (2019).
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Introduction
Difference-in-differences is a popular evaluation strategy in the social sciences; it makes causal
comparisons from observational panel data by exploiting variation across time (Ashenfelter 1978;
Bertrand, Duflo, and Mullainathan 2004; Angrist and Pischke 2009; Bechtel and Hainmueller
2011; Keele and Minozzi 2013; Malesky, Nguyen, and Tran 2014; Keele et al. 2019; Callaway and
Sant’Anna 2019). The key assumption underlying difference-in-differences is parallel trends, that
is, the counterfactual trend behavior of treatment and control groups, in the absence of treatment,
is the same, possibly conditioning on some observed covariates (Heckman, Ichimura, and Todd
1997; Abadie 2005). In practice, the parallel trends assumption can be questionable because
unobserved confounders may have time-varying effects on the outcomes. A common alternative
method is a regression model that adjusts for the lagged dependent variables (Ashenfelter 1978),
which assumes ignorability conditional on past outcomes and observed covariates.
Difference-in-differences and lagged-dependent-variable adjustment—also known respectively
as the gain score estimator and the analysis of covariance estimator in sociology and
psychology—are two different methods relying on different identification assumptions. Extensive
conceptual, empirical and numerical comparisons between the two methods have been made
in the literature (e.g., Allison 1990; Maris 1998; van Breukelen 2013; Ryan, Burgess, and Dimick
2015; O’Neill et al. 2016). In particular, in the context of linear models, Angrist and Pischke (2009)
show that difference-in-differences and lagged-dependent-variable regression estimators have
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a bracketing relationship. Namely, for a true positive effect, if the ignorability assumption is
correct, then mistakenly assuming parallel trends will overestimate the effect; in contrast, if the
parallel trends assumption is correct, then mistakenly assuming ignorability will underestimate
the effect. The opposite holds for a true negative effect.

The bracketing relationship is important in practice. Though we usually do not know which
one of the two assumptions is true in real applications, we can analyze the data under each
assumption and treat the estimates as the upper and lower bounds of the true effect. However,
the linear setting in Angrist and Pischke (2009) is restrictive, particularly for applications with
noncontinuous outcomes. For example, binary outcomes are common in political science (e.g.,
Keele and Minozzi 2013; Malesky, Nguyen, and Tran 2014) and health studies (e.g., Stuart et al.
2014); count outcome are common in transportation safety studies where the before-after design
is popular (e.g., Hauer 1997). Moreover, the parallel trends assumption is scale-dependent (Athey
and Imbens 2006). Therefore, an extension to nonlinear settings is relevant for both theory and
practice. In this paper, we prove that, within the canonical two-period two-group setting, the
same bracketing relationship holds in general nonparametric and semiparametric settings. We
give three examples to illustrate the theoretical results.

Setup
Difference-in-Differences
We proceed under the potential outcomes framework (Neyman 1923; Rubin 1974). We consider the
basic two-period two-group panel design, where a sample of units, indexed by i € {1, ..., n}, are
drawn from a target population of two groups, labeled by G; = 0 or 1. Each unit can potentially
be assigned to a treatment d, with d = 1 for the active treatment and d = 0 for the control.
Units in both groups are followed in two periods of time T, with T = tand T = ¢ + 1 denoting
the before and after period, respectively. The treatment is only administered to the group with
G; = 1in the after period. For each unit /, let D, be the observed treatment status at time T.
The above design implies D;; = 0 for all units and D; ;41 = 1 for the units in group G; = 1; thus
G; = Dj ++1. Assume that each unit has two potential outcomes in each period, {Y;7 (1), Yi7(0)} for
T = tand t+1,and only the one corresponding to the observed treatment status, Y;r = Y;7(D;r),
is observed. Therefore, Y;; = Y;¢(0) and Yj ¢+1 = (1= G;)Y; ++1(0) + G;Y; t+1(1). For each unit, a vector
of pretreatment covariates X; are also observed in the before period.

In the two-period two-group panel design, the target estimand is usually the average treatment
effect for the treated (ATT) (Abadie 2005; Angrist and Pischke 2009; Lechner 2011):

Tarr = E{Yit41(1) = Yi11(0) | Gi = 1} = 1 — o, (1)

where py = E{Yj++1(1) | Gi = 1} and po = E{Y;++1(0) | G; = 1}. When the outcome is discrete,
ratio versions of Tart are often of interest, such as

yarr = E{Yie1(1) | Gj = 1}/ E{Y;141(0) | Gi = 1} = pa1/po, (2)

which is the causal risk ratio for binary outcomes and the causal rate ratio for count outcomes.

The quantity p1 equals E(Y;¢+1 | Gi = 1), and thus is directly estimable from the observed
data, e.g., by the momentestimator Yy ;41 = 2 GiYies/ 21 Gi.Incontrast, the quantity po, the
counterfactual outcome for the treatment group in the after period in the absence of treatment, is
not observable and must rely on additional assumptions to identify. The central task in this design
is to use the observed data to estimate the counterfactual pg. Any consistent estimator of g leads
to consistent estimators of tarr and yarr.

With difference-in-differences, the key for identifying ng is the parallel trends assumption.
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2.2

AssSuMPTION 1 (Parallel trends). E{Yi;+1(0)—Yi:(0) | Xi, Gi = 1} = E{Yi++1(0)—Yi(0) | X;, G; =
0}.

The parallel trends assumption requires that, conditional on covariates X;, the average
outcomes in the treated and control groups in the absence of treatment would have followed
parallel paths over time. Under Assumption 1, we have the nonparametric identification formula
for uo:

fopio = E[E{Y;¢(0) | Xj, Gi = 1} + E{Yi+1(0) = Y;(0) | X;, G; =0} | G; = 1]
=E(Yit|Gi=1)+E{E(Yits1 = Yit | Xi, G =0) | Gi =1}
= E0ie16; =11+ [ e = Yie] X = x.6; = 011 (d). 3)

where Fxig=1(x) = pr(X < x | G = 1) is the distribution of X in the treatment group. All
terms of the right hand side of (3) are identifiable from the observed data. A stronger version of
Assumption 1 imposes parallel trends without conditioning on covariates, under which we can
write

Aopio = E(Yie | Gi=1)+E(Yie41 | Gi=0) - E(Yit | G; = 0). (4)
Based on the identification formula (4), a moment estimator of 7art is
foib = (Vi1 — Vi) = (Yo, — Your), (5)

where Yg,T is the mean observed outcome for group g attime 7 (g =0,1; 7 = ¢t, ¢t + 1). The form
of this estimator underlies the name “difference-in-differences”.

A well-known limitation of the difference-in-differences approach is that the parallel trends
assumption depends on the scale of the outcome (Athey and Imbens 2006; Lechner 2011).
Specifically, the parallel trends assumption may hold for the original Y but not for a nonlinear
monotone transformation of Y, for example, log Y. This scale dependence restricts the use of
difference-in-differences in settings with non-Gaussian and discrete outcomes.

Lagged-Dependent-Variable Adjustment

In the treatment-control panel design, a class of alternative methods relies on the assumption of
ignorability conditional on the lagged dependent variable, that is, in the absence of treatment, the
outcomes for the treated and control groups would have the same distributions, conditional on
their lagged outcome and covariates.

ASSUMPTION 2 (Ignorability). Yi¢+1(0) AL G | (Yie, Xi)-

Under ignorability, we have the following nonparametric identification formula of yo:

Aorov = E[E{Y;t+1(0) | Gi = 1,Yir, Xi} | G = 1]
=E{E(Yi,t+1 | G; =0, Yitin) | G = 1}
= f E(Yier1 1 Gi=0,Y =y, X; = x)Fy, xj6=1(dy, dx), (6)

where Fy, x|G=1(y, x) is the joint distribution of (Y;, X) in the treatment group. The form of fig  py is
identical to the traditional identification formula for the average treatment effect for the treated in
observational cross-sectional studies. We can specify a model for E{Y; ¢+1(0) | Yi:, Gi, Xi}, based
on which we impute the counterfactual mean pp = E{Y;;+1(0) | G; = 1} by averaging over Y; and
X and thus obtain a consistent estimator for zart.
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3.1

In contrast to the parallel trends assumption, the ignorability assumption is scale-free. Three
popular methods under the ignorability assumption are the synthetic control method (Abadie and
Gardeazabal 2003; Abadie, Diamond, and Hainmueller 2015), matching (Heckman, Ichimura, and
Todd 1997) or regression adjustment (Ashenfelter 1978) of the lagged dependent variable. Among
these, the lagged-dependent-variable adjustment approach is the easiest to implement. Through
extensive simulations, O’Neill et al. (2016) have found that, when the parallel trends assumption
does not hold, the lagged-dependent-variable regression adjustment approach produces the
most efficient and least biased estimates among these three methods.

Theory

Our goal in this section is to establish the analytical relationship between the difference-in-
differences and lagged-dependent-variable adjustment estimators under general settings. For
notational simplicity, we condition on the covariates X and thus ignore them in the discussion.

Bracketing Relationship in Linear Models
We start with the simple case of linear regressions. Specifically, the difference-in-differences
approach is usually implemented via a linear fixed-effects model:

E(Yir | Dit, Xi) =aj+Ar +1Di7, (i=1,....mT =t t+1) (7

where a; is the individual fixed effect and A7 is the time-specific fixed effect. When model (7) is
correct, the coefficient T equals the estimand art; any consistent estimator of t in (7) is also
consistent for tart. By taking the difference between outcomes at time points t and ¢ + 1 in (7),
we can eliminate the individual fixed-effects a;. Because G; = Dj ¢+1 — Djt, we have E(Yj ¢41 — Yit |
Gj) = (At+1 — A¢) + 7G;. Therefore, we can fit a linear regression of the difference Y; ;11 — Y;; on the
group indicator G; to estimate 7. The resulting ordinary least squares estimator is the difference
between the sample means of Y; ;.1 — Yj; in the treated and control groups, and thus it equals 7pp
defined in (5).

The lagged-dependent-variable adjustment method can be implemented via linear models
in two ways. In the first approach, motivated by (6), we can fit an ordinary least squares line
E(Yis1|1 G =0.Y; = y) = & + BY; using only the control units; then we obtain o py = & + Y1.;
as the sample analog of o py and %oy = Yi.r+1 — ooy as the estimate of 7arr. In the second
approach, as in Angrist and Pischke (2009, ch. 5.4), we can use the following linear model:

E(Yite1 | Yie. Gi) = a + BYir + 1G;. (8)

When model (8) is correct, the coefficient T equals the causal estimand 7ar7, and any consistent
estimator of 7 is consistent for Tarr. We can fit the ordinary least squares line £(Y;11 | G, Y:) =
&+ 1/, G+ ﬁ’Yt using all units and take the coefficient 7/, as an estimate of 7arr. We have the
following expressions for the two estimators 7py and 7, (the proof is given in the Appendix).

ProOPOSITION 1. Without covariates, the two lagged-dependent-variable adjustment estimates
are

fiov = (Vieer = Your1) = BVt = Yo ), oy = Vet = Yorr1) = B’ (Vie — Yoo (9)

These two estimates in (9) differ from the moment difference-in-differences estimate #pp =
(Yi.t41 = Yo.e01) — (Y1.e — Yo.) only in the coefficients § and 3’. Consider the case with 3 or B’ larger
than O but smaller than 1. The sign of pip — fipy or Tpip — 7/, depends on the sign of Yie — Yor-
If the treatment group has larger lagged outcome Y; on average, then 7pp < Tipy; if the treatment
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3.2

group has smaller Y; on average, then 7pp > 7.py. In the special case with ,3 =1 orﬁ’ = 1,theyare
identical: tpip = fipv or ), = fLpv. How much ,B or ,é’ deviates from 1 indicates how different
the two estimates are. We see this phenomenon in the examples in Section 4. Importantly,
the discussion in this subsection holds without imposing any stochastic assumptions. That is,
Proposition 1is a purely numerical result. In contrast, the bracketing relationship in Angrist and
Pischke (2009, ch. 5.4) is proven under the linear model assumptions.

Gelman (2007) pointed out that restricting 8 = 1in (8) gives identical least squares estimators
for from models (7) and (8), whichis also evident from Proposition 1. However, the nonparametric
identification Assumptions 1 and 2 are not nested, and the difference-in-differences estimator is
not a special case of the lagged-dependent-variable adjustment estimator in general. Therefore, it
is natural to investigate whether Angrist and Pischke (2009)’s result is unique to the linear models

(7) and (8). Inthe next subsection, we generalize the bracketing relationship to model-free settings.

Nonparametric Bracketing Relationship
For notational simplicity, below we also drop the subscript /. Underignorability, the nonparametric
identification formula (6) of o simplifies to

ﬂo,LDv=E{E(Yt+1|G=0,Yt)|G=1}=fE(Yt+1 |G=0,Y:=y)F,(dy|G=1), (10

where Fy,(y | G = g) = pr(Y: < y | G = g) is the cumulative distribution function of Y; for unitsin
group g (g =0, 1). The form of fig  py is identical to the identification formula for the ATT estimand
in cross-sectional studies.

To compare Tpp and 7 py without imposing any functional form of the outcome model, we
first obtain the following analytical difference between gy pip and fopv (the proof is given in the
Appendix).

LEMMA 1. The difference between fiopip and fo oy is

fo.ov — Fiopip = f Aly)Fy,(dy | G = 1) - f Aly)Fy,(dy | G = 0),

where A(y) = E(Y;1 |G =0,Y; =y) - y.

The quantity A(y) = E(Yes1 | G =0,Y: = y) =y = E(Yes1 = Y2 | G = 0,Y; = y) equals
the expectation of the change in the outcome conditioning on the lagged outcome in the control
group. Lemma 1 suggests that the relative magnitude of fopip and fopv depends on (a) the
expectation of the before-after difference Y;,1 — Y; conditional on Y; in the control group, and (b)
the difference between the distribution of the before outcome Y; in the treated and control groups.
Both are important characteristics of the underlying data generating process, which measures (a)
the dependence of the outcome on the lagged outcome and (b) the dependence of the treatment
assignment on the lagged outcome, respectively. In particular, if Y; 1L G or equivalently Fy,(y |
G =1)= Fy,(y | G=0),then o pv = flopip-

To reach the main conclusion, we introduce two additional conditions regarding the quantities
in Lemma 1. The first is a stationarity condition on the outcome.

CONDITION 1 (Stationarity). 0E(Y;+1 |G =0,Y; = y)/dy < 1forall y.

In a linear model for E(Y;+1 | G = 0, Y; = y), Condition 1 requires that, in the control group,
the regression coefficient of the outcome Y;,1 on the lagged outcome Y; is smaller than 1; this is
also invoked by Angrist and Pischke (2009). Its sample versionis 8 < 1 or 8’ < 1 as in Section 3.1.
In general, Condition 1 ensures that the time series of the outcomes would not grow infinitely as
time, which is reasonable in most applications.
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3.3

The second condition describes the treatment assignment mechanism with respect to the
lagged outcome, with two opposite versions.

CONDITION 2 (Stochastic Monotonicity). (a) Fv,(y | G = 1) > Fy(y | G = 0) for all y; (b)
Fy,(y|G=1) < Fy(y|G=0)forall y.

Condition 2(a) implies that the treated group has smaller lagged outcome compared to the
control group, and Condition 2(b) implies the opposite relationship. In the case of linear models,
Condition 2(a) or (b) reduces to the average lagged outcome in the treated group is smaller or
larger than that in the control group, respectively.

Because they only involve observed variables, Conditions 1 and 2 are testable empirically.
Specifically, to check Condition 1, we can estimate the derivative of the conditional mean function
E(Yi41 | G =0,Y; = y); to check Condition 2, we can visually compare the empirical cumulative
probability distributions of the outcomes in the treatment and control groups. These conditions
hold in many applications, e.g., in the examples in Section 4. In contrast, Assumptions 1and 2 are
in general untestable.

Under Conditions 1and 2, we have the following results on the bracketing relationship on #pp
and 7ipy in a nonparametric setting; see the Appendix for the proof.

THEOREM 1. IfConditions 1and 2(a) hold, then fig pip < fio,Lov, and thus Tpip > T py and Ppip = FLov;
if Conditions 1 and 2(b) hold, then fip pip = fo,Lov, and thus Tpip < Zipv and Yoip < Fipy.

Theorem 1is a result on the relative magnitude between the two quantities 7p;p and 7 py (and
between ypp and yipy). On the one hand, Theorem 1 holds without requiring either Assumption 1
or 2. Specifically, under Stationarity and Stochastic Monotonicity (a), 7pip is larger than or equal
to 7 py. Both of them can be biased for the true causal effect 7ar7: if Toip = Tipv = TaTT, then Toip
overestimates tart more than i py; if Tart = Toip = Loy, then % py underestimate 7art more than
Toip; if Thip = TarT = 7LDV, then 7pp and 7y py are the upper and lower bounds on zart. Analogous
arguments apply under Stationarity and Stochastic Monotonicity (b). On the other hand, only
under Assumption 1or 2, the quantities 7p;p and 7 py have the interpretation as the nonparametric
identification formulas of the causal estimand zart. We stress that the bracket (7pp, 7.pv) provides
bounds for the true effect a7t if either Assumption 1 or 2 holds; however, it does not answer the
question about whether the true effect falls inside or, if outside, which side of the bracket when
neither Assumption 1 nor 2 holds. The relationship under such a scenario is dependent on the
specific true data generating model.

For discrete outcomes, Equation (10) reduces to foiov = Xy E(Yer1 | G = 0,Y: = y)pr(Y: =
y | G = 1), and the stationary condition becomes E(Y;+1 | G = 0,Y: = y + 1) — E(Yes1 |
G =0,Y; = y) < 1forall values of y. For the case of binary outcome, the stationary condition
always holds because 0 < E(Y;41 | G = 0,Y; = y) < 1for y = 0, 1. Therefore, we only need
to check the sign of the empirical counterpart of pr(Y; = 0| G = 1) —pr(Y; = 0| G = 0).
Specifically, if pr(Y; = 0| G =1) = pr(Y; = 0| G = 0), then Tpp > Fipv and Fpip = Vipy; if
pr(Y; =0| G =1) <pr(Y; =0| G = 0), then #pp < 7 pv and ypip < Fiov.

Semiparametric Bracketing Relationship
Under the parallel trends Assumption 1, Abadie (2005) proposed a semiparametric inverse
probability weighting estimator for 7art based on the following identification formula of uo:

(1= G)(¥iu1 - Yt)} Joric

1-e

, e
Aopip = E {GYt + =1), (1)

where the propensity score is defined as e = pr(G = 1). Abadie (2005)’s estimator based on
fopip shares the same form as the inverse probability weighting estimator for the ATT in the
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Figure 1. Card and Krueger (1994) study. Left: linear and quadratic fitted lines of E(Y;41 | G = 0, Y;). Right:
empirical distribution functions Fy,(y | G = g) (g = 0, 1) satisfy Stochastic Monotonicity.

cross-sectional setting, but replaces the outcome in the treatment group by the before-after
difference Y;41 — Y;. Similarly, under Assumption 2, we can construct a semiparametric estimator
based on

, Y,
Hopv = E {15(—6())?)(1 - G)Yt+1}/pr(G =1), (12)

where the propensity score is defined as e(Y;) = pr(G = 1| Y;).
Because (11) and (12) are alternative identification formulas for ug, we can show that
(fo,0D» Ao,Lov) = (] pips A4 py) @nd thus have the following corollary of Theorem 1.

COROLLARY 1. Theorem 1 holds if (fo,pip, fo,Lov) are replaced by (i p,0- 74 py)-

Corollary 1 shows that the bracketing relationship between p;p and 7 py does not depend on
the forms of identification formulas and estimators.

Examples
Minimum Wages and Employment
We reanalyze part of the classic Card and Krueger (1994) study on the effect of a minimum
wage increase on employment. Data were collected on the employment information at fast food
restaurants in New Jersey and Pennsylvania before and after a minimum wage increase in New
Jersey in 1992. The outcome is the number of full-time-equivalent employees at each restaurant.
The difference-in-differences estimate is Tpp = 2.446, and the lagged-dependent-variable
adjustment estimates are f.py = 0.302 and 7/, = 0.865 with coefficients of the lag outcome
B =0.288 < 1and B’ = 0.475 < 1. Meanwhile, because the sample means satisfy V1 ; — Yo, =
17.289-20.299 < 0, our theoretical result predicts that #pip > fipy(or 7y, ), which exactly matches
the relative magnitude of the empirical estimates above. In addition, if we adopt a quadratic
specification of E(Y;4+1 | G = 0, Y3), the lagged-dependent-variable regression estimate becomes
Tipv = 0.275, which is also smaller than 7pp. This is again coherent with our theory because
Stationarity and Stochastic Monotonicity hold, depicted in Figure 1. In this example, the differences
between 7pp and 7 py(or #/p,) are significant at level 0.05.

Electoral Returns to Beneficial Policy

We reanalyze the Bechtel and Hainmueller (2011) study on electoral returns to beneficial policy. We
focus on the short-term electoral returns by analyzing the causal effect of disaster relief aid due
to the 2002 Elbe flooding in Germany. The before period is 1998 and the after period is 2002. The
units of analysis are electoral districts, the treatment is the indicator whether a district is affected
by the flood, and the outcome is the vote share that the Social Democratic Party attains in that
district.
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Figure 2. Bechtel and Hainmueller (2011) study. Left: linear fitted lines of E(Y;,1 | G = 0, ;). Right: empirical
distribution functions Fy,(y | G = g) (g = 0, 1) satisfy Stochastic Monotonicity.

Table 1. Crash counts in the 1986 road sites in Pennsylvania (3+ means 3 or more crashes).

0 789 238 57 18 1102 0 183 39 7T 3 232
Y, 1 235 95 40 15 385 Y, 1 40 22 5 2 69
2 61 37 n 6 15 2 16 4 0 1 21

3+ 26 21 4 2 53 3+ 2 6 0 1 9

Total 1111 391 112 41 1655 Total 241 71 12 7 331

The difference-in-differences estimate is pp = 7.144, and the lagged-outcome adjustment
estimates are f.py = 7.160and £/, = 7.121 with coefficients of the lag outcome/? =1.002 > 1and
B’ = 0.997 < 1. The relative magnitudes match our theory in Section 3.1. However, these estimates
are almost identical because the coefficients of Y; are extremely close to 1. In this example, even
though the empirical distributions of Fy,(y | G = 1) and Fy,(y | G = 0) differ significantly as
Figure 2 shows, the analysis is not sensitive to the choice between the difference-in-differences

and lagged-dependent-variable adjustment estimates.

A Traffic Safety Intervention on Crashes

Outside the political science literature, the before-after treatment-control design is the state-of-
the-art method in traffic safety evaluations (Hauer 1997), where count outcomes are common.
Here we provide an example of evaluating the effects of rumble strips on vehicle crashes. Crash
counts were collected on n = 1986 road segments in Pennsylvania before (year 2008) and after
(year2012) the rumble strips were installed in 331 segments between year 2008 to 2012. The control
group consists of 1655 sites matched to the treated sites on covariates including past accident
counts, road characteristics, traffic volume. Table 1 presents the crash counts classified by Y; and
Y:+1 for control and treatment groups, respectively.

We first examine the dichotomized outcome of whether there has been at least one crash in that
site. As noted after Theorem 1, Condition 1 automatically holds for a binary outcome. We can verify
that Condition 2(a) holds because the empirical means suggest pr(Y; =0| G = 1)—-pr(Y; =0| G =
0) = 232/331 — 1102/1655 = 0.701 — 0.666 > 0. Therefore, applying Theorem 1, we predict that
Tpip > Tipv and ¥pip > Fiov- Now we calculate the nonparametric estimate of pp under ignorability
to be floov = X =01 E(Yer11G=0,Y = y)pr(Y: = y | G = 1) = 0.324, and under parallel trends
to be fiopip = 0.294. Therefore, the empirical estimates suggest #pip > fipv and yoip > FLov, Which
matches the theoretical prediction.
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We then examine the original count outcome in Table 1. The sample means E(Yesr | G =
0,Y; = y) are 0.374,0.572,0.670,0.660 for y = 0, 1,2, 3+, respectively. Therefore, Condition 1
holds for all y. We can also verify that Condition 2(a) holds because the sample probabilities are
pr(Y: < y | G=1)=0.700,0.909,0.973 and pr(Y; < y | G = 0) = 0.666,0.898,0.968 for y =0, 1, 2,
respectively. Therefore, applying Theorem 1, we predict that 7pp > Tipv and ypip > Fipv. Now
we calculate the nonparametric estimate of yo under ignorability to be fo py = 0.438, and under
parallel trends to be figpip = 0.395. Therefore, the empirical estimates suggest #pp > fipv and
Yoo > Yiov, Which matches the theoretical prediction.

In this example, the differences between the ypip’s and the y py’s are not significant at level 0.05.

Discussion

We established a model-free bracketing relationship between the difference-in-differences and
lagged-dependent-variable adjustment estimators in the canonical two-period two-group setting.
In practice, we cannot use the data to validate the assumptions that justify these approaches.
Therefore, a practical suggestion is to report results from both approaches and ideally to conduct
sensitivity analyses allowing for violations of these assumptions.

Several directions are worth investigating. First, in the setting with K + 1 time periods, we may
consider a model that incorporates both Model (7) and (8): E(Y;r | Xi,YiT-1,Gi) = ai + At +
BYir1 +1G; +8"X;forT =t +1,...,t+ K. However, Nickell (1981) and Angrist and Pischke
(2009, Section 5.3) pointed out that identification and estimation under this model require much
stronger assumptions. It is of interest to extend the bracketing relationship to this setting. Second,
we focused on the average treatment effect on the treated; we can extend the result to other types
(e.g. categorical and ordinal) of outcomes for which the averages are less interpretable (Lu, Ding,
and Dasgupta 2018).

Appendix Proofs
Proof of Proposition 1. First, the ordinary least squares fit £(Y;1 | G = 0,Y; = y) = & + BY;
using the control units must satisfy & = Yo 11 — Yo, Therefore,

TLpv = )_/1,t+1 —ﬁO,LDv = 371,t+1 _&_,éﬂ,t = )_/1,t+1 —(Vo,t+1 —,BAYO,t)—,BAYLt = ()_/1,t+1 —YO,t+1)—.3A()71,t—)70,t)~

’

Second, the coefficient 7/, in the ordinary least squares fit E(Yi1 |G, Yy) = a+1/,,G +ﬁ’Yt
using all units equals the difference-in-means of Yj ;.1 — & — ,[?’Y,-t in the treated and control
groups. Therefore,

TA'[DV = ()_/1,t+1 -& —ﬂA’YLt) - (YO,tH -& —ﬁA'Vo,t) = ()_/1,t+1 - Vo,tﬂ) —,BA,(YM - )_/O,t)~

Proof of Lemma 1. The conclusion follows from the law of total probability. We can write

Ho,Lov — Ho,pip as

CE(Yer | G=0)+E(Y| G =0)— E(Y; | G = 1)
ﬂfﬂmnc=an=w&wﬂc=n

=1fﬂmnc=an=n&mma=m
+fyawﬂc=m—fy&wﬂc=n

ifHMHG=QK=ﬂ&MHG=U
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=f{E(Yr+1 1G=0.Y, = y)— y}Frldy | G=1)
—f{E(Ym|G=0,Yt=y)—y}Fy,(dy|G=0). O

Proof of Theorem 1. The proof relies on a lemma on stochastic ordering in Shaked and
Shanthikumar (2007). Specifically, for two random variables A and B, pr(A < x) > pr(B < x)
forall x ifand only if E{u(A)} > E{u(B)} for all nonincreasing functions u(-).

Under Condition 1, we have 0A(y)/dy = 0E(Y;+1 | G = 0,Y; = y)/dy — 1 < 0, e,
A(y) is a nonincreasing function of y. Therefore, combining Lemma 1, Condition 2(1) implies
fopip < flo,Lov, and Condition 2(2) implies fopip = fo,Lov- O
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