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Summary. Randomization is a basis for the statistical inference of treatment effects without
strong assumptions on the outcome-generating process. Appropriately using covariates further
yields more precise estimators in randomized experiments. R. A. Fisher suggested blocking on
discrete covariates in the design stage or conducting analysis of covariance in the analysis stage.
We can embed blocking in a wider class of experimental design called rerandomization, and
extend the classical analysis of covariance to more general regression adjustment. Rerandom-
ization trumps complete randomization in the design stage, and regression adjustment trumps
the simple difference-in-means estimator in the analysis stage. It is then intuitive to use both
rerandomization and regression adjustment. Under the randomization inference framework, we
establish a unified theory allowing the designer and analyser to have access to different sets
of covariates. We find that asymptotically, for any given estimator with or without regression ad-
justment, rerandomization never hurts either the sampling precision or the estimated precision,
and, for any given design with or without rerandomization, our regression-adjusted estimator
never hurts the estimated precision. Therefore, combining rerandomization and regression ad-
justment yields better coverage properties and thus improves statistical inference. To quantify
these statements theoretically, we discuss optimal regression-adjusted estimators in terms of
the sampling precision and the estimated precision, and then measure the additional gains of
the designer and the analyser. We finally suggest the use of rerandomization in the design and
regression adjustment in the analysis followed by the Huber—White robust standard error.
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1. Introduction

In his seminal book Design of Experiments, Fisher (1935) first formally discussed the value of
randomization in experiments: randomization balances observed and unobserved covariates on
average and serves as a basis for statistical inference. Since then, randomized experiments have
been widely used in agricultural sciences (e.g. Fisher (1935) and Kempthorne (1952)), industry
(e.g. Box et al. (2005) and Wu and Hamada (2011)) and clinical trials (e.g. Rosenberger and
Lachin (2015)). Recent years have witnessed the popularity of using randomized experiments in
social sciences (e.g. Duflo et al. (2007), Gerber and Green (2012) and Athey and Imbens (2017))
and technology companies (e.g. Kohavi and Longbotham (2017)). Those modern applications
often have richer covariates.

In completely randomized experiments, covariate imbalance often occurs by chance. Fisher
(1935) proposed the use of analysis of covariance (ANCOVA) to adjust for covariate imbalance
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and thus to improve estimation efficiency. Fisher’s (1935) ANCOVA uses the coefficient of
the treatment in the ordinary least squares (OLS) fit of the outcome on the treatment and
covariates. However, Freedman (2008a, b) criticized ANCOVA by showing that it can be even
less efficient than the simple difference-in-means estimator under Neyman’s (1923) potential
outcomes framework. Freedman’s (2008a, b) analyses allowed for treatment effect heterogeneity,
in contrast with the existing literature on ANCOVA which often assumed additive treatment
effects (Fisher, 1935; Kempthorne, 1952; Cox and Reid, 2000). Lin (2013) proposed a solution to
Freedman’s critique by running the OLS regression of the outcome on the treatment, covariates
and their interactions. Li and Ding (2017) showed the ‘optimality’ of Lin’s (2013) estimator
within a class of regression-adjusted estimators.

Aware of the covariate imbalance issue, Fisher (1926) also proposed a strategy to avoid it
actively in experiments. With a few discrete covariates, he proposed to use blocking, i.e. to con-
duct completely randomized experiments (CREs) within blocks of covariates. This remains a
powerful tool in modern experiments (Miratrix et al., 2013; Higgins et al., 2016; Athey and
Imbens, 2017). Blocking is a special case of rerandomization (Morgan and Rubin, 2012), which
rejects ‘bad’ random allocations that violate certain covariate balance criteria. Rerandomiza-
tion can also deal with more general covariates. Morgan and Rubin (2012) demonstrated that
rerandomization improves covariate balance. Li et al. (2018) further derived the asymptotic dis-
tribution of the difference-in-means estimator and demonstrated that rerandomization improves
its precision compared with complete randomization.

Rerandomization and regression adjustment are two ways to use covariates to improve ef-
ficiency. The former uses covariates in the design stage, and the latter uses covariates in the
analysis stage. It is then natural to combine them in practice, i.e. to conduct rerandomization
in the design and to use regression adjustment in the analysis. Several theoretical challenges re-
main. First, how do we conduct statistical inference? We shall derive the asymptotic distribution
of the regression-adjusted estimator under rerandomization without assuming any outcome-
generating model. Our theory is purely randomization based, in which potential outcomes are
fixed numbers and the only randomness comes from the treatment allocation.

Second, what is the optimal regression adjustment under rerandomization? The optimality
depends on the criterion. We shall introduce two notions of optimality: one based on the sampling
precision and the other based on the estimated precision. Because our general theory allows
the designer and analyser to have different sets of covariates, it is possible that the estimated
precision differs from the sampling precision asymptotically, even under the case with additive
treatment effects. We shall show that, asymptotically, rerandomization never hurts either the
sampling precision or the estimated precision, and Lin’s (2013) regression adjustment never
hurts the estimated precision. Therefore, combining rerandomization and regression adjustment
improves the coverage properties of the associated confidence intervals. On the basis of these
findings, we suggest the use of Lin’s (2013) estimator in general settings and show that the Huber—
White variance estimator is a convenient approximation to its variance under rerandomization.
Importantly, our theory does not rely on the linear model assumption.

Third, how do we quantify the gains from the designer and analyser? In particular, if the
analyser uses an optimal regression adjustment, what is the additional gain of rerandomization
compared with complete randomization? If the designer uses rerandomization, what is the
additional gain of using an optimal regression adjustment compared with the simple difference
in means? Our theory can quantitatively answer these questions.

This paper proceeds as follows. Section 2 introduces the framework and notation. Section 3
derives the sampling distribution of the regression-adjusted estimator under rerandomization.
Section 4 discusses optimal regression adjustment in terms of the sampling precision. Section 5
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addresses estimation and inference issues. Section 6 discusses optimal regression adjustment in
terms of the estimated precision. Section 7 quantifies the gains from the analyser and the designer
in both the sampling precision and the estimated precision. Section 8 unifies the discussion and
gives practical suggestions. Section 9 uses examples to illustrate the theory. Section 10 concludes,
and the on-line supplementary material contains all the technical details.

The data that are analysed in the paper and the programs that were used to analyse them can
be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679868/series-
b-datasets.

2. Framework and notation

Consider an experiment on n units, with n; of them assigned to the treatment and ny of
them assigned to the control. Let r{ =n;/n and rg =ng/n be the proportions of units receiv-
ing the treatment and control. We use potential outcomes to define treatment effects (Ney-
man, 1923). For unit i, let Y;(1) and Y;(0) be the potential outcomes under the treatment
and control, and 7; = Y;(1) — Y;(0) be the individual treatment effect. For this finite popu-
lation of n units, the average potential outcome under treatment arm z (z=0,1) is Y(z) =
n~!3"  ¥i(z), and the average treatment effect is 7=n"1%"_ 7, =¥ (1) — ¥(0). Let Z; be the
treatment assignment for unit i (Z; =1 for the treatment; Z; =0 for the control), and Z =
(Z1,2Z,...,7Z,) be the treatment assignment vector. The observed outcome for unit i is ¥; =
ZY;i()+(1—-2Z)Y;(0).

2.1. Regression adjustment in the analysis

In a CRE, the probability that Z takes a particular value z=(z1,...,2,) is (;, )~ 1, where
¥? zi=ny and X' (1 —z;) =ny are fixed and do not depend on the values of covariates or
potential outcomes. Equivalently, Z is a random permutation of a vector of ny 1s and ng 0s. Let
w; = (wj1,...,w;y)" be the J observed pretreatment covariates that are available to the analyser.
For descriptive convenience, we centre these covariates at mean 0, i.e. n_lEnzlwi =0. Let

i

n n
F=n]' Y ZiY;—ng ' (1 - Zn)Ys,
i=1 i=1
n n
Fw=n]" Zl Ziwi—ng! 21(1 — ZOHw;
i= i=

be the difference in means of the outcome Y and covariates w respectively. Without covariate
adjustment, 7 is unbiased for 7. After the experiment, the analyser can improve the estimation
precision for the average treatment effect by adjusting for the observed covariate imbalance 7.
A general linear regression-adjusted estimator has the following equivalent forms:

7(B1,Bp) =ny" Zl Zi(Yi— Bywi) —ny " ZIU — Zi)(Y; — Bywi)

=7 —(roB1 +r1Bo) Tw=7—7"Tw, (D

where 3, 3¢ and v =ro3; +r1 3, are J-dimensional coefficients. From equation (1), 7(3y, 3)
depends on (84,3) only through ~v=r¢8; +r1 3. Therefore, the choice of (3, 3() is not
unique to achieve the same gain in efficiency. For simplicity, we shall also call equation (1) an
adjusted estimator from now on.
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Fisher’s (1935) ANCOVA chose 3| =3 to be the coefficient of w in the OLS fit of the observed
outcome Y on the treatment Z and covariates w. Freedman (2008b) criticized ANCOVA because

(a) the resulting estimator can be even less efficient than 7 and
(b) the standard error based on OLS can be inconsistent under the potential outcomes frame-
work.

Lin (2013) fixed criticism (a) by choosing 3; and 3 to be the coefficients of w in the OLS
fit of Y on w for treated and control units respectively. The resulting adjusted estimator is
numerically identical to the coefficient of Z in the OLS fitof Y on Z, wand Z x w. Lin (2013) fixed
criticism (b) by using the Huber—White robust standard error for linear models. Asymptotically,
Lin’s (2013) estimator has smaller standard error and estimated standard error than does 7.

As a side note, Lin’s (2013) estimator also appeared in the semiparametric efficiency theory
for the average treatment effect under independent sampling from a superpopulation (Koch
et al., 1998; Yang and Tsiatis, 2001; Leon et al., 2003; Tsiatis et al., 2008; Rubin and van der
Laan, 2011).

2.2. Rerandomization in the design

The above regression adjustment uses covariates in the analysis stage. We can also use covariates
in the design stage to improve the quality of randomization and the efficiency of estimates.
Before conducting the experiment, the designer collects K covariates x; = (x;1, ..., X;gx)’ for unit
i. Similarly, we centre the covariates at mean 0, i.e. n_lEl’.‘zlxi =0. Note that we allow x to be
different from w. The CRE balances covariates on average, but an unlucky draw of the treatment
vector can result in large covariate imbalance (Student, 1938; Cox, 1982, 2009; Bruhn and
McKenzie, 2009; Morgan and Rubin, 2012). Therefore, it is sensible for the designer to check the
covariate balance before conducting the experiment. Let 7y = ”1_1 X2 Zixi—ng ! ¥ (A =Zyx;
be the difference in means of the covariates x between the treatment and control groups. It has
mean 0 under the CRE. However, imbalance in covariate distributions often occurs for a realized
treatment allocation. We can discard those unlucky treatment allocations with large covariate
imbalance and rerandomize until the allocation satisfies a certain covariate balance criterion.
This is rerandomization, which has the following steps.

Step I: collect covariate data and specify a covariate balance criterion.

Step 2: randomize the units into treatment and control groups.

Step 3: if the allocation satisfies the balance criterion, proceed to step 4; otherwise, return to
step 2.

Step 4: conduct the experiment by using the accepted allocation from step 3.

The balance criterion in step 1 can be a general function of the treatment assignment Z and
the covariates (xq,...,X;). Morgan and Rubin (2012) focused on rerandomization using the
Mabhalanobis distance, which accepts a randomization if and only if M =7 cov(ty) 17y <a,
where M is the Mahalanobis distance between the covariate means in two groups and a > 0 is
the predetermined threshold. Since we shall focus on rerandomization using the Mahalanobis
distance throughout the paper, we shall simply call it ‘rerandomization’ from now on. Li et al.
(2018) derived the asymptotic distribution of 7 under rerandomization, and showed that it is
more precise than 7 under the CRE. They further showed that, when a is small and x=w,
the asymptotic variance of 7 under rerandomization is nearly identical to Lin’s (2013) adjusted
estimator under the CRE. Therefore, rerandomization and regression adjustment both use
covariates to improve efficiency of treatment effect estimates, but in the design and analysis
stages respectively.
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3. Sampling distributions of regression adjustment under rerandomization

Section 2 shows that rerandomization trumps the CRE in the design stage and regression ad-
justment trumps the difference in means in the analysis stage. Therefore, it is natural to combine
rerandomization and regression adjustment. Then a key question is how do we conduct sta-
tistical inference? This requires us to study the sampling distribution of the adjusted estimator
7(81, Bp) in equation (1) under rerandomization.

3.1. Basics of randomization-based inference

To facilitate the discussion, we introduce some basic results from finite population causal infer-
ence. The first part describes fixed finite population quantities without randomness. The second
part describes the repeated sampling properties and asymptotics under the CRE.

3.1.1.  Finite population quantities, projections and regularity conditions
For the treatment arm z (z =0, 1), let Slz/(z) = - 1)_12” 1Y) — Y(z)}2 be the finite popu-
lation variance of the potential outcomes, and Sy(;) x = SX yo=m—1" 12 {Yi) — Y(z)}x
be the finite populatlon covariance between the potentlal outcomes and covarlates Let S =
(n—1)" 12” '_,XiX; be the finite population covariance of the covariates. We can similarly deﬁne
Sy(),w» S and other covariances.

We 1ntroduce linear projections among these fixed quantltle/s For example, the linear projec-
tion of the potential outcome Y(z) on covariates w is Y (z) + 3, w; for unit i, with the coefficient

B, =arg minn~! Z{Y(z)—Y(z) b'w;}2=(S2) " 'Sy.v (z=0,1). )
beR’ i=1

The residual from this projectionis ¥; (z) — Y (z) — ,6’ w; foruniti. Let SY = Sy(z) w(S2 =) SW Y2)
denote the finite population variance of the linear projections, and Synw = SY(Z) SY(z)Ew the
ﬁnlte population variance of the residuals. We can similarly define 52|ws Sz\w, SY(z)lx’ SY(Z)\X,
7'|X’ s%le and S\zzv\x

The exact distributions of the estimators depend on unknown potential outcomes in general.
We shall use asymptotic approximations. Finite population asymptotics embed the n units into a
sequence of finite populations with increasing sizes. Technically, all quantities above depend on
n, but we keep their dependence on n implicit for notational simplicity. Moreover, the sequence
of finite populations must satisfy some regularity conditions to ensure the existence of the
limiting distributions of the estimators. We use the regularity conditions that are motivated by
the finite population central limit theorems (Li and Ding, 2017).

Condition 1. As n — 0o, the sequence of finite populations satisfies that, for z=0, 1,

(a) r,=n;/n, the proportion of units receiving treatment z, has a positive limit,

(b) the finite population variances and covariances, Sy( ) S%, SX, Sw, Sy(2),x>Sy(z),w and Sx w,
have limiting values, and the limits of S2 and 82 are non-singular;

(¢) max i<y |Yi(z) — Y (2)[*/n— 0, maxigi<, IXi[3/n — 0 and max; i<, [Will3/n— 0.

In condition 1, conditions (a) and (b) are natural, and condition (c) holds almost surely if all
the variables are independent and identically distributed (IID) draws from a superpopulation
with more than two moments (Li and Ding, 2017). Throughout the paper, we assume that the
numbers of covariates K in the design and J in the analysis are both fixed and do not increase
with the sample size n.
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3.1.2.  Repeated sampling inference under the completely randomized experiment
Under the CRE, over all (,;; ) randomizations, nl\2(f =7, T, Tw) has mean 0 and covariance

! Sty + ry! S50y — 52 i Syayx+7g Srox 1 Sy + 75 Syo)w

V= 7 'Sxrvay+75 Sy (riro)~'S2 (r170) " 'Sx.w
rl_lsw,Y(l) +ro_lsw,Y(O) (r170) " 'Sw.x (riro)~'S2
Ver VTX VTW
= VXT Vix  Viw |- (3)
VWT VWX VWW

The finite population central limit theorem of Li and Ding (2017) ensures that n!/2(f —
T, Ty, Ty) is asymptotically Gaussian with mean 0 and covariance matrix V under the CRE
and condition 1. We use a tilde with a dot for two sequences of random vectors (or distributions)
converging weakly to the same distribution. Therefore, n!/2(7 — 7, T T) ~N(0,V).

We define linear projections for random variables. We use [E(-),var(-) and cov(-) for the
mean, variance and covariance, and proj(-|-) and res(-|-) for linear projections and correspond-
ing residuals, exclusively under the CRE. For example, the linear projection of 7 on 7y is
proj(#|#w) =7+~ %, with the coefficient

J=arg min E(F — 7 — b/ 7)) =cov(Fy) L cov(fy, ) = VV_WIVVWT. 4)
beR’
The residual from this projection is res(7|Fw) =7 — proj(7|#w) =7 — 7 — ¥ 7w. We can similarly
define proj(7x|7w) and res(7x|Tw).
Finally, the three linear projection coefficients 3, 3, and 4 that are defined in equations (2)
and (4) have the following relationship.

Proposition 1. ro,él + ’”1,50 =7.

Proposition 1 is related to the non-uniqueness of the regression adjustment in equation (1).
It is important for the discussion below.

3.2. Asymptotic distribution of regression adjustment under rerandomization

Equipped with the tools in Section 3.1, we now can derive the asymptotic distribution of
7(B1, By) under rerandomization. We first fix the coefficients 3; and 3, and we shall devote
several sections to discuss the optimal choices of them.

For unit i, let Y;(z; 3,) =Yi(z) — B/Zw,- be the ‘adjusted’ potential outcome under the treat-
ment level z (z=0,1) and 7;(81,8y) =7 — (81 — Bp)'W; be the adjusted individual treatment
effect. The average adjusted treatment effect 7(3y, 3) En_]E?ZIT,‘ (B1,Bp) =T is identical to
the average unadjusted treatment effect because of the centring of w=0. The adjusted observed
outcome is Y; (B3, 8y) =Z;Yi(1;8y) + (1 — Z;)Yi(0; By). The adjusted estimator (1) is essentially
the difference-in-means estimator with the adjusted potential outcomes. For z=0, 1, let Slz,(z; 8.)
and Slz,(z; B8.)x be the finite population variances of ¥;(z; 3,) and its linear projection on x;. Let

7(By.8y) A1 Sf(ﬁl, By)lx be the finite population variances of 7;(31, 3¢) and its linear projection
onx;. l%rom Section 3.1.2, under the CRE, the variance ofnl/z{r”(ﬁl,ﬁo) —T}is

12 —12 2
Ver(B1,Bo) =11 Syaa) T70 Sv0:8y) ~ Sr(81.80) ©)

and the squared multiple correlation between 7(8,3,) and 7 is (Li et al. (2018), proposi-
tion 1)
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Cen R —1c2 —1 a2
var[proj{7(81, Bo)|Tx}] "1 Svas)ix 70 Svo:8px S, Bolx
~ - -1 2 -1 2
var{7(B1. Bo)} T ST 0 Sty — S7,.80

R \(B1.B) = (6)

The asymptotic distribution of 7(3;,3,) under rerandomization is a linear combination of
two independent random variables ¢ and Lk ,, where ¢ ~ N (0,1) is a standard Gaussian
random variable and Lk ,~ D;|D'D <a is a truncated Gaussian random variable with D =
(D1,...,Dg)~N(0,Ig). Let M denote the event M <a.

Theorem 1. Under rerandomization and condition 1,

n'2{#(81,By) — THM ~ V2B, BOI{1 — R} (B1. Bp)} *e + R: (81, 80) *Lk.al. (7

The e-component in expression (7) represents the part of 7(3;, B,) that cannot be explained by
Tx and is thus unaffected by rerandomization. The L ¢ ,-component in expression (7) represents
the part of 7(3;,8,) that can be explained by 7 and is thus affected by rerandomization.
Moreover, the asymptotic distribution (7) is symmetric around zero, and the adjusted estimator
is consistent for the average treatment effect, for any fixed values of the coefficients 3, and 3.
Theorem 1 immediately implies the following two important special cases.

3.2.1. Special case: regression adjustment under the completely randomized experiment
The CRE is a special case of rerandomization with a = co. Therefore, theorem 1 implies that,
under the CRE, n!/ 2{%(61, Bo) — 7} is asymptotically Gaussian with mean 0 and variance

VTT (51 B /60)
Corollary 1. Under CRE and condition 1, n'/2{#(8;, By) — 7}~ VL (B1. By)e.
Corollary 1 is a known result from Lin (2013) and Li and Ding (2017).

3.2.2.  Special case: no covariate adjustment under rerandomization

Using theorem 1 with 8y = 3, =0, we can immediately obtain the asymptotic distribution of
7=17(0,0) under rerandomization. Let RT = R2 «(0,0) be the squared multiple correlation
between 7 and 7y under the CRE:

1 2
2 Var{PYOJ(TITx)} Vx Vg Vxr _r1 SY(1)|x+rO SY(O)|X Soix

X var(f) Vir ls2 0 +rgls2, — 82 (8)
() Tro Py ~O7
Then 7 has the following asymptotic distribution.
Corollary 2. Under rerandomization and condition 1,
n'2(7 =) IMAV2{(A = RE )V e+ (RE )V Lk o). 9)

Corollary 2 is a main result of Li et al. (2018).

4. S-optimal regression adjustment

How do we choose the adjustment coefficients (3;, 3,) or 4? It is an important practical ques-
tion. From theorem 1, the adjusted estimator is consistent for any fixed coefficients 8 and 3.
Therefore, it is intuitive to choose the coefficients to achieve better precision. A measure of
precision is based on the quantile ranges of an estimator.
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We introduce the notion of the S-optimal adjusted estimator, using S to emphasize its de-
pendence on the sampling distribution.

Definition 1. Given the design, 7(8;,8,) is an S-optimal estimator if n!/2{7(8, By) — 7}
has the shortest asymptotic 1 — a quantile range among all adjusted estimators in equation (1),
for any a € (0, 1).

In general, quantile ranges are not unique. Importantly, the asymptotic distribution in ex-
pression (7) is symmetric and unimodal around 7 (Li et al., 2018). We consider only symmetric
quantile ranges because they have the shortest lengths (Casella and Berger (2002), theorem
9.3.2). The S-optimal adjusted estimator also has the smallest asymptotic variance among all
estimators in equation (1) (L1 ez al. (2019), proposition 4). Conversely, if all adjusted estimators
in equation (1) are asymptotically Gaussian, then the estimator with the smallest asymptotic
variance is an S-optimal estimator.

Theorem | shows a complicated relationship between the coefficients (3;, 3y) and the asymp-
totic distribution (7). Below we simplify expression (7). Let proj(7w|7x) = VWXV T be the
linear projection of 7w on 7, and res(Tw|Tx) =Tw — waVXX T« be the residual from this linear
projection. We further consider two projections. First, the linear projection of proj(7|7x) on
proj(7w|7x) has coefficient

Fproj = (Vwx Ve Vaw) ™ Ve Vid Vir (10)

and squared multiple correlation R2 Second the linear projection of res(7|7x) on res(Fw|7x)
has coefficient

&res = (wa - waV;xl wa)_l (VWT - waV;xl VXT) (1 1)

and squared multiple correlation RZ.

Technically, the expressions for ,; and . above are well defined only if the covariance ma-
trices of proj(7w|7x) and res(7y|7x) are non-singular. Otherwise, they are not unique. However,
this will not cause any issues in the later discussions because the linear projections themselves
are always unique.

Recall that we have defined V in equation (3), and SWIX and va\x as the finite population
covariances of the linear projections of w on x and the corresponding residuals. The following
proposition shows the relationship between the three linear projection coefficients (7, Yprojs Yres)-

Proposition 2. S‘z,v\x (Y = Yres) + S%v|x(5’ - ﬁprOj) =0

The linear projection coefficients (7, ¥ proj> Vres) are different in general However, if any two
of them are equal, all of them must be equal with non-singular S w\x and S « The following
theorem decomposes the asymptotic distribution (7) based on (Ypyoi> Vres)-

Theorem 2. Under rerandomization and condition 1, recalling that v=ro83; +r18,, we
have

nl/z{f(:@bﬁo) - T}|M;\'{VTT(1 - R2 )(1 res) + (rlr()) 1(7 7res) Sw\x(7 7res)}1/2
+ {‘/TTR2 (1 Rproj) + (rl rO) (7 prI'O_]) Swlx(7 7pr0J)} 2LK a-
(12)
The asymptotic distribution (12) has two independent components. The e-component in

expression (12) represents the part of 7(3,3) that is orthogonal to 7. The coefficient of ¢
attains its minimal value at v =+, with squared minimal value V.- (1 — R%x)(l RZ,). The
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first term V. is the variance of n!/2(7# — 7). The second term 1 — Ri,x represents the proportion
of the variance of 7 unexplained by 7. The third term 1 — RZ represents the proportion of the
variance of 7 unexplained by 7, after projecting onto the space that is orthogonal to 7.

The Lk ,~component in expression (12) represents the linear projection of 7(3,8y) on Tx
with the rerandomization constraint. The coefficient of L k , attainsits minimal value at v =,
with squared minimal value VTTR%’x(l - Rfm.). The first term V. is again the variance of
n'/2(# — 7). The second term R%X represents tllle proportion of the variance of 7 explained by
7x. The third term 1 — Rlz)rOj represents the proportion of the variance of 7 unexplained by 7y,
after projecting onto the space of 7.

Because vy, and 7,,,,; are different in general, the coefficients of ¢ and Lk , cannot attain
their minimal values simultaneously. Consequently, the adjusted estimator 7(3, 3;) may not
be an S-optimal estimator under rerandomization, i.e. it may not have the shortest asymptotic
1 — a quantile range among equation (1) for all a € (0, 1).

The S-optimal adjustment is complicated under rerandomization, especially when the de-
signer and the analyser have different covariate information. We shall consider different scenar-
ios based on the relative amount of covariate information that is used by the designer and the

analyser.

4.1. The analyser has no less covariate information than the designer
We first consider the scenario under which the covariates w in the analysis can linearly represent
the covariates x in the design.

Condition 2. There is a constant matrix B; € R*” such that x; = B;w; for all unit i.

Condition 2 holds when the analyser has access to all the covariates that are used in the design,
and possibly collects more covariates after the experiment. For example, condition 2 holds if x
is a subset of w. Under condition 2, we can simplify the asymptotic distribution of the adjusted
estimator under rerandomization. Analogously to equations (6) and (8), let R%, w be the squared
multiple correlation between 7 and 7 under the CRE (Li et al., 2018):

< Ap A _ —12 1¢2 2
w2 var{proj(Fliw} _ VewVawVwr _ "1 v 70 Svow = S
W ; o I ) —1¢2 )
var(T) Ver r SY(I)—H0 Sy —S2

13)

Corollary 3. Under conditions 1 and 2,
ﬁproj =Yres ="7>
2 2 2 2
Ries= (Rr,w - RT,X)/(1 - RT,X)’
2
RpI'Oj = 1,
and the asymptotic distribution of 7(3;, B() under rerandomization is

n' {781, By) — THMA{Ver (1= RE )+ (r170) ™ (v =) St (v =)} e
+{rr) T (Y =Sy (Y=} L a (14)

From corollary 3, the coefficients of ¢ and Lk , attain minimum values at the same v=+. We
can then derive the S-optimal adjusted estimator and its asymptotic distribution.

Theorem 3. Under rerandomization and conditions 1 and 2, the S-optimal adjusted estimator
is attainable when v =+ or o3, +r18¢) =ro8; +r13y, with the asymptotic distribution

n'2{#(By, By) — THMA{Ver (1= R2 )} e (15)
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From proposition 1, an optimal choice is (31, Bo) = (31, Bo) under condition 2. An important
feature of theorem 3 is that the limiting distribution in expression (15) does not depend on
covariates x and the threshold a of rerandomization. Theorem 3 has many implications, as
discussed below.

4.1.1. Special case: S-optimal adjustment under the completely randomized experiment
Theorem 3 holds for the CRE (rerandomization with x =@ and a = oc0). It thus recovers the
optimality property of Lin’s (2013) estimator under the CRE previously proved by Li and Ding
(2017). Therefore, when the analyser has no less covariate information than the designer, the
S-optimal adjusted estimators under rerandomization and the CRE are the same and follow the
same asymptotic distribution. This implies that, with more covariates in the analysis, there is
no additional gain from the designer through rerandomization as long as the analyser performs
the optimal adjustment. Section 7.1.1 later contains related discussions.

4.1.2. Special case: the designer and analyser have the same covariates

Consider the case where the analyser has the same covariates as the designer (x =w). Compare 7
under rerandomization using the Mahalanobis distance with the S-optimal adjusted estimator
#(B1,8,) under the CRE. From corollary 2 and Section 4.1.1, the former has an additional
independent component of (V- Ri,x) 2L k.o In the asymptotic distribution. When the threshold
a is small, this additional component is approximately 0, and thus they have almost the same
asymptotic distribution. Therefore, we can view rerandomization as covariate adjustment in the
design stage (Liet al.,2018). Moreover, using 7 in rerandomization has the following advantages.
First, rerandomization in the design stage does not use the outcome data. Second, 7 is simpler
and thus provides a more transparent analysis (Cox, 2007; Freedman, 2008c; Rosenbaum, 2010;
Lin, 2013). Using 7 in rerandomization can thus avoid bias due to a specification search of the
outcome model (i.e. data snooping). Remark 3 later contains related discussions.

4.2. The analyser has no more covariate information than the designer
We now consider the scenario under which the covariates x in the design can linearly represent
the covariates w in the analysis.

Condition 3. There is a constant matrix B, € R’*X such that w; = B,x; for all unit i.

Condition 3 is reasonable when the analyser has access to only part of the covariates that are
used in the design due to privacy or other reasons. For example, condition 3 holds if w is a subset
of x. It also reflects the situation where the analyser uses only the difference-in-means estimator
with w =0 even though the designer conducts rerandomization with x. Condition 3 implies
that S%V\X =0, which further implies that the coefficient of ¢ in the asymptotic distribution (12)
does not depend on (3, B;). We can then simplify the asymptotic distribution of the adjusted
estimator.

Corollary 4. Under conditions 1 and 3,

Yproj =7
R%es =0,
Rf)roj = R72',W/R72',X’
Sax =0,

Sz =82,

w|x
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and the asymptotic distribution of 7(3, 3) under rerandomization is

nl/z{,]:(ﬁl’ '60) - T}lMN{VTT(l - R%,x)}l/zé‘
+{Ver (RS = B2 )+ (rir) ' (v =9)'S{ (v =D} P Lk

Under condition 3, res(7w|7x) =0, and thus, as discussed earlier, the projection coefficient
Yres 18 NOt unique. Nevertheless, corollary 4 does not depend on ¥,.. On the basis of corol-
lary 4, we can obtain the S-optimal adjusted estimator and its asymptotic distribution under
rerandomization. Let

P2 ow=R: —RZ /(1= R} ) €[0,1] (16)

be the additional proportion of the variance of 7 explained by the covariates x in the design,
after being explained by the covariates w in the analysis.

Theorem4. Under rerandomization and conditions 1 and 3, the S-optimal adjusted estimator
is attainable when v =+ or ro3, +r189=roB; +r1 8y, with the asymptotic distribution

n {7 (Br. Bo) = THMAVI{(1 = B2 )V2e 4+ (RY = R? )P Lo}
~ Ve (1— R%,w)}l/z{(l . p%,x\w)”zw (pi,x\w)l/zLK,a}- (17

From theorem 4, although the analyser has less covariate information than the designer of
rerandomization, she or he can still obtain the S-optimal adjusted estimator by using only the
covariate information in the analysis.

Theorems 3 and 4 give identical optimal coefficients, but different asymptotic distributions
of the optimal estimators. When the designer and the analyser have the same covariates (x =w),
both theorem 3 and theorem 4 hold and give identical results. Specifically, Pz,x\w in equation
(16) reduces to 0, and the asymptotic distribution in expression (17) simplifies to expression
(15): a Gaussian limiting distribution.

From corollary 2 and theorem 4, under rerandomization, the asymptotic distribution of the
S-optimal adjusted estimator 7(8;, B,) differs from that of 7 only in the coefficient of the trun-
cated Gaussian random variable Lk ,. With a small threshold a, Lk , is close to 0 and thus the
gain from adjustment is small. Similarly to the discussion in Section 4.1.2, although 7 loses a lit-
tle sampling precision compared with the optimal adjusted estimator, it does have the advantage
of avoiding data snooping and improving transparency.

4.3. General scenarios

A practical complication is that the designer and analyser may not communicate. Then it is
possible that the designer and the analyser do not use the same covariate information (e.g.
Bruhn and McKenzie (2009) and Ke et al. (2017)). Consequently, the analyser has part of the
covariate information in the design and additional covariate information. Neither condition 2
nor condition 3 holds. Under general scenarios, unfortunately, the S-optimal adjusted estimator
may not exist, in the sense that there is not an estimator among equation (1) that has the shortest
asymptotic 1 — « quantile range for all a € (0, 1).

Some suboptimal strategies exist. First, we can consider the adjusted estimator with the small-
est asymptotic variance or the shortest asymptotic 1 — « quantile range for a particular ac € (0, 1).
Section A2.3 of the on-line supplementary material gives the formulae for the estimator with
the smallest variance. However, explicit formulae for the estimator with the shortest quantile
range do not exist.

Second, when a is small, Lg ,~0, the asymptotic distribution (12) under rerandomization
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depends mainly on the e-component. The coefficient of ¢ attains its minimal value at ...
Ignoring the L g ,-component, ., gives the S-optimal adjusted estimator. However, this result
is not useful because it is infeasible for the analyser to estimate -, consistently because of the
incomplete information of the covariates in the design.

Third, we can still use T”(Bl, By) as a convenient adjusted estimator because we can easily
obtain it via OLS. Not surprisingly, this estimator is not an S-optimal estimator in general and
it can be even worse than 7 under rerandomization. When « is small, the e-components are
the dominating terms in their asymptotic distributions under rerandomization. Therefore, we
compare the coefficients of ¢.

Theorem 5. Under rerandomization using the Mahalanobis distance and condition 1, the
squared coefficient of ¢ is VTT(I 2 {1 — R 2 (B, Bo)} in the asymptotic dlstrlbutlon (7)
of T(B 1> ,60) andis V- (1 — ) in the asymptotic distribution (9) of 7. The former is smaller
than or equal to the latter 1f and only if

R2 ,+(1—R2 )R%, (B1.By) > R, (18)
R2

Remark 1. A sufficient condition for inequality (18) is RT w = R7 x, which holds under con-
dition 2. Recall that R2 , in expression (8) measures the covariate information of the designer,
and R2 in expression (13) measures the covariate information of the analyser. From theorem
5, when the analyser has more covariate information, 7(3,, 3) is more precise than 7 if the
threshold a for rerandomization is small.

Remark 2. A counterexample for condition (18) is that the finite population partial
covariance between Y(z) and w given x is 0 for z=0, 1. In this case, the squared coefficient
of ¢ for T(ﬁl,ﬁo) is larger than or equal to that for 7. Intuitively, this is because the co-
variates in the analysis are unrelated to the potential outcomes after adjusting for the co-
variates in the design and using them only introduces additional variability. In the extreme
case where x can linearly represent Y(1) and Y(0), the squared coefficient of € for 7 is 0, whereas
that for 7(8, f‘]o) 1s generally positive. See section A2.4 of the on-line supplementary material
for more details.

Below we use a numerical example to illustrate the results above. It shows that 7(3;, BO) can
be superior or inferior to 7.

4.3.1. Example 1
We choose n =1000 and r; =rp=0.5, and generate the covariates and the potential outcomes
by using IID samples from the following model:

X, n,éI’I\PN(O 1),
w=x-+1,
_ 2 (19)
Y(0)=2x+pn+ (1 —p°)"/70,
Y(1)=Y(0)+1.

Once generated, the covariates and potential outcomes are all fixed. We use rerandomization
based on the covariate x, and we choose the threshold a to be the 0.001th quantile of the X%
random variable. We then use regression adjustment based on the covariate w. Fig. 1(a) shows
the histograms of 7(3, ,@0) and 7 under rerandomization when p=0.9. In this case, regression
adjustment increases the sampling precision. Fig. 1(b) shows the histograms when p=0. In
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Fig. 1. Histograms of n'/2{#(B,,B,) - r} and n'/2(# — r) under rerandomization based on 10° simulated
treatment assignments (J, adjusted; m, unadjusted; , adjusted; - - - - - , unadjusted): (a) p=0.9; (b)

p=0

this case, regression adjustment decreases the sampling precision. The case with p =0 reflects
the scenario that the designer gives only a covariate with measurement error to the analyser,

possibly because of some privacy consideration.

5. Estimating the sampling distributions of the estimators

Sections 3 and 4 focused on the asymptotic distribution of the adjusted estimator and discussed
optimal choices of the coefficients. In practice, we usually report the uncertainty of estimators
in terms of confidence intervals when conducting frequentist inference. Confidence intervals are
related to the quantile ranges of the estimated distributions of the corresponding estimators.
Therefore, compared with S-optimality, a more practical definition of the optimal adjusted
estimator should be based on the quantile ranges of the estimated distributions. This subtle issue
does not exist in many other statistical inference problems, because usually consistent estimators
exist for the true asymptotic distributions of the estimators. For example, in standard statistical
problems, we can consistently estimate the variance of a Gaussian limiting distribution. Because
of the possible miscommunication between the designer and analyser, the analyser may not be
able to estimate all quantities on the basis of the observed data in general. This is a feature of
our framework.

In this section, we discuss the estimation of the sampling distributions for fixed (3, 3). In the
next section, we shall discuss the optimal choice of these coefficients. In what follows, we avoid
the degenerate case that the estimated and the true distributions of the adjusted estimator is a
point mass at zero. This requires that at least one of S%,(l)\w and S%,(O)\w has strictly positive limit.

5.1. The analyser knows all the information in the design
We first consider the scenario under which the analyser knows all the information of the designer.
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Condition 4. The analyser knows all the information in the design, including the covariates
x and the threshold a for rerandomization.

Condition 4 implies condition 2. However, condition 2 does not imply condition 4, because
the analyser may not know which covariates are used in the design or which threshold a is cho-
sen for rerandomization. From theorem 1, the asymptotic distribution (7) of 7(83y, 3y) under
rerandomlzatlon depends on V.- (34, B3) and RT «(B1.Bp). Under treatment arm z (z=0, 1), let
Sy(z 3.7 SY(E,).W and sy(;;8,),x be the sample variance and covariances for the adjusted observed
outcome Y; — 5 w;, covariates in the analysis w; and covariates in the design x;; let sY(Z 3 )Ix
be the sample variance of the linear projection of ¥; — B.w; on x;. We estimate V,-(81, B)
by

5 —-12 -12 25—1
Vor(B1:B0) =11 Sy T70 Sv0;8,) — SY1:8).w — S¥(0:80),w) (Sy) ™ (Sw,¥(1:8)) — Sw,¥(0:8)))>

(20)
RZ (B, Bo) by
) | _ _
R «(B1,80) =V .- (B1, Bo){r| 1Szm;ﬁmx +1y 1S%’(0;ﬂ0)|x
— (S¥(1:8).x — S¥0:80)) (SR ™ (Sx.¥(1:8)) = Sx.¥0:80) }» 21)
and the asymptotic distribution of n!'/2{7(83,,8,) — 7} by
1 2
281 B — R (B1. B} e + B (81, B0) L al. (22)

The estimated distribution (22) provides a basis for constructing confidence intervals for 7.
However, it is not convenient for theoretical analyses because it is random. Below we find the
probability limit of expression (22).

Theorem 6. Under rerandomization and conditions 1 and 4, the estimated distribution of
7(81, By) in expression (22) has the same limit as

{Ver (1= R2 )47 0+ r1r0)  (y =) S (y =D 2e+{(r1r0) ™ (v =) Sy Y=} Lk -
(23)

From corollary 3 and theorem 6, expression (23) differs from the true asymptotic distribution
(14) in S% w- We cannot estimate Sf\w consistently by using the observed data. Consequently,
the probability limit has wider quantile ranges than the true asymptotic distribution, which
results in conservative confidence intervals. This kind of conservativeness is a feature of finite
population causal inference known ever since Neyman’s (1923) seminal work. See section A3.3
of the on-line supplementary material for a rigorous proof of the conservativeness. We discuss
two special cases of theorem 6 below.

5.1.1. Special case: regression adjustment under the completely randomized experiment
Again, the CRE is rerandomization with ¢ = oo and x =¢. Condition 4 holds automatically
under the CRE. Theorem 6 immediately implies the following result.

Corollary 5. Under the CRE and condition 1, the estimated distribution of 7(3;, 3) in
expression (22) has the same limit as

{Ver(1= R2 )+ 82 + (r1r0) ™' (y = 9)'Sh (v — ) } 2. (24)
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5.1.2.  Special case: no covariate adjustment under rerandomization
Using theorem 6 with 8, =3, =0, we can immediately obtain the probability limit of the
estimated distribution of 7 under rerandomization.

Corollary 6. Under rerandomization and conditions 1 and 4, the estimated distribution of 7
in expression (22) has the same limit as

{(Ver (1= R2 )+ S M e+ (Ver R2 )P Lig . (25)

5.2. General scenarios with partial knowledge of the design

We now consider scenarios without condition 4. The analyser either does not have all the
covariate information that is used in the design or does not know the balance criterion for
rerandomization. We can still estimate V.-(3,, 3;) by V(3 1, Bp) in equation (20). However,
we cannot consistently estimate RT «(B1.By) because of 1ncomplete information of the covariates
that are used in the design stage. We can underestimate R x(B1,B80) by 0, and then estimate the
sampling distribution of 7(3;, 3) by

V28, Bpe. (26)

An important fact is that the lengths of quantile ranges of the asymptotic distribution (7) are
non-increasing in R%,X (81, By)- This fact guarantees that the estimated distribution (26) provides
a conservative variance estimator of 7(3;, 8y) and conservative confidence intervals for 7. See
section A3.3 of the on-line supplementary material for a rigorous proof of the conservativeness.
Moreover, expression (26) equals expression (22) with a = oo, the estimated distribution pre-
tending that rerandomization does not happen in the design stage. Consequently, the probability
limit of expression (26) equals expression (24), as the following theorem states.

Theorem 7. Under rerandomization and condition 1, the estimated distribution of 7(3y, 3)
in expression (26) has the same limit as expression (24).

From theorems 1 and 7, under rerandomization, the limit of the estimated distribution of
7(84, ﬁo) in expression (26) differs from the corresponding true asymptotic distribution in 52
and RT «(B1,Bp). Neither S \w nor RT «(B1, Bp) has consistent estimators based on the observed
data. The difficulty in estimating S w comes from the fact that for each unit we can observe
at most one potential outcome, but the difficulty in estimating RT «(B1,Bp) comes from the
incomplete information of the design.

Compared with expression (22), the estimated distribution (26) has unnecessarily wider quan-
tile ranges due to the lack of information for rerandomization, including Rix(ﬁl, Bo), K and
a. In expression (26), we conduct conservative inference and consider the worse-case scenario,
which is the CRE with x =0 and a = co. In practice, we can also conduct a sensitivity analy-
sis and check how the conclusions change as R%’ «(B1,Bp), K and a vary. Without additional
information, we still use expression (26) to construct confidence intervals in the next section.

6. Optimal adjustment based on the estimated distribution

S-optimality is based on the uncertainty of the sampling distribution. As discussed in Section
5, we may not have consistent estimators for the sampling distributions, and we often report
conservative confidence intervals based on the estimated distributions. Because the lengths of
confidence intervals provide important measures of uncertainty in frequentist inference, we
focus on the optimal choice of (31, B) based on the estimated distributions that were proposed
in Section 5.
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Under rerandomization, among the estimators in equation (1), a choice of (3, B;) is optimal
in terms of the estimated precision if the estimated distribution based on expression (22) or (26)
has the shortest asymptotic 1 — « quantile range for any « € (0, 1). The corresponding estimated
distribution then must have the smallest variance. Conversely, if the estimated distributions are
Gaussian, then the distribution with the smallest estimated variance is optimal in terms of the
estimated precision.

Apparently, the optimal adjusted estimator in terms of the estimated precision depends on
the approach to constructing confidence intervals. In the ideal case, we want the probability
limits of the estimated distributions to be identical to the true sampling distributions. Section
5, however, shows that this is generally impossible because of treatment effect heterogeneity or
the information only known to the designer. In some cases, the confidence intervals based on
expressions (22) and (26) are asymptotically exact given the analyser’s observed information. For
example, if the residual from the linear projection of individual treatment effect on covariates
w is constant across all units, or equivalently S% w =0, expression (22) provides asymptotically
exact confidence intervals; if further the designer conducts CRE (i.e. rerandomization with x ={/
or a=00), expression (26) provides asymptotically exact confidence intervals. In general, these
confidence intervals can be conservative and can be improved (Aronow et al., 2014; Fogarty,
2018; Ding et al., 2019). We focus on expressions (22) and (26) for their simplicity, and divide
this section into two subsections in parallel with Section 5.

6.1. When the analyser knows all the information in the design stage
From theorem 6, we can obtain the optimal adjusted estimator in terms of the estimated preci-
sion.

Corollary 7. Under rerandomization and conditions 1 and 4, based on theorem 6, the optimal
adjusted estimator in terms of the estimated precision is attainable when v =4 or ro3; +r1 8¢ =
roB1 +r18y, with the estimated distribution having the same limit as

{Ver (1= RZ )+ Sh o}, 27)

Again, from proposition 1, an optimal choice is (31, Bo) = (3, 8,) under condition 4. Im-
portantly, corollary 7 does not depend on covariates x and the threshold « that is used in
rerandomization, and thus also holds under the CRE.

6.2. General scenarios without condition 4
From theorem 7, we can obtain the optimal adjusted estimator in terms of the estimated preci-
sion.

Corollary 8. Under rerandomization and condition 1, based on theorem 7, the optimal
adjusted estimator in terms of the estimated precision is attainable when v = or ro3; +r1 8¢ =
roB1 +r18y, with the estimated distribution having the same limit as expression (27).

The optimal estimators in terms of the estimated precision are identical in corollaries 7 and
8, no matter whether the analyser knows all the information in the design or not. The optimal
adjustment 7-(,61 , Bo) can never hurt the estimated precision. In contrast, Section 4.3 shows that
7(By, By) may hurt the sampling precision in general. This is an important difference between
the two notions of optimality in terms of the sampling precision and estimated precision.

Below we give some intuition for corollary 8. Under general scenarios without condition 4,
the analyser does not know the information of the design. She or he pretends that the design
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Table 1. Sampling standard errors se and average estlmated standard
errors multiplied by n'/2 under rerandomization based on 10° simulated
treatment assignments

Estimator Results for p=0.9 Results for p=0
Sampling Average Sampling Average
se estimated se se estimated se
7(B1. Bo) 1.47 1.86 2.95 3.61
T 2.10 4.69 2.07 4.71

was a CRE and estimates the sampling distributions of the estimators under the CRE. Luckily,
the resulting confidence intervals are still conservative. Dropping the term Sf\w, the estimated
distribution converges to the sampling distribution under the CRE. Based on the discussion of
S-optimality under the CRE in Section 4.1.1, the adjusted estimator f(ﬁl , BO) is also optimal
in terms of the estimated precision.

6.2.1. Example 1 (continued)

We revisit example 1 and study the estimated distributions of 7(3, B,) and 7 under rerandom-
ization. Because the estimated distributions are Gaussian from theorem 7, it suffices to report
the estimated standard errors. Table 1 shows the sampling standard errors and the average es-
timated standard errors. On average, f(,@l , BO) results in shorter confidence intervals than does
7 when p=0 or p=0.9. Interestingly, when p=0, 7(3;, B) has less sampling precision as Fig.
1(b) and Table 1 show.

7. Gains from the analyser and the designer

In the design stage, we can use the CRE or rerandomization. In the analysis stage, we can use
the unadjusted estimator 7 or the adjusted estimator 7(3;, 3;). On the basis of the results in
previous sections, we now study the additional gains of the designer and analyser in the sampling
precision, the estimated precision and the coverage probability.

7.1. Sampling precision

We first study the additional gains in the sampling precision from the analyser and the designer.
We measure the additional gain of the analyser by comparing the asymptotic distributions
of 7 and f(Bl,BO) under rerandomization. We measure the additional gain of the designer
by comparing the asymptotic distributions of 7(3, 3,) under the CRE and rerandomization.
Similarly to Section 4, we consider different scenarios based on the relative amount of covariate
information for the analyser and the designer. Let vk , = P(X k2 <a)/ P(X%( <a) <1 be the
variance of Ly, (Morgan and Rubin, 2012) and ¢;_ a/z(p ) be the (1 — a/2)th quantile of
(1=pH2e+p|Lk a-

7.1.1.  The analyser has no less covariate information than the designer
First, we measure the additional gain of the analyser.

Corollary 9. Under rerandomization and conditions 1 and 2, compare 7(8;, 3,) with 7. The
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percentage reduction in the asymptotic varianceis { RZ , — (1 —vg o) RZ  } /{1 — (1 —vk.o) R2 , }.
Forany a e (O 1), the percentage reduction in the length of the asymptotic 1 — a quantile range
is1—(1- )1/ 2q1 a2(0)/q1-a /2(R ). Both percentage reductions are non-negative and
non- decreasmg in R

From corollary 9, the gain from the analyser through regression adjustment is non-decreasing
in the analyser’s covariate information. Both percentage reductions in corollary 9 converge to 1
as R2 w converges to 1.

Second we measure the additional gain of the designer. Section 4.1.1 demonstrates that
7(81, Bo) has the same asymptotic distribution under the CRE and rerandomization. Therefore,
under condition 2, the gain from the designer is zero. Nevertheless, this also implies that using
rerandomization in the design will not hurt the sampling precision of 7(3;, 3y). Moreover,
under rerandomization, we can use the additional covariate information, in the same way as in
the CRE, to improve the sampling precision.

7.1.2.  The analyser has no more covariate information than the designer

First, we measure the additional gain of the analyser. Both the asymptotic distributions of
T(ﬁl , ,60) and 7 are linear combinations of ¢ and Lk ,. The coefficients of ¢ are identical, but
the coefficient of Lk , for T(B 1> ,60) is smaller than that for 7.

Corollary 10. Under rerandomization and conditions 1 and 3, compare %(Bl, BO) with 7.
The percentage reduction in the asymptotic variance is vg o RZ /{1 — (1 — vk o) RZ \ }. For any
a € (0,1), the percentage reduction in the length of the asymptotic 1 — a quantile range is
1—(1— Rg,w) l/qu_a/z (p% x\w)/CII—a/2(R%,x)~ Both percentage reductions are non-negative and
non-decreasing in R%,w ’

From corollary 10, the improvement from regression adjustment is non-decreasing in the
analyser’s covariate information. However, this improvment is small when the designer uses a
small threshold a for rerandomization. Both percentage reductions in corollary 10 converge to 0
as a converges to 0. Intuitively, when the designer uses rerandomization with a small threshold,
she or he has used more covariate information thoroughly in the design, and thus the analyser
has only a small additional gain through regression adjustment.

Second, we measure the additional gain of the designer.

Corollary 11. Under conditions 1 and 3, compare 7(3;, BO) under rerandomization with that
under the CRE. The percentage reduction in the asymptotic variance is (1 — v K,a)p% x\w- For
any «a € (0, 1) the percentage reduction in the length of the asymptotic 1 — a quantile range is
1— q1 a/Z(PT x\W)/ g1-a/2(0). Both percentage reductions are non-negative and non-decreasing
in R

From corollary 11, the gain from the designer through rerandomization is non-decreasing
in the designer’s covariate information. The gain from the designer is substantial when R%X is
large and the threshold for rerandomization is small. Both percentage reductions in corollary
11 converge to 1 as R%,x —landa— 0.

Remark 3. Consider the special case where the designer and the analyser have the same
covariates (x =w). The additional gain from the analyser is small given that the designer uses
rerandomization with a small threshold a, and so is the additional gain from the designer given
that the analyser uses the S-optimal 7(3;, BO).
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7.1.3.  General scenarios

The complexity that was discussed in Section 4.3 makes it difficult to evaluate the additional
gains from the analyser and the designer. Given any adjusted estimator, the designer can always
use rerandomization to reduce the asymptotic variance and the lengths of asymptotic quantile
ranges (Li et al., 2018). For the analyser, in general, the performance of regression adjustment
under rerandomization depends on the covariates that are used in the design, and thus the anal-
yser does not know the optimal adjusted estimator among equation (1). For instance, without
the covariate information that is used in the design, the analyser is not sure whether T(B 1> ,60)
has smaller asymptotic variance than 7. Example 1 shows two cases where 7'(,31 , ﬁo) increases
and decreases the sampling precision.

7.2. Estimated precision

We now study the additional gains in the asymptotic estimated precision from the analyser
and the designer. We measure the additional gain of the analyser by comparing the estimated
distributions of f(B 1> BO) and 7 under rerandomization. We measure the additional gain of the
designer by comparing the estimated distributions of f(,@l , BO) under the CRE and rerandom-
ization. Similarly to Section 6, we consider two scenarios based on whether the analyser has full
knowledge of the design or not. Let k=14 V_'S7 | > 1, which reduces to 1 when $7, =0,
1.e. the adjusted individual treatment effect 7; (,6 1> ,80) =Y;(1; ﬁ 1) — Yi(0; ﬁo) is constant for all
units.

7.2.1.  When the analyser knows all the information in the design stage
First, we measure the additional gain of the analyser.

Corollary 12. Under rerandomization and conditions 1 and 4, compare the probability limit
of the estimated distribution of 7(3, 3,) with that of 7 based on expression (22). The percent-
age reduction in the variance is {R% —(1—vg a)RT k=1 —vg a)RT - Fora e (0, 1), the
percentage reduction in the length of the 1 — « quantile range is 1 — (1 — w /R)V2 %
52(0) /q1—a /Z(RT «/K). Both percentage reductions are non-negative and non- decreasmg
in RZ

From corollary 12, the gain from regression adjustment is non-decreasing in the analyser’s
covariate information. Both percentage reductions in corollary 12 converge to 1 as R2 ,, — 1
and Kk — 1. 7

Second, we measure the additional gain of the designer. From corollary 7 and the comment
after it, the probability limits of the estimated distributions of 7(3;, B3,) are identical under both
designs. Therefore, the gain from the designer is zero.

Remark 4. Consider the special case where the analyser has the same covariate information
as the designer and knows the balance criterion in the design. As discussed above, the designer
has no gain. Based on corollaries 6 and 7, with a small threshold a, the estimated distributions
of 7 and 7(51,,80) have approximately the same probability limit. Therefore, the analyser has
small additional gain.

7.2.2.  General scenarios without condition 4
First, we measure the additional gain of the analyser.

Corollary 13. Under rerandomization and condition 1, compare the probability limit of the
estimated distribution of 7(3;, 3,) with that of 7 based on expression (26). The percentage
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reduction in the variance is R? S For any « € (0, 1), the percentage reduction in the length
of the 1 — « quantile range is 1 — (1 — ’W /k)1/2. Both percentage reductions are non-negative
and non-decreasing in R%w

Both percentage reductions in corollary 13 converge to 1 as Ri,w — l and Kk — 1, and they are
larger than or equal to those in corollary 12.

Second, we measure the additional gain of the designer. From corollary 5 and theorem 7,
the estimated distributions of any adjusted estimator in equation (1) have the same probability
limit under both designs. Therefore, the gain from the designer is zero. Nevertheless, using
rerandomization will not hurt the estimated precision of the treatment effect estimators, and
we can use covariates in the analysis in the same way as in the CRE to improve the estimated
precision.

7.3. Coverage probabilities
From Sections 6 and 7.2,

(a) 7(By,Bp) is optimal in terms of the estimated precision no matter whether the analyser
knows all the information of the design or not, and o
(b) the designer provides no gain in the estimated precision of the 7(3;, 3).

From result (a), under rerandomization, the analyser can never increase the asymptotic lengths
of the confidence intervals by using 7(3;, B) instead of 7. Therefore, we do not measure the
additional gain of the analyser in coverage probabilities. From result (b), the asymptotic lengths
of the confidence intervals based on 75(,51 , BO) are the same under the CRE and rerandomization.
However, we shall show shortly that the designer can help to improve the coverage probabilities
of the confidence intervals based on 7'(,31 , 60)

7.3.1.  When the analyser knows all the information in the design stage

From Sections 7.1.1 and 7.2.1, 7(3 1> ,@0) has the same sampling precision and estimated preci-
sion under rerandomization and the CRE. Therefore, the coverage probabilities of the associated
confidence intervals are asymptotically the same under the CRE and rerandomization. This im-
plies that the designer provides no gain for the coverage probabilities of the confidence intervals
based on T(B 1> ,80) We formally state the results as follows.

Corollary 14. Under conditions 1 and 4, compare the confidence intervals based on f(,@l , BO)
and expression (22) under the CRE and rerandomization. Their lengths are asymptotically the
same after being scaled by n!/2, and they have the same asymptotic coverage probability.

7.3.2.  General scenarios without condition 4

From Sections 7.1.3 and 7.2.2, 7(83,, B3¢) in equation (1) with any 3; and 3 has better sampling
precision under rerandomization than under the CRE, but it has the same estimated precision
under rerandomization and the CRE. Therefore, the confidence intervals based on 7(3y, 3)
under rerandomization have higher coverage probabilities than that under the CRE. We give a
formal statement below.

Corollary 15. Under condition 1, compare the confidence intervals based on 7(3;, 3,) and
expression (26) under the CRE and rerandomization. Their lengths are asymptotically the same
after being scaled by n!/2. However, the asymptotic coverage probability under rerandomization
is larger than or equal to that under the CRE.
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In corollary 15, the confidence intervals under both rerandomization and the CRE are asymp-
totically valid and of the same length, but the interval under rerandomization has higher cover-
age probabilities and is more conservative. In particular, for any a € (0, 1) and any (3, B), as
R%,x(ﬂl ,B0)— 1, Sz\w — 0 and a — 0, the asymptotic coverage probabilities of the 1 — « confi-
dence intervals are 1 and 1 — « under rerandomization and the CRE respectively. Corollary 15
holds for any adjusted estimator and thus holds for %(B 1> ,@0). Therefore, under general scenar-
ios without condition 4, the designer can provide a substantial gain in coverage probabilities of
confidence intervals. This gives another justification for using rerandomization.

8. Unification and practical suggestions

8.1. Unification

In total, there are four combinations in the design and analysis of experiments. Fig. 2 summa-
rizes the sampling distributions and the probability limits of the estimated distributions for all
combinations.

Neyman (1923) started the literature by discussing the property of 7 under the CRE. Lin
(2013) showed that %(Bl, ,@0) improves 7 in terms of the sampling precision and estimated
precision under the CRE. Arrow (i) in Fig. 2 illustrates this improvement. Li et al. (2018)
showed that rerandomization improves the CRE in terms of the sampling precision and the es-
timated precision of 7. Arrow (ii) in Fig. 2 illustrates this improvement. Interestingly, 7(3 1> Bo)
under the CRE and 7 under rerandomization have almost identical asymptotic sampling
distributions and estimated distributions, if we use the same sets of covariates and a~0 in
rerandomization.

However, both Lin (2013) and Li ef al. (2018) compared suboptimal strategies. We evaluated
the additional gain from the analyser given that the designer uses rerandomization. Arrow (iii)
in Fig. 2 illustrates this improvement. We also evaluated the additional gain from the designer
given that the analyser uses 7(3 1> Bo) Arrow (1v) in Fig. 2 illustrates this improvement. Table 2
summarizes the results under all scenarios. We make the following conclusions.

(a) Compare the analyser and the designer on the basis of the sampling precision. From the
first two rows of Table 2, when one has more covariate information than the other, the
one with more covariate information provides a substantial additional gain, whereas the
other provides negligible additional gain.

(b) Compare the analyser and the designer on the basis of the estimated precision. From

Analysis
7 %(Blaﬁo)
) Lin (2013)
CRE e [P e o (15) [(27)]
Design Li et al. (2018)1( i) (iv)l

iii ..
Rerandomization (9) [(25) or VA% - ] i (7) & (12) with (81, Bo) [(27)]
Fig. 2. Design and analysis strategies: the formulae without square brackets correspond to asymptotic
distributions, and those with square brackets correspond to probability limits of the estimated distributions
with VTT =V +S ; the probability limits of the estimated distributions of 7 under rerandomization

have two forms, dep ndlng on whether condition 4 holds or not
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Table 2. Additional gains¥

Covariates Balance Optimal Additional gain Additional gain
information criterion adjustment from analyser from designer

Sampling Estimated Sampling Estimated Sampling Estimated

A>D Unknown (B1,Bo) (B1,Bo) Vo Vo o o
A<D Unknown (B1,Bo) (B1.Bo) o Vo Vo o
A=D Unknown (B1,Bo) (B1.Bo) o Vo o o
A=D Known (ﬂlaBO) (@]7@0) o o o
General Unknown YA Yres (B1,B0) v ox Vo Vo o

tIn the first column, 4 > D, A < D and A = D denote that the analyser has no less (i.e. condition 2), no more (i.e.
condition 3) and the same (i.e. both conditions 2 and 3) covariate information compared with the designer. The
second column shows whether the analyser knows the balance criterion in the design (i.e. condition 4). The third
and fourth columns show the optimal coefficients. ‘v"” denotes a substantial gain, ‘o’ denotes no gain or negligible
gain and ‘x’ denotes a negative gain.

the sixth and eighth columns of Table 2, the additional gain from the analyser can be
substantial, whereas the additional gain from the designer is negligible in general.

(c) Consider the special case where the analyser has the same covariate information as the
designer and knows the balance criterion in the design. From the fourth row of Table 2,
the additional gain from either the analyser or the designer is negligible.

(d) From the last row of Table 2, the analyser may hurt the sampling precision through
regression adjustment but can provide a substantial gain in the estimated precision. The
designer can improve sampling precision of any adjusted estimator and does not hurt
the estimated precision. Therefore, although the designer cannot shorten the confidence
intervals, she or he can increase the coverage probabilities.

8.2. Rerandomization, Lin’s estimator and the Huber—White variance estimator

On the basis of the summary in Section 8.1, we recommend the use of rerandomization in the
design and 72([31 , ,[:30) in the analysis, which has better estimated precision and coverage property.
However, some practical issues remain.

First, we need to estimate the population OLS coefficients 3, and 3. Under both the CRE
and rerandomization, we can use their sample analogues as consistent estimators, with 3; and
B, being the coefficients of w in the OLS fit of ¥ on w under the treatment and control respectively.
The corresponding adjusted estimator f(fil,,éo) numerically equals the coefficient of Z in the
OLS fit of Y on Z, w and Z x w, i.e. it is Lin’s (2013) estimator. Replacing 3; and 3, by their
sample analogues does not change the asymptotic distribution. Informally speaking, f(,@l , [3’0)
and 7(8, Bo) have the same asymptotic behaviour and optimality. The following corollary is a
formal statement.

Proposition 3. Under rerandomization and condition 1, f(,él, BO) and f(,él, BO) have the
same asymptotic distributions and the same probability limits of the estimated distributions.
Thus, among equation (1), %([3’1 , fﬂo) 1s an S-optimal estimator under condition 2 or 3 and is
always optimal in terms of the estimated precision based on expressions (22) and (26).

Secorid, the estimated distributions (22) and (26) are identical with or without condition 4 be-
cause R, (81, By) based on expression (21) equals 0 under condition 4. Moreover, the variance
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estimator V,, (Bl , BO) based on equation (20) is asymptotically equivalent to the Huber—White
variance estimator Vygw of the coefficient of Z from the OLS fit of Y on Z, w and Z x w.

Theorem 8. Under rerandomization and condition 1, V- (B 1> BO) — Vaw — 0 in probability.

Theorem 8 extends Lin’s (2013) result for the CRE to rerandomization. It requires only
condition 1, but Lin (2013) required higher order moment conditions. We finally construct the
Wald-type confidence intervals based on a Gaussian approximation. The statistical inference
based on T”(,@l , ,5‘0) ,including variance estimation and confidence interval construction, is always
the same no matter whether the design is a CRE or rerandomization and no matter whether the
analyser knows all the information of the design or not.

From the above, using rerandomization and f(,@l , ﬁo) enjoys the optimal estimated precision
and improves the coverage property, and the associated statistical inference can be conveniently
implemented through the OLS fit and Huber—White variance estimate.

9. [llustration

9.1. A simulation study

We conduct a simulation study to investigate the performance of the asymptotic approximation
and the coverage properties of the confidence intervals in finite samples. We generate the data
in the same way as in example 1 with p =0 and vary the sample size n from 100 to 1000. For
each simulated data set, we generate rerandomization based on covariate x, where the threshold
a is the 0.001th quantile of the X% random variable. Figs 3(a) and 3(b) show the histograms of
7 and 7(B3y, By) based on covariate w. From Figs 3(a) and 3(b), the asymptotic approximation
works fairly well. We then construct 95% confidence intervals for the average treatment effect,
using the estimated distribution (26) with either 7 or 7(3, B). From Figs 3(c) and 3(d), the
confidence intervals based on the estimator adjusted for w are shorter than that based on 7,
and both confidence intervals are conservative with coverage probabilities that are larger than
the nominal level, because of the analyser’s incomplete information of the design. We further
consider %([3’1, BO) based on (x, w), assuming that the analyser has access to the covariate x in
the design. The corresponding confidence interval is even shorter and becomes asymptotically
exact, because of the additive treatment effects in the data-generating process. From Fig. 3(d),
the coverage probabilities are close to the nominal level as the sample size increases. Even when
the sample size is small, the confidence interval works fairly well with coverage probability at
least 94%.

9.2. The ‘opportunity knocks’ experiment

The ‘opportunity knocks’ experiment (Angrist e al., 2014) aims at evaluating the effect of a
financial incentive demonstration programme on college students’ academic performance. The
experiment includes first- and second-year students who apply for the financial aid at a large
Canadian commuter university. These students were randomly assigned to treatment and control
groups. Students in the treated group have peer advisors and receive a cash reward for attaining
certain grades.

We use this data set to illustrate rerandomization and regression adjustment. We consider
the second-year students and choose the outcome to be the average grade for the semester right
after the experiment. We exclude students with missing outcomes or covariates, resulting in a
treatment group of size 199 and a control group of size 369. We evaluate the repeated sampling
properties of the adjusted estimators under rerandomization, which depend on all the potential
outcomes. However, half of the potential outcomes are missing from the observed data. To make
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Fig. 3. Histograms of ga =100) and (b) (n=300) of n'/2{#(834,B) — 7} and n'/2( — ) under reran-
domization based on 10° simulated treatment assignments ([J, adjusted; =, unadjusted,; , adjusted;
----- , unadjusted); (c) average lengths and (d) coverage probabilities of 95% confidence intervals con-
structed from expression (26) for three estimators (A, adjusted estimator based on w; +, adjusted estimator
based on x and w; O, unadjusted)

the simulation more realistic, we impute all the missing potential outcomes on the basis of simple
model fitting. We first fit a linear model of the observed outcome on the treatment indicator
and covariates within each stratum classified by sex and high school grade point average. We
then impute the missing potential outcomes by using the fitted linear model.

We conduct rerandomization with two covariates and choose threshold a to be the 0.005th
quantile of x%. For the covariates in the design and the analysis, we consider the following two
cases:



Rerandomization and Regression Adjustment 265

(a) thecovariatesin the design are sex and high school grade, and the covariates in the analysis
are whether the mother or father is a college graduate, whether they correctly answer the
first or second question in a survey, whether their mother tongue is English and their
grade point average in the previous year;

(b) the covariates in the design and analysis are the same as in case (a), except that we switch
the high school grade to the analysis stage and switch the grade point average in the

previous year to the design stage.
We first consider the sampling precision. Table 3 shows the coefficients of ¢ in the asymptotic
distributions. We omit the coefficients of Lk , because the e-components are the dominating
terms in the asymptotic distributions. Fig. 4 shows the histograms of 7(3, 3¢) and 7 under

Table 3. Sampling precision, estimated precision and coverage probabilities for 7 and
7(81,3,) based on 10° simulated treatment assignments+

Results for estimator T and the Results for estimator T( ,@1, Bo ) and the
following designs. following designs.
Rerandomization CRE Rerandomization CRE

Sampling
Case (a) 13.88 16.73 9.83 9.86
Case (b) 9.90 16.73 11.62 13.80
Estimated
Case (a) 18.56 (98.5%) 18.56 (96.0%) 12.75 (97.1%) 12.75 (97.0%)
Case (b) 18.57 (99.9%) 18.56 (96.0%) 15.95 (98.3%) 15.94 (96.1%)

TThe first two rows show the coefficients of ¢ in the asymptotic distributions of 7 and 7:([31 , ,@0)
in expression (7). The last two rows show the average estimated standard errors multiplied by
n!/2 with the coverage probabilities of 95% confidence intervals in parentheses.
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Fig. 4. Histograms of 7 and 7(31, B¢) under rerandomization based on 10° simulated treatment assign-
, adjusted; - - - - - , unadjusted)

ments for (a) case (a) and (b) case (b) (O, adjusted; i, unadjusted;
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rerandomization. In Table 3, compared with the second column, the reduction in coefficients in
the first column shows the gain from the designer alone, and the reduction in the last column
shows the gain from the analyser alone. The magnitude of the reduction suggests the relative
amount of the covariate information of the designer and analyser. In case (a), the first row of
Table 3 shows that 7(3,, 3,) under the CRE is more precise than 7 under rerandomization. This
holds because R2 =0.65> R2 =0.31. Fig. 4(a) shows that T(,@ 1> ,60) outperforms 7, coherent
with theorem 5. In case (b), the second row of Table 3 shows that 7(3, ,60) under the CRE is
less precise than 7 under rerandomization. This is because R2 =0.32< R%’x =0.65. Fig. 4(b)
shows that 7 outperforms T(B 1> ,80) under rerandomization.

We then consider the estimated precision. Because the estimated distributions in expres-
sion (26) are Gaussian, it suffices to compare the estimated standard errors. Table 3 shows
the average estimated standard errors and the coverage probabilities of the 95% confidence
intervals. In both cases, 7(8;, B,) has almost the same estimated precision under rerandomiza-
tion and the CRE. So does 7. However, the 95% confidence intervals under rerandomization
have higher coverage probability, which is coherent with corollary 15. Moreover, %(Bl, BO)
always has higher estimated precision than 7, which is coherent with the optimality results in
corollary 8.

10. Discussion

In sum, regression adjustment can improve the estimated precision but may hurt the sampling
precision, and rerandomization can improve the sampling precision and never hurts the esti-
mated precision. The resulting adjusted estimator is optimal in terms of the estimated precision
among all linearly adjusted estimators in equation (1), has lower sampling variability under
rerandomization than it would have had under the CRE, and the corresponding confidence
intervals have higher coverage probabilities than that under the CRE. Therefore, in practice,
we recommend the use of rerandomization in the design and the use of Lin’s (2013) estimator
in the analysis followed by the Huber—White robust standard error. Importantly, the analyser
should communicate with the designer, asking for detailed covariate information and assignment
mechanism in the design stage.

For the analysis, we focused on inferring the average treatment effect by using regression
adjustment. [tisinteresting to extend the discussion to covariate adjustment in more complicated
settings, such as high dimensional covariates (Bloniarz et al., 2016; Wager et al., 2016; Lei and
Ding, 2018), logistic regression for binary outcomes (Zhang et al., 2008; Freedman, 2008d;
Moore and van der Laan, 2009; Moore et al., 2011) and adjustment using machine learning
methods (Bloniarz et al., 2016; Wager et al., 2016; Wu and Gagnon-Bartsch, 2018). It is also
important to consider covariate adjustment for general non-linear estimands (Zhang et al., 2008;
Jiang et al., 2019; Tian et al., 2019) and general designs (Middleton, 2018), such as blocking
(Miratrix et al., 2013; Bugni et al., 2018), matched pairs (Fogarty, 2018), and factorial designs
(Lu, 2016).

For the design, we focused on rerandomization using the Mahalanobis distance. It is concep-
tually straightforward to extend the results to rerandomization with tiers of covariates (Morgan
and Rubin, 2015; Li et al., 2018). Recently, Zhou et al. (2018) discussed sequential rerandom-
ization, and Li et al. (2019) discussed rerandomization in 2X factorial experiments with tiers of
both covariates and factorial effects. It is important to discuss regression adjustment after these
rerandomizations.

The relationship between blocking and post-stratification for discrete covariates is analogous
to the relationship between rerandomization and regression adjustment for general covariates.
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When the number of blocks is small compared with the sample size, our results suggest conduct-
ing post-stratification, or equivalently an OLS fit of the outcome on treatment, block indicator
and their interactions, followed by the Huber—White robust standard error. When the number
of blocks is large, Miratrix et al. (2013) showed that post-stratification can be worse than block-
ing, which sheds light on the possible advantage of rerandomization over regression adjustment
with a large number of covariates. In this case, although deriving the asymptotic properties
of rerandomization is challenging, it is still straightforward to conduct Fisher randomization
tests.
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Appendix A1 proves the results related to the sampling distributions.

Appendix A2 proves the results related to S-optimality.

Appendix A3 proves the results related to the confidence intervals and the optimal adjusted
estimators in terms of the estimated precision.

Appendix A4 proves the results related to the gains from the analyzer and the designer.

Appendix A5 proves the asymptotic equivalence of 7(81, B) and %(Bl, BO) as well as the asymp-
totic equivalence of VTT(Bl, Bo) and the Huber—White variance estimator.

Similar to the main paper, we shall focus on rerandomization using the Mahalanobis distance

throughout the supplementary material, so we shall simply call it ‘rerandomization’ from now on.

A1l. Sampling distributions of adjusted estimators

Proof of Proposition 1. By definition,

roB1 + 1180 = 70 (512")71 Sw,y) T71 (5121;)71 Sw,y(0)

-1
= {(7’17"0)_1 5121)} {r7" Swy ) + 70 Swy©0)} = View Vaor = 7-
O

Proof of Theorem 1. The regression adjustment coefficients 81 and By can depend on sample
size n implicitly and have finite limits as n — oo. Recall that Yj(z;8,) = Yi(z) — BLw; is the
“adjusted” potential outcome under treatment z, and 7;(81, Bo) = 7 — (81— Bo) w; is the “adjusted”
individual treatment effect. Under Condition 1(ii), the finite population variances and covariances
S%/(Z;ﬁz) = S%/(Z) +,3;S%U,3Z - 2:6;'Sw,Y(z)> 572-(,31”30) = 53 + (:61 _,60)/5120 (51 _BO) - 2(51 _BO)ISw,w
SyB.)2 = Sy(x)e — BoSwe, and S2 have finite limiting values. Under Condition 1(iii), the
maximum squared distances satisfy that as n — oo, maxi<;<, ||;||3/n — 0, and

n~ ! max |Yz(z,,82) — Y(Z;BZ)‘Q =n~! max ‘Yl(z) —Y(2) - BLw;

1<i<n 1<i<n

— < 2
<07l (14 BL8.) max (Vi) — V() + Jwil) =0,

‘ 2

where the inequality follows from the Cauchy—Schwarz inequality. Using Li et al. (2018, Theorem

1), we can show that, under rerandomization, n*/2 {#(81, Bo) — 7} has the asymptotic distribution

(7). O]
Proof of Corollary 1. Corollary 1 follows from Theorem 1 with a = oc. O
Proof of Corollary 2. Corollary 2 follows from Theorem 1 with (81, 3p) = (0, 0). O

1



Proof of Proposition 2. By definition, Cov(Ty, 7 — 4 7w) = 0 under the CRE. We have

7 —A'Tw = proj(7 | 7z) +res(7 | 7o) — 7 {proj(Tw | 7z) + res(Tw | 72)}
= {proj(f' | T2) — :Yérojproj(i'w | +$)} + {res(f' | Ta) = Yrestes(Tuw | +m)}

- (7 - :Yproj)/proj(i'w ‘ +m) - (¥ - ’yres)’res(f'w ’ +m)~ (Al)

Thus, the covariances between 7, and the four terms in (A1) sum to 0. Below we consider the four
covariances separately.

First, by definition, proj(7 | T2) — ¥pjPr0i(Tw | Tz) is uncorrelated with proj(fw | 7).
Moreover, because proj(7 | Ta) — ¥pjPr0j(Tw | Tz) is a linear function of 7z, it must also be
uncorrelated with res(7w | 7%). Thus, proj(7 | Tu) — ¥p0;Pr0j(Tw | T2) is uncorrelated with
proj(Tw | Tz) + res(Tw | 7o) = Tw-

Second, by definition, res(7 | T2 ) — YjeseS(Tw | T2) is uncorrelated with res(7y | 72). Moreover,
because res(7 | To) — YieseS(Tw | T2) is uncorrelated with 7, it must also be uncorrelated with
proj(7w | 7z). Thus, res(7 | 7o) — FlesleS(Tw | Tz) is uncorrelated with res(7y | 72) + proj(7w |
2) = Fu.

Third, because proj(7y, | Tz) is uncorrelated with res(7y, | 72), we can simplify the covariance
between (¥ —proj) Proj(fw | Tz) and 7y = proj(fw | 7o) +res(fw | Tz) as (¥ —Yproj) Cov{proj(uw |
7z)}. The covariance of proj(7y | 72) has the following equivalent forms:

Cov {proj(Tw | 72)} = n_IwaVm_leww = (m“lro)_lS'2

wlx*

(A2)

Fourth, because res(7y, | 72) is uncorrelated with proj(7y | 7z), we can simplify the covariance
between (5 —4res)'1€8(Taw | T2) and Ty = proj(Fuw | Tz )+res(Fw | Tz) as (Y —res) Cov{res(Fuw | Tz)}-

The covariance of res(7y, | 7) has the following equivalent forms:

Cov {res(Tw | 7o)} = Cov(Tyw) — Cov {proj(fw | 7o)} = (nrlro)*ISfu\m. (A3)
From the above, the zero covariance between 7, and (A1) implies that
0 = —(n7170) " {(5 = Fpros) S + (7 = Fres) S0 } -
Therefore, Proposition 2 holds. O

Proof of Theorem 2. First, by the definitions of V;-(81,3p) in (5) and RZ}w(ﬂl,Bo) in (6), the

squared coefficients of Lk , and € in (7) have the following equivalent forms:

Vi (B1, Bo) R2 5 (B1, Bo) = nVar {proj (#(B1, Bo) | 72)} , (A4)
Vir(B1,B0) {1 — R2 ,(B1,Bo) } = nVar {res (#(B1, Bo) | 72)} - (A5)

Second, because 7(81, By) = 7 — v'7w by (1), the linear projection of 7(31, By) on 7, under the



CRE and the corresponding residual have the following equivalent forms:

proj (7(B1,Bo) | 7z) = proj (F — ¥'7w | 72) = proj (¥ | 7z) — v'proj (fw | 7=),

res (7(B1,080) | Tx) = res (f' — 7w | %w) =r1es (7| Tx) — Y'res (Tw | T) -
Using the definitions of o5 in (10) and Ares in (11), we can express the above quantities as

proj (7(B1, Bo) | Tz) = proj (7 | Tz) — YproiPr0j (Fw | ) — (¥ — Yproj) Proj (Fuw | Tx)
=7+ 1es {proj(7 | 7e) | proj(Tw | Ta)} — (¥ = Fproj) Proj(fw | 7z),  (A6)
res (7(81,B0) | Tz) = res (7 | Tz) — :y;esres (Tw | Ta) — (v — :YreS),reS (Tw | Ta)

=res{res (7 | Tx) | res (Tw | T2)} — (v — ’yres)/res (Tw | Ta) - (A7)

Third, because the two terms in (A6) excluding the constant term 7 are uncorrelated, the
variance of the linear projection of 7(831,30) on 74 is the summation of the variances of these two

terms in (A6). Using (A2) and the definitions of R? ; and Rgroj in (8) and (10), we have

Var {proj (7(B1, Bo) | T=)}

Var {proj (7 | 7o)} - (1 - R]?)roj) + (v — ’S’prOj)/ Cov {proj (Tw | 7)} (v — Yproj)
= nilvTT : Rz,w (1 - R}?)roj) + (7”'17”0)71 (v — :YprOj)/ S'121)|m (Y = Yproj) - (A8)

Similarly, because the two terms in (A7) are uncorrelated, the variance of the residual of the linear
projection of 7(31,3p) on 74 is the summation of the variances of these two terms in (A7). Using
(A3) and the definitions of R2,, in (13) and R2, in (11), we have

T, W res

Var {res (7(81, Bo) | T2)}
= Var{res(7 | 7z)} - (1 - R?es) + (Y = Fres) Cov {res (T | T2)} (7 — Fres)
= n_IVTT ’ (1 B R?—,m) (1 — Rfes) + (717"17”0)_1 ('7 - :Yres), S’?v\az (7 - :YTG‘S) : (A9)

Fourth, using (A4), (A5), (A8) and (A9), we have

VTT(/@].’ ﬁO)RZ,m(:@h /60) = VTTR72—7;1: (1 - Rgmj) + (7"17‘0)_1 (’Y - 'S’prOj)/ Sfm ('Y - &prOJ) )

VTT(IBIa /60) {1 - Rz,w(ﬁla BO)} = VTT (1 - R?r,m) (1 - R?es) + (TITO)_I ('7 - :}’res)/ Sﬁ,\w (')’ - :Yres) .

These coupled with Theorem 1 imply Theorem 2. O

Proof of Corollary 3. First, we prove that 4proj = Yres = 7 and Rf)roj = 1. Under Condition 2,

Tw can linearly represent 7, as 7, = Bi17Tw. Thus using the linearity of the projection operator,

we have
proj(7 | 7z) — 7 — A'proj(Tw | 7z) = proj(7 — 7 — ' Fw | 7o) = proj{res(7 | w) | T=}. (A10)

By definition, res(7 | T4) is uncorrelated with 7, and then it is also uncorrelated with 7, = B1 7.



Therefore, (A10) equals zero, implying that (i) proj(7 | 7z) = 7 + 4'proj(fw | 72) and 4 equals

the linear projection coefficient of proj(7 | 7z) on proj(Tw | Tz), i-e., ¥ = Yproj; (ii) the squared

2

multiple correlation between proj(7 | 7z) and proj(7w | 7z) equals 1, ie., R

= 1. Moreover, (i)
and Proposition 2 imply that ¥ = Apr0; = Yres-
Second, we prove that R%,, = (RZ,, — R2,)/(1— R2 ). Because res = 7, the residual from the

res

linear projection of res(7 | 7o) on res(Ty | 7o) reduces to

res (7 | Tz) — Viestes (Tw | T2) =168 (F — YTy | 72) =res {res (7 | Tw) | 72} - (A11)

Because, under Condition 2, 7, = BTy is uncorrelated with res(7 | 7o), (A1l) reduces to res(7 |

Tw). Thus, the squared multiple correlation between res(7 | 7) and res(7y | 72) reduces to

. Var {res(i’ | %w)}} 1 - R72',w o R72—,w - Rz,m

R =1 =1- =
res Var {res(7 | 7)} 1-R2, 1-RZ2,
Corollary 3 then follows immediately from Theorem 2. O
Proof of Corollary 4. First, we prove that Bproj = 8, Rf)roj = Riw/Rf,w, S'12u|m = 82 and
Sfﬂ\w = 0. Under Condition 3, Sfmc = va, 5121;\:1: = 0, and 7, = Bo7,. Then using Proposition 2,

we have Yproj = 7. Moreover, proj(Tw | 72) = Tw, and thus the linear projection of proj(7 | 7) on

proj(7w | 7z) under the CRE reduces to
proj {proj(7 | 7z) | proj(fw | =)} =7 +’~y{)mjproj(i'w | 72) = T + 7' Fw = proj(7 | Tw)-
Consequently, the squared multiple correlation between proj(7 | 7z) and proj(7y, | 7z) equals

R2 . — Var {proj(7 | Tw)} _ Var(7)R2,, _ R
%5 = Var (pro] (7 [ 7))~ Var( R, ~ Ry

2
res

Second, we prove that R. = 0. Under Condition 3, res(7y | 72) = 0, and thus the squared

multiple correlation between res(7 | 7o) and res(Tyw | 7o) reduces to zero.

Corollary 4 then follows immediately from Theorem 2. O

A2. S-optimality

A2.1. Lemmas

Lemma Al. Let ¢ ~ N(0,1), and L, ~ Dy | D'D < a, where D = (D,...,Dg) ~ N(0,If).

Both € and Lk , are symmetric and unimodal around zero.

Proof of Lemma A1l. It follows from Li et al. (2018, Proposition 2). O

Lemma A2. Let (p, (1 and (s be three mutually independent random variables. If
(1) (o is symmetric and unimodal around zero;

(2) (1 and (2 are symmetric around 0;



(3) PG| <€) > PG| < ¢) for any ¢ > 0
then P(|¢o + 1| < ¢) > P(|¢o + 2] < ¢) for any ¢ > 0.
Proof of Lemma A2. It follows from Dharmadhikari and Joag-Dev (1988, Theorem 7.5). O

Lemma A3. Let ¢ ~ N(0,1), Lgq ~ D1 | D'D < a, where D = (D;,...,Dg) ~ N(0,If), and
€ and L , be mutually independent. For any nonnegative constants by < c1, by < co, and any

a € (0,1), the 1 —a quantile range of bje+ by L, is narrower than or equal to that of cie +caLk 4.

Proof of Lemma A3. From Lemma Al, bie is symmetric and unimodal. Because by < co,
P(|baLg,q| < ¢) > P(lcaLial < ¢) for any ¢ > 0. Then from Lemma A2, P(|bje + baLg o <
c) > P(|bie + coLk o] < ¢) for any ¢ > 0.

From Lemma A1, ¢ Lk 4 is symmetric and unimodal. Because by < ¢1, P(|bie] < ¢) > P(|ci€]
c) for any ¢ > 0. Then from Lemma A2, P(|bie + coLk o] < ¢) > P(|cie + oLk o] < ¢) for any
c>0.

From the above two results, for any ¢ > 0,

IN

P(]b1e +boLi ol < c) > P(|bie + colk o] < ¢) > P(leie + cali ol < c),

which implies Lemma A3. O
Lemma A4. For any a > 1/2, the ath quantile of (1 — p?)'/2- ¢ 4 |p| - Lk 4 is nonincreasing in p2.

Proof of Lemma A4. It follows from Li et al. (2018, Lemma A3). O

A2.2. Proofs

Proof of Theorem 3. In the asymptotic distribution of 7(31, 3y) in Corollary 3, both coefficients
of ¢ and Lk, attain their minimum values at 731 +7r180 = v = 7. From Lemma A3 and Corollary
3, the S-optimal adjusted estimator is attainable when v =4 or rg81 + r189 = roB1 + r180, with
the asymptotic distribution (15). From Proposition 1, %(Bl, BO) is S-optimal. O

Proof of Theorem 4. From Corollary 4, in the asymptotic distribution of 7(81, Bp) under reran-
domization, the coefficient of € does not depend on ~y, and the coefficient of L , attains its minimum
when v = 4. From Lemma A3 and Corollary 4, the S-optimal adjusted estimator is attainable
when v = 4 or 7981 + 7180 = roB1 + 180, with asymptotic distribution (17). Moreover, from
Proposition 1, 7(81, By) is S-optimal. O

Proof of Theorem 5. From Corollary 2, the squared coefficient of € in the asymptotic distribu-

tion of 7is V(1 —R%m). From Theorem 1, the squared coefficient of € in the asymptotic distribution

of 7A—(/élwéo) is VTT(BI»BO){l — R%w(,éh,éo)}. Because

Vir(B1, Bo) = nVar{7(B1,80)} = nVar(# — 47w) = nVar {res(7 | 7w)} = Vir (1- Riw) ,



the squared coefficient of ¢ in the asymptotic distribution of %(Bl,ﬁo) under rerandomization
reduces to V- (1 — R?,,) {1 — RZ, (B1,B0)}. Therefore, under rerandomization, the squared coef-
ficient of ¢ in the asymptotic distribution of 7(81, Bp) is smaller than or equal to that of 7 if and
only if
Vir (1= R2,,) {1 - R?‘,m(ﬁlaﬁﬂ)} <Ver (1-RZ,)
o (1= = (1— R R, ) < (1— B2,)
= R, + (1-R,) B 4(B1Bo) > R,

A2.3. The adjusted estimator with the smallest asymptotic variance

From Theorem 2, the asymptotic variance of 7(31, 3p) under rerandomization is

[Vr (1= R2,) (1= B2 + (rar0) ™ (7~ Free) 8210 (7 — Fiee) )
+ {VTTRf,w (1= Rproj) + (r1ro) ™" (¥ = Fproj) Sopjer (v = ’Yproj)} UK.a
=Ver (1= R25) (1= RE) + Ver R (1= Rpog) vk
+ (1170) T (7 = Ares) S (7 = Fres) + (1170) T (7 = proj) Sy (7 — Foroj) VK- (A12)

It is a quadratic form of ~. The derivative of (A12) with respect to - is

2(r170) " S g (7 = Ares) + 20k,a(r170) T Sipp (Y = Fproj)
= 2(7“17‘0)_1 {(S'?u\a: + UK,aSQZU‘m) Y- (Si;\m'?res + UK,aSEU|m;/proj>} .

Therefore, under rerandomization, 7(81,8p) with the smallest asymptotic variance is attainable

when

—1
roB1+riBo=v = (Sfu\a: + UK,aSiAm) (Si\m’?res + UK,asgu\x:)’proj) :

When a = 0, the above coefficient is close to yes.

A2.4. Technical details for Remark 2

We first give equivalent forms for the squared coefficients of € in the asymptotic distributions of
7 and 7(81, By) under rerandomization. From Corollary 2 and the definition of RZ, in (8), the
squared coeflicient of € in the asymptotic distribution of 7 under rerandomization has the following

equivalent forms:

Vir(1— Rzm) =n- Var(7) - (1 — sz) =n-Var{res(7 | 72)} . (A13)



From Theorem 1 and the definition of R2_(81,80) in (6), the squared coefficient of ¢ in the

asymptotic distribution of %(Bl, Bg) under rerandomization has the following equivalent forms:

V- (B1, B0) {1 - Ri,m(Bl,B@}
= n-Var{#(B1. o)} - {1 = Ra(Br, Bo) | = n-Var {res (#(81. o) | 72}
=n- Var {res (7 — ¥ 7w | 72) }

=n- Var {res (7 | 72) — Y'res (fw | 7o) } . (A14)

We then study the covariance between res (7 | 7) and res (7, | 7) under the CRE. For z = 0, 1,
let Y1 (2) be the residual from the linear projection of Y;(z) on z;, and w;- be the residual from

the linear projection of w; on x;. We have
res (7 | Tz) —nllzzZYL —n0121—

res (T | T2) = nl_l Z:Zl-wil ~1 Z 1— f‘,

=1

and thus
Cov {res (7 | Tz) ,res (Tw | T2)} = 7”L1_1S’y(1),u,|ac + nglsy(0)7w|m, (A15)

where Sy (;) (e 18 the finite population covariance between YL(z) and w™, or, equivalently, the
finite population partial covariance between Y (z) and w given x, for z =0, 1.
We finally prove Remark 2. When Sy (;) e = 0 for z = 0,1, from (A15), res(7 | 7z) is

uncorrelated with res (7y | 72) . This further implies that
Var {res (7 | T2) — Y'res (T | 7%,;)} = Var {res (7 | 7o)} + Var {’Sf’res (Tw | ﬁv)} > Var {res (7 | 72)} -

From (A13) and (A14), the coefficient of  for 7(81, Bo) is larger than or equal to that for 7.

A3. Estimated distributions and the associated optimality

A3.1. Lemmas

For treatment arm z (z = 0,1), let s%,( ) be the sample variance of observed outcome, s2, . be the
sample covariance of covariates w, and Sy (,) ., be the sample covariance between observed outcome

and covariates w

Lemma A5. Under rerandomization and Condition 1, for z = 0,1,

55y = Sy =0p(1), 8. — Si=o0p(1),  Sy(z)w — Sy(s)w = or(1),

3;257z - Si = Op(l), SY (z),x — SY(z),z = 0P<1)7 Sw,x — S’w,m = OP(I); (A16)



and for any 81 and By that can depend implicitly on sample size n but have finite limits,
2 2 2 2
Y (28 ~ Y (=8.) = 0Py Sy(poe ~ Sy (s = oP(L);

sY(z;Bz),m - SY(z;ﬁz),m = OP(l)’ SY(z;ﬂz),w - SY(Z;BZ),w = OP(l)' (A17)

Proof of Lemma A5. First, we can view covariates w as “outcomes” unaffected by the treatment.
Thus, (A16) follows immediately from Li et al. (2018, Lemma A16).

Second, the observed sample variances have the following equivalent forms:

Sa(z;ﬂz) = S%/(Z) + B;Si},zﬁz - 2/62311),1/(2)7 SY (z8.),x = SY(2),z — B;Sw,wa

2 2 2 -1
8y (z38:)w = SY()w — BSiozr Sy (sp)je = V(=) (52.2) Sy (:8.)-

From (A16),

Si(@ﬂz) o S}%(zvﬁz) = Op(l), SY(Z§ﬁz)7$ B SY(z;ﬂz),m = OP(1)7 SY(Z;ﬂZ)yw - SY(Z;ﬁz)fw = OP(]')'

These further imply that S%/(z-ﬁz)pc - S%,(zﬂznw = op(1). Thus, (A17) holds.

Lemma A6. Under rerandomization and Condition 1,

Ver(B1,B0) — Ver (B, Bo) = op(1), K2 (81, B0) — R2 (81, Bo) = op(1),

where

Vor(B1,B0) = Var(B1,80) + S2ir B24(B1,80) = V.7 (Br, Bo)Vr (Br, Bo) B2 4. (81, Bo).

Proof of Lemma A6. From (20), (21) and Lemma A5,

Vor(B1,80) = 11 'SY (180 + 70 S5 (0,80) — S281 oy jw + 0P (1)
= Vir(B1:Bo) + 525, goy\w T 0P (1)
= Vir(B1,80) + 524 + 0p(1) = Vir(B1, Bo) + 0p(1),
V. (B, Bo) (7’1_1512/(1;@)\3: +79 S 080)le ~ Sz(ﬁl,go)\m> +op(1)
V21 (B, Bo) Ver (Br, Bo) - Vi (81, Bo) (Tf15§(1;51)\m +75" 5% (0,80) 2 — 53(51@))\,@) +op(1)
V2 (B, Bo)Ver (Br, Bo) B2 4By, Bo) + op(1) = R? (81, Bo) + op(1).

R2 (81, Bo)

Lemma A7. V:-(B1,80) = Vor(1 — R2,,) + (riro) (v —7)/ S5, (v — 7).

Proof of Lemma A7. It follows from Theorem 1 and Corollary 3 with a = oo and = (). We



give a more direct proof below:

Vi+(B1,B0) = nVar (% -7 — 'y’i'w) = nVar {f' — T — A T — (v — 'S/)/i'w}

= nVar {res(? | Tw) — (v — %) Tw} = nVar {res(? | )} + n (v — )" Cov (fw) (v — 7)
= V(1= RZ,,) + (riro) " (v = 9)' S (v — 4).

A3.2. Proofs

Proof of Theorem 6. From Lemma A6, under rerandomization, the probability limit of the es-
timated distribution of 7(81, Bp) is

1/2

V) {1~ BaBm} e (BB} Ll

By definition, it has the following equivalent forms:
- . - 1/2 - - 1/2
{VTT(BIMB()) - VTT(Bl)BO)RT,w(B:l?BO)} -€+ {VTT(517IBO)RT7$(517BO)} : LK,a

/
AV (B1.B0) + 52y~ Ver(Br. B0) B0 (B B0) } 2+ {Vir (81, B0) B2 0 (81, B0)}
/
AV (B1.B0) {1~ B4 (81,80} + 52, L 2+ (Ver (81, B0) B 081,80} - L

: LK,a

Because Condition 4 implies Condition 2, from Corollary 3 and its proof, we can further write the
probability limit of the estimated distribution of 7(31, 3y) as

_ - ) 1/2 - _ 312

{Ver(U = B2,) + 82 + (7o) My = 3)' 820y =)} et { riro) oy =AY S2 0y =)} L
O
Proof of Corollary 5. It follows from Theorem 6 with a = co and « = (). O

Proof of Corollary 6. With 81 = By = 0, Theorem 6 implies that the the probability limit of

the estimated distribution of 7 is

v (- i) e v (R2,) L
~ (VTT - ‘N/TTRE,;,;) v €+ (VTTRE@>1/2 ‘LK.

1/2

1/2
~ (Vir 4 Sy = VerR2) et (VerR2)? - L

1/2

2

1/2
{VTT(l - Rz,:c) + S?—\w} et (VTTR'zr,w) ’ LK»“'

O]

Proof of Theorem 7. From Lemma A6, the probability limit of the estimated distribution of



7(B1,Bp) in (26) is VTT (Bl,ﬁo) e. From Lemma A7, this probability limit has the following

equivalent forms:
s 1/2
V2B, Bo) - e ~ { Vir(B1, Bo) + 52 } ‘€
- ) 172
AV (1= R2) + 82 + (rro) (= VS (=)} e
J

Proof of Corollary 7. From Theorem 6, in the probability limit of the estimated distribution of
7(B1,Bo) in (22), both coefficients of ¢ and L , attain their minimum values at 7931 + r18y =
~ = 4. Lemma A3 then implies that the optimal adjusted estimator among (1) in terms of the
estimated precision is attainable when ro31 + r139 = v = 7. The corresponding probability limit
of the estimated distribution is {V-+(1 — RZ,,) + Sz\w}l/2 -E. O

Proof of Corollary 8. It follows immediately from Theorem 7. O
A3.3. Additional comments on the asymptotic conservativeness under reran-
domization

We first comment on a technical issue of degeneracy. From Section 6, the optimal adjusted estimator
in terms of estimated precision is the same with or without Condition 4. Its estimated distribution

is Gaussian with mean zero and variance equaling the limit of
VTT(]. — R2 ) + SQ\w =T 1Sy( 1) + To 1Sy( ) S72_ - (7’1_15}2/(1”1” + 7’615}2/(0” 52|w> + S2\w
=T SV (e T 70 Sy

We assume at least one of 532,(1)
variance V;-(1 — RZ,,) + 52\

non-degenerate probability limit. Therefore, the estimated distribution of any adjusted estimator

and 52( O\w has strictly positive limits, so the asymptotic

\w
must have a positive limit. Thus, its estimated distribution has a

w
with or without Condition 4 has a non-degenerate probability limit. This helps to avoid the
case where both sampling and estimated distributions converge weakly to zero. For any adjusted
estimator, to prove the conservativeness of the confidence intervals, it suffices to show that the
probability limit of the estimated distribution has wider or the same quantile ranges compared
with the asymptotic sampling distribution.

We then discuss the asymptotic conservativeness of the estimated distributions.

With Condition 4 From Lemma A3, Corollary 3 and Theorem 6, the probability limit of the
estimated distribution of 7(81, Bp) has larger variance and wider quantile ranges than the asymp-
totic distribution of 7(31,3y). Therefore, both the variance estimator and confidence intervals are

asymptotically conservative.
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Without Condition 4 Theorem 7 implies that the probability limit of the estimated distribution
of 7(B1, Bo) has larger variance and wider quantile ranges than VTIT/ 2 (B1,80) - €. Lemma A4 implies
that VTlT/ 2(51, Bo) - € has larger variance and wider quantile ranges than the asymptotic distribution
of 7(B1,B0) in (7). Therefore, both the variance estimator and the Wald-type confidence intervals

are asymptotically conservative.

A4. Gains from the analyzer and the designer

Proof of Corollary 9. First, we compare the asymptotic variances. From Corollary 2, the asymp-
totic variance of 7 is V- {1—(1—vg 4)R2 ;. }. From Theorem 3, the asymptotic variance of #(B1, Bo)
is Ver(1— R%w). Compared to 7, the percentage reduction in the asymptotic variance of 7(31, Bo)

1S

1— 1- Rz,w . R72',w - (1 - UK,G)R?r,m
1- (1 - UK,a)Rﬂz-,m 11— (1 - UK,G)Rz,m

Second, we compare the asymptotic quantile ranges. From Corollary 2, the length of the
From Theorem 3, the length of the
asymptotic 1 — a quantile range of 7(31, Bo) is 2VT1/2(1 - Riw)l/2 “q1—a/2(0). Compared to 7, the

asymptotic 1 — a quantile range of 7 is 2%17-/2 : ql_a/Q(szm).

percentage reduction in the length of the asymptotic 1 — o quantile range of %(,@1, BO) is

1 2V7'1‘I'/2(1 - R72',w)1/2 : QIfa/Q(O)
2V i asa(R2,)

/2 (J1—a/2(0)
Q1—a/2(R%w) '

=1- (1 _Rz,w)

Third, because %(,@1, BO) is S-optimal, both percentage reductions in the variance and the 1 — «

quantile range are nonnegative. It is easy to verify that they are both nondecreasing in R%w. O

Proof of Corollary 10. First, we compare the asymptotic variances. From Corollary 2, the
asymptotic variance of 7 is V{1 — (1 — vk,q) RZ,}. From Theorem 4, the asymptotic variance
of 7(B1, Bo) is Vir{l— (1 — vk,a)R2 , — k.o R2,,}. Compared to 7, the percentage reduction in the

asymptotic variance of %(Bl, Bo) is

Vir{l = (1 - UK,a)Rz,a: - UK,aRg,w} . UK,aRz,w
Vir{l = (1 = vKa) R?,m} 1 (1 —vKa) Rg,m.

Second, we compare the asymptotic quantile ranges. From Corollary 2, the length of the
asymptotic 1 — a quantile range of 7 is 2V/? . (i—o /2(R72_7m). From Theorem 4, the length of the
asymptotic 1 — a quantile range of 7(81, Bo) is 2VT1T/2(1 — R%w)l/2 “qr—a/2(p? 4 4)- Compared to

T,\w

7, the percentage reduction in the asymptotic 1 — a quantile range of %(Bl, BO) is

1/2
1- (1 - R?—,w) / : QI—a/Z(pz,m\w)/ql—a/Q(Rz,m)'

Third, because %(,@1, Bg) is S-optimal, both percentage reductions in variance and 1 — a quan-

tile range are nonnegative. It is easy to verify that the percentage reduction in the variance is

11



nondecreasing in RZ . For the quantile range, from Lemma A3, (1 — RE’w)U2 “Qi—a/2(P2 w\w), the
(1 — «/2)th quantile of (1 — Rim)l/2 e+ (R, — Ri,w)lﬂ - L q, is nonincreasing in R? . Hence

the percentage reduction in the 1 — o quantile range is nondecreasing in R%w. O

Proof of Corollary 11. First, we compare the asymptotic variances. From Section 4.1.1, the
asymptotic variance of 7(31, By) under the CRE is V; (1 — RZ? ). From Theorem 4, the asymptotic
variance of 7(81, Bo) under rerandomization is Vy,(1 — RZ {1 — (1 —vka)p? m\w}. Compared to

the CRE, the percentage reduction in the asymptotic variance under rerandomization is

1 . VTT(l - Rz,w){l - (1 - UK7a>p72-’m\w} _ (1 — vk )p2
VTT(l - R72','w) I rw\w

Second, we compare the asymptotic quantile ranges. From Section 4.1.1, the length of the
asymptotic 1 —a quantile range of 7(81, By) under the CRE is 2V717/2(1 — R72.7w)1/2 “q1—a/2(0). From
Theorem 4, the length of the asymptotic 1 — a quantile range of %(Bl, Bo) under rerandomization is
2V717/2(1 — R37w)1/2 : ql_a/Q(pz’m\w). Compared to the CRE, the percentage reduction in the length
of the asymptotic 1 — a quantile range under rerandomization is 1 — ql_a/z(/)iw\w)/@h—a/g(0).

Third, from Lemma A4, both percentage reductions in variance and 1 — « quantile range are
= (R2,—R2,,)/(1—RZ2,,). Consequently, both percentage

reductions are nondecreasing in R . O
?

nonnegative and nondecreasing in pz o\w

Proof of Corollary 12. Recall that kK = 1 + V;JSE\U, > 1. From Corollary 6, under rerandom-

ization and Conditions 1 and 4, the probability limit of the estimated distribution of 7 is

1/2
(Ve =R+ 83, } e+ {Vir R}

~ V(- R20) e+ (R20)' L)

o RV R ) e (R u) L)

. LK,a

From Corollary 7, under rerandomization and Conditions 1 and 4, the probability limit of the
estimated distribution of 7(81, Bo) is

1/2

{VTT(l —R2,)+ Sf\w}l/z e m VY2 (k= R2,) e m PV (1= R2,/6)"7 e

First, we compare the variances. The variance of the probability limit of the estimated distri-
butions of 7 is £V;7{1 — (1 — vk ,4)RZ ,/K}. The variance of the probability limit of the estimated
distributions of 7(31, Bo) is £Vyr (1 — R%w//@). Compared to 7, the percentage reduction in variance
of the probability limit of the estimated distribution of 7(31, Bo) is

1— 1 - R72',w/"<'7 _ R72',w —(1- UK,a)Rz,w
1- (1 - UK,G)R%,:E/’{ k- (1 - UK,G)R?—,Q:

Second, we compare the quantile ranges. The length of 1 — o quantile range of the probability
limit of the estimated distribution of 7 is 2x!/ 2VTIT/ 2. Q-0 /Q(R,?_’a: /k). The length of 1 — o quantile

12



range of the probability limit of the estimated distribution of 7(81, Bo) is 2k*/ 2y Y 2(1 -R2,/ K)1/2.

q—o /2(0). Compared to 7, the percentage reduction in 1 — « quantile range of the probability limit
of the estimated distribution of %(,31, ,50) is

B G1—a2(0) (1= R2,,/k) 12
QIfa/Q(Rz,w/ﬁ)

12 @1-a/2(0)

1 _ .
Q1fa/2(R72—,m/’i)

=1- (1 _Rz,w/’%)

Third, the optimality of %(,31, ,@0) in terms of the estimated precision implies that both percent-

age reductions are nonnegative. It is easy to verify that they are both nondecreasing in RZ’w. 0

Proof of Corollary 13. From Theorem 7, the probability limit of the estimated distribution of 7
is VTIT/ e~ (Ver+ Sf\w)l/ 2.¢. From Corollary 8, the probability limit of the estimated distribution
of 7(B1,Bo) is {Vyr(1 — R2,,)+ Sz\w}l/2 -€. Compared to 7, the percentage reduction in variance
of the probability limit of the estimated distribution of 7(81, Bp) is

Ver(l = Brw) + S0 _ | 6= Ry _ Rl

Vier + Sf\w K K

)

and the percentage reduction in length of the 1 — o quantile range of the probability limit of the
estimated distribution of 7(81, Bo) is

1/2
1 ZQI—a/Q(O) {V:I'T(l - Rz,w) + S?—\w}

201_a/a(0) (Ver +52,,)

(I-i — R? )1/2
AT

1/2

=1- =1-(1-R2,/K)

It is easy to show that both percentage reductions are nonnegative and nondecreasing in R?,w- O

In the following two proofs, we recall that q;_,/2(0) is the (1 — «/2)th quantile of a standard
Gaussian distribution, and use the fact that under either the CRE or rerandomization, the 1 — «

confidence interval covers the average treatment effect if and only if

Q1-a/2(0) < V281, Bo) x n'/? {%(BMBO) - T} < q1-a/2(0). (A18)

Therefore, the limit of the probability that (A18) holds is the asymptotic coverage probability of

the confidence interval.

Proof of Corollary 14. From Corollary 7 and the comment after it, the probability limits of the
estimated distributions of %(Bl, Bg) are the same under the CRE and rerandomization, and so are
the lengths of confidence intervals after being scaled by n'/2.

From Lemma A6, V. (,él,,éo) in (A18) has the same probability under the CRE and reran-
domization. From Theorem 3 and Section 4.1.1, n'/2{#(81, 30) — 7} in (A18) converges weakly to
the same distribution under the CRE and rerandomization. From Slutsky’s theorem, the quantity
in the middle of (A18) converges weakly to the same distribution under the CRE and rerandom-
ization. Therefore, for any o € (0,1), the limit of the probability that (A18) holds is the same

13



under the CRE and rerandomization, and so is the asymptotic coverage probability of the 1 — «

confidence interval. O

Proof of Corollary 15. From Theorem 7 and Corollary 5, the probability limits of the estimated
distributions of 7(31, Bo) are the same under the CRE and rerandomization, and so are the lengths
of confidence intervals after being scaled by n'/2.

Using Lemma A6, Theorem 1 and Slutsky’s theorem, we have that under rerandomization, the

quantity in the middle of (A18) is asymptotically equal to

1/2

V1281, B0 V281, Bo) [{1 - R24(81,80)} " -2+ {R2,(81, 80} 7 Lica| - (A19)

Using Lemma A6, Corollary 1 and Slutsky’s theorem, we have that under the CRE, the quantity
in the middle of (A18) is asymptotically equal to

V281, Bo) VA2 (Br, Bo) - e (A20)

From Lemma A4, the distribution (A19) has shorter quantile ranges than (A20). Therefore, for
any « € (0,1), the limit of the probability that (A18) holds under rerandomization is larger than
or equal to that under the CRE. 0

A5. 7(B1,B0) and variance estimators under rerandomization

We need additional notation. Let U; = (1, Z;, w}, Z,w})" € R2/+2. Let w; and wg be the averages

of covariates, and Y7 and Y be the averages of observed outcomes in treatment and control groups.

We can verify that in the OLS fit of Y on U, the coefficient of Z is %(Bl, Bo), and the residual for unit

1is ¢ =Y, — B’l'wl - (Y1 - Bi’d’l) for treated units with Z; =1 and é;, =Y; — Béwi - (Yo - ngo)
2

for control units with Z; = 0. For z = 0,1, let 6§7Z =n;! > iz,—- €; be the average of squared

residuals, and m2, ., =n;'Y", , _ w;w) be the second sample moment of w. Define
k) . 1

G=n"'Y UU] = (G” G”) (A21)
=1

Ga1 Ga
1 Z; w, Zw! 1 T w’ riw
n / / : -/ -/
—_— Zi  Zi Zywp Ziwp || ™1 T1 G MWy nw)
- / 1l - 2 2
P w;  ZJiw; wiw;  Ziww; w  riw; S, T1My,
/ / — . 2 2
Ziw; Ziw; Ziw,w; Zyww; TIWy TIWL LTIy, T,
n
Hy1 Hp
H=n"! g eUU! = (A22)
— Hy; Hoy
é? Z;é? 2w/ Z;e2w

2

n ~ N A~
_1 Zie? Zie? Z:62w
=n7' )
P éiw; Zie%'wi e?wiw4 Z;e2w;w

14



2 2 i —1NT 32,0 —1yn 52,1
Oc T10¢ 1 ConT Yl Grwp Ty il Zigjw;

KA
b1 A2, 1 T,
el noey N i Zigjw; i Ziéwg
an 520 ) S R N IV s S R ) 20
nTiY L Giwg nT Y Zzeiw“ nThy o Ewaw) nT Y L Ziéiwiw;
—1\\n 52, o —1 N\ 520 o —1 N A2, a0 =1 IS B
nTl iy Zigjwi 0T Yl Ziggwi T )y Zigwiwg T Y iy Ziégwiwg

The Huber-White variance estimator for n'/2{#(8;, By) — 7} is Virw = [G'HG
(2,2)th element of G"'HG™.

A5.1. Lemmas

Lemma AS8. Under rerandomization and Condition 1, 7 = rglwl = —rflfd;o = OP(TL_I/Q).

Proof of Lemma A8. For 1 < j < J, define pseudo potential outcomes (Y'(1),Y(0)) = (W;, W;).
We can verify that Condition 1 also holds if we replace the original potential outcomes by the pseudo

ones. Corollary 2 implies that 7y, = Op(n~'/2) and thus 7, = Op(n~1/?). O

Lemma A9. Under rerandomization and Condition 1, for z = 0,1, we have 3, — 3. = o p(1), and

2 2 . 9 9 B
SY(Z;ﬁAZ) B SY(Z§~Z) =op(1), SY(z;Bz)|w o SY(z;ézNw = op(1)
SY(Z;BZ)’:E B SY(Z;éZ)’w - OP(l)’ sY(z;Bz),w B SY(Z;BZ):’UJ = OP(]‘)
Proof of Lemma A9. The results follow directly from Lemma A5. ]

Lemma A10. For any two matrices A and B, if both A and A + B are nonsingular, then
(A+B)'-A'=A"'B(A+B)'BA'-A'BAL
Proof of Lemma A10. Lemma A10 is known, but we give a direct proof for completeness. From

0=A—-A=A(A+B)'(A+B)-A=A(A+B)'A+A(A+B)"'B- A,
0=B-B=(A+B)(A+B)'B-B=A(A+B) 'B+B(A+B)'B-B,

we have A(A+ B) ' A— A= B(A+ B) ' B— B, which further implies

(A+B)y'-A1t=2a" {A (A+B)'A- A} Al= ! {B (A+B)'B— B} A~}
—A'B(A+B)'BA™'-A"'BA™.

O]

Lemma A11. Under rerandomization and Condition 1, mfmz = 82 + op(1) for z = 0,1. Both

G711 and G in (A21) converge in probability to nonsingular matrices.
Proof of Lemma A11l. First, we consider m%vz By definition,
mi =07t > wawl =0yt > (w;— 1) (wi — 1) + B1@] =0y (m — 1)s2, | + @1

15



From Lemmas A5 and AS, 3%;,1 = 82 +op(1) and wyw) = op(1). Thus, mihl = S2 + op(1).
Similarly, m2, 0= =82 +op(1).

Second, we consider G'11. By definition, G'11 has a limit as n — oco. Because

-1
G_l _ 1 (& _ 1 ™ —T1
1 rLoT1 riro \—r; 1 )’

the limit of G1; is nonsingular.

Third, we consider G'25. From the above and by definition,

S2 rym? S22 r.S?
Goy = W Tl o Pe s T op(1).
T1IMG, 1 T1MG, r1Sy, 185,
Thus, Gz has a probability limit as n — co. Because the limit of §2, is nonsingular, and

-1
S2 S2
( 52 ns’z"> =(Gues,) ' =Glesy)
19w T1ow

the probability limit of G99 is nonsingular.

Lemma A12. Under rerandomization and Condition 1,

(i) for 2 =10,1, 62, = 52 +op(l) =57 +o0p(1) = Op(1), and Hyy = Op(1);

Y (2;82) Y (28:)
(i) n~! > Zié?wg = 0p(n1/2), n-t S (1— Zi)éz'w; = 0p(n1/2), and Hyo = H), = 0p(n1/2);

7
(iii) =130 Zietw,w) = op(n), n 130 (1 — Z;)é2ww) = op(n), and Hao = op(n).
Proof of Lemma A12. First, we prove (i). By definition and from Lemma A9,

&372 =n;(n, — 1)83,(2;@) = 2( 4T op(l) = SQ( gy T op(l) =0p(1), (2=0,1).

This further implies 62 = 162, + 1062y = Op(1). Thus, Hy; = Op(1).
Second, we prove (ii). For any 1 < j < J,

_1226 Wy

< max ]wzj\ ny ZZié? = 1rgia<}%|wij‘ 0%

Condition 1 implies that maxj<;<p [wi;|/n'/? — 0 and thus maxj<i<, |wi;| = o(n'/?). Lemma
A12(i) implies &21 = Op(1). Thus, n=' 31| Zié2wi; = o(n'/?)Op(1) = op(n'/?). This further
implies n=! 31" | Z:&2w! = op(n'/?). Similarly, n=' 37" (1 — Z;)é?w] = op(n'/?). By definition,

_IZew—nIZZew+n_121— Netw, = op(n'/?).

Thus, Hiy = op(n'/?).
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Third, we prove (iii). For any 1 <1,j < J,

n n n
nt Y Zietwqwig| <0ty Ziefwallwi| < max fw| - max fwi| -0yt Zi]
=1 - - 1=1

=1

= e .52
= max |wg| - max |wij] -Gy

Condition 1 implies maxi<;<, [wi| = o(n'/?) and max;<;<p, |wi;| = o(n'/?). Lemma A12(i) implies
6371 = Op(1). Thus, n= 30" | Zie2wywi; = o(n'/?)o(n'/2)Op(1) = op(n). This then implies

n~t30 | Zie2ww! = op(n). Similarly, n7t Y0 (1 — Z;)é?w;w) = op(n). Thus
n n n
n! Z eww, =n~! Z Zie2waw!, +nt Z(l — Z;)étwsw! = op(n).
i=1 i=1 i=1

By definition, Hes = op(n).

A5.2. Proofs

Proof of Proposition 3. We first consider the asymptotic distributions. Let 4 = 7“0,31 + rl,éo,
which satisfies ¥ — 4 = op(1) by Lemma A9. From Lemma A8, 7, = Op(n~'/?). Then

#(B1.Bo) = 7(B1,Bo) = (F = ¥'#w) = (F =4 Fw) = (7 =3) Fuw = 0p(1)Op(n~"?) = 0p(n~'/?),

which implies that n'/2{#(8;, 8,) — 7} has the same asymptotic distribution as n'/2{#(8;, 3¢) —7}.
We then consider the probability limit of the estimated distribution. From Lemma A9, we
can show that V-(B1,80) — Ver(B1,B0) = op(1) and B2 ,(B1,B80) — R2,(B1,B80) = op(1) under

rerandomization. Therefore, under rerandomization and Condition 1 the estimated distributions
of %(,[:}1, BO) and f'(,él, ,[:}0) have the same probability limit. O

Proof of Theorem 8. Let

G 0 0 G
A — 11 2x2J : A—-G_ A= 2X2 12 7 U — Gil . Afl.
027x2 Gao Ga1 0O27x27

First, we first find the stochastic orders of A and ¥. From Lemma A8, G12 = G5, = Op(n_l/Q),
and thus A = Op(n~/?). From Lemma A10,

T=A+A) " —AT=ATAA+A) T TAATT—ATTAAT

From Lemma A11, the probability limit of A exists and is nonsingular. Thus, ¥ = Op (n_l/ 2.
Second, we consider the difference between G'HG ™! and A"'HA!:

G 'HG'-AT'THA'=(A'"+O)H (A" + ) - A'HA™!
—WHA '+ A 'HY + YHY. (A23)
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In (A23), we focus on the sub-matrix of the first two rows and the first two columns. We consider
the corresponding submatrices of the three terms in (A23). Below let []; ;5 denote the sub-
matrix of the first two rows and the first two columns, and [-](2’2) denote the (2,2)th element of a
matrix. The first term in (A23) is

THA ! = Wy Wy H;, Hi Gil 0 _ ‘I’11H11GI11+\1112H21Gf11 *
Wy Wo) \Hy Hpy 0 Gy * *

From Lemmas A1l and A12,
[WHA 10,19 = C1HIG +¥ 1 Hy G = Op(n™%)0p(1)0p(1)+0p(n~?)op(n'/?)0p(1).

For the second term in (A23), [A"'H®] (1519 = [\IIHA_I]’(l_2 12) = op(1). For the third term

in (A23), Lemma A12 implies H = op(n) and thus WHW¥ = Op(n="/?)op(n)Op(n~?) = op(1).
Therefore, from (A23), [G_IHG_l](l_m_Q) — [A‘lHA_l](l_Q’M) = op(1), which further implies

Viw — [AT HA Y00y = [GT'HG V(20 — [A"HA Y g9) = 0p(1).

Third, we consider the difference between [A~1H A‘l](m) and VTT(Bl, Bo). Because

2 ~2
- - - B B r —T o r10 n -
AT THA Y4910) = G HuGyy' = (riro) > - 5
-ry 1 T10¢c1 T10¢1 -r 1

using Lemma A12, we have

1 —1.2

-1 -1 —1,2 —1,2 -
[ATTHA ](2,2) =Ty Ocg1t7Ty Ocp=Tq + 7o Sy(o;ﬁo) +op(1).

2
Sy (1;61)

The property of OLS implies Sy (zf)w = 0 for z = 0,1. Using the definition in (20), we can

e T (A A Y S S —1.2 -1 -1 _
tAhen AsnnAphfy Vir(B1,Bo) as Vir(B1,B0) =1 SYQ;BO + 7 5Y (0,80)" Therefore, [A {{AA ](2:2) =
Ver(B1,80) + op(1). From the above, we have Viaw = [A"HA )59 4+ op(1) = Vo7 (81, 80) +
Op(l). ]
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