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ABSTRACT
The Fisher randomization test (FRT) is appropriate for any test statistic, under a sharp null hypothesis that
can recover all missing potential outcomes. However, it is often sought after to test a weak null hypothesis
that the treatment does not affect the units on average. To use the FRT for a weak null hypothesis, we
must address two issues. First, we need to impute the missing potential outcomes although the weak null
hypothesis cannot determine all of them. Second, we need to choose a proper test statistic. For a general
weak null hypothesis, we propose an approach to imputing missing potential outcomes under a compatible
sharp null hypothesis. Building on this imputation scheme, we advocate a studentized statistic. The resulting
FRT has multiple desirable features. First, it is model-free. Second, it is finite-sample exact under the sharp
null hypothesis that we use to impute the potential outcomes. Third, it conservatively controls large-sample
Type I error under the weak null hypothesis of interest. Therefore, our FRT is agnostic to the treatment effect
heterogeneity. We establish a unified theory for general factorial experiments and extend it to stratified and
clustered experiments. Supplementary materials for this article are available online.
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1. Introduction to the Fisher Randomization Test

1.1. Literature Review

Randomization is the cornerstone of statistical causal infer-
ence (Fisher 1935, sec. II). It creates comparable treatment
groups on average. More fundamentally, it justifies the Fisher
randomization test (FRT). Under Fisher’s sharp null hypoth-
esis, the treatment does not affect any units whatsoever, and
the distribution of any test statistic is known over all ran-
domizations (Fisher 1935; Rubin 1980; Rosenbaum 2002b;
Imbens and Rubin 2015). Therefore, the FRT delivers a finite-
sample exact p-value. What is more, many parametric and
nonparametric tests are approximations to the FRT (Eden and
Yates 1933; Pitman 1937; Kempthorne 1952; Box and Ander-
sen 1955; Collier and Baker 1966; Bradley 1968; Lehmann
1975).

Another formulation of the FRT relies on exchangeability of
outcomes under different treatments (Pitman 1937; Hoeffding
1952; Romano 1990). They called this formulation a “permu-
tation test.” Kempthorne and Doerfler (1969) accentuated the
importance of the treatment assignment mechanism to justify
the FRT, without assuming that the outcomes are exchangeable.
Rubin (1980) extended the FRT using Neyman’s (1923/1990)
potential outcomes. He defined a null hypothesis to be sharp
if it can determine all missing potential outcomes. One of his
insights was that any test statistic has a known distribution
under a sharp null hypothesis, and therefore the FRT is finite-
sample exact.

Randomized experiments are increasingly popular in
the social sciences (Duflo, Glennerster, and Kremer 2007;
Gerber and Green 2012; Imbens and Rubin 2015; Athey
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and Imbens 2017). In such applications, testing sharp
null hypotheses may not answer the researchers’ queries.
They often want to test weak null hypotheses that the
treatment has zero effects on average. The ideal testing
procedure must leave room for treatment effect heterogeneity.
Unfortunately, weak null hypotheses cannot determine all
missing potential outcomes, even though the distributions
of test statistics depend on them in general. Consequently,
simple FRTs may not be directly applicable for testing weak null
hypotheses.

Having the FRT test weak null hypotheses is a delicate task.
Although sometimes we can still wield the same FRTs, we need
to modify the interpretations when the null hypothesis is not
sharp (Rosenbaum 1999, 2001, 2003; Caughey, Dafoe, and Mira-
trix 2017). Not all FRTs can preserve Type I errors for weak null
hypotheses even asymptotically. The famous Neyman–Fisher
controversy ties into this issue for randomized block designs
and Latin square designs (Neyman 1935; Sabbaghi and Rubin
2014). Gail et al. (1996) and Lin et al. (2017) gave empirical
evidence from simulations, and Ding and Dasgupta (2018) gave
a theoretical analysis of the one-way layout. Two strategies
exist for using FRTs to test weak null hypotheses. The first
strategy realizes that weak null hypotheses become sharp given
appropriate nuisance parameters. It maximizes the p-values
over all values of the nuisance parameters or their confidence
sets (Nolen and Hudgens 2011; Rigdon and Hudgens 2015;
Ding, Feller, and Miratrix 2016; Li and Ding 2016). However,
it can be computationally expensive and lacks power when
the nuisance parameters are high dimensional. The second
strategy uses conditional FRTs. It relies on partitioning the
space of all randomizations, and in some subspaces, certain
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test statistics have known distributions under the weak null
hypotheses (Athey, Eckles, and Imbens 2018; Basse, Feller, and
Toulis 2019). It can be restrictive and is not applicable in general
settings.

1.2. Our Contributions

We propose a strategy for testing a general hypothesis in a com-
pletely randomized factorial experiment. The null hypothesis
asserts that certain average factorial effects are zero. It is there-
fore weak and cannot determine all missing potential outcomes.
Our strategy has two components.

First, we specify a sharp null hypothesis. It must imply
the weak null hypothesis being tested and be compatible with
the observed data. Treatment-unit additivity holds under this
sharp null hypothesis. In particular, it implies constant fac-
torial effects of and beyond the weak null hypothesis. Under
this sharp null hypothesis, we can impute all missing potential
outcomes.

Second, we use the FRT with a studentized test statistic.
Like other test statistics, its sampling distribution depends on
unknown potential outcomes in general. Thus, this distribu-
tion is outside our grasp. Fortunately, the FRT generates a
proxy distribution under the above sharp null hypothesis. This
proxy distribution stochastically dominates the unknown one
asymptotically. The stochastic dominance relationship between
them enables us to construct an asymptotically conservative test.
Therefore, for testing the weak null hypothesis, we recommend
the FRT with the studentized statistic. Barring studentization,
the FRT may not control Type I error even asymptotically. We
examine several existing test statistics that exhibit this unwanted
behavior.

The idea of studentization already surfaces in the literature.
Neuhaus (1993), Janssen (1997), Janssen (1999), Janssen and
Pauls (2003), and Chung and Romano (2013) conducted per-
mutation tests with studentization. These tests assumed that
the outcomes are independent draws. In our formulation, the
random treatment assignment drives the statistical inference on
fixed potential outcomes. We do not assume any exchangeability
of outcomes.

In this particular setting, our theory transmits many new
features. First, the sampling distribution of the studentized
statistic is not asymptotically pivotal, unlike in an independent
samples setting. Rather, the approximate distribution generated
by the FRT is. Second, the FRT is conservative for the weak
null hypothesis. This aspect of finite-population causal inference
(Neyman 1923/1990; Imbens and Rubin 2015) was absent in the
literature on permutation tests. Third, studentization helps us
achieve better first-order accuracy, that is, to control asymptotic
Type I error. Babu and Singh (1983) and Hall (1988), on the
other hand, used it for better second-order accuracy in the
bootstrap.

The bootstrap is another resampling method for testing
weak null hypotheses. Relative to the bootstrap, FRTs have an
additional advantage of being finite-sample exact under sharp
null hypotheses. Although the bootstrap has been a workhorse
for many other statistical problems, Imbens and Menzel
(2018) recently fused its ideas with finite population causal
inference.

1.3. Organization and Notation

Let us preview how the rest of the article is organized. Sec-
tion 2 lays out the potential outcomes framework, FRTs, and
the null hypotheses of interest. Section 3 formalizes what kind
of test statistic can be used with the FRT to test weak null
hypotheses. It then gives our advocated test statistic that meets
the criterion, and also other popular test statistics that do
not. Section 4 gives various examples of special cases cov-
ered by our results in Section 3. Section 5 shows how our
results, with some modifications, can be extended to other
classes of experiments. Section 6 uses simulations to look at
the finite sample behavior of the FRT with studentization,
complementing our asymptotic theory. Section 7 demonstrates
further the application of our results by using data from
real-world randomized experiments. Section 8 wraps up our
article.

Let 1n and 0n be vectors of n 1’s and 0’s, respectively. Let 1(·)
denote the indicator that an event happens. Let A ≽ 0 and A ≻ 0
if A is positive semidefinite and positive definite, respectively.
Write A ≽ B if A − B ≽ 0. For a diagonalizable matrix A, let
λj(A) be its jth largest eigenvalue. Let diag{·} be a diagonal or
block-diagonal matrix. If (XN) is a sequence of random variables
indexed by N, write XN

d→ X, XN
P→ X, Xn

a.s.→ X for con-
vergence in distribution, probability, and almost surely (often
abbreviated “a.s.”), respectively. For convergence in probability,
we may also write plimN→∞ XN = X. For random vectors or
matrices, the same notation denotes such convergence, entry by
entry. Let "N denote the set of permutations of {1, . . . , N}. Let
π denote a generic element of "N , which is a mapping from
{1, . . . , N} to itself. Let Unif("N) denote the uniform distri-
bution over "N . Random variable B stochastically dominates
A, written A ≤st B, if their cumulative distribution functions
FA(x) and FB(x) satisfy FA(x) ≥ FB(x) for all x. Let ξ1, ξ2, . . .
be independent and identically distributed (iid) N (0, 1) random
variables.

2. Framework

2.1. Completely Randomized Experiments

We adhere to the potential outcomes framework (Neyman
1923/1990; Rubin 1974). Let Yi(j) be the response of unit i if
it receives treatment j, where i = 1, . . . , N and j = 1, . . . , J.
Vectorize Yi = (Yi(1), . . . , Yi(J))t. The means of the poten-
tial outcomes are Ȳ(j) = !N

i=1 Yi(j)/N, vectorized as Ȳ =
(Ȳ(1), . . . , Ȳ(J))t. The covariance between the potential out-
comes is S(j, k) =!N

i=1{Yi(j) − Ȳ(j)}{Yi(k) − Ȳ(k)}/(N − 1),
which is a variance if j = k. The covariance matrix S has the
(j, k)th entry S(j, k).

Let Wi ∈ {1, . . . , J} represent the treatment that unit i
actually receives, and define the indicator Wi(j) = 1(Wi =
j). The W = (W1, . . . , WN) are generated according to a
completely randomized experiment (CRE). The experimenter
picks N1, . . . , NJ ≥ 2 that sum to N, and assigns treatments
randomly so that any realization satisfies

!N
i=1 Wi(j) = Nj for

j = 1, . . . , J, and has probability
"J

j=1 Nj!/N!.
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Unit i’s observed outcome is Yobs
i = Yi(Wi) =

!J
j=1 Wi(j)Yi(j). So the observed means are ˆ̄Y(j) =

!N
i=1 Wi(j)Yobs

i /Nj, vectorized as ˆ̄Y = ( ˆ̄Y(1), . . . , ˆ̄Y(J))t. The
observed variances are Ŝ(j, j) =!N

i=1 Wi(j){Yobs
i − ˆ̄Y(j)}2/(Nj−

1), which is the sample analog of S(j, j). Because Yi(j) and Yi(k)
are not jointly observable, there is no sample analog for S(j, k).
In general, we cannot estimate S(j, k) consistently for j ̸= k.
For regularity, we assume S(j, j) > 0 and Ŝ(j, j) > 0 for all
W = (W1, . . . , WN)t.

2.2. Fisher Randomization Tests

The FRT was formulated by Fisher (1935) to analyze experimen-
tal data. Several flavors of it exist (Pitman 1937; Hoeffding 1952;
Basu 1980; Romano 1990). We adopt that of Rubin (1980). It
arises from the potential outcomes described in Section 2.1.

Rubin (2005) called the potential outcome matrix {Yi(j) :
i = 1, . . . , N, j = 1, . . . , J} the Science Table. He termed a null
hypothesis sharp if it, along with the observed data, can deter-
mine all the missing items in the Science Table. A test statistic is
a function of the observed data and the null hypothesis. Under a
sharp null hypothesis, any test statistic has a known distribution.
In particular, we can cycle through the possible values of W, and
for each obtain the corresponding realization of observed data,
and then compute the value of the test statistic. In this manner,
the test statistic’s distribution becomes accessible, as does a p-
value. FRTs are therefore finite-sample exact for testing sharp
null hypotheses, no matter the test statistic or data generating
process for the potential outcomes (Rosenbaum 2002b; Imbens
and Rubin 2015). In essence, randomization is fundamental
for statistical inference. It justifies the FRT, and guarantees the
validity of the resulting p-value.

Practitioners typically brand sharp null hypotheses as too
restrictive. In a general factorial experiment, our mission is to
test

H0N(C, x) : CȲ = x, (1)

where x ∈ Rm and C ∈ Rm×J is a full row rank contrast matrix,
that is, C1J = 0m. We pay extra attention to hypotheses where
x = 0m, but study general x for completeness. A weak hypothesis
is any that is not sharp by the definition of Rubin (2005). The
hypothesis (1) is therefore weak. It is also referred to as an
average/Neyman null hypothesis. It only confines the averages of
the potential outcomes. Meanwhile, a sharp/strong/Fisher null
hypothesis confines all individual potential outcomes.

Notwithstanding that the FRT is designed for sharp null
hypotheses, we ask whether it can test (1) also. The FRT man-
dates that all potential outcomes be filled out. We do so aided by
an artificial sharp null hypothesis. A sensible one is

H0F(C, x, C̃, x̃) :
#

C
C̃

$
Yi =

#
x
x̃

$
for i = 1, . . . , N, (2)

where the matrix (Ct, C̃t, 1J) is invertible. When m = J −
1, C̃ and x̃ are empty, as (Ct, 1J) already form an invertible
square matrix. When m < J − 1, we can construct C̃ from
C and 1J by Gram–Schmidt orthogonalization. We are then to
select x̃ ∈ RJ−m−1. Whatever we select here does not matter

asymptotically, as we see later. For null hypotheses (1) where
x = 0m, we can go with x̃ = 0J−m−1 to get the classical sharp
null hypothesis of no individual effects whatsoever. Intuitively,
the piece CYi = x of (2) is “of ” the weak null hypothesis (1), and
the piece C̃Yi = x̃ is “beyond” it. The hypothesis (2) induces two
key features. The first is the weak null hypothesis (1). The second
is strict additivity, that is, Yi(j) − Yi(k) does not depend on the
unit i, for j, k = 1, . . . , J.

With the sharp null hypothesis (2) and some test statistic T
that ideally can capture possible deviation from (2), the FRT
proceeds as follows.

FRT-1. Calculate T from {Wi, Yobs
i : i = 1, . . . , N}.

FRT-2. Impute potential outcomes:

Y∗
i =

⎛

⎜⎝
Y∗

i (1)
...

Y∗
i (J)

⎞

⎟⎠ = z + (Yobs
i − zWi)1J , where

z =

⎛

⎜⎝
z1
...

zJ

⎞

⎟⎠ =

⎛

⎝
C
C̃
1t

J

⎞

⎠
−1 ⎛

⎝
x
x̃
0

⎞

⎠ ,

or, equivalently, Y∗
i (j) = Yobs

i +zj−zWi for j = 1, . . . , J.

FRT-3. For a permutation π ∈ "N , compute Yobs
π ,i =

!J
j=1 Wπ(i)(j)Y∗

i (j) and calculate Tπ from
{Wπ(i), Yobs

π ,i : i = 1, . . . , N} the same way T was
calculated.

FRT-4. The p-value is (N!)−1!
π∈"N 1(Tπ ≥ T).

As a sanity check, the imputed potential outcomes in FRT-
2 satisfy (2) and Y∗

i (Wi) = Yobs
i for all i. Given the Science

Table, every realization of treatment assignment W produces
data {Wi, Yobs

i : i = 1, . . . , N}. Henceforth, we call the values
of T that can possibly emerge from these data the sampling
distribution of T. Conditioning on the original data {Wi, Yobs

i :
i = 1, . . . , N}, we can fill out missing potential outcomes with
FRT-2. We call the set of values {Tπ : π ∈ "N} defined in FRT-
3 the randomization distribution of T. Since this distribution
depends on the original data, whose randomness comes solely
from W, we denote this distribution by Tπ |W.

Under the sharp null hypothesis that the treatment truly
does not affect any unit whatsoever, the FRT just described
reduces to the classical permutation test. In particular, in FRT-
2, all potential outcomes are equal to the observed outcome
Yobs

i , and in FRT-3, we just need to permute the treatment
assignment W because Yobs

π ,i = Yobs
i for every unit i. Under

this sharp null hypothesis, the FRT and permutation test are
numerically identical. There is an isomorphism between the two
in this sense. In general, the FRT admits a broader class of null
hypotheses and experimental designs than the permutation test.

Step FRT-4 conveys that the FRT p-value is a right-tail prob-
ability. A larger value of T embodies a larger deviation from the
null hypothesis. Even if N! is too large for a manageable exact
computation of the p-value, we are able to fall back on random
iid draws from "N to approximate the p-value in FRT-4 subject
to Monte Carlo error. We are thus always at liberty to sample
randomly from the randomization distribution.
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For any test statistic T, the p-value in FRT-4 is valid under
(2). Our overarching goal is to investigate whether the FRT
can still control Type I error for testing H0N(C, x). Roughly
speaking, this turns out to be affirmative asymptotically granted
an appropriate test statistic T. Before continuing, let us be
specific that the FRT with T conservatively controls Type I
error at level α if P

+
(N!)−1!

π∈"N 1(Tπ ≥ T) ≤ α
,

≤ α.
In words, the true probability of a conservative test incorrectly
rejecting the null hypothesis is never greater than the nominal
significance level. For conciseness, when we say a test controls
Type I error, we do not always mention explicitly that it does so
conservatively.

2.3. Asymptotics for Finite Population Inference

We have contended that the exact sampling distribution of
T depends on unknown potential outcomes under H0N(C, x)

in general. Instead of finite sample theory, we embrace an
asymptotic theory. This gives us a feasible approximation to
the sampling distribution of T. Imagine a sequence of finite
populations of potential outcomes. For each N ≥ 2J, we
fix in advance N1, . . . , NJ ≥ 2. Independently across N, we
generate W according to a CRE, from which we get Yobs

i and
calculate a test statistic. We denote a sequence indexed by N with
N → ∞ by (·) or (·)N≥2J . Technically, we should index finite
population quantities by N, and also index observed quantities
by N1, . . . , NJ . For cleaner notation, and with a nod to the
precedent of earlier authors, we drop these extra subscripts,
unless to emphasize the dependence on N. We now state our
assumptions on the sequence of potential outcomes.

Assumption 1. The sequence (Nj/N) converges to pj ∈ (0, 1) for
all j = 1, . . . , J. The sequences (ȲN) and (SN) converge to Ȳ∞ <

∞ and S∞, where S∞ has finite entries and positive main diag-
onal entries. Further, limN→∞ maxj=1,...,J maxi=1,...,N

+
Yi(j) −

Ȳ(j)
,2

/N = 0.

Assumption 2. Same as Assumption 1 except the last sentence
is replaced by: Further, there exists an L < ∞ such that!N

i=1{Yi(j) − Ȳ(j)}4/N ≤ L for all j = 1, . . . , J and N ≥ 2J.

Proposition 1. Assumption 2 implies Assumption 1.

The design of experiments often guarantees the existence
of pj ∈ (0, 1) because all treatment groups have comparable
sizes in realistic scenarios. We can weaken the existence of Ȳ∞
and S∞ by standardizing the potential outcomes. Just as we
drop N, we might drop subscripts ∞. For instance, S can mean
either the finite population covariance matrix or its limiting
value, which will be clear from context. Intuitively, Assump-
tion 1 requires more than two moments, and Assumption 2
requires four moments. Assumption 2 is thus stronger than
Assumption 1. Below are our principal asymptotic tools, which
are consequences of Li and Ding (2017).

Proposition 2. Under Assumption 1, ˆ̄Y − Ȳ = ( ˆ̄Y(1) −
Ȳ(1), . . . , ˆ̄Y(J) − Ȳ(J))t P→ 0J , and Ŝ(j, j) − S(j, j) P→ 0 for j =
1, . . . , J.

Proposition 3. Under Assumption 1, N1/2( ˆ̄Y − Ȳ)
d→ N (0J , V),

where

V = lim
N→∞

N · cov( ˆ̄Y) (3)

= lim
N→∞

⎛

⎜⎜⎜⎜⎝

N−N1
N1

S(1, 1) −S(1, 2) · · · −S(1, J)
−S(2, 1) N−N2

N2
S(2, 2) · · · −S(2, J)

...
... . . . ...

−S(J, 1) −S(J, 2) · · · N−NJ
NJ

S(J, J)

⎞

⎟⎟⎟⎟⎠
.

The limiting distribution in Proposition 3 depends on
unknown quantities. We need to estimate N · cov( ˆ̄Y). This
covariance, however, depends on S(j, k) (j ̸= k), which do
not have unbiased estimators in general. Prompted by Neyman
(1923/1990), we estimate the main diagonal by

D̂ = N · diag
-

Ŝ(1, 1)/N1, · · · , Ŝ(J, J)/NJ
.

≻ 0.

Proposition 2 implies

D̂ P→ D = diag
+

S(1, 1)/p1, . . . , S(J, J)/pJ
,

≻ 0. (4)

Because V = D − S ≼ D, the estimator D̂ is asymptotically
conservative for N · cov( ˆ̄Y) in the sense that limN→∞ N ·
cov( ˆ̄Y) ≼ plimN→∞ D̂. We will encounter this notion time
after time. Aronow, Green, and Lee (2014) brought up tight
bounds for covariance estimation in treatment-control random-
ized experiments with J = 2. Their results suggest that we can
further improve the estimator D̂. Nevertheless, we will show that
D̂ suffices for our goal of testing (1) with FRTs.

3. Test Statistics

We return to our main endeavor: whether the FRT with a test
statistic T can control Type I error when testing H0N(C, x).
The next proposition demarcates precisely what kind of T can
accomplish this goal.

Proposition 4. Consider testing H0N(C, x). The FRT with test
statistic T controls Type I error at any level if and only if,
under H0N(C, x), the sampling distribution of T is stochastically
dominated by its randomization distribution, that is, if and only
if T ≤st Tπ |W.

To test H0N(C, x), we use a test statistic T, but look upon
its randomization distribution Tπ |W as the reference null dis-
tribution. The p-value in FRT-4 is the probability that Tπ |W
is at least the observed value of T. If T ≤st Tπ |W, then any
quantile of the asymptotic distribution of Tπ |W is at least that
of T. Consequently, we have conservative tests at any level.

It is quite burdensome to ensure a meaningful test statistic
satisfies the criterion of Proposition 4. For a candidate statistic
T, we instead settle for ascertaining whether its randomization
distribution stochastically dominates its sampling distribution
asymptotically under H0N(C, x) for almost all sequences of W.
Henceforth, we call T proper if so.
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3.1. Studentized Statistic

We advocate using the following studentized statistic in the FRT:

X2 = N(C ˆ̄Y − x)t(CD̂Ct)−1(C ˆ̄Y − x). (5)

It is a Wald-type statistic that has a conservative covariance
estimator CD̂Ct for N1/2(C ˆ̄Y − x).

Studentized statistics have appeared alongside permutation
tests when the outcomes are independent samples. Romano
(1990) was aware of the problem of test statistics that were
not studentized in two-sample tests. For Janssen (1997), stu-
dentization was an avenue in the Behrens–Fisher problem to
control the Type I error. Chung and Romano (2013) studied
the same phenomenon when the parameter being cared about
could be more general than the mean. Pauly, Brunner, and
Konietschke (2015) and Konietschke et al. (2015) embraced an
equivalent studentized statistic in general factorial experiments
with independent samples. In the aforementioned settings, stu-
dentization works because the test statistic is asymptotically
pivotal.

As for us, X2 is itself not asymptotically pivotal. Rather, it
is stochastically dominated by a pivotal distribution. This is a
key reason it is exactly the statistic we seek based on Propo-
sition 4. We now formally state our main result that X2 is
proper.

Theorem 1. If Assumption 1 holds, then under H0N(C, x), X2 d→!m
j=1 ajξ 2

j , where each aj ∈ [0, 1]. If Assumption 2 holds, and

π ∼ Unif("N), then X2
π |W

d→ χ2
m a.s.

Immediate from this theorem is that the FRT using X2 con-
trols the asymptotic Type I error under H0N(C, x). This test also
retains finite sample exactness under the sharp null hypothesis
(2). As a result, it is robust for inference on two classes of null
hypotheses.

Asymptotically, under H0N(C, x), neither the sampling nor
randomization distribution of X2 depends on C̃ or x̃, so the
choice of x̃ does not matter. The randomization distribution
also does not depend on H0N(C, x). A violation of H0N(C, x) is
likely to inflate the value of X2 but not the values of X2

π |W. An
appealing consequence of this fact is that the FRT using X2 has
power.

Echoing Chung and Romano (2013) and Pauly, Brunner,
and Konietschke (2015), one purpose of studentization for us
is to control Type I error. Yet, for us, the FRT using X2 is
asymptotically conservative, while the corresponding test in an
independent samples setting is asymptotically exact. This stems
from our potential outcomes framework: { ˆ̄Y(1), . . . , ˆ̄Y(J)} do
not have vanishing correlations, even asymptotically.

Theorem 1 inspires another asymptotically conservative test
besides the FRT. We can reject H0N(C, x) if the observed value
of X2 exceeds the 1−α quantile of χ2

m. We call this alternative to
the FRT the χ2 approximation. This is computationally efficient
without Monte Carlo. The FRT has an additional property. It is
concurrently finite-sample exact for the sharp null hypothesis
(2). Our simulations and practical data examples compare these
two classes of tests empirically.

3.2. Box-Type Statistic

We now steer toward an alternative statistic, one found in Brun-
ner, Dette, and Munk (1997):

B = N ˆ̄YtM ˆ̄Y/ tr(MD̂), (6)

where M = Ct(CCt)−1C is the projection matrix onto the row
space of C. Because we will deem it as not proper in our context,
we can restrict the discussion to x = 0m.

Under independent sampling, Brunner, Dette, and Munk
(1997) approximated the asymptotic behavior of B by an F
distribution through ideas from Box (1954), and called it a
Box-type statistic. Their simulations found it to enjoy superior
empirical small sample properties under their framework.

For our problem, the next result states the behavior of B.
Recall V in (3) and define P = diag(p1, . . . , pJ).

Theorem 2. If Assumption 1 holds, then under H0N(C, 0m),
B d→ !m

j=1 λj(MV)ξ 2
j / tr(MD). If Assumption 2 holds and

π ∼ Unif("N), then Bπ |W d→ !m
j=1 λj(MP−1)ξ 2

j / tr(MP−1)
a.s.

The asymptotic mean of B is
!m

j=1 λj(MV)/ tr(MD) ≤
1 because V ≼ D, and the asymptotic mean of Bπ |W is!m

j=1 λj(MP−1)/ tr(MP−1) = 1. Therefore, the former mean
does not exceed the latter. This is necessary but not sufficient
for the stochastic dominance criterion of Proposition 4, which
does not hold. Hence, the FRT with the Box-type statistic cannot
control Type I error in general, even asymptotically. This is the
subject of a later simulation.

There are two situations where B is proper: equal variances,
and testing a one-dimensional hypothesis.

Corollary 1. Under Assumption 2, if S(1, 1) = · · · = S(J, J),
then B meets the criterion of Proposition 4 asymptotically. If C
is a row vector, then B = X2.

3.3. Statistics From Ordinary Least Squares

Ordinary least squares (OLS) tools are widespread in the anal-
ysis of experimental data (e.g., Morris 2010). We insert J-
treatment randomized experiments into the realm of linear
models. We do this by encoding the treatments with dummy
variables in the design matrix X = diag(1N1 , . . . , 1NJ ). The
response vector consists of the corresponding observed out-
comes from treatment groups 1, . . . , J. The OLS coefficients
are the entries of ˆ̄Y , which has estimated covariance matrix
σ̂ 2(X tX )−1, where σ̂ 2 = (N − J)−1!N

i=1
!J

j=1 Wi(j){Yobs
i −

ˆ̄Y(j)}2 is the mean residual sum of squares. The classical F
statistic for testing (1) is then

F = (C ˆ̄Y)t{σ̂ 2C(X tX )−1Ct}−1C ˆ̄Y/m. (7)

We do not stipulate the usual assumptions of linear regression,
but just want a test statistic for the FRT.

We first record a peculiar situation where F is identical to
the Box-type statistic B. This result will be valuable for our
simulations and practical data examples.
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Proposition 5. B = F if N1 = · · · = NJ and M = Ct(CCt)−1C
has the same entries along its main diagonal.

Except for the scaling by m and the presence of σ̂ 2 in place
of each Ŝ(j, j), F is identical to X2. This pooled variance estimate
σ̂ 2 is problematic for the F statistic, spurring it to fall short of
the criterion of Proposition 4, as we formalize next.

Theorem 3. If Assumption 1 holds, then under H0N(C, 0m),
m · F d→ !m

j=1 λj
/
CVCt(S̄CP−1Ct)−10ξ 2

j where S̄ =
!J

j=1 pjS(j, j). If Assumption 2 holds and π ∼ Unif("N), then

m · Fπ |W d→ χ2
m a.s.

The classical linear model assumes a constant treatment
effect for all units (Kempthorne 1952). This necessitates equal
variances under all treatment levels. Yet, such homoscedastic-
ity is not built into the potential outcomes framework. The
assumptions underlying the F statistic are not compatible with
the potential outcomes framework in general. If the potential
outcomes do have equal variance, then it is not surprising that
F is proper.

Corollary 2. Under Assumption 2, if S(1, 1) = · · · = S(J, J),
then F meets the criterion of Proposition 4 asymptotically.

Huber–White covariance estimation for the OLS coefficients
is frequently quoted as a fix to the classical F statistic. Econo-
metricians are especially inclined to such an estimate of the
covariance when the linear model is possibly misspecified or
the error terms are heteroscedastic. Define the residual ϵ̂i =
Yobs

i − ˆ̄Y(Wi). The Huber–White estimator for N · cov( ˆ̄Y) is

D̂HW =N(X tX )−1X t diag
+
ϵ̂2

1 , . . . , ϵ̂2
N
,
X (X tX )−1

=N · diag
1

N1 − 1
N2

1
Ŝ(1, 1), . . . , NJ − 1

N2
J

Ŝ(J, J)
2

.

If we replace σ̂ 2(X tX )−1 by D̂HW in (7) and dismiss the scaling
by m, we get

X2
HW = N(C ˆ̄Y)t(CD̂HWCt)−1C ˆ̄Y .

D̂HW is nearly identical to D̂ if Nj ≈ Nj − 1 for j = 1, . . . , J.
Therefore, X2

HW is asymptotically akin to X2. By this, the Huber–
White covariance estimator successfully repairs the F statistic.

4. Special Cases

Section 3 devises a strategy for testing weak null hypotheses in
general experiments. The contents there speak directly to many
worthwhile settings.

4.1. One-Way Analysis of Variance

In the one-way analysis of variance (ANOVA) with a multi-
valued treatment, the goal is to test H0N : Ȳ(1) = · · · = Ȳ(J). It
is a special case of the null hypothesis (1) with x = 0J−1 and any
contrast matrix C ∈ R(J−1)×J , for instance, C = (1J−1, −IJ−1).

Here, m = J − 1, which spares us from having to construct C̃ or
select x̃.

We impute potential outcomes in FRT-2 as Y∗
i (j) = Yobs

i for
i = 1, . . . , N and j = 1, . . . , J under H0F : Yi(1) = · · · = Yi(J),
for i = 1, . . . , N. To test H0F, Fisher (1925) crafted the statistic

F =
!J

j=1 Nj{ ˆ̄Y(j) − Ȳobs
· }2/(J − 1)

!J
j=1(Nj − 1)Ŝ(j, j)/(N − J)

, where

Ȳobs
· = 1

N

N3

i=1
Yobs

i . (8)

He argued that FJ−1,N−J approximates the sampling distribution
of F. Ding and Dasgupta (2018) attested that (8) is not proper but

X2 =
J3

j=1

Nj

Ŝ(j, j)
{ ˆ̄Y(j) − Ȳobs

S }2, where

Ȳobs
S =

!J
j=1 Nj

ˆ̄Y(j)/Ŝ(j, j)
!J

j=1 Nj/Ŝ(j, j)
(9)

is for testing H0N with the FRT. See Schochet (2018) for a related
discussion.

It is immediate from the next proposition that our framework
encompasses these results as special cases.

Proposition 6. In the one-way ANOVA, the X2 in (5) and (9)
coincide, as do the F in (7) and (8).

4.2. Treatment-Control Experiments

In the treatment-control setting, J = 2, and unit i either
receives the treatment (then Yobs

i = Yi(1)) or control (then
Yobs

i = Yi(2)). A parameter we might inquire about is the
average treatment effect τ = Ȳ(1) − Ȳ(2). The weak null
hypothesis is H0N(C, 0) : τ = 0. This matches (1), where
C = (1, −1) is a row vector. Thus, treatment-control is a special
case of the one-way layout of Section 4.1. A popular statistic is
|τ̂ |, where τ̂ = ˆ̄Y(1) − ˆ̄Y(2) is the sample difference-in-means
of outcomes. However, Ding and Dasgupta (2018) showed that
|τ̂ | is not proper for testing H0N.

Corollary 3. In the treatment-control setting,

X2 = B = { ˆ̄Y(1) − ˆ̄Y(2)}2
Ŝ(1, 1)/N1 + Ŝ(2, 2)/N2

(10)

= τ̂ 2

Ŝ(1, 1)/N1 + Ŝ(2, 2)/N2
= t2,

where t is the studentized statistic, that is, Neyman’s (1923/1990)
estimator of the average causal effect divided by its standard
error. Under Assumption 2, for almost all sequences of W, B =
X2 can asymptotically control Type I error, but F and |τ̂ | cannot,
unless N1 = N2 or S(1, 1) = S(2, 2).

Because t is a monotone transform of X2, the FRT with |t|
is asymptotically conservative in the finite population setup. It
also leads to exact Type I errors for the sharp null hypothesis
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H0F : Yi(1) = Yi(2) for all i. Not only is the statistic |τ̂ | not
proper, but it also has other “paradoxical” shortcomings (Ding
2017); see also the comment of Loh, Richardson, and Robins
(2017). Corollary 3 declares that a balanced design can salvage
the F and |τ̂ | statistics, even without homoscedasticity. Perhaps
counter to intuition, this protection does not endure when J >

2, as our simulations will soon demonstrate.

4.3. Trend Tests

Our perspective has been on Type I error under null hypotheses
without specifying alternative hypotheses. In experiments for
dose-response relationships, we have ordered treatment 1 ≤
· · · ≤ J and often specify the null and alternative hypotheses
as H0N and H1N : Ȳ(1) ≤ · · · ≤ Ȳ(J) with at least one strict
inequality. We can still carry forward the results in Section 4.1
on ANOVA. Power might shrink for the test if we do not account
for the ordering of the dose-response relationship. Motivated
by Armitage (1955) and Page (1963), we first choose doses
(a1, . . . , aJ) for treatment levels (1, . . . , J). Then the test statistic
r = !J

j=1 aj{ ˆ̄Y(j) − Ȳobs
· } = C ˆ̄Y is plausible, where C =

(a1 − a+N1/N, . . . , aJ − a+NJ/N) ∈ R1×J is a contrast vector,
and a+ =

!J
j=1 aj. In effect, we are testing H0N(C, 0) : CȲ = 0.

Previous theory suggests that r is not proper but the studentized
statistic is

t = C ˆ̄Y
(CD̂Ct/N)1/2

=
!J

j=1 aj{ ˆ̄Y(j) − Ȳobs
· }

{!J
j=1(aj − a+Nj/N)2Ŝ(j, j)/Nj}1/2

.

Note that under H0N, we impute all missing potential outcomes
as Yobs

i for each unit i, albeit we fix a particular contrast vector
C to construct the studentized statistic. Moreover, in this case,
we conduct a one-sided test, rejecting H0N if t is larger than the
1 − α quantile of its randomization distribution.

4.4. Binary Outcomes

The theory for X2 statistics does not insist that the outcome be
of a particular type as long as the regularity conditions hold.
In particular, it applies directly to binary outcomes. However,
binary outcomes have a special feature that S(j, j) = NȲ(j){1 −
Ȳ(j)}/(N − 1), that is, the mean Ȳ(j) determines the variance
S(j, j). Therefore, under the null hypothesis H0N : Ȳ(1) = · · · =
Ȳ(J), the variances are all the same too: S(1, 1) = · · · = S(J, J).
For binary outcomes, the difference-in-means statistic |τ̂ | for
J = 2 in Section 4.2, the F statistic for general J in Section 4.1,
and the r statistic in Section 4.3 are all proper for testing H0N.
As pointed out by Ding (2017), for this weak null hypothesis,
we do not need studentization to guarantee correct asymptotic
Type I error. However, this does not hold for general weak
null hypotheses H0N(C, x) of binary potential outcomes because
CȲ = x does not imply they have equal variances. In general,
we always recommend using X2.

4.5. 2K Factorial Designs

2K factorial designs seek to analyze K binary treatment factors
simultaneously. In total, we have J = 2K possible treatment

combinations. Dasgupta, Pillai, and Rubin (2015) tied these
designs and the potential outcomes framework together. We
summarize this setup. To do so, it is helpful to introduce the
model matrix G ∈ {±1}(J−1)×J . Let ∗ denote the component-
wise product. Lu (2016a) constructed the rows of G, which we
call gt

1 , . . . , gt
J−1, as follows:

• for j = 1, . . . , K, let gt
j be −1t

2K−j , 1t
2K−j repeated 2j−1 times;

• the next
/K

2
0

values of gj’s are gk(1)∗gk(2) where k(1) ̸= k(2) ∈
{1, . . . , K};

• the next
/K

3
0

are component-wise products of triplets of dis-
tinct g1, . . . , gK , etc.;

• the bottom row is gJ−1 = g1 ∗ · · · ∗ gK .

The matrix G has rows orthogonal to each other and to 1J ,
that is, GGt = J · IJ−1 and G1J = 0J−1. Let G̃ ∈ {±1}K×J

be the first K rows of G. Call its columns z1, . . . , zJ , which are
the possible treatment combinations. An example elucidates the
setup.

Example 1. When K = 2, we have

G =

⎛

⎜⎝
−1 −1 1 1
−1 1 −1 1
1 −1 −1 1

⎞

⎟⎠ =

⎛

⎜⎝

gt
1

gt
2

gt
3

⎞

⎟⎠ =
#

G̃
gt

3

$

=
#

z1 z2 z3 z4
1 −1 −1 1

$
.

The four possible treatment combinations are z1 = (−1, −1)t,
z2 = (−1, 1)t, z3 = (1, −1)t, and z4 = (1, 1)t. We read these
off from the first two rows of G.

The rows of G define factorial effects. Namely, g1, . . . , gK
correspond to main effects, gK+1, . . . , gK+(K

2)
correspond to

two-way interactions, etc., and gJ−1 corresponds to the K-way
interaction. Let Yi(j) = Yi(zj) be the response of unit i if it
receives the treatment combination zj. Then we can transfer our
previous notation to 2K factorial designs. The general factorial
effect for unit i indexed by gj is τij = 2gt

j Yi/J, and the corre-
sponding average factorial effect is τj =

!N
i=1 τij/N = 2gt

j Ȳ/J.
Vectorize these quantities: τi = (τi1, . . . , τi,J−1)t = 2GYi/J and
τ = (τ1, . . . , τJ−1)t = 2GȲ/J.

We may perform inference on τ or any subset of its entries.
Let A = {a(1), . . . , a(m)} ⊆ {1, . . . , J − 1} be the target
subset, and let C ∈ {±1}m×J have rows gt

a(1), . . . , gt
a(m). Then

τA = (τa(1), . . . , τa(m))
t = 2CȲ/J. Testing whether τA =

2x/J is equivalent to testing H0N(C, x). The FRT with X2 is
proper. The factorial design stimulates a natural choice of C̃ for
the imputation step FRT-2. We let gt

j be a row of C̃ whenever
j /∈ A.

Lu (2016a) discussed both randomization-based and
regression-based inferences for 2K factorial designs. He fixated
on point estimation and proposed using the Huber–White
covariance estimator. We have likewise highlighted that it is
imperative to use the Huber–White covariance estimator and
the F statistic together in the FRT.
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4.6. Hodges–Lehmann Estimation

Up to this stage, our developments have been on hypothesis
testing. Drawing upon the duality between testing and esti-
mation, our previous results shed light on the estimation of
CȲ . This strategy is sometimes referred to as Hodges–Lehmann
estimation (Hodges and Lehmann 1963; Rosenbaum 2002b).
For a fixed x, we can by means of the FRT obtain a p-value for
the null hypothesis H0N(C, x). Let us denote this p-value by p(x)

to delineate its dependence on x.
The Hodges–Lehmann point estimator τ̂HL for CȲ is the

x ∈ Rm that results in the least significant p-value for testing
H0N(C, x). In symbols, τ̂HL ∈ argmaxx∈Rm p(x). Note that
x = C ˆ̄Y implies X2 = 0, which in turn implies p(x) = 1.
Thus τ̂HL = C ˆ̄Y , the usual unbiased estimator. Because X2 is
proper, the duality between hypothesis testing and confidence
sets assures the following corollary.

Corollary 4. For α ∈ (0, 1) and almost all sequences of W,
an asymptotically conservative (1 − α) confidence set for CȲ
is CRα =

+
x ∈ Rm : p(x) > α

,
, in the sense that

limN→∞ P{CȲ ∈ CRα} ≥ 1 − α.

Determining CRα can be computationally intensive, so it is
expedient to have the asymptotic approximation

CRα ≈
-

x : N(C ˆ̄Y − x)t(CD̂Ct)−1(C ˆ̄Y − x) ≤ χ2
m,α

.
, (11)

where χ2
m,α is the 1 − α quantile of χ2

m. Because the X2 statistic
is a quadratic form, CRα is an ellipsoid centered at C ˆ̄Y . The set
CRα can serve either directly as a 1−α approximate confidence
set or as an initial guess in searching for the exact confidence
region by inverting FRTs. We undertake this later by a simula-
tion.

4.7. Testing Inequalities

FRTs can also handle hypotheses of inequalities:

H̃0N(C, x) : CȲ ≥ x. (12)

We commence at the case where C ∈ R1×J is a row vector with
C1J = 0, and x ∈ R is a scalar.

Example 2. In the two-sample problem with J = 2, we can test
Ȳ(2) − Ȳ(1) ≥ 0: whether treatment level 1 results in smaller
outcomes than treatment level 2 on average. In this case, C =
(−1, 1) and x = 0.

Example 3. In a gold standard design for three arms, let level 1
be the placebo control, level 2 be the active control, and level 3 be
the experimental treatment. Suppose that smaller outcomes are
more desirable, and we know that Ȳ(2) > Ȳ(1) from previous
studies. Given * > 0, the goal is to test the hypothesis Ȳ(1) −
Ȳ(3) ≤ *{Ȳ(1) − Ȳ(2)}. When * > 1, this is a superiority
test, and when * ∈ (0, 1), this is a noninferiority test (Mutze
et al. 2017). This null hypothesis is equivalent to H̃0N(C, 0) :
(* − 1)Ȳ(1) − *Ȳ(2)+ Ȳ(3) ≥ 0 with C = (* − 1, −*, 1).

To impute the missing potential outcomes, we pretend that
the null hypothesis is H0N(C, x) and use (2) as we did before.
The statistic X2 is not suitable here because it is intended
for two-sided tests. For instance, X2 can be large, even under
H̃0N(C, x). Instead we use a truncated statistic t+ = max(t, 0)

where

t = N1/2(x − C ˆ̄Y)/(CD̂Ct)1/2.

The FRT with t also works for p-values at most 0.5. Mutze et al.
(2017) used the special case of t in the setting of Example 3. We
choose t+ so that Proposition 4 directly covers our situation. We
summarize the results below.

Corollary 5. Consider testing H̃0N(C, x) in (12), where C ∈
R1×J and x ∈ R. If Assumption 1 holds, then under H0N(C, x)

in (1), we have t d→ N (0, a) for some a ∈ [0, 1]. If Assumption 2
holds and π ∼ Unif("N), then tπ |W d→ N (0, 1) a.s. In
particular, the FRT with test statistic t+ can asymptotically
control Type I error under H̃0N(C, x) a.s.

When C ∈ Rm×J and x ∈ Rm for m > 1, we can interpret
(12) as component-wise inequalities. Neither X2 nor t+ are
acceptable when m > 1. An elementary workaround is to test
each component using t+ and apply a Bonferroni correction.

4.8. Cluster-Randomized Experiments

In many applied settings, the N units are partitioned into L clus-
ters (e.g., classrooms in educational studies, villages in public
health studies). All units belonging to a cluster must receive the
same treatment. A cluster-randomized experiment assigns treat-
ments to clusters, that is, it is a CRE treating clusters as units. For
l = 1, . . . , L, let W̆l ∈ {1, . . . , J} represent the treatment that
cluster l receives, and define the indicator W̆l(j) = 1(W̆l = j).
There are L!/"J

j=1 Lj! possible realizations of (W̆1, . . . , W̆L).
The mechanism of treatment assignment to clusters is identical
to that to individuals in a CRE.

Middleton and Aronow (2015) stressed that we cannot
implement the same analysis as if we had a CRE on the N
units. For instance, ˆ̄Y(j) is no longer an unbiased estimator
for Ȳ(j) if the cluster sizes vary. Both Middleton and Aronow
(2015) and Li and Ding (2017) advised a CRE-like analysis. Let
Xi ∈ {1, . . . , L} represent the cluster membership of unit i.
Define cluster level aggregated potential outcomes {Al(j) : l =
1, . . . , L, j = 1, . . . , J}, where Al(j) = !N

i=1 1(Xi = l)Yi(j).
Define Al = (Al(1), . . . , Al(J))t, Aobs

l , Ā = (Ā(1), . . . , Ā(J))t,
ˆ̄A = ( ˆ̄A(1), . . . , ˆ̄A(J))t to align with our previous notation for
a CRE. Aggregated potential outcomes resolve the problem of
unbiased estimation of Ȳ : E(L ˆ̄A/N) = LĀ/N = Ȳ . Define
ŜA(j, j) = !L

l=1 W̆l(j){Aobs
l − ˆ̄A(j)}2/(Lj − 1) and D̂A = L ·

diag{ŜA(1, 1)/L1, . . . , ŜA(J, J)/LJ}. We revise the X2 statistic as

X2
A = L(C ˆ̄A − Nx/L)t(CD̂ACt)−1(C ˆ̄A − Nx/L).

Then Theorem 1 tells us that X2
A is proper for H0N(C, x) as L →

∞ if Assumption 2 holds for the aggregated potential outcomes.
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5. Extensions

5.1. Stratified Randomized Experiments

We extend previous results to the stratified randomized exper-
iment (SRE), also called the randomized block design. The
overall setup from the CRE still applies, but now for each unit
we also observe an associated covariate Xi ∈ {1, . . . , H}. Thus,
our data are {Yobs

i , Xi, Wi : i = 1, . . . , N}. The treatment does
not affect this covariate. The Wi’s remain the sole source of
randomness. For h = 1, . . . , H, the hth stratum consists of all
units i where Xi = h, whose size is N[h] =

!N
i=1 1(Xi = h)

and proportion is ω[h] = N[h]/N. For h = 1, . . . , H and
j = 1, . . . , J, the experimenter predetermines the sample sizes
N[h]j =

!N
i=1 1(Xi = h, Wi = j) ≥ 2. In a SRE, we assign

treatments within each stratum just as we did in a CRE, and
independently among different strata (Imbens and Rubin 2015).

To define within-stratum means and covariances, we mirror
previous notation. For h = 1, . . . , H, the mean vector is Ȳ[h] ∈
RJ , which has jth entry Ȳ[h](j) = !N

i=1 1(Xi = h)Yi(j)/N[h].
The covariance S[h] has (j, k)th entry S[h](j, k) = !N

i=1 1(Xi =
h){Yi(j) − Ȳ[h](j)}{Yi(k) − Ȳ[h](k)}/(N[h] − 1). We impose
Assumption 2 on all strata.

Assumption 3. For h = 1, . . . , H, (1) limN→∞ N[h]/N = ω[h] ≥
0 and limN→∞ N[h]j/N[h] = p[h]j > 0; (2) the sequences (Ȳ[h])
and (S[h]) converge to Ȳ[h]∞ and S[h]∞; (3) the matrix S[h]∞ has
strictly positive main diagonal entries; (4) there exists an L < ∞
such that

!N
i=1 1(Xi = h){Yi(j) − Ȳ[h](j)}4/N[h] ≤ L for all N

and j = 1, . . . , J.

We do not distinguish between Assumptions 1 and 2 in the
SRE for convenience. Tolerating a tiny abuse of notation, ω[h]
stands for both N[h]/N and its limit. The sample mean vector is
ˆ̄Y[h] ∈ RJ , which has jth entry ˆ̄Y[h](j) = !N

i=1 1(Xi = h, Wi =
j)Yobs

i /N[h]j. The sample variance is Ŝ[h](j, j) = !N
i=1 1(Xi =

h, Wi = j){Yobs
i − ˆ̄Y[h](j)}2/(N[h]j−1). Under Assumption 3, we

have from Proposition 3 that, inside stratum h, the standardized
stratum-wise sample mean N1/2

[h] (
ˆ̄Y[h] − Ȳ[h]) is asymptotically

Normal with mean 0 and a covariance we denote V[h]. A con-
servative estimator for V[h] is

D̂[h] = N[h] · diag{Ŝ[h](1, 1)/N[h]1, . . . , Ŝ[h](J, J)/N[h]J}.
An unbiased estimator for Ȳ is ˘̄Y = !H

h=1 ω[h] ˆ̄Y[h]. Owing
to the independence of treatment assignment across different
strata, N1/2( ˘̄Y − Ȳ) is asymptotically Normal with mean 0 and
covariance

!H
h=1 ω[h]V[h]. A conservative variance estimator is

D̆ =!H
h=1 ω[h]D̂[h].

We are now positioned to make an adjustment to X2 that is
proper when used with the FRT in a SRE:

X2 = N(C ˘̄Y − x)t(CD̆Ct)−1(C ˘̄Y − x),

= N
4

C
H3

h=1
ω[h] ˆ̄Y[h] − x

5t 4 H3

h=1
ω[h]CD̂[h]Ct

5−1

×
4

C
H3

h=1
ω[h] ˆ̄Y[h] − x

5

. (13)

The special case h = 1 and (5) agree, so the same notation X2 for
this statistic is logical. Besides the form of the test statistic, the
FRT entails two more modifications in the case of an SRE. First,
we impute the potential outcomes stratum by stratum under the
sharp null hypothesis

H0F(C, x[1], . . . , x[H], C̃, x̃[1], . . . , x̃[H]) :
#

C
C̃

$
Y∗

i =
#

x[h]
x̃[h]

$
, whenever Xi = h.

Since we still aim to test (1), the above null hypothesis must
satisfy

!H
h=1 ω[h]x[h] = x. If x = 0m, it is natural to choose

x[h] = x and x̃[h] = 0J−m−1 for each h. Under the above sharp
null hypothesis, we can impute all potential outcomes: for units
in stratum h,

Y∗
i =

⎛

⎜⎝
Y∗

i (1)
...

Y∗
i (J)

⎞

⎟⎠ = z[h] + (Yobs
i − z[h],Wi)1J , where

z[h] =

⎛

⎜⎝
z[h],1

...
z[h],J

⎞

⎟⎠ =

⎛

⎝
C
C̃
1t

J

⎞

⎠
−1 ⎛

⎝
x[h]
x̃[h]

0

⎞

⎠ ,

or, equivalently, Y∗
i (j) = Yobs

i +z[h],j −z[h],Wi . Second, we ought
to permute the treatment indicators within strata, indepen-
dently across strata. Let "N,S ⊆ "N be all such permutations
from a SRE. The p-value is

6"H
h=1 N[h]!

7−1!
π∈"N,S 1(X2

π ≥
X2).

Theorem 4. In a SRE, suppose Assumption 3 holds. Under
H0N(C, x), X2 d→ !m

j=1 ajξ 2
j , where each aj ∈ [0, 1]. If π ∼

Unif("N,S), then X2
π |W

d→ χ2
m a.s. In particular, the FRT with

test statistic X2 can asymptotically control Type I error because
the condition of Proposition 4 holds.

Even if the original experiment is a CRE, if a discrete covari-
ate X is available, we can condition on the number of treated
and control units landing in each stratum. Then the treatment
assignment is identical to a SRE. Therefore, in a CRE, we can
still permute the treatment indicators within each stratum of X.
This plan is billed as a conditional randomization test. Zheng
and Zelen (2008) and Hennessy et al. (2016) perceived that
conditional randomization tests typically enhance the power as
long as the covariates are predictive of the outcomes.

We have focused on the SRE with large strata, that is, N[h] →
∞ for h ∈ 1, . . . , H, and H is fixed. Our theory does not
encapsulate SREs with many small strata, that is, the N[h]’s are
bounded but H → ∞ (Fogarty 2018a). Although we conjecture
that similar results hold in such cases, we defer technical details
to future research.

5.2. Multiple Outcomes and Multiple Testings

We can lengthen the reach of our framework to the case where
all potential outcomes Yi(j) ∈ Rd are vectors. Define Ȳ(j) and
ˆ̄Y(j) ∈ Rd as before. It is convenient to gather these into long
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vectors

Ȳ =

⎛

⎜⎝
Ȳ(1)

...
Ȳ(J)

⎞

⎟⎠ ∈ RdJ , ˆ̄Y =

⎛

⎜⎜⎝

ˆ̄Y(1)
...
ˆ̄Y(J)

⎞

⎟⎟⎠ ∈ RdJ .

The covariances S(j, k) = !N
i=1{Yi(j) − Ȳ(j)}{Yi(k) −

Ȳ(k)}t/(N − 1) and Ŝ(j, j) =!N
i=1 Wi(j){Yobs

i − ˆ̄Y(j)}{Yobs
i −

ˆ̄Y(j)}t/(Nj −1) are now matrices, for j, k = 1, . . . , J. The overall
covariance matrix S ∈ RdJ×dJ has (j, k)th block S(j, k). Assume
S(j, j) and Ŝ(j, j) are both positive definite for all realizations
of W.

Let Yi(j)1, . . . , Yi(j)d be the d components of the potential
outcomes Yi(j) for all i and j. We wish to test the weak null
hypothesis

H0N(C1, . . . , Cd, x1, . . . , xd) : (14)

C1

⎛

⎜⎝
Ȳ(1)1

...
Ȳ(J)1

⎞

⎟⎠ = x1, . . . , Cd

⎛

⎜⎝
Ȳ(1)d

...
Ȳ(J)d

⎞

⎟⎠ = xd,

where C1, . . . , Cd are contrast matrices that have J columns and
possibly varying row counts. We can condense notation via the
Kronecker product: define

C =

⎛

⎜⎝
C1 ⊗ et

1
...

Cd ⊗ et
d

⎞

⎟⎠ , x =

⎛

⎜⎝
x1
...

xd

⎞

⎟⎠ ,

where {e1, . . . , ed} are the standard basis vectors of Rd. We can
then write (14) in the form H0N(C, x) : CȲ = x. It looks exactly
like (1), but C cannot be an arbitrary contrast matrix.

Example 4. We lay out some possible contrast matrices when
J = 3 and d = 2. The hypothesis H0 : Ȳ(1) = Ȳ(2) = Ȳ(3) has
the contrast matrix
⎛

⎜⎜⎝

1 0 −1 0 0 0
1 0 0 0 −1 0
0 1 0 −1 0 0
0 1 0 0 0 −1

⎞

⎟⎟⎠ =
#

C1 ⊗ et
1

C1 ⊗ et
2

$
, where

C1 =
#

1 −1 0
1 0 −1

$
.

Here, we test the same hypothesis entry by entry, and an
equivalent contrast matrix is C1 ⊗ I2. We can also test different
hypotheses entry by entry, for instance, H0 : Ȳ(1)1 = Ȳ(2)1,
Ȳ(2)2 = Ȳ(3)2. This hypothesis has the contrast matrix
#

1 0 −1 0 0 0
0 0 0 1 0 −1

$
=
#

C1 ⊗ et
1

C2 ⊗ et
2

$
, where

C1 = (1, −1, 0) and C2 = (0, 1, −1).

The potential outcomes framework cannot withstand com-
parison of different entries under different treatments, for
instance, H0 : Ȳ(1)1 = Ȳ(2)2. Null hypotheses like these do
not have a clear causal interpretation here. Under iid sampling,
Friedrich, Brunner, and Pauly (2017) allowed for a general
contrast matrix C, and even for the length of Yi(j) to depend on
treatment j. We constrain the contrast matrices C that we accept,
as we have just detailed.

Under iid sampling and vector potential outcomes, Chung
and Romano (2016) addressed the two-sample problem with
permutation tests. Srivastava and Kubokawa (2013), Koni-
etschke et al. (2015), and Friedrich and Pauly (2018) tested
general linear hypotheses with bootstrap methods. We will use
the FRT for (14). It is not a sharp null hypothesis, so we concoct
one:

H0F:
#

C1
C̃1

$
⎛

⎜⎝
Yi(1)1

...
Yi(J)1

⎞

⎟⎠ =
#

x1
x̃1

$
, . . . ,

#
Cd
C̃d

$
⎛

⎜⎝
Yi(1)d

...
Yi(J)d

⎞

⎟⎠ =
#

xd
x̃d

$
,

for i = 1, . . . , N,

where the matrices (Ct
1, C̃t

1, 1J) through (Ct
d, C̃t

d , 1J) are invert-
ible. We construct the C̃’s and x̃’s for each component of the
outcome in the same way as the scalar case. In the hypothesis
H0F, our notation does not reflect its dependence on the C’s, C̃’s,
x’s, and x̃’s. We impute potential outcomes as if H0F were the
reality. For the first component:

⎛

⎜⎝
Y∗

i (1)1
...

Y∗
i (J)1

⎞

⎟⎠ = z1 + (Yobs
i,1 − z1Wi)1J , where (15)

z1 =

⎛

⎜⎝
z11

...
z1J

⎞

⎟⎠ =

⎛

⎝
C1
C̃1
1t

J

⎞

⎠
−1 ⎛

⎝
x1
x̃1
0

⎞

⎠

and similarly for the second through the dth entries, replacing
all subscripts 1 by 2, . . . , d.

For vector potential outcomes, we tweak X2 in (5):

X2 = N(C ˆ̄Y − x)t(CD̂Ct)−1(C ˆ̄Y − x),

where the block diagonal matrix D̂ = N ·
diag{Ŝ(1, 1)/N1, . . . , Ŝ(J, J)/NJ} is an asymptotically
conservative estimator of N · cov( ˆ̄Y). This is in sync with
(4). The FRT with X2 can control the asymptotic Type I error
under (14). We first give the asymptotic requirements and then
adapt Theorem 1 to the vector case. Let | · | be the Euclidean
norm, which reduces to the usual absolute value for scalars.

Assumption 4. The sequence (Nj/N) converges to pj ∈ (0, 1)

for all j = 1, . . . , J. The sequences (ȲN) and (SN) converge to
Ȳ∞ and S∞, where |Ȳ∞| < ∞, S∞ is positive semidefinite,
and S∞(j, j) is positive definite for all j = 1, . . . , J. Further,
limN→∞ maxj=1,...,J maxi=1,...,N |Yi(j) − Ȳ(j)|2/N = 0.

Assumption 5. Same as Assumption 4 except the last sentence
is replaced by: Further, there exists an L < ∞ such that!N

i=1 |Yi(j)−Ȳ(j)|4/N ≤ L for all j = 1, . . . , J and N ≥ (d+1)J.
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Proposition 7. Assumption 5 implies Assumption 4.

Theorem 5. If Assumption 4 holds, then under H0N(C, x), X2 d→!m
j=1 ajξ 2

j , where each aj ∈ [0, 1]. If Assumption 5 holds and

π ∼ Unif("N), then X2
π |W

d→ χ2
m a.s. In particular, the FRT

with test statistic X2 can asymptotically control Type I error a.s.

Theorem 5 puts in place a foundation for a single FRT for
multiple outcomes. As done in Chung and Romano (2016,
sec. 4), we can join Theorem 5 and the closure procedure for
multiple testings. We omit the details.

To conduct the FRT with X2 at all, we require all realizations
of Ŝ(j, j) to be invertible, for which it is necessary that Nj ≥
d + 1. Friedrich and Pauly (2018) instead tried X̃2 = N(C ˆ̄Y −
x)t(CD̃Ct)−1(C ˆ̄Y − x) with a bootstrap, where D̃ is a diagonal
matrix whose main diagonal is the same as D̂. However, X̃2 is
not proper for the FRT because the asymptotic distribution of
X̃2

π |W is not pivotal. So it is flawed for the same reason the Box
type statistic B in (6) is. We reserve FRTs with d → ∞ for future
research.

6. Simulations

6.1. Type I Error Rates of FRTs With Different Statistics

We perceive from previous sections that X2 is proper, but B and
F are not. As a complement to this asymptotic fact, simulations
reveal their finite sample behavior. To drive this point, we repeat
the simulations with varying sample sizes. All the test statistics
we brought up had other specific purposes in the literature.
Thus, the simulations also serve to compare their efficacy with
the FRT for testing weak null hypotheses.

6.1.1. Simulation Setup
We decided on the ANOVA with J = 3 and the 22 factorial with
J = 4 setup, which we refer to as “ANOVA” and “factorial” for
short. The null hypotheses being tested, written in the form of
(1), are

H0N :
#

1 −1 0
1 0 −1

$
Ȳ = 0 for ANOVA, and

H0N :
#−1 −1 1 1

−1 1 −1 1

$
Ȳ = 0 for factorial.

In words, the former tests for no effects of any treatments on
average. The latter tests for no main effects of either of the two
factors on average. Both setups shall have a balanced design
Nj = N/J for all j. We then gain from Proposition 5 that B = F.
Thus, a comparison of X2 and B suffices. In all cases, we compel
Ȳ(1) = · · · = Ȳ(J) = 0, so the weak null hypothesis of no
treatment effects on average holds. We also compel force the
covariance structure S = uut on the potential outcomes. For the
ANOVA case, ut = (u1, u2, u3) = (1, 2, 3), and for the factorial
case, ut = (u1, u2, u3, u4) = (3, 1, 1, 3). We deliberately avoid
any sharp null hypothesis being true by design. Otherwise, all
test statistics would have correct Type I error control.

Explicitly, we first generate Yi(1)
iid∼ N (0, 1) for i = 1, . . . , N,

center them, and scale them according to Yi(j) = ujYi(1). For

the hypothesis test itself, we simulate 10,000 different realiza-
tions of the observed outcomes. For each set of (Wi, Yobs

i )N
i=1,

we run the FRT with both X2 and B, calculating p-values from
2500 permutations.

For these potential outcomes, we compute the eigenvalues
in Theorems 1 and 2 to derive that the asymptotic sampling
distributions of X2 and 2B under H0N are

X2 d→ ξ 2
1 + 0.758ξ 2

2 , 2B d→ 1.423ξ 2
1 + 0.434ξ 2

2 , (ANOVA), (16)

X2 d→ ξ 2
1 + ξ 2

2
d= χ2

2 , 2B d→ 1.8ξ 2
1 + 0.2ξ 2

2 , (factorial);

their randomization distributions are both asymptotically χ2
2

in both the ANOVA and factorial designs. This provides an
illustrative and simple numerical example of our main results.
Each weight for X2 is at most 1, while the weights for 2B are
only at most 1 on average. In the factorial case, the FRT with X2

is actually asymptotically exact because both the sampling and
randomization distributions of X2 approach χ2

2 .
We can naturally broaden the simulations just performed

to SREs. We keep the ANOVA and factorial setup, but now
incorporate a SRE with H = 2 strata. Remember that this
means the observed data come from running a CRE within
each stratum separately. The first stratum of potential outcomes
shall be identical to those of the ANOVA simulation above.
The second stratum shall be identical to the first, except a unit
constant is added to all its potential outcomes. This between
stratum effect merits a SRE analysis. We proceed with the X2

statistic in (13), and only permute data within each stratum
when obtaining p-values.

The textbook suggestion Morris (2010) for testing the our
null hypotheses in the SRE case involves the F statistic from
a linear regression of the observed response on stratum and
treatment indicators, that is, J+H predictors. Although Morris
(2010) has reiterated the usual OLS assumptions that justify the
F test, practitioners do not always check them. We therefore
would like to compare X2 and F in this SRE setting. From The-
orem 4, we know X2 in (13) has the same asymptotic behavior
as listed in (16). By intuition from Lin (2013), we anticipate that
2F also has the same asymptotic behavior as before.

In all four settings we have put forth, we also fix three dif-
ferent sample size settings to pinpoint the rate that asymptotics
take effect.

6.1.2. Results
Figure 1 contains the simulation results. For each setting and
sample size, we plot histograms of p-values from the FRT with
X2 and B or F. In all histograms, the left-most bin of p-values
ranging from 0 to 2% is most informative. For a successful
control of Type I error, the density of p-values here should not
surpass 1 by much. From the bottom row of Figure 1, N1 or
N[1]1 = 5 (bottom row) is evidently far from the asymptotic
regime. When N1 or N[1]1 = 20 (middle row), it appears
that we move much closer to the expected behavior dictated by
asymptotics. This is because, when these counts are 40 (top row),
the histograms do not change much from the row below. That is,
the first and second rows have a similar pattern. The similarity
of the SRE histograms to the corresponding CRE ones buttresses
our intuition that X2 and F have similar distributions as their
“unstratified” twins for our simulated potential outcomes.
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p values
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0.5

1.0

1.5

Factorial S, N=160
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1.5

ANOVA, N=120

0.00.20.40.60.81.0

ANOVA S, N=240 Factorial, N=160

0.00.20.40.60.81.0

Factorial S, N=320

Figure 1. Histograms of FRT p-values under various settings and sample sizes, with “S” indicating the stratified cases. Gray bars indicate p-values from a F statistic, while
transparent bars indicate p-values from the X2 statistic. We display smaller p-values with a finer resolution because most hypothesis tests are conducted at levels close to
0. A dashed line indicating the Unif(0, 1) density is added for reference purposes.

It is also confirmed that the FRT with B or F fails to control
Type I error at small p-values for any sample size. We recollect
from our theory that heteroscedasticity hampers its suitability.
We have elected to balance the designs, so that it surfaces that,
when J > 2, balanced designs do not guarantee the suitability
of B or F as they do in treatment-control experiments (refer to
Corollary 3). Of course, forgoing balanced designs can cause
both B and F to fail more seriously. Ding and Dasgupta (2018)
compared X2 and F in such cases through extensive simulation.

6.2. Confidence Regions

Our next simulation constructs confidence regions alluded to
by Corollary 4. At the same time, we seize the opportunity to
compare the FRT and χ2 approximations that are both asymp-
totically valid by Theorem 1. We decided on a balanced 22

factorial design (K = 2, J = 22 = 4) where Nj = 10 for
j = 1, . . . , 4. We seek to infer the main effects τ1, τ2, both
individually and jointly. Take Yi(j) iid∼ U2 − 1/3 where U ∼
Unif(0, 1), and center so that each Ȳ(j) = 0. This way, the
true parameter values are τ1 = τ2 = 0, but takeaways of this

simulation generalize to arbitrary τ1, τ2. Next, multiply each Yi
by the same matrix

⎛

⎜⎜⎝

2 1 3/2 1
0

√
5

√
5/2 2/

√
5

0 0 3/
√

2 1/
√

2
0 0 0

√
3.7

⎞

⎟⎟⎠

to inject correlation into the potential outcomes.
We assign treatments to units according to the CRE, and

construct the confidence regions by means of a single realization
of observed outcomes. The set CRα in (11) is a means to com-
pute an asymptotic confidence region for τ1, τ2. After finding
it, we spread a grid of points centered at τ̂1, τ̂2 that comfortably
envelops this asymptotic region. At each point (x1, x2) of this
grid, we run the FRT with X2 to test τ1 = x1, τ2 = x2, both
individually and jointly. We induct the point into our confidence
region if and only if the p-value exceeds α = 0.05.

Figure 2(a) shows the results for the marginal hypothesis
tests. The behavior is very regular: the p-value crests near τ̂1 or
τ̂2, and decays monotonically to the left and right. The FRT and
χ2 approximation confidence intervals are nearly indistinguish-
able. Figure 2(b) shows the result for the joint test. The left graph
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Figure 2. Simulation for confidence regions.

shows the FRT confidence region is again close to its asymptotic
approximation, but not as close as in the 1D case. In particular,
the former is noticeably larger. The right graph explains this by
exposing that the p-values calculated from the FRT tend to be
larger than those from the χ2 approximation.

Due to the duality between hypothesis testing and confidence
regions, the empirical coverage of our confidence region is the
proportion of time it includes τ1 = τ2 = 0 over all realizations
of the observed data. From the simulations in the previous
section, which deals with the false rejection rate of the FRT, we
expect this proportion to be at least 0.95. The closeness of the
confidence regions to their asymptotic approximations suggests
our results generalize to other realizations of the observed data.
That is, those confidence regions will be centered at (τ̂1, τ̂2), but
have similar shape.

7. Applications

We now try out our method on practical datasets, under a
variety of possible weak null hypotheses. Our goal is not to do
complete data analyses. We do not delve into issues of multi-
ple comparisons. We pretend each null hypothesis is tested in
isolation.

7.1. Financial Incentives for Exercise

Charness and Gneezy (2009) were interested in whether finan-
cial incentives caused college students to exercise more. They
randomly assigned 40 students each to one of three possible
treatments: no financial incentive (control), a small one, or a
large one. We henceforth index these groups by j = 1, 2, 3,



14 J. WU AND P. DING

respectively. Then N1 = N2 = N3 = 40. For each student,
the response was the average number of weekly gym visits
after the study minus that before the study. Let Yi(j) denote
this quantity for the ith student, if s/he received treatment j.
Many students had Yobs

i = 0. This would be troublesome
for the FRT with X2 if, after a certain permutation, all per-
muted observations in a group were 0. To preclude this, we
added a minuscule amount of random noise to all the Yobs

i .
For this dataset, the sample means are −0.029, 0.054, 0.640,
and the sample variances are 0.152, 0.386, 1.489, for groups
j = 1, 2, 3, respectively. Mere inspection of these numbers
posits that a large financial incentive has a positive effect while
a small one does not. It is also apparent that the data are
heteroscedastic.

We test these four hypotheses at level 1%: whether the two
magnitudes of financial incentives have any effect on average,
whether financial incentives have any effect ignoring the divi-
sion between large and small, whether financial incentives have
any effect, and whether small financial incentives have any effect.
In symbols, these are 2Ȳ(1) = Ȳ(2) + Ȳ(3), Ȳ(1) = Ȳ(2, 3)

(here we collapse treatment levels j = 2, 3 to one), Ȳ(1) =
Ȳ(2) = Ȳ(3), and Ȳ(1) = Ȳ(2) (here we ignore the Wi = 3
observations), respectively.

We use the X2 and F statistics, and get p-values both by
the FRT and the χ2 (or F) approximation. As we brought
up earlier, p-values from FRTs are also finite-sample exact
for testing Fisher’s sharp null hypothesis. Consult Table 1 for
the results. The class of hypothesis test (FRT and χ2 (or F)
approximation) holds little sway. It seems, for X2, the FRT
is slightly more conservative. For F, the FRT is slightly less
conservative.

Testing the first two hypotheses, financial incentives have
a statistically significant impact on gym attendance. Guided
by Theorems 1 and 3, we should trust the p-values from X2

more than those from F. The latter statistic seems to have
overly conservative behavior for this dataset. Testing the third
hypothesis suggests that the treated group (j = 2 or 3) has
different behavior from the control in a statistically significant
way.

Table 1. Analyzing Charness and Gneezy’s (2009) data with p-values as percents.

Hypothesis X2 d→ χ2
m FRT using X2 F d→ Fm,N−J FRT using F

2Ȳ(1) = Ȳ(2)+ Ȳ(3) 0.25 0.27 1.97 1.59
Ȳ(1) = Ȳ(2) = Ȳ(3) 0.42 0.49 0.06 0.01
Ȳ(1) = Ȳ(2, 3) 0.34 0.49 2.45 2.34
Ȳ(1) = Ȳ(2) 47.15 47.93 47.37 47.93

NOTE: We calculate the FRT p-values using 104 Monte Carlo simulations and the
asymptotic p-values based on χ2 or F approximations.

Seeing evidence that financial incentives might be helpful,
we test the fourth hypothesis only comparing the control and
small incentive groups, and get insignificant p-values. Note, in
this case, X2 = F by Corollary 3, thanks to the balanced design.
To wrap up, we concur with the findings of Charness and Gneezy
(2009), that large financial incentives seem to induce people to
visit the gym more often, but not small ones.

7.2. A 22 Factorial Experiment for Grades

We now undertake a similar analysis as in the previous sec-
tion on another dataset. Angrist, Lang, and Oropoulos (2009)
wondered whether academic support services and/or finan-
cial incentives caused college students to improve their grades.
Their data consisted of student grades for a certain semester
on a 100 point scale. In that semester, students were either
in a control group, offered a fellowship, offered services, or
both. We thus have a 22 factorial experiment, and henceforth
index these treatment groups by j = 1, 2, 3, 4, respectively.
As opposed to the allocation in the previous section, this one
is imbalanced: (N1, N2, N3, N4) = (854, 219, 212, 119). The
sample means are 63.9, 65.8, 64.1, 66.1, and the sample variances
are 145, 124, 160, 114, for groups j = 1, 2, 3, 4, respectively. By
eye, there is less heteroscedasticity, and the sample means are
less markedly off from each other than those of the previous
section.

We test the following five hypotheses at level 1%: financial
services have no effect, services have no effect, neither has an
effect, no interactions, and that all group means are the same. In
symbols, these are Ȳ(1)+ Ȳ(2) = Ȳ(3)+ Ȳ(4), Ȳ(1)+ Ȳ(3) =
Ȳ(2)+ Ȳ(4), both of the previous two, Ȳ(1)+ Ȳ(4) = Ȳ(2)+
Ȳ(3), and Ȳ(1) = Ȳ(2) = Ȳ(3) = Ȳ(4).

We again use the X2 and F statistics, and get p-values both
by the FRT and the χ2 (or F) approximation. As we discussed
earlier, p-values from FRTs are also exact for testing Fisher’s
sharp null hypothesis. Consult Table 2 for the results. The class
of hypothesis test again holds little sway. The FRT seems as a
whole slightly more conservative, though there are a few excep-
tions. We cannot reject any of these null hypotheses at level 1%.
From the second and fourth hypotheses, the data do not seem
to suggest services have any effect, or that there is a nonadditive
effect from combining incentives and services. We do, however,
almost reject the hypothesis of no effect from incentives alone:
the p-values are just over 1%.

Our finding that the effect of incentives is more significant
than the effect of others conforms with the conclusions of
Angrist, Lang, and Oropoulos (2009). They went on to conduct
subgroup analysis, and discovered that the observed effects on
grades come nearly exclusively from female students.

Table 2. Analyzing Angrist, Lang, and Oropoulos’s (2009) data with p-values as percents.

Hypothesis X2 d→ χ2
m FRT using X2 F d→ Fm,N−J FRT using F

No effect from services 72.84 72.34 73.92 73.58
No effect from incentives 1.19 1.43 1.60 1.80
No effects from either 3.65 3.99 5.26 5.28
No interaction 99.53 99.47 99.55 99.5
Ȳ(1) = Ȳ(2) = Ȳ(3) = Ȳ(4) 3.88 4.31 5.85 5.71

NOTE: We calculate the FRT p-values using 104 Monte Carlo simulations and the asymptotic p-values based on χ2 or F approximations.
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8. Discussion

We have proposed a strategy for using the FRT to test a weak null
hypothesis. It imputes the missing potential outcomes under
a compatible sharp null hypothesis, and then uses the stu-
dentized statistic in the FRT. It furthers the current literature
in two directions. First, it complements the tests centered on
asymptotic distributions. Our FRT is also finite-sample exact
under the sharp null hypothesis. Second, it guides the choice
of test statistic for the sharp null hypothesis. Although the
finite-sample exactness property of the FRT holds for any test
statistic, the p-values are sensitive to this choice. For example,
all the p-values in Tables 1 and 2 are valid for Fisher’s sharp
null hypothesis. Unfortunately, these p-values range above and
below the nominal significance level. This can be confusing in
practice. Therefore, we cannot overstate the crucial role of weak
null hypotheses and studentized statistics. Our FRTs can control
asymptotic Type I error under weak null hypotheses and have
power under corresponding alternative hypotheses.

Our theory ignores covariates. The analysis of covariance is a
classical topic (Fisher 1935) and still attracts attention (Lin 2013;
Lu 2016b; Fogarty 2018a, 2018b; Middleton 2018). Bloniarz et al.
(2016) and Lei and Ding (2018) widened it to the case where the
number of covariates grows with the sample size. Tukey (1993)
and Rosenbaum (2002a) discussed strategies for testing sharp
null hypotheses. It is important to extend the theory to test weak
null hypotheses with covariate adjustment, plus to the case with
high-dimensional covariates. We leave this to future work.

We have focused on completely randomized factorial experi-
ments and extended the theory to stratified and clustered exper-
iments. We conjecture that the strategy is also applicable for
experiments with general treatment assignment mechanisms
(Mukerjee, Dasgupta, and Rubin 2018). Fogarty (2019) also
used the idea of studentization in sensitivity analysis of matched
observational studies.

Supplementary Materials

The supplementary materials contain the proofs.
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Supplementary Material for “Randomization Tests for Weak Null
Hypotheses in Randomized Experiments”

Let | · | be the absolute value of a scalar or the Euclidean norm of a vector. Let ∥ · ∥F be the
Frobenius norm of a matrix. For A, B ∈ Rm×n, let A ∗ B be the component-wise product of A
and B: (A ∗ B)ij = AijBij. Let maxi, maxj, and maxi,j denote the maximums over {i = 1, . . . , n},
{j = 1, . . . , J}, and both. Let a ∨ b = max(a, b) be the maximum value of a and b.
Appendix A1 gives several useful lemmas and their proofs. Appendix A2 gives the proofs of

the main theorems. Appendix A3 gives the proofs of other corollaries and propositions.

A1. Lemmas

Lemma A1. (i) If X ∼ N (0J , A), then XtBX d
= ∑J

j=1 λj(AB)ξ2j . If A is a projection matrix, then
each λj(AB) ≤ λ1(B).

(ii) If A, B ≽ 0 and B is a correlation matrix, then λ1(A ∗ B) ≤ λ1(A).

(iii) If Xn
d→ N (0m, A), and Bn

P→ B ≻ 0, then Xt
nB−1

n Xn
d→ ∑m

j=1 λj(AB−1)ξ2j . If B ≽ A, then
each λj(AB−1) ∈ [0, 1].

Proof. (i) and (ii) come from Ding and Dasgupta (2018). We prove (iii). The Continuous Mapping
Theorem implies B−1

n
P→ B−1, and Slutsky’s Theorem then implies Xt

nB−1
n Xn

d→ XtB−1X. By (i),
XtB−1X d

= ∑m
j=1 λj(AB−1)ξ2j . If B ≽ A, then each λj(AB−1) ∈ [0, 1].

Lemma A2. A finite population (Y1, . . . ,YN) has mean ȲN and variance SN = (N − 1)−1 ∑N
i=1(Yi −

ȲN)2. Let A ⊆ {1, . . . ,N} be a simple random sample of size N1, and ˆ̄YN = N−1
1 ∑i∈A Yi. Then

for t ≥ 0,

P( ˆ̄YN − ȲN ≥ t) ∨ P( ˆ̄YN − ȲN ≤ −t) ≤ exp
!
−

Np2N,1t
2

CNS

"
≤ exp

!
−

Np2N,1t
2

CS

"
,

where pN,1 = N1/N, CN =
#
1+min

$
1, 9p2N,1, 9(1− pN,1)2

%
/70

&2
and C = (71/70)2.

Proof. Bloniarz et al. (2016) prove the first inequality. The second follows from CN ≤ C.

Lemma A2 is crucial for our proof of almost sure convergence for sampling without replace-
ment, as we are about to see.

Lemma A3. Let
'
{YN,i : i = 1, . . . ,N}

(
be a sequence of populations with means (ȲN) and

variances (SN). Suppose we take a simple random sample from each population of size N1 ≥ 2
with sample mean ˆ̄YN and variance ŜN . Assume limN→∞ N1/N = p1 > 0.

A 1



(i) If the sequence (SN) is bounded above by Smax < ∞, then | ˆ̄YN − ȲN |
a.s.→ 0. If we also have

limN→∞ ȲN = Ȳ∞, then ˆ̄YN
a.s.→ Ȳ∞. Assumption 1 implies these results.

(ii) If there is L < ∞ such that ∑N
i=1(YN,i − ȲN)4/N ≤ L for all N, then |ŜN − SN |

a.s.→ 0. If we
also have limN→∞ SN = S∞, then ŜN

a.s.→ S∞. Assumption 2 implies these results.

Proof. (i) Because pN,1 = N1/N → p1, we can pick a positive integer N∗ such that N ≥ N∗

implies pN,1 > p1/2. Then by Lemma A2, there is a universal constant C ∈ (0,∞), independent
of N, such that, for N ≥ N∗ and t ≥ 0,

P(| ˆ̄YN − ȲN | ≥ t) ≤ 2 exp
!
−

Np2N,1
CSN

t2
"

≤ 2 exp
)
− p21
4CSmax

Nt2
*

=⇒ ∑
N≥N∗

P(| ˆ̄YN − ȲN | ≥ t) ≤ 2 ∑
N≥N∗

exp
)
− p21
4CSmax

Nt2
*

< ∞.

By the Borel–Cantelli Lemma, | ˆ̄YN − ȲN |
a.s.→ 0.

(ii) First, by the Cauchy–Schwarz Inequality, we have that for all N

SN =
1

N − 1
N

∑
i=1

(YN,i − ȲN)
2 ≤ N1/2

N − 1

!
1
N

N

∑
i=1

(YN,i − ȲN)
4

"1/2
≤ N

N − 1L1/2,

which is bounded above as N → ∞, so by (i), | ˆ̄YN − ȲN |
a.s.→ 0.

Second, let WN,i be the indicator for Yi being in the simple random sample. Define as an
intermediate quantity S̃N = ∑N

i=1WN,i(YN,i − ȲN)2/(N1 − 1), which differs from ŜN by an almost
surely zero quantity as N → ∞:

ŜN − S̃N =
1

N1 − 1
N

∑
i=1

WN,i
+
(YN,i − ˆ̄YN)

2 − (YN,i − ȲN)
2,

=
1

N1 − 1
N

∑
i=1

WN,i(ȲN − ˆ̄YN)(2YN,i − ˆ̄YN − ȲN)

=
1

N1 − 1

!
2(ȲN − ˆ̄YN)

N

∑
i=1

WN,iYN,i + N1( ˆ̄Y2N − Ȳ2N)

"

=
N1

N1 − 1
+
2(ȲN − ˆ̄YN) ˆ̄YN + ˆ̄Y2N − Ȳ2N

,

=
−N1

N1 − 1
( ˆ̄YN − ȲN)

2 a.s.→ 0.

Third, we note that the variance of {(YN,i − ȲN)2}N
i=1 is bounded above for all N:

Var
#
{(YN,i − ȲN)

2}N
i=1

&
≤ 1

N − 1
N

∑
i=1

(YN,i − ȲN)
4 ≤ N

N − 1L.
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So by (i),
--∑N

i=1WN,i(YN,i − ȲN)2/N1 − ∑N
i=1(YN,i − ȲN)2/N

--a.s.→ 0, and therefore

|S̃N − SN | =
-----

N1
N1 − 1

1
N1

N

∑
i=1

WN,i(YN,i − ȲN)
2 − N1

N1 − 1
1
N

N

∑
i=1

(YN,i − ȲN)
2 +

N − N1
(N − 1)(N1 − 1)

N − 1
N

SN

-----

≤ N1
N1 − 1

-----
1

N1

N

∑
i=1

WN,i(YN,i − ȲN)
2 − 1

N

N

∑
i=1

(YN,i − ȲN)
2

-----+
N − N1

(N − 1)(N1 − 1)
N − 1

N
SN

≤ N1
N1 − 1

-----
1

N1

N

∑
i=1

WN,i(YN,i − ȲN)
2 − 1

N

N

∑
i=1

(YN,i − ȲN)
2

-----+
1

N1 − 1
L1/2 a.s.→ 0.

We now finally have |ŜN − SN | ≤ |ŜN − S̃N |+ |S̃N − SN |
a.s.→ 0.

Lemma A4. Under Assumption 1 and for all sequences of W, the imputed potential outcomes in
FRT-2 satisfy limN→∞maxi,j{Y∗

i (j)− Ȳ∗(j)}2/N = 0.

Proof. Recall the zj’s in FRT-2 and define z̄ = ∑N
i=1 zWi/N = ∑J

j=1 Njzj/N. Because (Ȳ(j)) con-
verges for all j = 1, . . . , J, and the zj’s do not depend on N, we may pick Ymax ∈ R such that for
all N,

max
j

|Ȳ(j)| ∨max
j

|zj − z̄| ≤ Ymax.

Put LN = maxi,j{Yi(j)− Ȳ(j)}2, which is o(N) by Assumption 1. Then

max
i,j

|Yi(j)− Ȳ(j)| =
.
max

i,j
{Yi(j)− Ȳ(j)}2

/1/2 ≤ L1/2N .

Next,
max

i
|Yobsi | ≤ max

i,j
|Yi(j)| ≤ max

i,j
|Yi(j)− Ȳ(j)|+max

j
|Ȳ(j)| ≤ L1/2N + Ymax.

Recall that Ȳobs· = ∑N
i=1 Yobsi /N, and we have the following bounds:

|Ȳobs· | ≤ max
i

|Yobsi | ≤ L1/2N + Ymax, max
i

|Yobsi − Ȳobs· | ≤ max
i

|Yobsi |+ |Ȳobs· | ≤ 2(L1/2N + Ymax).

Using the above bounds and the additional bound (a + b)2 ≤ 2(a2 + b2), we have

max
i

(Yobsi − Ȳobs· )2 =
'
max

i
|Yobsi − Ȳobs· |

(2 ≤ 4(L1/2N + Ymax)2 ≤ 8(LN + Y2max).

In FRT-2, we have Y∗
i (j) = Yobsi + zj − zWi and therefore Ȳ∗(j) = Ȳobs· + zj − z̄. Finally, we have

max
i,j

{Y∗
i (j)− Ȳ∗(j)}2 =max

i
(Yobsi − zWi − Ȳobs· + z̄)2

≤2
+
max

i
(Yobsi − Ȳobs· )2 +max

i
(zWi − z̄)2

,

≤16(LN + Y2max) + 2Y
2
max,

which is o(N) as desired.
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Now we visit the vector versions of Lemmas A3 and A4.

Lemma A5. Let ({YN,i : i = 1, . . . ,N}) be a sequence of populations with means ȲN ∈ Rd

and covariances SN . Suppose we take a simple random sample from each population of size
N1 ≥ d + 1 with sample mean ˆ̄YN and covariance ŜN . Assume limN→∞ N1/N = p1 > 0.

(i) If the sequence (∥SN∥F) is bounded above by Smax < ∞, then | ˆ̄YN − ȲN |
a.s.→ 0. If we also

have limN→∞ ȲN = Ȳ∞, then ˆ̄YN
a.s.→ Ȳ∞. Assumption 4 implies these results.

(ii) If there is L < ∞ such that ∑N
i=1 |YN,i − ȲN |4/N ≤ L for all N, then ∥ŜN − SN∥F

a.s.→ 0. If we
also have limN→∞ SN = S∞, then ŜN

a.s.→ S∞. Assumption 5 implies these results.

Proof. (i) Note that each component of YNi meets Lemma A3, so | ˆ̄YN − ȲN |
a.s.→ 0 holds component

by component.
(ii) Because each component of YNi meets Lemma A3, each entry on the main diagonal of

ŜN − SN converges almost surely to 0. It is thus enough to show convergence of the (1, 2)th
entry, for then identical logic will show convergence of an arbitrary off-diagonal entry. Let Y1Ni

and Y2Ni be the first and second entries of YNi.
We follow the steps of Lemma A3 closely. First, ∥SN∥F is bounded above:

∥SN∥F =
1

N − 1
00

N

∑
i=1

(YNi − ȲN)(YNi − ȲN)
t00

F

≤ 1
N − 1

N

∑
i=1

|YNi − ȲN |2 ≤
N1/2

N − 1

1
N

∑
i=1

|YNi − ȲN |4
21/2

≤ NL1/2

N − 1 ,

where the first inequality follows from the Triangle Inequality and ∥abt∥F = |a| · |b| for two
vectors a and b, and the second inequality by the Cauchy–Schwarz Inequality. By (i), | ˆ̄YN − ȲN |

a.s.→
0.
Second, let WN,i be the indicator for Yi being in the simple random sample. Define as an

intermediate quantity S̃12N = ∑N
i=1WN,i(Y1Ni − Ȳ1N)(Y2Ni − Ȳ2N)/(N1 − 1), which differs from

Ŝ12N by an almost surely zero quantity as N → ∞:

Ŝ12N − S̃12N =
1

N1 − 1
N

∑
i=1

WN,i{(Y1Ni − ˆ̄Y1N)(Y2Ni − ˆ̄Y2N)− (Y1Ni − Ȳ1N)(Y2Ni − Ȳ2N)}

=
1

N1 − 1
N

∑
i=1

WN,i{(Ȳ1N − ˆ̄Y1N)Y2Ni + (Ȳ2N − ˆ̄Y2N)Y1Ni + ˆ̄Y1N
ˆ̄Y2N − Ȳ1NȲ2N}

=
N1

N1 − 1
{(Ȳ1N − ˆ̄Y1N) ˆ̄Y2N + (Ȳ2N − ˆ̄Y2N) ˆ̄Y1N + ˆ̄Y1N

ˆ̄Y2N − Ȳ1NȲ2N}

=
−N1

N1 − 1
(Ȳ1N − ˆ̄Y1N)(Ȳ2N − ˆ̄Y2N)

a.s.→ 0.
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Third, we note that the variance of {(Y1Ni − Ȳ1N)(Y2Ni − Ȳ2N)}N
i=1 is bounded above for all N:

Var
#
{(Y1Ni − Ȳ1N)(Y2Ni − Ȳ2N)}N

i=1

&
≤ 1

N − 1
N

∑
i=1

(Y1Ni − Ȳ1N)
2(Y2Ni − Ȳ2N)

2

≤ 1
N − 1

!
N

∑
i=1

(Y1Ni − Ȳ1N)
4

N

∑
i=1

(Y2Ni − Ȳ2N)
4

"1/2

≤ 1
N − 1

!
N

∑
i=1

(Y1Ni − Ȳ1N)
4 ∨

N

∑
i=1

(Y2Ni − Ȳ2N)
4

"

≤ NL
N − 1.

So by (i),
--∑N

i=1WN,i(Y1Ni − Ȳ1N)(Y2Ni − Ȳ2N)/N1 − ∑N
i=1(Y1Ni − Ȳ1N)(Y2Ni − Ȳ2N)/N

-- a.s.→ 0. In
addition, S12N ≤ ∥SN∥F is bounded from above. These imply that

|S̃12N − S12N | =
-----

N1
N1 − 1

!
1

N1

N

∑
i=1

WN,i(Y1Ni − Ȳ1N)(Y2Ni − Ȳ2N)−
1
N

N

∑
i=1

(Y1Ni − Ȳ1N)(Y2Ni − Ȳ2N)

"

+

3
N1

(N1 − 1)N
− 1

N − 1

4 N

∑
i=1

(Y1Ni − Ȳ1N)(Y2Ni − Ȳ2N)

-----

≤ N1
N1 − 1

-----
1

N1

N

∑
i=1

WN,i(Y1Ni − Ȳ1N)(Y2Ni − Ȳ2N)−
1
N

N

∑
i=1

(Y1Ni − Ȳ1N)(Y2Ni − Ȳ2N)

-----

+
N − N1

(N − 1)(N1 − 1)
N − 1

N
S12N

a.s.→ 0.

We now finally have |Ŝ12N − S12N | ≤ |Ŝ12N − S̃12N |+ |S̃12N − S12N |
a.s.→ 0.

Lemma A6. Under Assumption 4 and for all sequences of W, the imputed potential outcomes
satisfy limN→∞maxi,j |Y∗

i (j)− Ȳ∗(j)|2/N = 0.

Proof. From (15), we obtain {Y∗
i (j)1 : i = 1, . . . ,N, j = 1, . . . , J} from {Wi, (Yobsi )1 : i = 1, . . . ,N}

in the same way as FRT-2. So by Lemma A4, we have limN→∞maxi,j{Y∗
i (j)1 − Ȳ∗(j)1}2/N = 0.

Doing the same for the other d − 1 entries gives the desired result.

A2. Proofs of the Main Theorems

We make some preliminary observations and extend the notation to handle the randomization
distributions as required by Theorems 1, 2, and 3. Throughout, we make heavy use of the mean
of the observed values:

Ȳobs· =
1
N

N

∑
i=1

Yobsi =
J

∑
j=1

Nj

N
ˆ̄Y(j)

Recall the imputed potential outcomes FRT-2 are Y∗
i (j) = Yobsi + zj − zWi . They agree with

the data in the sense Y∗
i (Wi) = Yobsi for all i = 1, . . . ,N. They are also strictly additive, as
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Y∗
i (j)−Y∗

i (k) = (Yobsi + zj − zWi)− (Yobsi + zk − zWi) = zj − zk does not depend on the unit i. The
imputed potential outcomes have means Ȳ∗ = (Ȳ∗(1), . . . , Ȳ∗(J))t and covariance s∗1J1t

J , due to
strict additivity. Recalling that z̄ = ∑J

j=1 Njzj/N, we have

Ȳ∗(j) =
1
N

N

∑
i=1

(Yobsi + zj − zWi) =
J

∑
k=1

Nk
N
ˆ̄Y(k) + zj − z̄, (A1)

s∗ =S∗(1, 1) =
1

N − 1
N

∑
i=1

{Y∗
i (1)− Ȳ∗(1)}2

=
1

N − 1

J

∑
j=1

N

∑
i=1

Wi(j){Y∗
i (j)− Ȳ∗(j)}2 (A2)

=
J

∑
j=1

Nj − 1
N − 1 Ŝ(j, j) +

J

∑
j=1

Nj

N − 1{
ˆ̄Y(j)− Ȳ∗(j)}2, (A3)

where (A2) follows from the facts that Y∗
i (j)− Ȳ∗(j) does not depend on j due to strict additivity

and ∑J
j=1Wi(j) = 1, and (A3) follows from the bias-variance decomposition (add and subtract

ˆ̄Y(j)) and noting Y∗
i (j) = Yobsi when Wi = j.

For asymptotic purposes, note that C, x, C̃, x̃ are fixed with respect to N, hence z is as well.
They may be regarded as constants as we take N → ∞.
The analogs of D̂ and V, for imputed potential outcomes are, respectively

D̂π = N · diag{Ŝπ(1, 1)/N1, . . . , Ŝπ(J, J)/NJ}, V∗ = s∗(P−1 − 1J1t
J ). (A4)

Compare these to (4) and (3). We also have, conditional on W, that D̂π − s∗P−1 P→ 0. In general,
consistent with previous patterns, analogs of population quantities have superscript “∗”, while
those of observed quantities have subscript “π”.

Proof of Theorems 1, 2, and 3. We prove the sampling, followed by the randomization distribution
claims.

Sampling distributions of X2, F, and B. Let Assumption 1 and H0N(C, x) hold. We have
N1/2(C ˆ̄Y − x) d→ N (0m,CVCt), CD̂Ct P→ CDCt ≻ 0 and CDCt ≽ CVCt by Proposition 3 and
(4). Hence, by Lemma A1

X2 = N1/2(C ˆ̄Y − x)t(CD̂Ct)−1N1/2(C ˆ̄Y − x) d→
m

∑
j=1

ajξ
2
j , with aj ∈ [0, 1] (j = 1, . . . ,m).
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We deal with B, F similarly. Assume x = 0m. By (4) and the Continuous Mapping Theorem,
tr(MD̂)CCt P→ tr(MD)CCt. By Lemma A1,

B =N1/2(C ˆ̄Y)t(tr(MD̂)CCt)−1N1/2C ˆ̄Y d→
m

∑
j=1

λj
'
CVCt(tr(MD)CCt)−1

(
ξ2j

d
=

m

∑
j=1

1
tr(MD)

λj(VCt(CCt)−1C)ξ2j
d
=

∑m
j=1 λj(MV)ξ2j
tr(MD)

.

Recall X and σ̂2 in (7). Then σ̂2
P→ ∑J

j=1 pjS(j, j) = S̄ by Proposition 2, (Nj − 1)/(N − J) → pj,
and

(X tX/N)−1 = diag(N1/N, . . . ,NJ/N)−1
P→ P−1.

Therefore, by Lemma A1,

mF = N1/2(C ˆ̄Y){σ̂2C(X tX )−1Ct}−1N1/2C ˆ̄Y d→
m

∑
j=1

λj(CVCt(S̄CP−1Ct)−1)ξ2j .

Randomization distributions. We first show, for almost all realizations of the sequence of treat-
ment assignments W, that Assumption 1 holds for {U∗

i (j) : i = 1, . . . ,N, j = 1, . . . , J} where
U∗

i (j) = {Y∗
i (j)− Ȳ∗(j)}/(s∗)1/2 are the standardized imputed potential outcomes. Clearly they

always have mean 0 and variance 1, so it is enough to verify that, almost surely

lim
N→∞

max
i,j

1
N
{U∗

i (j)− Ū∗(j)}2 = lim
N→∞

max
i,j

{Y∗
i (j)− Ȳ∗(j)}2

Ns∗
= 0. (A5)

Starting with (A3), we have

s∗ =
J

∑
j=1

Nj − 1
N − 1 Ŝ(j, j) +

J

∑
j=1

Nj

N − 1{
ˆ̄Y(j)− Ȳ∗(j)}2 ≥ N1 − 1

N − 1 Ŝ(1, 1) a.s.→ p1S(1, 1),

where the last step is by Lemma A3. This shows the sequence (s∗)N≥2J is bounded away from 0,
as p1 > 0 and S(1, 1) > 0. Now we also have limN→∞ N−1 maxi,j{Y∗

i (j)− Ȳ∗(j)}2 = 0, no matter
what the realization of the sequence {W}∞

N=1 is, by Lemma A4. These two facts together show
(A5).
Because Ŝ(1, 1) a.s.→ S(1, 1) by Lemma A3, we for the rest of the proof fix a sequence of (W)

along which Ŝ(1, 1) → S(1, 1). The only remaining randomness then comes from π ∼ Unif(ΠN).
Note for i = 1, . . . ,N that CU∗

i = C(Y∗
i − Ȳ∗)/(s∗)1/2 = 0m because CY∗

i = x from the fact that
the imputed potential outcomes satisfy (2). In particular, the standardized imputed potential
outcomes satisfy H0N(C, 0m), i.e., CŪ∗ = 0m. Hence, by Proposition 3, we have

(N/s∗)1/2(C ˆ̄Yπ − x) =N1/2C( ˆ̄Yπ − Ȳ∗)/(s∗)1/2 = N1/2C ˆ̄Uπ

d→N
'
0m,C(P−1 − 1J1t

J )C
t( d

= N (0m,CP−1Ct)
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because the standardized imputed potential outcomes have covariance structure 1J1t
J and C1J =

0m. Next, for j = 1, . . . , J, we have

Ŝπ(j, j)
s∗

=
1

Nj − 1
N

∑
i=1

Wπ(i)(j)
{Y∗

i (j)− Ȳ∗(j)}2
s∗

=
1

Nj − 1
N

∑
i=1

Wπ(i)(j)U∗
i (j)2 P→ 1

by Proposition 2 and because the standardized imputed potential outcomes have variances 1. It
follows by (A4) that

D̂π/s∗ P→ P−1, σ̂2π/s∗ =
J

∑
j=1

Nj − 1
(N − J)s∗

Ŝπ(j, j) P→ 1, tr(MD̂π)/s∗ P→ tr(MP−1).

We thus finally have by Lemma A1

X2π = (N/s∗)1/2(C ˆ̄Yπ − x)t(CD̂πCt/s∗)−1(N/s∗)1/2(C ˆ̄Yπ − x) d→
m

∑
j=1

λj
'
CP−1Ct(CP−1Ct)−1

(
ξ2j

d
= χ2m,

and with x = 0m for the B and F statistics:

Bπ =(N/s∗)1/2(C ˆ̄Yπ)
t{tr(MD̂π)CCt/s∗}−1(N/s∗)1/2C ˆ̄Yπ

d→
m

∑
j=1

λj
'
CP−1Ct(tr(MP−1)CCt)−1

(
ξ2j

d
=

m

∑
j=1

λj(MP−1)ξ2j / tr(MP−1),

mFπ =(N/s∗)1/2(C ˆ̄Yπ)
t
)

σ̂2π
s∗

C(X tX/N)−1Ct
*−1

(N/s∗)1/2C ˆ̄Yπ

d→
m

∑
j=1

λj
'
CP−1Ct(CP−1Ct)−1

(
ξ2j

d
= χ2m.

Extending Theorem 1 to the case of stratified experiments or vector potential outcomes is
straightforward. We also supply their proofs for completeness.

Proof of Theorem 4. We prove the sampling, followed by the randomization distribution claims.

Sampling distribution of X2. For h = 1, . . . ,H, we have that E( ˆ̄Y[h]) = Ȳ[h], and that Assump-
tion 1 holds in each stratum h. By Proposition 3,

N1/2
[h] C( ˆ̄Y[h] − Ȳ[h])

d→ N (0m,CV[h]Ct), where V[h] = plim
N→∞

D̂[h] − S[h].
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Under H0N(C, x), we have x = CȲ = ∑H
h=1 N[h]CȲ[h]/N. Because ( ˆ̄Y[1], . . . , ˆ̄Y[H]) are mutually

independent in a SRE, we have

N1/2(C ˘̄Y − x) =
H

∑
h=1

3N[h]

N

41/2
N1/2
[h] C( ˆ̄Y[h] − Ȳ[h])

d→
H

∑
h=1

ω1/2[h] N (0m,CV[h]Ct)
d
= N

1
0m,

H

∑
h=1

ω[h]CV[h]Ct

2
.

Next, note that plimN→∞ D̂[h] ≽ V[h] implies plimN→∞ ∑H
h=1 N[h]CD̂[h]Ct/N ≽ ∑H

h=1 ω[h]CV[h]Ct,
so by Lemma A1, we have

X2 = N1/2(C ˘̄Y − x)t

1
C

H

∑
h=1

N[h]

N
D̂[h]Ct

2−1

N1/2(C ˘̄Y − x) d→
m

∑
j=1

ajξ
2
j .

Randomization distribution of X2. We first show Assumption 1 holds almost surely within
each stratum for the imputed potential outcomes Y∗

i (j). Because the original potential out-
comes satisfy Assumption 1 in each stratum, Lemma A4 gives limN→∞maxjmaxi:Xi=h{Y∗

i (j)−
Ȳ∗
[h](j)}2/N[h] = 0. Put z̄[h] = ∑J

j=1 N[h]jz[h],j/N[h]. In stratum h, the mean vector is Ȳ∗
[h] and the

covariance structure is s∗[h]1J1t
J , where

Ȳ∗
[h](j) =

J

∑
k=1

N[h]k

N[h]

ˆ̄Y[h](k) + z[h],j − z̄[h]

s∗[h] =
J

∑
j=1

N[h]j − 1
N[h] − 1

Ŝ[h](j, j) +
J

∑
j=1

N[h]j

N[h] − 1
{ ˆ̄Y[h](j)− Ȳ∗

[h](j)}2,

by applying (A1) and (A3) to stratum h. ˆ̄Y[h](j) and Ŝ[h](j, j) converge almost surely because
of Lemma A3, applicable because Assumption 2 holds within stratum h. Then Ȳ∗

[h](j) and s∗[h]
converge almost surely because all quantities on the right-hand side do. This shows Assumption
1 holds within each stratum almost surely.
For the rest of the proof, fix a sequence (W) along which (s∗[h]) converges. Because each

CY∗
i = x[h] whenever Xi = h, we have CȲ∗

[h] = x[h], and by Proposition 3,

N1/2
[h] C( ˆ̄Y[h],π − Ȳ∗

[h])
d→ N

'
0m, s∗[h]C(P−1 − 1J1t

J )C
t( d

= N (0m, s∗[h]CP−1Ct).

Since x = ∑H
h=1 N[h]x[h]/N = ∑H

h=1 N[h]CȲ∗
[h]/N, it follows that

N1/2(C ˘̄Yπ − x) =
H

∑
h=1

3N[h]

N

41/2
N1/2
[h] C( ˆ̄Y[h],π − Ȳ∗

[h])

d→
H

∑
h=1

ω1/2[h] N
5
0m, s∗[h]CP−1Ct

6
d
= N

1
0m,

H

∑
h=1

ω[h]s∗[h]CP−1Ct

2
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because, conditioning on W, the ( ˆ̄Y[1],π, . . . , ˆ̄Y[H],π) are mutually independent. Next, from Propo-

sition 2, we have D̂[h],π
P→ s∗[h]P

−1, so C ∑H
h=1 N[h]D̂[h],πCt/N P→ ∑H

h=1 ω[h]s∗[h]CP−1Ct, and we
finally have from Lemma A1

X2π = N1/2(C ˘̄Yπ − x)t

1
C

H

∑
h=1

N[h]

N
D̂[h],πCt

2−1

N1/2(C ˘̄Yπ − x) d→ χ2m.

Proof of Theorem 5. We prove the sampling, followed by the randomization distribution claims.

Sampling distribution of X2. Under Assumption 4 and H0N(C, x), we use Li and Ding (2017) to
prove the following results in parallel with Propositions 2 and 3. First, ˆ̄Y P→ Ȳ and Ŝ(j, j) P→ S(j, j)
for j = 1, . . . , J. Second, N1/2(C ˆ̄Y − x) d→ N (0m,CVCt), where we have the vector potential
outcomes analog of (3):

V = lim
N→∞

N ·Cov( ˆ̄Y) = lim
N→∞

⎛

⎜⎜⎜⎜⎜⎝

N−N1
N1 S(1, 1) −S(1, 2) · · · −S(1, J)
−S(2, 1) N−N2

N2 S(2, 2) · · · −S(2, J)
...

... . . . ...
−S(J, 1) −S(J, 2) · · · N−NJ

NJ
S(J, J)

⎞

⎟⎟⎟⎟⎟⎠
. (A6)

Because CD̂Ct P→ C(V +S)Ct ≽ CVCt, it follows from Lemma A1 that X2 = N(C ˆ̄Y− x)t(CD̂Ct)−1(C ˆ̄Y−
x) d→ ∑m

j=1 ajχ
2
j .

Randomization distribution of X2. We first show Assumption 4 holds almost surely for the
imputed potential outcomes Y∗

i (j). Because the original potential outcomes satisfy Assumption
4, Lemma A6 gives limN→∞maxi,j |Y∗

i (j)− Ȳ∗(j)|2/N = 0. Their means satisfy

Ȳ∗(j)1 =
1
N

N

∑
i=1

(Yobsi,1 + z1j − z1,Wi) =
1
N

J

∑
k=1

Nj
ˆ̄Y(k)1 + z1j − z̄1,

where z̄1 = ∑J
j=1 Njz1j/N. Hence, the Ȳ∗(j)1 converge almost surely because ˆ̄Y(j) a.s.→ Ȳ(j) by

Lemma A5. By the same reasoning, the other entries of Ȳ∗(j) also converge almost surely. The
covariance structure of the imputed potential outcomes is (1J1t

J )⊗ S∗(1, 1), where following the
same steps to derive (A3), we get

S∗(1, 1) =
1

N − 1
N

∑
i=1

{Y∗
i (1)− Ȳ∗(1)}{Y∗

i (1)− Ȳ∗(1)}t

=
1

N − 1

J

∑
j=1

N

∑
i=1

Wi(j){Y∗
i (j)− Ȳ∗(j)}{Y∗

i (j)− Ȳ∗(j)}t

=
J

∑
j=1

Nj − 1
N − 1 Ŝ(j, j) +

J

∑
j=1

Nj

N − 1{
ˆ̄Y(j)− Ȳ∗(j)}{ ˆ̄Y(j)− Ȳ∗(j)}t.
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This converges almost surely because all quantities in the last line do. For instance, Ŝ(j, j) con-
verge almost surely because of Lemma A5, applicable because of Assumption 5. This shows
Assumption 4 holds almost surely.
For the rest of the proof, fix a sequence (W) along which Assumption 4 is met. The limit of

S∗(1, 1) must be invertible because the above calculation shows S∗(1, 1) ≽ (N1 − 1)S(1, 1)/(N −
1) ≻ 0. Because each CY∗

i = x, the vector potential outcomes analog of Proposition 3 gives us

N1/2(C ˆ̄Yπ − x) = N1/2C( ˆ̄Yπ − Ȳ∗)
d→N

'
0m,C{(P−1 − 1J1t

J )⊗ S∗(1, 1)}Ct(

d
=N

'
0m,C{P−1 ⊗ S∗(1, 1)}Ct(.

The cancellation in the last line occurred, for instance because the (1, 2)-block of C{(1J1t
J ) ⊗

S∗(1, 1)}Ct is (C1 ⊗ et
1){(1J1t

J ) ⊗ S∗(1, 1)}(C2 ⊗ et
2)

t = (C11J1t
J Ct
2) ⊗ {et

1S
∗(1, 1)e2}, which van-

ishes because C1,C2 are themselves contrast matrices. Next,

D̂π
P→ diag

)
S∗(1, 1)

p1
, . . . ,

S∗(1, 1)
pJ

*
= P−1 ⊗ S∗(1, 1),

so CD̂πCt P→ C{P−1 ⊗ S∗(1, 1)}Ct, and we finally have from Lemma A1 that X2π = N(C ˆ̄Yπ −
x)t(CD̂πCt)−1(C ˆ̄Yπ − x) d→ χ2m.

A3. Proofs of other results

Proof of Proposition 1. The conclusion follows from

max
i,j

1
N
{Yi(j)− Ȳ(j)}2 = 1

N

=
max

i,j
{Yi(j)− Ȳ(j)}4

>1/2

≤ 1
N

?
max

j

N

∑
i=1

{Yi(j)− Ȳ(j)}4
@1/2

≤ (L/N)1/2

which converges to 0 as N → ∞.

Proof of Proposition 2. It follows from Theorem 1 and Proposition 1 of Li and Ding (2017).

Proof of Proposition 3. It follows from Theorem 5 of of Li and Ding (2017).

Proof of Proposition 4. Assume H0N(C, x) throughout. Define

F(x) = P(T ≤ x), G(x) = P(T < x), FW(x) = P(Tπ ≤ x|W), GW(x) = P(Tπ < x|W).

Let U ∼ Unif(0, 1). We will show that

P

!
1

N! ∑
π∈ΠN

1(Tπ ≥ T) ≤ α

"
≤ α for all α ∈ (0, 1) ⇐⇒ T ≤st Tπ|W.
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By definition, the FRT with test statistic T successfully controls type I error at all levels α when
the left hand side is true.
We first show the sufficiency of T ≤st Tπ|W. Fix α ∈ (0, 1). Note GW(T) = (N!)−1 ∑π∈ΠN

1(Tπ <

T), so

P

!
1

N! ∑
π∈ΠN

1(Tπ ≥ T) ≤ α

"
= P{1− GW(T) ≤ α} ≤ P{G(T) ≥ 1− α} ≤ P(U ≥ 1− α) = α

where we have used T ≤st Tπ|W if and only if GW ≤ G on R and G(T) ≤st U.
Now we show the necessity of T ≤st Tπ|W. If for some W it is not true that T ≤st Tπ|W, then

there exists x ∈ R such that F(x) < GW(x) (this is because F = G, FW = GW , Lebesgue almost
everywhere), pick α ∈ (1− F(x), 1− GW(x)). Then we fail to control type I error because

P

!
1

N! ∑
π∈ΠN

1(Tπ ≥ T) ≤ α

"
≥1− P{GW(T) ≤ 1− α} = 1− F

'
sup{t :GW(t) ≤ 1− α}

(

≥1− F(x) > α

where the second equality follows because {t :GW(t) ≤ 1− α} is closed (due to the left continuity
of GW). Its measure under the distribution of T is hence F evaluated at its right endpoint. The
second ≥ follows because GW(t) ≤ 1− α < GW(x) implies t ≤ x (as GW is nondecreasing), so
sup{t :GW(t) ≤ 1− α} ≤ x.

Proof of Corollary 1. First, if S(1, 1) = · · · = S(J, J), then D = S(1, 1)P−1 from (4). Recall from
V ≼ D that each λj(MV) ≤ λj(MD). Therefore, under H0N(C, x), Theorem 2 implies that

B d→
∑m

j=1 λj(MV)ξ2j
tr(MD)

≤st
∑m

j=1 λj(MD)ξ2j
tr(MD)

=
∑m

j=1 S(1, 1)λj(MP−1)ξ2j
S(1, 1) tr(MP−1)

=
∑m

j=1 λj(MP−1)ξ2j
tr(MP−1)

d
= Bπ|W.

So the criterion of Proposition 4 is met.
Second, if C is a row vector, then M = CtC/CCt. Therefore

B =
ˆ̄YtCtC ˆ̄Y/CCt

tr(CtCD̂)/CCt
=

(C ˆ̄Y)tC ˆ̄Y
CD̂Ct

= (C ˆ̄Y)t(CD̂Ct)−1C ˆ̄Y = X2.

Proof of Proposition 5. Under a balanced design we have N1 = . . . = NJ = N/J, XtX = N1 IJ and
σ̂2 = ∑J

j=1 Ŝ(j, j)/J. Thus, F = N1 ˆ̄YtM ˆ̄Y/(mσ̂2). If M has the same values on its main diagonal,
then each value is in fact m/J because the trace and rank of a projection matrix are the same.
This implies

N
tr(MD̂)

= N/

!
J

∑
j=1

N
Nj

Ŝ(j, j)
m
J

"
=

N
m ∑J

j=1 Ŝ(j, j)
=

N1
mσ̂2

=⇒ B =
N( ˆ̄Y)tM ˆ̄Y
tr(MD̂)

=
N1 ˆ̄YtM ˆ̄Y

mσ̂2
= F.
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Proof of Corollary 2. If S(1, 1) = · · · = S(J, J), then S̄ = ∑J
j=1 pjS(j, j) = S(1, 1) and D = S̄ · P−1.

Therefore, 0 ≤ λj
'
CVCt(S̄CP−1Ct)−1

(
= λj

'
CVCt(CDCt)−1

(
≤ 1 because V ≼ D. By Theorem

3, under H0N(C, 0m), we have

m · F d→
m

∑
j=1

λj
'
CVCt(S̄CP−1Ct)−1

(
ξ2j ≤st χ2m, m · Fπ|W

d→ χ2m.

Proof of Proposition 6. The conclusions follow from simple linear algebra facts. They seem to be
known, but we give a proof for completeness.
We first equate the X2. As stated, in the ANOVA setting, C = (1J−1, −IJ−1) and x = 0J−1.

Put Qj = Nj/Ŝ(j, j) and Q = ∑J
j=1 Qj. Then by block matrix multiplication

1
N

CD̂Ct = (1J−1, −IJ−1)diag(1/Q1, . . . , 1/QJ)

1
1t

J−1
−IJ−1

2
=
1

Q1
1J−11t

J−1+ diag(1/Q2, . . . , 1/QJ).

Thus, using the Sherman–Morrison formula, we have

3
1
N

CD̂Ct
4−1

=diag(Q2, . . . ,QJ)−

⎧
⎪⎪⎨

⎪⎪⎩

1
Q1

⎛

⎜⎜⎝

Q2
...

QJ

⎞

⎟⎟⎠ (Q2, . . . ,QJ)

⎫
⎪⎪⎬

⎪⎪⎭

H!
1+

1
Q1

J

∑
j=2

Qj

"

=diag(Q2, . . . ,QJ)−
1
Q

⎛

⎜⎜⎝

Q2
...

QJ

⎞

⎟⎟⎠ (Q2, . . . ,QJ).

Finally, from (5), we have

X2 =
' ˆ̄Y(1)− ˆ̄Y(2), . . . , ˆ̄Y(1)− ˆ̄Y(J)

(
⎧
⎪⎨

⎪⎩
diag(Q2, . . . ,QJ)−

1
Q

⎛

⎜⎝
Q2
...

QJ

⎞

⎟⎠ (Q2, . . . ,QJ)

⎫
⎪⎬

⎪⎭

⎛

⎜⎝

ˆ̄Y(1)− ˆ̄Y(2)
...

ˆ̄Y(1)− ˆ̄Y(J)

⎞

⎟⎠

=
J

∑
j=2

Qj{ ˆ̄Y(1)− ˆ̄Y(j)}2 − 1
Q

?
J

∑
j=2

Qj{ ˆ̄Y(1)− ˆ̄Y(j)}
@2
.

Now we recognize the expression in (9) as Q times the variance of { ˆ̄Y(1), . . . , ˆ̄Y(J)} under the
probabilities Q1/Q, . . . ,QJ/Q. But variance is unaffected by switching signs, and then adding the
constant ˆ̄Y(1) to all quantities, so (9) is Q times the variance of {0, ˆ̄Y(1)− ˆ̄Y(2), . . . , ˆ̄Y(1)− ˆ̄Y(J)}
under the same probabilities, which is precisely what X2 is above.
Next, we equate the F. Recall that m = J − 1. It is thus enough to show

(C ˆ̄Y)t{C(X tX )−1Ct}−1C ˆ̄Y =
J

∑
j=1

Nj{ ˆ̄Y(j)− Ȳobs· }2.
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This follows an identical argument to showing the X2 coincide, with Nj,N in place of Qj,Q.

Proof of Corollary 3. The expression (10) follows by matrix algebra. Because C = (1,−1) is a row
vector, Corollary 1 implies B = X2, which is proper. Ding and Dasgupta (2018) have proved the
rest of the corollary.

Proof of Corollary 5. Under Assumption 1 and H0N(C, x) with a row vector C, we have N1/2(C ˆ̄Y −
x) d→ N (0,CVCt) by Proposition 3, CD̂Ct P→ CDCt > 0 and CDCt ≥ CVCt by (4). Hence,

t =
N1/2(x − C ˆ̄Y)
(CD̂Ct)1/2

d→ N (0, a), where a =
CVCt

CDCt ∈ [0, 1].

To show the randomization distribution under Assumption 2, we have Ŝ(1, 1) a.s.→ S(1, 1) by
Lemma A3, so fix a sequence of (W) along which Ŝ(1, 1) → S(1, 1). Then (N/s∗)1/2(C ˆ̄Yπ − x) d→
N (0,CP−1Ct) and D̂π/s∗ P→ P−1 (these are intermediate steps in the proof of Theorem 1), so

tπ|W =
N1/2(x − C ˆ̄Yπ)

(CD̂πCt)1/2
= (N/s∗)1/2

x − C ˆ̄Yπ

(CD̂πCt)1/2
d→ N (0, 1).

To argue t+ is proper for (12), we let x = x0. Then we want to test H̃0N(C, x0) :CȲ ≥ x0. The
notation switch frees up x as a dummy variable. Let p(x) be the p-value from testing CȲ = x with
t+ = t+(x). Then the p-value for H̃0N(C, x0) is supx≥x0 p(x). When x ≤ C ˆ̄Y, we have t+ = 0, so
p(x) = 1. If C ˆ̄Y ≥ x0, then t+(x0) = 0, so p(x0) = 1 (see also the Hodges–Lehmann discussion),
and supx≥x0 p(x) = 1 = p(x0). The more interesting case is C ˆ̄Y < x0. Then t+(x0) ≤ t+(x)

when x ≥ x0. The fact that tπ(x)|W d→ N (0, 1) a.s. for all x ∈ R suggests asymptotically that
p(x0) ≥ p(x) when x ≥ x0, so supx≥x0 p(x) = p(x0). Asymptotically speaking, we thus always
have supx≥x0 p(x) = p(x0). This is why we can test H̃0N(C, x) with t+ as if we were testing
H0N(C, x).

Proof of Proposition 7. We omit it because it is similar to the proof of Proposition 1.
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