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ABSTRACT
Graph-based models have been widely used to fraud detection tasks.
Owing to the development of Graph Neural Networks (GNNs), re-
cent works have proposed many GNN-based fraud detectors based
on either homogeneous or heterogeneous graphs. These works
leverage existing GNNs and aggregate the neighborhood informa-
tion to learn the node embeddings, which relies on the assump-
tion that the neighbors share similar context, features, and rela-
tions. However, the inconsistency problem incurred by fraudsters is
hardly investigated, i.e., the context inconsistency, feature inconsis-
tency, and relation inconsistency. In this paper, we introduce these
inconsistencies and design a newGNN framework,GraphConsis, to
tackle the inconsistency problem: (1) for the context inconsistency,
we propose to combine the context embeddings with node features;
(2) for the feature inconsistency, we design a consistency score to fil-
ter the inconsistent neighbors and generate corresponding sampling
probability; (3) for the relation inconsistency, we learn the relation
attention weights associated with the sampled nodes. Empirical
analysis on four datasets demonstrates that the inconsistency prob-
lem is critical in fraud detection tasks. Extensive experiments show
the effectiveness of GraphConsis. We also released a GNN-based
fraud detection toolbox with implementations of SOTAmodels. The
code is available at https://github.com/safe-graph/DGFraud.

CCS CONCEPTS
• Security and privacy → Web application security; • Com-
puting methodologies→ Neural networks.
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1 INTRODUCTION
There are various kinds of fraudulent activities on the Internet [4],
e.g., fraudsters disguise as regular users to post fake reviews [5]
and commit download fraud [1]. By modeling the entities as nodes
and the corresponding interactions between entities as edges [10],
we can design a graph-based algorithm to detect the suspicious
patterns and therefore can spot the fraudsters. Along with the
development of Graph Neural Networks (GNNs) [2, 7, 13], which are
powerful in learning the deep representation of nodes, recently, the
previous endeavors also propose many GNN-based fraud detection
frameworks [8, 9, 14–17].

Among those frameworks, [8, 15] detect opinion fraud in the
online review system, [9, 14, 17] aim at financial fraud and [16]
targets cyber-criminal in online forums. They model their problems
upon either homogeneous [8, 15] or heterogeneous [8, 9, 14, 16, 17]
graphs. Regarding the base model, FdGars [15] and GAS[8] adopt
GCN [7], while SemiGNN and Player2Vec [16] adopt GAT [13].
Some works [8, 9, 17] devise new aggregators to aggregate the
neighborhood information. Those GNN-based fraud detectors learn
the node representation iteratively and predict the node suspicious-
ness in an end-to-end and semi-supervised fashion.

However, all existing methods ignore the inconsistency problem
when designing a GNN model regarding the fraud detection task.
The inconsistency problem is associated with the aggregation pro-
cess of the GNN model. The mechanism of aggregation is based
on the assumption that the neighbors share similar features and
labels [3]. When the assumption holds, we can aggregate the neigh-
borhood information to learn the node embedding. However, as
Figure 1 (Left) shows, the inconsistency in fraud detection problem
comes from three perspectives:
(1) Context inconsistency. Smart fraudsters can connect them-
selves to regular entities as camouflage [6, 12]. Meanwhile, the
amount of fraudsters is much less than that of regular entities.
Directly aggregating neighbors by the GNNs can only help the
fraudulent entities aggregate the information from regular entities
and thus prevent themselves from being spotted by fraud detectors.
For example, in Figure 1 (Left), the fraudster 𝑣1 connects to 3 benign
entities under relation II.
(2) Feature inconsistency. Taking the opinion fraud (e.g., spam
reviews) detection problem as an example [8], assuming there are
two reviews posted from the same user but to products in distinct
categories, those two reviews have an edge since they share the
same user. However, their review content (features) are far from
each other as they are associated with different products. Direct
aggregation makes the GNN hard to distinguish the unique seman-
tic characteristics of reviews and finally affects its ability to detect
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Figure 1: Left: A toy example of a graph with two relations constructed on a fraud dataset, 𝑣2 − 𝑣7 are neighbors of 𝑣1. Context inconsistency:
fraudster 𝑣1 can connect to many benign neighbors (𝑣4, 𝑣6, 𝑣7 in Relation II) to disguise itself. Feature inconsistency: for 𝑣2 and 𝑣3 with the
same relation to 𝑣1, their features may have great differences. Relation inconsistency: for 𝑣1, Relation I connects more similar neighbors than
Relation II.Right: To alleviate the inconsistency problem,we introduce three techniques. First, we propose to combine the context embeddings
with feature vectors. Then, we calculate the consistency scores of neighbors to filter nodes and generate sampling probabilities. Finally, we
aggregate the sampled neighbors with the attention mechanism over relation embeddings.

spam reviews. For example, in Figure 1 (Left), we can find that the
feature of node 𝑣1 is inconsistent with nodes 𝑣4, 𝑣6, and 𝑣7.
(3) Relation inconsistency. Since the entities are connected with
multiple types of relations, simply treating all the relations equally
results in a relation inconsistency problem. For example, two re-
viewsmay either be connected by the same user or the same product,
which are respectively common-user relation and common-product
relation. Assuming that one review is suspicious, then the other
one should have a greater suspiciousness if they are connected by
common-user relation since fraudulent users tend to post many
fraudulent reviews. For example, in Figure 1 (Left), we find that un-
der relation II, the fraudster 𝑣1 is connected to two other fraudsters.
However, under relation I, the fraudster is connected to only one
fraudster but three benign entities.

To tackle all above inconsistencies, we design a novel GNN
framework, GraphConsis, to solve the fraud detection problem,
as shown in Figure 1 (Right). GraphConsis is built upon a het-
erogeneous graph. GraphConsis differs existing GNNs from the
aggregation process. Instead of directly aggregating neighboring
embeddings, we design three techniques to tackle three inconsis-
tency problems simultaneously. Firstly, to handle the context incon-
sistency of neighbors, GraphConsis assigns each node a trainable
context embedding, which is illustrated as the gray block aside
nodes in Figure 1 (Right). Secondly, to aggregate consistent neigh-
bor embeddings, we design a new metric to measure the embedding
consistency between nodes. By incorporating the embedding consis-
tency score into the aggregation process, we ignore the neighbors
with a low consistency score (e.g. the node 𝑣4 is dropped in Figure 1
(Right)) and generate the sampling probability. Last but not least,
we learn relation attention weights associated with neighbors in
order to alleviate the relation inconsistency problem.

The contributions of this paper are:
• To the best of our knowledge, we are the first work address-
ing the inconsistency problem in GNN models.

• We empirically analyze three inconsistency problems regard-
ing applying GNN models to fraud detection tasks.

• We proposeGraphConsis to tackle three inconsistency prob-
lems, which combines context embedding, neighborhood
information measure, and relational attention.

2 PRELIMINARIES
We detect the fraud entities in the graph by using the node repre-
sentations. Hence, we need to introduce the node representation
learning first. A heterogeneous graph𝐺 = {𝑉 ,X, {𝐸𝑟 }|𝑅𝑟=1

}
, where

𝑉 denotes the nodes, X is the feature matrix of nodes, and 𝐸𝑟 de-
notes the edges w.r.t. the relation 𝑟 . We have 𝑅 different types of
relations. To represent the nodes as vectors, we need to learn a
function 𝑓 : 𝑉 → R𝑑 that maps nodes to a 𝑑 dimensional space,
where 𝑑 ≪ |𝑉 |. The function 𝑓 should preserve both the structural
information of the graph and the original feature information of the
nodes. With the learned node embeddings, we can train a classifier
𝐶 : R𝑑 → {0, 1} to detect whether a given node is a fraudster,
where 1 denotes fraudster, and 0 denotes benign entity. In this pa-
per, we adopt the GNN framework to learn the node representation
through neighbor aggregation. GNN framework can train the map-
ping function 𝑓 and the classifier 𝐶 simultaneously. We only need
to input the graph and the labels of nodes to a GNN model. The
general framework of a GNN model is:

h(𝑙)𝑣 = h(𝑙−1)𝑣 ⊕ AGG(𝑙)
({
h(𝑙−1)
𝑣′ : 𝑣 ′ ∈ N𝑣

})
, (1)

where h(𝑙)𝑣 is the hidden embedding of 𝑣 at 𝑙-th layer, N𝑣 denotes
the neighbors of node 𝑣 , and the AGG represents the aggregation
function that maps the neighborhood information into a vector.
Here, we use ⊕ to denote the combination of neighbor information
and the center node information, it can be direct addition or con-
catenation then passed to a neural network. For the AGG function,
we first assign a sampling probability to the neighboring nodes.
Then we sample 𝑄 nodes and average1 them as a vector. The cal-
culation of probability is introduced later in Eq. (4). Note that the
framework of GNN is a 𝐿-layer structure, where 1 ≤ 𝑙 ≤ 𝐿. At 𝑙-th
layer, it aggregates the information from 𝑙 − 1-th layer.

3 PROPOSED MODEL
3.1 Context Embedding
The aggregator combines the information of neighboring nodes
according to Eq. (2). When 𝑘 = 1, the hidden embedding h(0)𝑣 is
1Other pooling techniques can also be applied.



equivalent to the node feature. To tackle the context inconsistency
problem, we introduce a trainable context embedding c𝑣 for node
𝑣 ., instead of only using its feature vector x𝑣 . The first layer of the
aggregator then becomes:

h(1)𝑣 = {x𝑣 ∥c𝑣} ⊕ AGG(1) ({x𝑣′ ∥c𝑣′ : 𝑣 ′ ∈ N𝑣

})
, (2)

where ∥ denotes the concatenation operation. The context embed-
ding is trained to represent the local structure of the node, which
can help to distinguish the fraud. If we use addition operation for
⊕, then h𝑣 ∈ R2𝑑 .

3.2 Neighbor Sampling
Since there exists a feature inconsistency problem, we should sam-
ple related neighbors rather than assign equal probabilities to them.
Thus, we compute the consistency score between embeddings:

𝑠 (𝑙) (𝑢, 𝑣) = exp
(
−∥h(𝑙)𝑢 − h(𝑙)𝑣 ∥22

)
, (3)

where 𝑠 (𝑙) (·, ·) denotes the consistency score for two nodes at 𝑙-th
layer, and ∥ · ∥2 is the 𝑙2-norm2 of vector. We first apply a threshold
𝜖 to filter neighbors far away from consistent. Then, we assign
each node 𝑢 to the filtered neighbors Ñ𝑣 of node 𝑣 with a sampling
probability by normalizing its consistency score:

𝑝 (𝑙) (𝑢; 𝑣) = 𝑠 (𝑙) (𝑢, 𝑣)/
∑

𝑢∈Ñ𝑣

𝑠 (𝑙) (𝑢, 𝑣). (4)

Note that the probability is calculated at each layer for the AGG(𝑙) .

3.3 Relation Attention
We have 𝑅 different relations in the graph. The relation informa-
tion should also be included in the aggregation process to tackle
the relation inconsistency problem. Hence, for each relation 𝑟 , we
train a relation vector t𝑟 , where 𝑟 = {1, 2, . . . , 𝑅}, to represent the
relation information that should be incorporated. Since the relation
information should be aggregated along with the neighbors to cen-
ter node 𝑣 , we adopt the self-attention mechanism [13] to assign
weights for 𝑄 sampled neighbor nodes:

𝛼
(𝑙)
𝑞 = exp

(
𝜎

(
{h(𝑙)𝑞 ∥t𝑟𝑞 }a⊤

))
/
𝑄∑
𝑞=1

exp
(
𝜎

(
{h(𝑙)𝑞 ∥t𝑟𝑞 }a⊤

))
, (5)

where 𝑟𝑞 denotes the relation of 𝑞-th sample with node 𝑣 , 𝜎 is the
activation function, and 𝑎 ∈ R4𝑑 represents the attention weights
that is shared for all attention layer. The final AGG(𝑙) is:

AGG(𝑙)
({
h(𝑙−1)𝑞

} ���𝑄
𝑞=1

)
=

𝑄∑
𝑞=1

𝛼
(𝑙)
𝑞 h(𝑙)𝑞 , (6)

where h(𝑙)𝑞 is the embedding of 𝑞-th node sampled based on Eq. (4).

4 EXPERIMENTS
4.1 Experimental Setup
4.1.1 Dataset and Graph Construction. We utilize the YelpChi spam
review dataset [11], along with three other benchmark datasets [2,
7] to study the graph inconsistency problem in the fraud detection
task. The YelpChi spam review dataset includes hotel and restaurant
reviews filtered (spam) and recommended (legitimate) by Yelp. In
2Other metrics, such as 𝑙1-norm, are also applicable.

this paper, we conduct a spam review classification task on the
YelpChi dataset which is a binary classification problem.We remove
products with more than 800 reviews to restrict the size of the
computation graph. The pre-processed dataset has 29431 users, 182
products, and 45954 reviews (%14.5 spams).

Based on previous studies [11] which show the spam reviews
have connections in user, product, rating, and time, we take reviews
as nodes in the graph and design three relations denoted by R-U-
R, R-S-R, and R-T-R. R-U-R connects reviews posted by the same
user; R-S-R connects reviews under the same product with the
same rating; R-T-R connects two reviews under the same product
posted in the same month. We take the 100-dimension Word2Vec
embedding of each review as its feature like previous work [8].

4.1.2 Baselines. To show the ability of GraphConsis in alleviating
inconsistency problems, we compare its performance with a non-
GNN classifier, vanilla GNNs, and GNN-based fraud detectors.

• Logistic Regression. A non-GNN classifier that makes pre-
dictions only based on the reviews features.

• FdGars (GCN) [15]. A spam review detection algorithm
using GCN [7].

• GraphSAGE [2]. A popular GNN framework which samples
neighboring nodes before aggregation.

• Player2Vec [16]. A state-of-the-art fraud detection model
which uses GCN to encode information in each relation, and
uses GAT to aggregate neighbors from different relations.

4.1.3 Experimental Settings. We use Adam optimizer to train our
model based on the cross-entropy loss. For the hyper-parameters,
we choose 2-layer structure, and the number of samples is set
as 10 and 5 for the first layer and second layer, respectively. The
embedding dimension of the hidden layer is 200 and 100 for the first
layer and second layer, respectively. We use F1-score to measure
the overall classification performance and AUC to measure the
performance of identifying spam reviews.

4.2 The Inconsistency Problem
We first take the Yelpchi dataset to demonstrate the inconsistency
problem in applyingGNN to fraud detection tasks. Table 1 shows the
statistics of graphs built on YelpChi comparing to node classification
benchmark datasets used by [2, 7]. Yelp-ALL is composed of three
single-relation graphs.

Comparing to three widely-used benchmark node classification
datasets, we find that a multi-relation graph constructed on YelpChi
has a much higher density (the average node degree is greater than
100). It demonstrates that the real-world fraud graphs usually in-
corporate complex relations and neighbors, and thus render incon-
sistency problems. Before we compare the graph characteristics
and analyze three inconsistency problems, similar to [3], we design
two characteristic scores. One is the context characteristic score:

𝛾
(𝑐)
𝑟 =

∑
(𝑢,𝑣) ∈𝐸𝑟

(1 − I (𝑢 ∼ 𝑣)) /|𝐸𝑟 |, (7)

where I(·) ∈ {0, 1} is an indicator function to indicate whether
node 𝑢 and node 𝑣 have the same label. We sum all the indication
w.r.t. all the edges and normalized by the total number of edges |𝐸𝑟 |.
The context characteristic measures the label similarity between



neighboring nodes under a specific relation 𝑟 . The other one is the
feature characteristic score:

𝛾
(𝑓 )
𝑟 =

∑
(𝑢,𝑣) ∈𝐸𝑟

exp
(
− ∥x𝑢 − x𝑣 ∥22

)
/|𝐸𝑟 | · 𝑑, (8)

where we employ the RBF kernel function3 as the similarity mea-
surement between two connected nodes. The overall feature char-
acteristic score is normalized by the product of the total number of
edges |𝐸𝑟 | and the feature dimension 𝑑 . Normalizing the similarity
by feature dimension is to fairly compare the feature characteristics
of different graphs, which may have different feature dimensions.
Context Inconsistency. We compute the context characteristic
𝛾
(𝑐)
𝑟 based on Eq. (7), which measures the context consistency. For
the graph R-T-R, R-S-R and Yelp-ALL, there are less than 10% of
neighboring nodes have similar labels. It shows that fraudsters may
hide themselves among regular entities under some relations.
Feature Inconsistency. We calculate the feature characteristic
𝛾
(𝑓 )
𝑟 using Eq. (8). The graph constructed by R-U-R relation (reviews
posted by the same user) has higher feature characteristic than the
other two relations. Thus, we need to sample the neighboring nodes
not only based on their relations but also the feature similarities.
Relation Inconsistency. For graphs constructed by three different
relations, the neighboring nodes also have different feature/label
inconsistency score. Thus, we need to treat different relations with
different attention weights during the aggregation.

Table 1: The statistics of different graphs.
Graph #Nodes #Edges 𝛾 (𝑓 ) 𝛾 (𝑐 )

O
th
er
s Cora 2,708 5,278 0.72 0.81

PPI 14,755 225,270 0.48 0.98
Reddit 232,965 11,606,919 0.70 0.63

O
ur

s

R-U-R 45,954 98,630 0.83 0.90
R-T-R 45,954 1,147,232 0.79 0.05
R-S-R 45,954 6,805,486 0.77 0.05
Yelp-ALL 45,954 7,693,958 0.77 0.07

4.3 Performance Evaluation
Table 2 shows the experiment results of the spam review detection
task. We could see that GraphConsis outperforms other models
under 80% and 60% of training data on both metrics, which sug-
gests that we can alleviate the inconsistency problem. Compared
with other GNN-based models, LR performs stably and better on
AUC. It indicates that the node feature is useful, but the aggregator
in GNN undermines the classifier in identifying fraudsters. This
observation also proves that the inconsistency problem is critical
and should be considered when applying GNNs to fraud detection
tasks. Compared to Player2Vec which also learns relation attention,
GraphConsis performs better. It suggests that solely using relation
attention cannot alleviate the feature inconsistency. The neighbors
should be filtered and then sampled based on our designed methods.
FdGars directly aggregates neighbors’ information and GraphSAGE
samples neighbors with equal probability. Both of them perform
worse than GraphConsis, which shows that our neighbor sampling
techniques are useful.

3Other kernel functions can also be applied.

Table 2: Experiment results under different training %.

Method 40% 60% 80%
F1 AUC F1 AUC F1 AUC

LR 0.4647 0.6140 0.4640 0.6239 0.4644 0.6746
GraphSAGE 0.4956 0.5081 0.5127 0.5165 0.5158 0.5169

FdGars 0.4603 0.5505 0.4600 0.5468 0.4603 0.5470
Player2Vec 0.4608 0.5426 0.4608 0.5697 0.4608 0.5403
GraphConsis 0.5656 0.5911 0.5888 0.6613 0.5776 0.7428

5 CONCLUSION AND FUTUREWORKS
In this paper, we investigate three inconsistency problems in apply-
ing GNNs in fraud detection problem. To address those problems,
we design three modules respectively and propose GraphConsis.
Experiment results show the effectiveness of GraphConsis. Future
work includes devising an adaptive sampling threshold for each
relation to maximize the receptive field of GNNs. Investigating
the inconsistency problems under other fraud datasets is another
avenue of future research.
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