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Summary

Instrumental variable methods can identify causal effects even when the treatment and outcome are con-
founded. We study the problem of imperfect measurements of the binary instrumental variable, treatment
and outcome.We first consider nondifferential measurement errors, that is, the mismeasured variable does
not depend on other variables given its true value.We show that the measurement error of the instrumental
variable does not bias the estimate, that the measurement error of the treatment biases the estimate away
from zero, and that the measurement error of the outcome biases the estimate toward zero. Moreover, we
derive sharp bounds on the causal effects without additional assumptions. These bounds are informative
because they exclude zero. We then consider differential measurement errors, and focus on sensitivity
analyses in those settings.

Some key words: Complier average causal effect;Misclassification; Noncompliance; Sensitivity analysis; Sharp bound.

1. Introduction

Instrumental variable methods are powerful tools for causal inference with unmeasured treatment-
outcome confounding. Angrist et al. (1996) used potential outcomes to clarify the role of a binary
instrumental variable in identifying causal effects. They showed that the classic two-stage least squares esti-
mator is consistent for the complier average causal effect under the monotonicity and exclusion restriction
assumptions.
Measurement error, or equivalently misclassification for discrete variables, is common in empirical

research. Black et al. (2003) studied the return of a possibly misreported education status. Boatman et al.
(2017) studied the effect of a self-reported smoking status. In those settings, the treatments are endogenous
and mismeasured. Chalak (2017) considered the measurement error of an instrumental variable. Pierce
& VanderWeele (2012) considered a continuous treatment and either a continuous or a binary outcome
with measurement errors. The existing literature often relies on modelling assumptions (Schennach, 2007;
Pierce & VanderWeele, 2012), auxiliary information (Black et al., 2003; Kuroki & Pearl, 2014; Chalak,
2017; Boatman et al., 2017) or repeated measurements of the unobserved variables (Battistin et al., 2014).
With binary variables,we study all possible scenarios ofmeasurement errors of the instrumental variable,

treatment and outcome. With nondifferential measurement errors, we show that the measurement error of
the instrumental variable does not result in bias, the measurement error of the treatment moves the estimate
away from zero, and the measurement error of the outcome moves the estimate toward zero. This differs
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from the result for the total effect (Bross, 1954), where measurement errors of the treatment and outcome
both move the estimate toward zero.
For nondifferential measurement errors, we focus on qualitative analysis and nonparametric bounds.

For differential measurement errors, we focus on sensitivity analysis. In both cases, we do not impose
modelling assumptions or require auxiliary information.

2. Notation and assumptions for instrumental variable estimation

For unit i, let Zi denote the treatment assigned, Di the treatment received and Yi the outcome. Assume
that (Zi,Di,Yi) are all binary, taking values in {0, 1}. We ignore pretreatment covariates without loss of
generality, because all the results hold within strata of covariates. We use potential outcomes to define
causal effects. Define the potential values of the treatment received and the outcome as Dzi and Yzi if unit
i were assigned to treatment arm z (z = 0, 1). The observed values are Di = ZiD1i + (1 − Zi)D0i and
Yi = ZiY1i + (1− Zi)Y0i. Angrist et al. (1996) classified the units into four latent strata based on the joint
values of (D1i,D0i). They defined Ui = a if (D1i,D0i) = (1, 1), Ui = n if (D1i,D0i) = (0, 0), Ui = c if
(D1i,D0i) = (1, 0) and Ui = d if (D1i,D0i) = (0, 1). The stratum with Ui = c consists of compliers. For
notational simplicity we drop the subscript i. We invoke the following assumption for the instrumental
variable model.

Assumption 1. Under the instrumental variable model, (a) Z (Y1,Y0,D1,D0), (b) D1 ! D0 and
(c) pr(Y1 = 1 | U = u) = pr(Y0 = 1 | U = u) for u = a and n.

Assumption 1(a) holds in randomized experiments. Assumption 1(b) means that the treatment assigned
has a monotonic effect on the treatment received for all units, which rules out the latent strata U = d.
Assumption 1(c) implies that the treatment assigned affects the outcome only through the treatment
received, which is called exclusion restriction.
Define rdR |Q = pr(R = 1 | Q = 1)− pr(R = 1 | Q = 0) as the risk difference of Q on R. For example,

rdYD | (1−Z) = pr(Y = 1,D = 1 | Z = 0) − pr(Y = 1,D = 1 | Z = 1). Angrist et al. (1996) showed that
the complier average causal effect,

τc ≡ E(Y1 − Y0 | U = c) = pr(Y = 1 | Z = 1)− pr(Y = 1 | Z = 0)
pr(D = 1 | Z = 1)− pr(D = 1 | Z = 0) = rdY |Z

rdD |Z
,

can be identified by the ratio of the risk differences of Z on Y and D if rdD |Z =| 0.

3. Nondifferential measurement errors

Let (Z ′,D′,Y ′) denote the possibly mismeasured values of (Z ,D,Y ). Without the true variables, we use
the naive estimator based on the observed variables to estimate τc:

τ ′
c ≡ pr(Y ′ = 1 | Z ′ = 1)− pr(Y ′ = 1 | Z ′ = 0)

pr(D′ = 1 | Z ′ = 1)− pr(D′ = 1 | Z ′ = 0) = rdY ′ |Z ′

rdD′ |Z ′
.

Assumption 2. All measurement errors are nondifferential: pr(D′ | D,Z ′,Z ,Y ,Y ′) = pr(D′ | D),
pr(Y ′ | Y ,Z ,Z ′,D,D′) = pr(Y ′ | Y ) and pr(Z ′ | Y ,Y ′,Z ,D,D′) = pr(Z ′ | Z).

UnderAssumption 2, the measurements of the variables do not depend on other variables conditional on
the unobserved true variables. We use the sensitivities and specificities to characterize the nondifferential
measurement errors:

snD = pr(D′ = 1 | D = 1), spD = pr(D′ = 0 | D = 0), rD = snD + spD − 1 " 1,
snY = pr(Y ′ = 1 | Y = 1), spY = pr(Y ′ = 0 | Y = 0), rY = snY + spY − 1 " 1.
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240 Z. Jiang AND P. Ding

Without measurement errors, rD = rY = 1. Assume rD > 0 and rY > 0, which means that the observed
variable is more likely to be 1 if the true variable is 1 rather than 0. We state a simple relationship between
τc and τ ′

c.

Theorem 1. Under Assumptions 1 and 2, τc = τ ′
c × rD/rY .

Theorem 1 shows that measurement errors of Z ,D and Y have different consequences. Themeasurement
error of Z does not bias the estimate. The measurement error of D biases the estimate away from zero. The
measurement error of Y biases the estimate toward zero. In contrast, measurement errors of the treatment
and outcome both bias the estimate toward zero in the total effect estimation (Bross, 1954).
Moreover, the measurement errors of D and Y have mutually independent influences on the estimation

of τc. Theorem 1 also shows that τc and τ ′
c have the same sign when rD > 0 and rY > 0.

4. Bounds on τc with nondifferential measurement errors

When D or Y is nondifferentially mismeasured, we can identify τc if we know rD and rY . Without
knowing them, we cannot identify τc. Fortunately, the observed data still provide some information about
τc. We can derive its sharp bounds based on the joint distribution of the observed data. We first introduce
a lemma.

Lemma 1. Define sn′
Z = pr(Z = 1 | Z ′ = 1) and sp′

Z = pr(Z = 0 | Z ′ = 0). Under Assumption 1,
given the values of (sn′

Z , sp
′
Z , snD, spD, snY , spY ), there is a one-to-one mapping between the set {pr(Z =

z), pr(U = u), pr(Yz = 1 | U = u) : z = 0, 1; u = a, n, c} and the set {pr(Z ′ = z′,D′ = d ′,Y ′ = y′) :
z′, d ′, y′ = 0, 1}.

Lemma 1 allows for simultaneous measurement errors of more than one element of (Y ,Z ,D). From
Lemma 1, given the sensitivities and specificities, we can recover the joint distribution of (Yz,U ,Z) for
z = 0, 1. Conversely, the conditions {0 " pr(Z = z) " 1, 0 " pr(U = u) " 1, 0 " pr(Yz = 1 | U = u) "
1 : z = 0, 1; u = a, n, c} induce sharp bounds on the sensitivities and specificities, which further induce
sharp bounds on τc. This is a general strategy that we use to derive sharp bounds on τc.
First, we discuss the measurement error of Y .

Theorem 2. Suppose that τ ′
c ! 0 and only Y is mismeasured with rY > 0. Under Assumptions 1 and 2,

the sharp bounds are snY ! MY , spY ! 1− NY and τ ′
c " τc " τ ′

c/(MY − NY ), where MY and NY are the
maximum and minimum values of the set

{
pr(Y ′ = 1 | D = 0,Z = 1), pr(Y ′ = 1 | D = 1,Z = 0), rdY ′D |Z

rdD |Z
,
rdY ′(1−D) | (1−Z)

rdD |Z

}
.

We can obtain the bounds under τ ′
c < 0 by replacing Y with 1 − Y and Y ′ with 1 − Y ′ in Theorem 2.

Thus, we only consider τ ′
c ! 0 in Theorem 2 and the theorems in later parts of the paper. In Theorem 2, the

lower bounds on snY and spY must be smaller than or equal to 1, i.e.,MY " 1 and 1− NY " 1. These two
inequalities further imply the following corollary on the testable conditions of the instrumental variable
model with the measurement error of Y .

Corollary 1. Suppose that only Y is mismeasured with rY > 0. Under Assumptions 1 and 2,

pr(Y ′ = y,D = 1 | Z = 1) ! pr(Y ′ = y,D = 1 | Z = 0) (y = 0, 1),
pr(Y ′ = y,D = 0 | Z = 0) ! pr(Y ′ = y,D = 0 | Z = 1) (y = 0, 1).

The conditions in Corollary 1 are all testable with observed data (Z ,D,Y ′), and they are the same
under τ ′

c ! 0 and τ ′
c < 0. Balke & Pearl (1997) derived the same conditions as in Corollary 1 without
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Miscellanea 241

the measurement error of Y . Wang et al. (2017) proposed statistical tests for these conditions. From
Corollary 1, the nondifferential measurement error of Y does not weaken the testable conditions of the
binary instrumental variable model.
Second, we discuss the measurement error of D.

Theorem 3. Suppose that τ ′
c ! 0 and only D is mismeasured with rD > 0. Under Assumptions 1 and 2,

the sharp bounds areMD " snD " UD, 1−ND " spD " 1−VD and τ ′
c×(MD−ND) " τc " τ ′

c×(UD−VD),
where

MD = max
{
max
z=0,1

pr(D′ = 1 | Z = z), max
y=0,1

pr(D′ = 1 | Y = y,Z = 1), rd(1−Y )D′ | (1−Z)
rdY |Z

}
,

ND = min
{
min
z=0,1

pr(D′ = 1 | Z = z), min
y=0,1

pr(D′ = 1 | Y = y,Z = 0), rdYD′ |Z
rdY |Z

}
,

UD = min
{
1,

rdYD′ |Z
rdY |Z

}
, VD = max

{
0,

rd(1−Y )D′ | (1−Z)
rdY |Z

}
.

With a mismeasured D, Ura (2018) derived sharp bounds with and without Assumption 2. The former
bounds are equivalent to ours, but the latter bounds are wider. In Theorem 3, the lower bounds on snD and
spD must be smaller than or equal to their upper bounds. This further implies the following corollary on
the testable conditions of the binary instrumental variable model with the measurement error of D.

Corollary 2. Suppose that τ ′
c ! 0 and only D is mismeasured with rD > 0. Under Assumptions 1

and 2,

pr(Y = 1,D′ = 1 | Z = 1) ! pr(Y = 1,D′ = 1 | Z = 0), (1)

pr(Y = 0,D′ = 0 | Z = 0) ! pr(Y = 0,D′ = 0 | Z = 1),
pr(D′ = 1 | Y = y,Z = 1) " rdYD′ |Z/rdY |Z (y = 0, 1),
pr(D′ = 1 | Y = y,Z = 0) ! rd(1−Y )D′ | (1−Z)/rdY |Z (y = 0, 1).

We can obtain the conditions under τ ′
c < 0 by replacing Y with 1− Y . In the Supplementary Material,

we show that the conditions in Corollary 2 are weaker than those in Balke & Pearl (1997). Thus, the
nondifferential measurement error ofDweakens the testable conditions of the binary instrumental variable
model.
It is complicated to obtain closed-form bounds with simultaneous measurement errors of more than one

element of (Z ,D,Y ). In those cases, we can numerically calculate the sharp bounds on τc; the details are
given in the Supplementary Material.

5. Results under strong monotonicity

Sometimes, units in the control group have no access to the treatment. This is called the one-sided
noncompliance problem with the following assumption.

Assumption 3. For all individual i, D0i = 0.

Under strong monotonicity, we have only two strata with U = c and U = n. Theorem 1 still holds.
Moreover, strong monotonicity sharpens the bounds in § 4.
First, we consider the measurement error of Y . We have that

τ ′
c =

{
pr(Y ′ = 1 | Z = 1)− pr(Y ′ = 1 | Z = 0)

}
/ pr(D = 1 | Z = 1), τc = τ ′

c/rY .
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242 Z. Jiang AND P. Ding

Theorem 4. Suppose that τ ′
c ! 0 and only Y is mismeasured with rY > 0. Under Assumptions 1– 3, the

sharp bounds are spY ! 1− NmY , snY ! Mm
Y and τ ′

c " τc " τ ′
c/(M

m
Y − NmY ), where

NmY = min{pr(Y ′ = 1 | D = 0,Z = 1), pr(Y ′ = 1 | D = 1,Z = 1)− τ ′
c},

Mm
Y = max{pr(Y ′ = 1 | D = 0,Z = 1), pr(Y ′ = 1 | D = 1,Z = 1)}.

Second, we consider the measurement error ofD. Subtle issues arise.WhenD is mismeasured, pr(D′ =
0 | D = 0,Z = 0) = 1 is known, and pr(D′ = 1 | D = 1,Z = 0) is not well defined. Thus, Assumption 2
of nondifferential measurement error is implausible, so we need to modify it. Define

sn1D= pr(D′ = 1 | D = 1,Z = 1), sp1D = pr(D′ = 0 | D = 0,Z = 1)

as the sensitivity and specificity conditional on Z = 1. We have

τ ′
c = rdY |Z /

{
pr(D′ = 1 | Z = 1)− (1− sp1D)

}
, τc = τ ′

c × (sn1D + sp1D − 1).

Theorem 5. Suppose that τ ′
c ! 0, only D is mismeasured, and

pr(D′ = 1 | Y = 1,Z = 1) ! pr(D′ = 1 | Y = 0,Z = 1). (2)

Under Assumptions 1 and 3, the sharp bounds are

sp1D ! 1− pr(D′ = 1 | Y = 0,Z = 1), sn1D ! pr(D′ = 1 | Y = 1,Z = 1),
sn1D "

{
pr(Y = 1,D′ = 1 | Z = 1)− (1− sp1D)× pr(Y = 1 | Z = 0)

}
/rdY |Z ,

pr(D′ = 1 | Y = 1,Z = 1)× rdY |Z/pr(D′ = 1 | Z = 1) " τc " 1.

Unlike Theorems 2–4, the upper bound on sn1D depends on sp1D in Theorem 5. The condition in (2) is
not necessary for obtaining the bounds, but it helps to simplify the expression of the bounds. It holds in
our applications in § 7. We give the bounds on τc without (2) in the Supplementary Material. The upper
bound on τc is not informative in Theorem 5, but, fortunately, we are more interested in the lower bound
in this case.
It is complicated to obtain closed-form bounds with simultaneous measurement errors of more than one

element of (Z ,D,Y ). In those cases, we can numerically calculate the sharp bounds; see the Supplementary
Material for more detail.

6. Sensitivity analysis formulas with differential measurement errors

Nondifferential measurement error is not plausible in some cases. Section 5 shows that under strong
monotonicity, the measurement error ofD cannot be nondifferential because it depends on Z in general. In
this section we consider differential measurement errors ofD and Y without requiring strongmonotonicity.
We do not consider the differential measurement error of Z , because the measurement of Z often precedes
(D,Y ) and its measurement error is unlikely to depend on later variables.
We first consider the differential measurement error of Y .

Theorem 6. Suppose that only Y is mismeasured. Define

sn1Y = pr(Y ′ = 1 | Y = 1,Z = 1), sn0Y = pr(Y ′ = 1 | Y = 1,Z = 0), (3)

sp1Y = pr(Y ′ = 0 | Y = 0,Z = 1), sp0Y = pr(Y ′ = 0 | Y = 0,Z = 0). (4)
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Miscellanea 243

Under Assumption 1,

τc =
{
pr(Y ′ = 1 | Z = 1)− (1− sp1Y )

sn1Y + sp1Y − 1 − pr(Y ′ = 1 | Z = 0)− (1− sp0Y )
sn0Y + sp0Y − 1

} /
rdD |Z .

Theorem 6 allows the measurement error of Y to depend on D, but the formula for τc only needs the
sensitivities and specificities in (3) and (4) conditional on (Z ,Y ). It is possible that τ ′

c is positive, but τc is
negative. For example, if sn1Y + sp1Y = sn0Y + sp0Y > 1 and sp0Y − sp1Y > rdY ′ |Z , then τc and τ ′

c have different
signs.
We then consider the differential measurement error of D.

Theorem 7. Suppose that only D is mismeasured. Define

sn1D = pr(D′ = 1 | D = 1,Z = 1), sn0D = pr(D′ = 1 | D = 1,Z = 0), (5)

sp1D = pr(D′ = 0 | D = 0,Z = 1), sp0D = pr(D′ = 0 | D = 0,Z = 0). (6)

Under Assumption 1,

τc = rdY |Z

/ {
pr(D′ = 1 | Z = 1)− (1− sp1D)

sn1D + sp1D − 1 − pr(D′ = 1 | Z = 0)− (1− sp0D)
sn0D + sp0D − 1

}
.

Theorem 7 allows the measurement error of D to depend on Y , but the formula for τc only needs the
sensitivities and specificities (5) and (6) conditional on Z . Similar to the discussion after Theorem 6, it is
possible that τ ′

c and τc have different signs.
Based on Theorems 6 and 7, if we know or can consistently estimate the sensitivities and specificities in

(3)–(6), thenwe can consistently estimate τc; if we only know the ranges of the sensitivities and specificities,
then we can obtain bounds on τc.
For simultaneous differential measurement errors of D and Y , the formula for τc depends on too many

sensitivity and specificity parameters. Thus we omit the discussion.

7. Illustrations

We give three examples and present further details in the Supplementary Material.

Example 1. IMPROVE trial investigators (2014) assessed the effectiveness of emergency endovascular
versus open surgical repair strategies for patients with a clinical diagnosis of ruptured aortic aneurism.
Patients were randomized to either the emergency endovascular or the open repair strategy. The primary
outcome was the survival status after 30 days. Let Z be the treatment assigned, with Z = 1 for the
endovascular strategy and Z = 0 for open repair. Let D be the treatment received. Let Y be the survival
status, with Y = 1 for dead and Y = 0 for alive. If none of the variables are mismeasured, then the estimate
of τc is 0.131 with 95% confidence interval (−0.036, 0.298) including 0. If only Y is nondifferentially
mismeasured then 0.382 " spY " 1, 0.759 " snY " 1 and 0.141 " rY " 1, and thus 0.131 " τc " 0.928
from Theorem 2. If only D is nondifferentially mismeasured, then 0.658 " snD " 1, 0.908 " spD " 1
and 0.566 " rD " 1, and thus 0.074 " τc " 0.131 from Theorem 3.

Example 2. In Hirano et al. (2000), physicians were randomly selected to receive a letter encouraging
them to inoculate patients at risk of flu. The treatment was the flu shot, and the outcome an indicator for
flu-related hospital visits. However, some patients did not comply with their assignments. Let Z be the
indicator of encouragement to receive the flu shot, with Z = 1 if the physician receives the encouragement
letter and Z = 0 otherwise. Let D be the treatment received. Let Y be the outcome, with Y = 0 for a
flu-related hospitalization during the winter and Y = 1 otherwise. If none of the variables are mismeasured,
then the estimate of τc is 0.116 with 95% confidence interval (−0.061, 0.293) including 0. If only Y is
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244 Z. Jiang AND P. Ding

nondifferentially mismeasured then, from Theorem 2, spY ! 1.004 > 1, and thus the assumptions of
the instrumental variable do not hold. If only D is nondifferentially mismeasured then, from Theorem 3,
snD ! 8.676 > 1, and thus the assumptions of the instrumental variable do not hold either. We reject the
testable condition (1) required by both Corollaries 1 and 2 with p-value smaller than 10−9. As a result,
the nondifferential measurement error of D or Y cannot explain the violation of the instrumental variable
assumptions in this example.

Example 3. Sommer & Zeger (1991) studied the effect of vitamin A supplements on infant mortality
in Indonesia. The vitamin supplements were randomly assigned to villages, but some of the individuals
in villages assigned to the treatment group did not receive them. Strong monotonicity holds, because the
individuals assigned to the control group had no access to the supplements. Let Y denote a binary outcome,
with Y = 1 if the infant survives to 12 months and Y = 0 otherwise. Let Z denote the indicator of
assignment to the supplements. LetD denote the actual receipt of the supplements. If none of the variables
aremismeasured, then the estimate of τc is 0.003with 95%confidence interval (0.001, 0.005) excluding 0. If
only Y is nondifferentially mismeasured then spY ! 0.014 and snY ! 0.999, and thus 0.003 " τc " 0.252
from Theorem 4. The 95% confidence interval is (0.001, 1). If only D is nondifferentially mismeasured,
then sp1D ! 0.739 and sn1D ! 0.802, and thus 0.003 " τc " 1 from Theorem 5. The 95% confidence
interval is (−1× 10−5, 1). In the Supplementary Material we give the details for constructing confidence
intervals for τc based on its sharp bounds.

In Examples 1 and 3 the upper bounds on τc are too large to be informative, but fortunately the lower
bounds are of more interest in these applications.

8. Discussion

8.1. Further comments on the measurement errors of Z

If only Z is mismeasured and the measurement error is nondifferential then rdD |Z ′ = r′Z ×rdD |Z , where
r′Z = sn′

Z + sp′
Z − 1 with sn′

Z and sp′
Z defined in Lemma 1. If r

′
Z and rdD |Z are both constants that do

not shrink to zero as the sample size n increases, then rdD |Z ′ does not shrink to zero either. In this case,
measurement error of Z does not cause the weak instrumental variable problem (Nelson & Startz, 1990;
Staiger & Stock, 1997). Theorem 1 shows that the nondifferential measurement error of Z does not affect
the large-sample limit of the naive estimator. We further show in the Supplementary Material that it does
not affect the asymptotic variance of the naive estimator either.
Nevertheless, in finite samples the measurement error of Z does result in a smaller estimate for rdD |Z ′ .

If we consider the asymptotic regime that r′Z = o(n−α) for some α > 0, then it is possible to have the weak
instrumental variable problem. In this case we need tools that are tailored to weak instrumental variables
(Nelson & Startz, 1990; Staiger & Stock, 1997).
Practitioners sometimes dichotomize a continuous instrumental variable Z into a binary one based on

the median or other quantiles. Dichotomized variables based on other quantiles are measurement errors of
the dichotomized variable based on the median. However, these measurement errors are differential and
thus our results in § 3 and § 4 are not applicable.

8.2. Further commments on the measurement errors of D and Y

If we dichotomize a discrete D ∈ {0, 1, . . . , J } at k , i.e., D′ = 1(D ! k), then we can define two-stage
least squares estimators based on D and D′:

τ2sls = E(Y | Z = 1)− E(Y | Z = 0)
E(D | Z = 1)− E(D | Z = 0) , τ ′

2sls = E(Y | Z = 1)− E(Y | Z = 0)
E(D′ | Z = 1)− E(D′ | Z = 0) .

Angrist& Imbens (1995) showed that τ2sls is aweighted average of some subgroup causal effects.Analogous
to Theorem 1, we show in the Supplementary Material that τ2sls = τ ′

2sls × wk , where wk = pr(D1 ! k >
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D0)/
∑J

j=1 pr(D1 ! j > D0) ∈ [0, 1] if Assumptions 1(a) and (b) hold. Therefore, the dichotomization
biases the estimate away from zero.
For a continuous outcome, it is common to assume that the measurement error of Y is additive and

nondifferential, i.e., Y ′ = Y + U , where U is the error term with mean zero. If the binary Z and D are
nondifferentially mismeasured as in Assumption 2, then τc = τ ′

c × rD. In this case, the measurement error
of Y does not bias the estimate for τc.
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The supplementary material contains six sections §§A–F corresponding to §§3–8. 10

§A gives the proof for Theorem 1 in §3.
§B gives proofs for Lemma 1, Theorems 2 and 3, and Corollaries 1 and 2 in §4, and details of computing

bounds in more complicated cases.
§C gives the proofs of Theorems 4 and 5 in §5, and details of computing bounds in more complicated

cases. 15

§D gives the proofs of Theorems 6 and 7 in §6.
§E gives more details for §7, including the data and a method for constructing confidence intervals for

τc based on its bounds.
§F gives additional results summarized in §8.

A. PROOF OF THEOREM 1 20

LEMMA A1. Suppose that (S, S′, Q,Q′) are binary variables, and

pr(S′ = s | S = s,Q′, Q) = pr(S′ = s | S = s), pr(S = s | S′ = s) = as (s = 0, 1),

pr(Q′ = q | Q = q, S′, S) = pr(Q′ = q | Q = q) = bq (q = 0, 1).

Then

pr(Q = 1 | S = 1) =
a0pr(Q′ = 1 | S′ = 1)− (1− a1)pr(Q′ = 1 | S′ = 0)

(a1 + a0 − 1)(b1 + b0 − 1)
− 1− b0

b1 + b0 − 1
,

pr(Q = 1 | S = 0) =
a1pr(Q′ = 1 | S′ = 0)− (1− a0)pr(Q′ = 1 | S′ = 1)

(a1 + a0 − 1)(b1 + b0 − 1)
− 1− b0

b1 + b0 − 1
,

RDQ′|S′ = (a1 + a0 − 1)(b1 + b0 − 1)RDQ|S . (A1)

The identity (A1) corroborates Bross (1954)’s result that nondifferential measurement error of a binary
treatment or outcome biases the estimate of the total effect toward zero if |a1 + a0 − 1| < 1 or |b1 + b0 −
1| < 1. 25

Proof of Lemma A1. From the law of total probability,

pr(Q′ = 1 | S′ = 1) = (b1 + b0 − 1)pr(Q = 1 | S′ = 1) + (1− b0),

pr(Q′ = 1 | S′ = 0) = (b1 + b0 − 1)pr(Q = 1 | S′ = 0) + (1− b0),
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which imply

pr(Q = 1 | S′ = 1) =
pr(Q′ = 1 | S′ = 1)− (1− b0)

b1 + b0 − 1
, (A2)

pr(Q = 1 | S′ = 0) =
pr(Q′ = 1 | S′ = 0)− (1− b0)

b1 + b0 − 1
. (A3)

Again, from the law of total probability,

pr(Q = 1 | S′ = 1) = pr(Q = 1 | S = 1)a1 + pr(Q = 1 | S = 0)(1− a1),

pr(Q = 1 | S′ = 0) = pr(Q = 1 | S = 1)(1− a0) + pr(Q = 1 | S = 0)a0.

Solving the above two equations, we have

pr(Q = 1 | S = 1) =
a0pr(Q = 1 | S′ = 1)− (1− a1)pr(Q = 1 | S′ = 0)

a1 + a0 − 1
, (A4)

pr(Q = 1 | S = 0) =
a1pr(Q = 1 | S′ = 0)− (1− a0)pr(Q = 1 | S′ = 1)

a1 + a0 − 1
. (A5)

Substituting (A2) and (A3) into (A4) and (A5), we obtain30

pr(Q = 1 | S = 1) =
a0pr(Q′ = 1 | S′ = 1)− (1− a1)pr(Q′ = 1 | S′ = 0)

(a1 + a0 − 1)(b1 + b0 − 1)
− 1− b0

b1 + b0 − 1
,

pr(Q = 1 | S = 0) =
a1pr(Q′ = 1 | S′ = 0)− (1− a0)pr(Q′ = 1 | S′ = 1)

(a1 + a0 − 1)(b1 + b0 − 1)
− 1− b0

b1 + b0 − 1
,

RDQ′|S′ = (a1 + a0 − 1)(b1 + b0 − 1)RDQ|S .

!

Proof of Theorem 1. From Lemma A1,

τ ′c =
RDY ′|Z′

RDD′|Z′
=

(SNY + SPY − 1)(SN′
Z + SP′

Z − 1)RDY |Z

(SND + SPD − 1)(SN′
Z + SP′

Z − 1)RDD|Z
= τc ×

rY
rD

.

!

B. BOUNDS ON τc UNDER NONDIFFERENTIAL MEASUREMENT ERRORS

B·1. Proofs35

Proof of Lemma 1. It is straightforward to write {pr(Z ′ = z′, D′ = d′, Y ′ = y′) : z′, d′, y′ =
0, 1} in terms of the set {pr(Z = z), pr(U = u), pr(Yz = 1 | U = u) : z = 0, 1;u = a, n, c} given
(SN′

Z , SP′
Z , SND, SPD, SNY , SPY ).

We then only need to show that we can express {pr(Z = z), pr(U = u), pr(Yz = 1 | U =
u) : z = 0, 1;u = a, n, c} in terms of {pr(Z ′ = z′, D′ = d′, Y ′ = y′) : z′, d′, y′ = 0, 1} given40

(SN′
Z , SP′

Z , SND, SPD, SNY , SPY ).
First, we can express pr(Z = 1) as

pr(Z = 1) = SN′
Zpr(Z ′ = 1) + (1− SP′

Z)pr(Z ′ = 0). (B1)

Second, we express {pr(U = u) : z = 0, 1;u = a, n, c} in terms of {pr(Z ′ = z′, D′ = d′, Y ′ = y′) :
z′, d′, y′ = 0, 1} and (SN′

Z , SP′
Z , SND, SPD, SNY , SPY ). From Assumption 1,

pr(U = a) = pr(D = 1 | Z = 0),

pr(U = n) = pr(D = 0 | Z = 1),

pr(U = c) = 1− pr(U = a)− pr(U = n).
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Then from Lemma A1, we can further express {pr(U = u) : u = a, n, c} as 45

pr(U = a) =
SN′

Zpr(D′ = 1 | Z ′ = 0)− (1− SP′
Z)pr(D′ = 1 | Z ′ = 1)

(SN′
Z + SP′

Z − 1)(SND + SPD − 1)
− 1− SPD

SND + SPD − 1
, (B2)

pr(U = c) =
pr(D′ = 1 | Z ′ = 1)− pr(D′ = 1 | Z ′ = 0)

(SN′
Z + SP′

Z − 1)(SND + SPD − 1)
, (B3)

pr(U = n) =
SND

SND + SPD − 1
− SP′

Zpr(D′ = 1 | Z ′ = 1)− (1− SN′
Z)pr(D′ = 1 | Z ′ = 0)

(SN′
Z + SP′

Z − 1)(SND + SPD − 1)
. (B4)

Third, we express {pr(Yz = 1 | U = u) : z = 0, 1;u = a, n, c} in terms of {pr(Z ′ = z′, D′ = d′, Y ′ =
y′) : z′, d′, y′ = 0, 1} and (SN′

Z , SP′
Z , SND, SPD, SNY , SPY ). By the law of total probability, we de-

compose the observed probabilities as

pr(Y = 1, D′ = 1 | Z = 1) = pr(Y1 = 1 | U = a)pr(U = a)SND + pr(Y1 = 1 | U = c)pr(U = c)SND

+pr(Y1 = 1 | U = n)pr(U = n)(1− SPD), (B5)
pr(Y = 1 | Z = 1) = pr(Y1 = 1 | U = a)pr(U = a) + pr(Y1 = 1 | U = c)pr(U = c)

+pr(Y1 = 1 | U = n)pr(U = n), (B6)
pr(Y = 1, D′ = 1 | Z = 0) = pr(Y0 = 1 | U = a)pr(U = a)SND + pr(Y0 = 1 | U = c)pr(U = c)(1− SPD)

+pr(Y0 = 1 | U = n)pr(U = n)(1− SPD), (B7)
pr(Y = 1 | Z = 0) = pr(Y0 = 1 | U = a)pr(U = a) + pr(Y0 = 1 | U = c)pr(U = c)

+pr(Y0 = 1 | U = n)pr(U = n). (B8)

Substituting (B2)–(B4) into (B5)–(B8), we can obtain four equations for {pr(Yz = 1 | U = u) : z =
0, 1;u = a, n, c}. From Assumption 1(c), we can obtain two additional equations pr(Y1 = 1 | U = a) = 50

pr(Y0 = 1 | U = a) and pr(Y1 = 1 | U = n) = pr(Y0 = 1 | U = n). Solving them, we have

pr(Y1 = 1 | U = n) = pr(Y0 = 1 | U = n) =
SNDpr(Y = 1 | Z = 1)− pr(Y = 1, D′ = 1 | Z = 1)

SND − pr(D′ = 1 | Z = 1)
, (B9)

pr(Y1 = 1 | U = a) = pr(Y0 = 1 | U = a) =
pr(Y = 1, D′ = 1 | Z = 0)− (1− SPD)pr(Y = 1 | Z = 0)

pr(D′ = 1 | Z = 0)− (1− SPD)
, (B10)

pr(Y1 = 1 | U = c) =
RDY D′|Z

RDD′|Z
− (1− SPD)×

RDY |Z

RDD′|Z
, (B11)

pr(Y0 = 1 | U = c) =
RDY D′|Z

RDD′|Z
− SND ×

RDY |Z

RDD′|Z
. (B12)

We use Lemma A1 to obtain

pr(Y = 1, D′ = 1 | Z = 1)

=
SP′

Zpr(Y ′ = 1, D′ = 1 | Z ′ = 1)− (1− SN′
Z)pr(Y ′ = 1, D′ = 1 | Z ′ = 0)

(SN′
Z + SP′

Z − 1)(SNY + SPY − 1)

− SP′
Z(1− SPY )pr(D′ = 1 | Z ′ = 1)

(SN′
Z + SP′

Z − 1)(SNY + SPY − 1)
+

(1− SN′
Z)(1− SPY )pr(D′ = 1 | Z ′ = 0)

(SN′
Z + SP′

Z − 1)(SNY + SPY − 1)
(B13)

and

pr(Y = 1, D′ = 1 | Z = 0)

=
SN′

Zpr(Y ′ = 1, D′ = 1 | Z ′ = 0)− (1− SP′
Z)pr(Y ′ = 1, D′ = 1 | Z ′ = 1)

(SN′
Z + SP′

Z − 1)(SNY + SPY − 1)

− SN′
Z(1− SPY )pr(D′ = 1 | Z ′ = 0)

(SN′
Z + SP′

Z − 1)(SNY + SPY − 1)
+

(1− SP′
Z)(1− SPY )pr(D′ = 1 | Z ′ = 1)

(SN′
Z + SP′

Z − 1)(SNY + SPY − 1)
. (B14)
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Substituting (B13) and (B14) into (B9)–(B12), we have55

pr(Y1 = 1 | U = n) = pr(Y0 = 1 | U = n)

=
SND

SNY + SPY − 1
× SP′

Zpr(Y ′ = 1 | Z′ = 1)− (1− SN′
Z)pr(Y ′ = 1 | Z′ = 0)

(SN′
Z + SP′

Z − 1)SND − SP′
Zpr(D′ = 1 | Z′ = 1) + (1− SN′

Z)pr(D′ = 1 | Z′ = 0)

− SP′
Zpr(Y ′ = 1, D′ = 1 | Z′ = 1)− (1− SN′

Z)pr(Y ′ = 1, D′ = 1 | Z′ = 0)
(SNY + SPY − 1){(SN′

Z + SP′
Z − 1)SND − SP′

Zpr(D′ = 1 | Z′ = 1) + (1− SN′
Z)pr(D′ = 1 | Z′ = 0)}

− 1− SPY

SNY + SPY − 1
, (B15)

pr(Y1 = 1 | U = a) = pr(Y0 = 1 | U = a)

=
SN′

Zpr(Y ′ = 1, D′ = 1 | Z′ = 0)− (1− SP′
Z)pr(Y ′ = 1, D′ = 1 | Z′ = 1)

(SNY + SPY − 1){SN′
Zpr(D′ = 1 | Z′ = 0)− (1− SP′

Z)pr(D′ = 1 | Z′ = 1)− (SN′
Z + SP′

Z − 1)(1− SPD)}

− 1− SPD

SNY + SPY − 1
× SN′

Zpr(Y ′ = 1 | Z′ = 0)− (1− SP′
Z)pr(Y ′ = 1 | Z′ = 1)

SN′
Zpr(D′ = 1 | Z′ = 0)− (1− SP′

Z)pr(D′ = 1 | Z′ = 1)− (SN′
Z + SP′

Z − 1)(1− SPD)

− 1− SPY

SNY + SPY − 1
, (B16)

pr(Y1 = 1 | U = c) =
1

SNY + SPY − 1
×

{
RDY ′D′|Z′

RDD′|Z′
− (1− SPD)×

RDY ′|Z′

RDD′|Z′
− (1− SPY )

}
, (B17)

pr(Y0 = 1 | U = c) =
1

SNY + SPY − 1
×

{
RDY ′D′|Z′

RDD′|Z′
− SND ×

RDY ′|Z′

RDD′|Z′
− (1− SPY )

}
. (B18)

From (B1), (B2)–(B4) and (B15)–(B18), we can express {pr(Z = z), pr(U = u), pr(Yz = 1 |
U = u) : z = 0, 1;u = a, n, c} in terms of {pr(Z ′ = z′, D′ = d′, Y ′ = y′) : z′, d′, y′ = 0, 1} and
(SN′

Z , SP′
Z , SND, SPD, SNY , SPY ). !

From Lemma 1, if we know the sensitivities and specificities, then we can recover the joint distribution60

of all the potential outcomes. Furthermore, the conditions

{0 ≤ pr(Z = z) ≤ 1, 0 ≤ pr(U = u) ≤ 1, 0 ≤ pr(Yz = 1 | U = u) ≤ 1 : z = 0, 1;u = a, n, c} (B19)

induce sharp bounds on the sensitivities and specificities, which in turn induce sharp bounds on τc.

Proof of Theorem 2. If only Y is mismeasured, SPD = SND = SP′
Z = SN′

Z = 1. In this case, the
formulas of {pr(Z = z), pr(U = u) : z = 0, 1;u = a, n, c} in (B1) and (B2)–(B4) do not depend on
(SNY , SPY ), and thus do not provide any information about them. We then consider only the inequalities65

{0 ≤ pr(Yz = 1 | U = u) ≤ 1 : z = 0, 1;u = a, n, c}. (B20)

From (B15)–(B18),

pr(Y1 = 1 | U = n) = pr(Y0 = 1 | U = n) =
pr(Y ′ = 1 | D = 0, Z = 1)− (1− SPY )

SNY + SPY − 1
, (B21)

pr(Y1 = 1 | U = a) = pr(Y0 = 1 | U = a) =
pr(Y ′ = 1 | D = 1, Z = 0)− (1− SPY )

SNY + SPY − 1
, (B22)

pr(Y1 = 1 | U = c) =
1

SNY + SPY − 1
×

RDY ′D|Z

RDD|Z
− 1− SPY

SPY + SNY − 1
, (B23)

pr(Y0 = 1 | U = c) =
1

SNY + SPY − 1
×

RDY ′(1−D)|(1−Z)

RDD|Z
− 1− SPY

SPY + SNY − 1
. (B24)

Solving (B20), we obtain

SNY ≥ max

{
pr(Y ′ = 1 | D = 0, Z = 1), pr(Y ′ = 1 | D = 1, Z = 0),

RDY ′D|Z

RDD|Z
,

RDY ′(1−D)|(1−Z)

RDD|Z

}
, (B25)

SPY ≥ 1−min

{
pr(Y ′ = 1 | D = 0, Z = 1), pr(Y ′ = 1 | D = 1, Z = 0),

RDY ′D|Z

RDD|Z
,

RDY ′(1−D)|(1−Z)

RDD|Z

}
. (B26)
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After rearrangement, only one of SNY and SPY appears in each of the inequalities in (B20). As a result,
the bounds on SNY and SPY are both attainable. Thus, we can obtain the sharp bounds on rY by summing
(B25) and (B26). Then, τ ′c ≤ τc ≤ τ ′c/(MY −NY ). ! 70

Proof of Corollary 1. For SNY and SPY , the lower bounds must be smaller than or equal to 1. Under
τ ′c ≥ 0, these require

0 ≤
RDY ′D|Z

RDD|Z
≤ 1, 0 ≤

RDY ′(1−D)|(1−Z)

RDD|Z
≤ 1,

which are equivalent to the inequalities in Corollary 1. Under τ ′c < 0, we can obtain the same conditions.
!

Proof of Theorem 3. If only D is mismeasured, SPY = SNY = SP′
Z = SN′

Z = 1. In this case, the for- 75

mula of pr(Z = 1) does not depend on (SND, SPD), and thus does not provide any information about
them. We then consider only the inequalities

{0 ≤ pr(U = u) ≤ 1, 0 ≤ pr(Yz = 1 | U = u) ≤ 1 : z = 0, 1;u = a, n, c}. (B27)

From (B2)–(B4),

pr(U = a) =
pr(D′ = 1 | Z = 0)− (1− SPD)

SND + SPD − 1
,

pr(U = n) =
SND − pr(D′ = 1 | Z = 1)

SND + SPD − 1
,

pr(U = c) =
pr(D′ = 1 | Z = 1)− pr(D′ = 1 | Z = 0)

SND + SPD − 1
.

From (B15)–(B18),

pr(Y1 = 1 | U = n) = pr(Y0 = 1 | U = n) =
SND × pr(Y = 1 | Z = 1)− pr(Y = 1, D′ = 1 | Z = 1)

SND − pr(D′ = 1 | Z = 1)
,

pr(Y1 = 1 | U = a) = pr(Y0 = 1 | U = a) =
pr(Y = 1, D′ = 1 | Z = 0)− (1− SPD)× pr(Y = 1 | Z = 0)

pr(D′ = 1 | Z = 0)− (1− SPD)
,

pr(Y1 = 1 | U = c) =
RDY D′|Z

RDD′|Z
− (1− SPD)×

RDY |Z

RDD′|Z
,

pr(Y0 = 1 | U = c) =
RDY D′|Z

RDD′|Z
− SND ×

RDY |Z

RDD′|Z
.

Solving (B27), we can obtain the bounds on SND and SPD. When τ ′c ≥ 0, we have 80

max
z,y=0,1

{
pr(D′ = 1 | Z = z), pr(D′ = 1 | Y = y, Z = 1),

RD(1−Y )D′|(1−Z)

RDY |Z

}
≤ SND ≤ min

{
1,

RDY D′|Z

RDY |Z

}
, (B28)

1− min
z,y=0,1

{
pr(D′ = 1 | Z = z), pr(D′ = 1 | Y = y, Z = 0),

RDY D′|Z

RDY |Z

}
≤ SPD ≤ 1−max

{
0,

RD(1−Y )D′|(1−Z)

RDY |Z

}
.

(B29)

Because only one of SND and SPD appears in each of the inequalities in (B27) after rearrangement, the
bounds on SND and SPD are both attainable. Thus, we can obtain the sharp bounds on rD by summing
(B28) and (B29). Then, we can obtain the sharp bounds on τc. !

Before proving Corollary 2, we give a simple lemma.

LEMMA B2. Under Assumption 1(b), if only D is mismeasured with rD > 0, then RDD′|Z ≥ 0. 85
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Proof of Lemma B2. Assumption 1(b) implies that RDD|Z ≥ 0. Using Lemma A1, we have RDD′|Z =
RDD|Z × rD ≥ 0. !

Proof of Corollary 2. For SND and SPD, the lower bounds must be smaller than or equal to 1 and the
upper bounds must be larger than or equal to 0. Moreover, the lower bounds must be smaller than or equal
to their upper bounds. These require90

RDY D′|Z

RDY |Z
≥ 0,

RD(1−Y )D′|(1−Z)

RDY |Z
≤ 1, (B30)

pr(D′ = 1 | Y = y, Z = 1) ≤
RDY D′|Z

RDY |Z
, (y = 0, 1), (B31)

pr(D′ = 1 | Y = y, Z = 0) ≥
RD(1−Y )D′|(1−Z)

RDY |Z
, (y = 0, 1), (B32)

RD(1−Y )D′|(1−Z)

RDY |Z
≤

RDY D′|Z

RDY |Z
, (B33)

pr(D′ = 1 | Z = z) ≥
RD(1−Y )D′|(1−Z)

RDY |Z
, (z = 0, 1), (B34)

pr(D′ = 1 | Z = z) ≤
RDY D′|Z

RDY |Z
, (z = 0, 1). (B35)

When τ ′c ≥ 0, Lemma B2 ensures (B33). Moreover, (B32) implies (B34) with z = 0, and (B31) implies
(B35) with z = 1. Lemma B2 further ensures (B34) with z = 1 and (B35) with z = 0. Therefore, (B33)
to (B35) are redundant. The remaining conditions (B30)–(B32) are equivalent to the inequalities in Corol-
lary 2. !

Next, we show that the conditions in Corollary 2 are weaker than the following conditions in Balke &95

Pearl (1997):

pr(Y = y,D′ = 1 | Z = 1) ≥ pr(Y = y,D′ = 1 | Z = 0), (y = 0, 1), (B36)
pr(Y = y,D′ = 0 | Z = 0) ≥ pr(Y = y,D′ = 0 | Z = 1), (y = 0, 1). (B37)

These are the testable conditions for the binary instrumental variable model without measurement errors.
Proof. First, (B30) is equivalent to (B36) with y = 1 and (B37) with y = 0.

Second, we show (B36) and (B37) imply (B31). From (B36) and (B37) with y = 1, we have

pr(Y = 1, D′ = 1 | Z = 1)∑
d′=0,1 pr(Y = 1, D′ = d′ | Z = 1)

≥ pr(Y = 1, D′ = 1 | Z = 0)∑
d′=0,1 pr(Y = 1, D′ = d′ | Z = 0)

.

Therefore, pr(D′ = 1 | Y = 1, Z = 1) ≥ pr(D′ = 1 | Y = 1, Z = 0), which is equivalent to (B31) with100

y = 1. From RDY |Z ≥ 0, we have

pr(Y = 0 | Z = 0)pr(D′ = 1 | Y = 0, Z = 1)

= pr(Y = 0 | Z = 0){1− pr(D′ = 0 | Y = 0, Z = 1)}
= pr(Y = 0 | Z = 0)− pr(Y = 0 | Z = 0)pr(D′ = 0 | Y = 0, Z = 1)

≤ pr(Y = 0 | Z = 0)− pr(Y = 0 | Z = 1)pr(D′ = 0 | Y = 0, Z = 1)

= pr(Y = 0, D′ = 1 | Z = 0).

Therefore,

pr(D′ = 1 | Z = 1) ≥ pr(D′ = 1 | Z = 0)

= pr(Y = 1, D′ = 1 | Z = 0) + pr(Y = 0, D′ = 1 | Z = 0)

≥ pr(Y = 1, D′ = 1 | Z = 0) + pr(Y = 0 | Z = 0)pr(D′ = 1 | Y = 0, Z = 1),
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which is equivalent to (B31) with y = 0.
Third, we show (B36) and (B37) imply (B32). From (B36) with y = 0 and RDY |Z ≥ 0, we have

pr(D′ = 1 | Z = 0) = pr(Y = 1, D′ = 1 | Z = 0) + pr(Y = 0, D′ = 1 | Z = 0)

≤ pr(Y = 1 | Z = 0)pr(D′ = 1 | Y = 1, Z = 0) + pr(Y = 0, D′ = 1 | Z = 1)

≤ pr(Y = 1 | Z = 1)pr(D′ = 1 | Y = 1, Z = 0) + pr(Y = 0, D′ = 1 | Z = 1),

which is equivalent to (B32) with y = 1. From (B36) with y = 0 and RDY |Z ≥ 0, we have 105

pr(Y = 0, D′ = 1 | Z = 1)

pr(Y = 0 | Z = 1)
≥ pr(Y = 0, D′ = 1 | Z = 0)

pr(Y = 0 | Z = 0)
.

Therefore, pr(D′ = 1 | Y = 0, Z = 1) ≥ pr(D′ = 1 | Y = 0, Z = 0), which is equivalent to (B32) with
y = 0. !

B·2. Bounds on τc under simultaneous measurement errors
It is complicated to obtain closed-form bounds with simultaneous measurement errors of more than

one element of (Z,D, Y ). We provide a general strategy for calculating the sharp bounds numerically. 110

From Lemma 1, we can express {pr(Z ′ = z′, D′ = d′, Y ′ = y′) : z′, d′, y′ = 0, 1} in terms of {pr(Z =
z), pr(U = u), pr(Yz = 1 | U = u) : z = 0, 1;u = a, n, c} and (SN′

Z , SP′
Z , SND, SPD, SNY , SPY ).

Therefore, we obtain 8− 1 = 7 equality constraints for {pr(Z = z), pr(U = u), pr(Yz = 1 | U = u) :
z = 0, 1;u = a, n, c} and (SN′

Z , SP′
Z , SND, SPD, SNY , SPY ). Using linear or non-linear programming,

we can numerically calculate the bounds by minimizing and maximizing τc under the equality constraints 115

and the inequality constraints (B19).

C. RESULTS UNDER STRONG MONOTONICITY

C·1. Proofs
Proof of Theorem 4. If only Y is mismeasured,

τ ′c =
pr(Y ′ = 1 | Z = 1)− pr(Y ′ = 1 | Z = 0)

pr(D = 1 | Z = 1)
, τc = τ ′c/rY .

In this case, the formulas of {pr(Z = z), pr(U = u) : z = 0, 1;u = n, c} do not depend on (SNY , SPY ), 120

and thus do not provide any information about them. Therefore, we consider only the inequalities in (B20)
based on the following probabilities:

pr(Y1 = 1 | U = n) = pr(Y0 = 1 | U = n) =
pr(Y ′ = 1 | D = 0, Z = 1)− (1− SPY )

SNY + SPY − 1
, (C1)

pr(Y1 = 1 | U = c) =
pr(Y ′ = 1 | D = 1, Z = 1)− (1− SPY )

SNY + SPY − 1
, (C2)

pr(Y0 = 1 | U = c) =
pr(Y ′ = 1 | D = 1, Z = 1)− τ ′c

SNY + SPY − 1
− 1− SPY

SPY + SNY − 1
. (C3)

Using (C1)–(C3) to solve (B20), we obtain

SPY ≥ 1−min{pr(Y ′ = 1 | D = 0, Z = 1), pr(Y ′ = 1 | D = 1, Z = 1)− τ ′c}, (C4)
SNY ≥ max{pr(Y ′ = 1 | D = 0, Z = 1), pr(Y ′ = 1 | D = 1, Z = 1)}. (C5)

After rearrangement, only one of SNY and SPY appears in each of the inequalities in (B20). As a result,
the bounds (C4) and (C5) are both attainable. Thus, we obtain the sharp bounds on rY by summing (C4) 125

and (C5), i.e., rY ≥ (Mm
Y −Nm

Y ), where

Mm
Y −Nm

Y = max{pr(Y ′ = 1 | D = 0, Z = 1), pr(Y ′ = 1 | D = 1, Z = 1)}
−min{pr(Y ′ = 1 | D = 0, Z = 1), pr(Y ′ = 1 | D = 1, Z = 1)− τ ′c}.
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Then, τ ′c ≤ τc ≤ τ ′c/(M
m
Y −Nm

Y ). !

We give a more general version of Theorem 5 without the condition in (2).

THEOREM C1. Suppose that τ ′c ≥ 0 and only D is mismeasured. Define

SD =
{pr(Y = 1, D′ = 1 | Z = 1)− RDY |Z ×maxy=0,1{pr(D′ = 1 | Y = y, Z = 1)}

pr(Y = 1 | Z = 0)
, pr(D′ = 1 | Y = y, Z = 1)

}
.

Under Assumptions 1 and 3, the sharp upper bound on τc is

max

{
pr(D′ = 1 | Y = 1, Z = 1),

pr(Y = 1, D′ = 1 | Z = 1)−minSD × pr(Y = 1 | Z = 1)
pr(D′ = 1 | Z = 1)−minSD

}
,

and the sharp lower bound on τc is

min

{
maxy=0,1 pr(D′ = 1 | Y = y, Z = 1)× RDY |Z

pr(D′ = 1 | Z = 1)
,
{maxy=0,1 pr(D′ = 1 | Y = y, Z = 1)−minSD} × RDY |Z

pr(D′ = 1 | Z = 1)−minSD

}
.

Proof of Theorem C1. First, pr(Z = z) does not depend on (SN1
D, SP1

D), and thus the condition
0 ≤ pr(Z = 1) ≤ 1 do not provide any information about them. We need only to express {pr(U =130

u), pr(Yz = 1 | U = u) : z = 0, 1;u = n, c} in terms of {pr(Z = z,D′ = d′, Y = y) : z, d′, y = 0, 1}
and (SN1

D, SP1
D). The proportions of principal strata are

pr(U = c) =
pr(D′ = 1 | Z = 1)− (1− SP1

D)

SN1
D + SP1

D − 1
, pr(U = n) =

SN1
D − pr(D′ = 1 | Z = 1)

SN1
D + SP1

D − 1
.

We decompose the observed probabilities into

pr(Y = 1, D′ = 1 | Z = 1) = pr(Y1 = 1 | U = c)pr(U = c)SN1
D + pr(Y1 = 1 | U = n)pr(U = n)(1− SP1

D),

pr(Y = 1 | Z = 1) = pr(Y1 = 1 | U = c)pr(U = c) + pr(Y1 = 1 | U = n)pr(U = n).

Solving the above two equations, we have

pr(Y1 = 1 | U = c) =
pr(Y = 1, D′ = 1 | Z = 1)− (1− SP1

D)× pr(Y = 1 | Z = 1)

pr(D′ = 1 | Z = 1)− (1− SP1
D)

,

pr(Y0 = 1 | U = n) = pr(Y1 = 1 | U = n) =
SN1

D × pr(Y = 1 | Z = 1)− pr(Y = 1, D′ = 1 | Z = 1)

SN1
D − pr(D′ = 1 | Z = 1)

.

From the following decomposition of the outcome distribution in the control group135

pr(Y = 1 | Z = 0) = pr(Y0 = 1 | U = c)pr(U = c) + pr(Y0 = 1 | U = n)pr(U = n),

we obtain

pr(Y0 = 1 | U = c) =
pr(Y = 1, D′ = 1 | Z = 1)− (1− SP1

D)pr(Y = 1 | Z = 1)

pr(D′ = 1 | Z = 1)− (1− SP1
D)

−
(SN1

D + SP1
D − 1)RDY |Z

pr(D′ = 1 | Z = 1)− (1− SP1
D)

.

Second, we derive the bounds on SN1
D and SP1

D by solving the inequalities in

{0 ≤ pr(U = u) ≤ 1, 0 ≤ pr(Yz = 1 | U = u) ≤ 1 : z = 0, 1;u = c, n}.

Solving {0 ≤ pr(U = u) ≤ 1 : u = c, n}, we have

SN1
D ≥ pr(D′ = 1 | Z = 1), SP1

D ≥ 1− pr(D′ = 1 | Z = 1). (C6)

Solving 0 ≤ pr(Y1 = 1 | U = c) ≤ 1 and 0 ≤ pr(Y1 = 1 | U = n) ≤ 1, we have

SN1
D ≥ pr(D′ = 1 | Y = y, Z = 1), (y = 0, 1), (C7)

SP1
D ≥ 1− pr(D′ = 1 | Y = y, Z = 1), (y = 0, 1). (C8)
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The inequalities in (C7) and (C8) are stronger than those in (C6). Therefore, we can omit (C6). Solving 140

0 ≤ pr(Y0 = 1 | U = c) ≤ 1, we have

pr(Y = 1, D′ = 1 | Z = 1)− (1− SP1
D)pr(Y = 1 | Z = 0)− SN1

DRDY |Z ≥ 0,

pr(Y = 0, D′ = 1 | Z = 1)− (1− SP1
D)pr(Y = 0 | Z = 0) + SN1

DRDY |Z ≥ 0,

which imply

SN1
D ≤ pr(Y = 1, D′ = 1 | Z = 1)− (1− SP1

D)pr(Y = 1 | Z = 0)

RDY |Z
, (C9)

SN1
D ≥ −pr(Y = 0, D′ = 1 | Z = 1)− (1− SP1

D)pr(Y = 0 | Z = 0)

RDY |Z
. (C10)

Next, we show that (C7) and (C8) imply (C10). From (C8),

pr(D′ = 1 | Y = 0, Z = 1)× RDY |Z

= pr(D′ = 1 | Y = 0, Z = 1){pr(Y = 0 | Z = 0)− pr(Y = 0 | Z = 1)}
= pr(D′ = 1 | Y = 0, Z = 1)pr(Y = 0 | Z = 0)− pr(Y = 0, D′ = 1 | Z = 1)

≥ (1− SP1
D)pr(Y = 0 | Z = 0)− pr(Y = 0, D′ = 1 | Z = 1).

Therefore,

pr(D′ = 1 | Y = 0, Z = 1) ≥ −pr(Y = 0, D′ = 1 | Z = 1)− (1− SP1
D)pr(Y = 0 | Z = 0)

RDY |Z
,

which means that (C7) implies (C10). As a result, we can omit (C10). 145

Combining (C7) with (C9),

max
y=0,1

pr(D′ = 1 | Y = y, Z = 1) ≤ SN1
D ≤ pr(Y = 1, D′ = 1 | Z = 1)− (1− SP1

D)× pr(Y = 1 | Z = 0)
RDY |Z

.

(C11)

In (C11), the upper bound must be larger than or equal to 0, the lower bound must be smaller than or
equal to 1, and the upper bound must be larger than or equal to the lower bound. These require

pr(Y = 1, D′ = 1 | Z = 1)− (1− SP1
D)× pr(Y = 1 | Z = 0)

RDY |Z
≥ max

y=0,1
pr(D′ = 1 | Y = y, Z = 1),(C12)

pr(Y = 1, D′ = 1 | Z = 1)− (1− SP1
D)× pr(Y = 1 | Z = 0)

RDY |Z
≥ 0. (C13)

Under RDY |Z ≥ 0, (C13) holds. Thus, we can omit (C13). Combining (C12) with (C8), we have SP1
D ≥

1−minSD. 150

Finally, we derive the bounds on

τc =
(SN1

D + SP1
D − 1)RDY |Z

pr(D′ = 1 | Z = 1)− (1− SP1
D)

, (C14)

where only D is mismeasured. If τ ′c ≥ 0, then from (C14), τc is increasing in SN1
D. Replacing SN1

D with
its bound limits in (C14), we obtain

{maxy=0,1 pr(D′ = 1 | Y = y, Z = 1) + SP1
D − 1} × RDY |Z

pr(D′ = 1 | Z = 1)− (1− SP1
D)

≤ τc ≤
pr(Y = 1, D′ = 1 | Z = 1)− (1− SP1

D)× pr(Y = 1 | Z = 1)

pr(D′ = 1 | Z = 1)− (1− SP1
D)

.
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Because the above bound limits are monotone in SP1
D, we can obtain the sharp upper and lower bounds on

τc by replacing SP1
D with its bound limits. If pr(D′ = 1 | Y = 1, Z = 1) ≥ pr(D′ = 1 | Y = 0, Z = 1),155

then the bounds simplify to those in Theorem 5.
!

C·2. Bounds on τc under simultaneous measurement errors
Under strong monotonicity, it is complicated to obtain closed-form bounds with simultaneous measure-

ment errors of more than one element of (Z,D, Y ). We propose the general strategy for calculating the160

sharp bounds numerically.
We can express {pr(Z ′ = z′, D′ = d′, Y ′ = y′) : z′, d′, y′ = 0, 1} in terms of {pr(Z = z), pr(U =

u), pr(Yz = 1 | U = u) : z = 0, 1;u = n, c} and (SN′
Z , SP′

Z , SN1
D, SP1

D, SNY , SPY ). Therefore, we
obtain 8− 1 equality constraints for {pr(Z = z), pr(U = u), pr(Yz = 1 | U = u) : z = 0, 1;u = n, c}
and (SN′

Z , SP′
Z , SN1

D, SP1
D, SNY , SPY ). Using linear or non-linear programming, we can numer-165

ically calculate the bounds by minimizing and maximizing τc under the equality constraints and
the inequality constraints {0 ≤ pr(Z = z) ≤ 1, 0 ≤ pr(U = u) ≤ 1, 0 ≤ pr(Yz = 1 | U = u) ≤ 1 : z =
0, 1;u = n, c}.

D. RESULTS WITH DIFFERENTIAL MEASUREMENT ERRORS

Proof of Theorem 6. From (A2) and (A3),170

pr(Y = 1 | Z = 1) =
pr(Y ′ = 1 | Z = 1)− (1− SP1

Y )

SN1
Y + SP1

Y − 1
,

pr(Y = 1 | Z = 0) =
pr(Y ′ = 1 | Z = 0)− (1− SP0

Y )

SN0
Y + SP0

Y − 1
,

which imply the formula of τc in Theorem 6. !

Proof of Theorem 7. From (A2) and (A3),

pr(D = 1 | Z = 1) =
pr(D′ = 1 | Z = 1)− (1− SP1

D)

SN1
D + SP1

D − 1
,

pr(D = 1 | Z = 0) =
pr(D′ = 1 | Z = 0)− (1− SP0

D)

SN0
D + SP0

D − 1
,

which imply the formula of τc in Theorem 7. !

E. MORE DETAILS FOR §7
E·1. Data175

Table 1 shows the data in §7 in the main text.

E·2. A method for constructing confidence intervals for τc
The bounds on τc have the form

τ ′c × l1 ≤ τc ≤ τ ′c × u1, if τ ′c ≥ 0,

τ ′c × l2 ≤ τc ≤ τ ′c × u2, if τ ′c < 0,

where l1, l2, u1 and u2 are maximums or minimums of the functions of the observed distribution. This
form of bounds is different from most partially identified parameter in the literature (Imbens & Manski,180

2004; Chernozhukov et al., 2013; Jiang & Ding, 2018). Motivated by Berger & Boos (1994)’s method for
hypothesis testing, we propose the following strategy for constructing confidence interval.



11

Table 1: Data

(a) Example 1: Investigators et al. (2014)’s study

Z = 1 Z = 0
D = 1 D = 0 D = 1 D = 0

Y = 1 107 68 24 131
Y = 0 42 42 8 79

(b) Example 2: Hirano et al. (2000)’s study

Z = 1 Z = 0
D = 1 D = 0 D = 1 D = 0

Y = 1 31 85 30 99
Y = 0 424 944 237 1041

(c) Example 3: Sommer & Zeger (1991)’s study

Z = 1 Z = 0
D = 1 D = 0 D = 1 D = 0

Y = 1 9663 2385 0 11514
Y = 0 12 34 0 74

In the first step, construct CI′, a 1− γ confidence interval for τ ′c. In the second step, construct
CI(τ̃ ′c), a 1− (α− γ) confidence interval for τc when the parameter τ ′c is fixed at the value τ̃ ′c, for all
τ̃ ′c ∈ CI′. In the third step, construct the final confidence interval by taking the union of these CI(τ̃ ′c)’s: 185

CI = ∪τ̃ ′
c∈CI′ CI(τ̃ ′c).

This strategy is easy to implement. In the first step, we can construct CI′ based on standard techniques.
In the second step, we can construct CI(τ̃ ′c) using the method of Imbens & Manski (2004) or Jiang &
Ding (2018) for partially identified parameters with interval bounds.

We then prove that this confidence interval has a coverage rate at least as large as 1− α. 190

Proof. The conclusion follows from

pr(τc /∈ CI) = pr
{
τc /∈ ∪τ̃ ′

c∈CI′ CI(τ̃ ′c), τ
′
c ∈ CI′

}
+ pr

{
τc /∈ ∪τ̃ ′

c∈CI′ CI(τ̃ ′c), τ
′
c /∈ CI′

}

≤ pr
{
τc /∈ ∪τ̃ ′

c∈CI′ CI(τ̃ ′c), τ
′
c ∈ CI′

}
+ pr(τ ′c /∈ CI′)

≤ pr {τc /∈ CI(τ ′c)}+ γ

= α− γ + γ

= α.

The proof above is based on finite-sample exact confidence intervals. It carries over to large-sample con-
fidence intervals. !

F. OTHER RESULTS

F·1. More discussion on the non-differential measurement error of Z 195

Let R̂DY |Z and R̂DD|Z be the estimators of RDY |Z and RDD|Z , respectively. Without measurement
error, applying the central limit theorem, we have

n1/2

(
R̂DY |Z
R̂DD|Z

)
−→ N2

{(
RDY |Z
RDD|Z

)
,

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)}



12

in distribution, where σ2
1 , σ

2
2 , ρσ1σ2 are the asymptotic variances and covariance of n1/2R̂DY |Z and

n1/2R̂DY |Z , respectively. Using the delta method, we obtain that the asymptotic variance of the naive
estimator R̂DY |Z/R̂DD|Z is (σ2

1 − τcρσ1σ2 + τ2c σ
2
2)/RD2

D|Z .200

When Z is mismeasured, let r′Z = SN′
Z + SP′

Z − 1. From Theorem 1, RDY |Z′ = r′Z × RDY |Z and
RDD|Z′ = r′Z × RDD|Z . Therefore,

n1/2

(
R̂DY |Z′

R̂DD|Z′

)
−→ N2

{(
r′Z × RDY |Z
r′Z × RDD|Z

)
, (r′Z)

2

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)}
,

in distribution. Using the delta method, we obtain the asymptotic variance of the naive estimator
R̂DY |Z′/R̂DD|Z′ is (σ2

1 − τcρσ1σ2 + τ2c σ
2
2)/RD2

D|Z . Therefore, the non-differential measurement error
of Z does not affect the asymptotic variance of the naive estimator.205

F·2. Dichotomization of a discrete treatment
We show that τ2sls = τ ′2sls × wk, where wk = pr(D1 ≥ k > D0)/

∑J
j=1 pr(D1 ≥ j > D0) if Assump-

tions 1(a) and (b) hold. This follows from

τ2sls = τ ′2sls ×
E(D′ | Z = 1)− E(D′ | Z = 0)

E(D | Z = 1)− E(D | Z = 0)

= τ ′2sls ×
pr(D1 ≥ k)− pr(D0 ≥ k)

∑J
j=1{pr(D1 ≥ j)− pr(D0 ≥ j)}

= τ ′2sls ×
pr(D1 ≥ k > D0)∑J
j=1 pr(D1 ≥ j > D0)

= τ ′2sls × wk.
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