
MARBLE: A Multi-GPU Aware Job Scheduler for
Deep Learning on HPC Systems

Jingoo Han*, M. Mustafa Rafique§, Luna Xu†, Ali R. Butt*, Seung-Hwan Lim‡, Sudharshan S. Vazhkudai‡
*Virginia Tech, §Rochester Institute of Technology, †IBM Research, ‡Oak Ridge National Laboratory

*{jingoo, butta}@cs.vt.edu, §mrafique@cs.rit.edu, †xuluna@ibm.com, ‡{lims1, vazhkudaiss}@ornl.gov

Abstract—Deep learning (DL) has become a key tool for
solving complex scientific problems. However, managing the
multi-dimensional large-scale data associated with DL, especially
atop extant multiple graphics processing units (GPUs) in modern
supercomputers poses significant challenges. Moreover, the latest
high-performance computing (HPC) architectures bring different
performance trends in training throughput compared to the
existing studies. Existing DL optimizations such as larger batch
size and GPU locality-aware scheduling have little effect on
improving DL training throughput performance due to fast CPU-
to-GPU connections. Additionally, DL training on multiple GPUs
scales sublinearly. Thus, simply adding more GPUs to a system
is ineffective. To this end, we design MARBLE, a first-of-its-
kind job scheduler, which considers the non-linear scalability
of GPUs at the intra-node level to schedule an appropriate
number of GPUs per node for a job. By sharing the GPU
resources on a node with multiple DL jobs, MARBLE avoids
low GPU utilization in current multi-GPU DL training on
HPC systems. Our comprehensive evaluation in the Summit
supercomputer shows that MARBLE is able to improve DL
training performance by up to 48.3% compared to the popular
Platform Load Sharing Facility (LSF) scheduler. Compared to the
state-of-the-art of DL scheduler, Optimus, MARBLE reduces the
job completion time by up to 47%.

I. INTRODUCTION

Artificial intelligence (AI) technology using deep learning
(DL) [1] is gaining rapid popularity in industry and science
because of its powerful abilities for image recognition, natural
languages processing, and autonomous vehicles. Especially,
the scientific communities have started to benefit from DL
to automate, accelerate, and drive understanding at super-
computer scales, which enables breakthroughs in scientific
discovery such as analyzing climate patterns [2], modeling
the universe [3], and classifying medical images [4]. To
meet the increasing demands of running DL applications on
supercomputers, the HPC community has started designing
and deploying computing systems ready for DL workloads.

The design of the newly ranked supercomputers begins to
adopt extreme parallelism and heterogeneity [5]. For exam-
ple, according to the Top500 list of supercomputers from
November 2019 [6], top-ranked Summit [7] is equipped with
27, 648 NVIDIA V100 graphics processing units (GPUs) [8]
and each is connected to IBM POWER CPU with high-speed
NVLink connections [9] making it “one of the most AI-
capable machines ever constructed” [10]. In fact, five of the top
ten supercomputers in 2019 are GPU-enabled HPC systems as
compared to two out of the top ten supercomputers in 2017.
Moreover, it is now a common practice for supercomputers to
add multiple GPUs in a single node. For example, the top two
ranked supercomputers, i.e., Summit and Sierra [11], deploy

six and four GPUs per node, respectively. Similarly, future
exascale supercomputer Frontier [12] scheduled for delivery
in 2021 will include four GPUs per node. This shows an
increasing trend of multi-GPU based HPC systems. However,
simply adding more GPUs into a node does not guarantee lin-
ear performance improvement for DL training. We observe that
multi-GPU based HPC systems show different performance
trends in comparison with the existing studies [13]–[17].

Our motivation experiments in Section IV where we ran
typical DL jobs with increasing number of GPUs on Summit
HPC system show a training throughput gain of up to 3.3×
with 6 GPUs. Ideally, it should show 6× improvement, achiev-
ing linear scalability. This performance gap is due to the fact
that newly ranked HPC systems employ powerful GPUs (e.g.,
V100, P100 [18]) and the conventional schedulers are unable
to fully utilize multiple GPUs to their full potential. Moreover,
the recent HPC systems adopt fast CPU-to-GPU connections,
e.g., NVLink, that diminish the existing optimization efforts
on the batch size or GPU locality. Thus, large-batch training
or GPU locality-aware scheduling does not provide notable
performance improvement as the I/O overhead between CPU-
to-GPU communication is alleviated substantially by the fast
NVLink connections. Furthermore, we observe that multi-GPU
training does not fully utilize GPUs when less computationally
intensive DL models are executed on each GPU.

While the latest HPC systems [7] with multi-GPU show
a different scalability trend for DL, the state-of-the-art DL
job1 schedulers [15], [21]–[23] and resource managers [24],
[25] are unable to capture this non-linear scalability trend.
Instead, previous studies on DL scheduling focus on GPU
locality to reduce CPU-GPU transfer overhead or time slicing
to speed up hyper-parameter searches. Recent efforts [15], [26]
focus on cloud environment and avoid resource contention
and job interference when concurrently running multiple DL
jobs. However, we observe negligible job interference with
the powerful GPUs, high-speed connections, enough GPU
cores, and large memory in latest HPC settings. Therefore,
these works do not apply to the HPC environment with high
speed interconnect and powerful GPUs. Moreover, traditional
HPC schedulers are designed for classical HPC jobs and are
unaware of the characteristics of DL training. These schedulers
are often static and they cannot adjust the allocation of GPU
resources to DL jobs until training completion. They allocate
a fixed number of GPUs to a training job, which remains

1We use the term ‘DL job’ to represent neural network training workloads
to avoid confusion between non-HPC and HPC usages. For example, training
VGG-16 [19] and ResNet-50 [20] is referred to as two DL jobs.

1



unchanged throughout the training process, resulting in a low
GPU utilization. This approach is especially inefficient to run
multiple DL jobs for a single application, which is a common
practice in DL, e.g., to search for the best model for the target
learning task. With the performance bottleneck of scaling up
a single DL training on high-performance multi-GPU settings,
this paper enables better utilization of GPU resources by multi-
job scheduling on multi-GPU HPC systems.

In this paper, we propose MARBLE, a multi-GPU aware
job scheduler for DL applications on modern HPC environ-
ments that aims to address the aforementioned challenges.
MARBLE is a scheduling and resource management system
specific for efficient DL training on HPC systems. The ex-
isting HPC schedulers cannot prevent waste of limited HPC
resources where all jobs are scheduled on a single set of nodes
(resource quota per user) to provide efficient resource sharing
between multiple users. Within the limited resource environ-
ment, the current schedulers have to run multiple DL jobs
only in a sequential way. Unlike the existing schedulers that
optimize on the locality of workers, GPU locality, or resource
configuration of parameter servers and workers, MARBLE in-
corporates the characteristic of non-linear scalability of multi-
GPU at the intra-node level on modern HPC environments.
To this end, MARBLE runs multiple DL jobs concurrently
with dynamic GPU resource assignment via a suspend and
resume mechanism. MARBLE first decides an appropriate
number of GPUs according to the model scalability on a multi-
GPU system for a job and executes it with the optimal number
of GPUs. Then it runs other jobs in parallel on the leftover
GPUs on a node. Assigning an appropriate number of GPUs
enhances DL training throughput and co-locating multiple DL
jobs within a single node achieves higher GPU utilization.

Specifically, this paper makes the following contributions:
• We provide insights on how DL training throughput is

affected by multiple GPUs in terms of scalability on
a single node and analyze why large-batch training or
GPU locality is not an important factor of DL training
throughput on the latest HPC systems.

• We design DL job scheduling heuristic to concurrently
run multiple DL jobs on a single node using a suspend
and resume mechanism. To the best of our knowledge,
this is the first work to consider the non-linear scalability
of GPUs per node on HPC systems for DL training.

• We implement and evaluate MARBLE with DL job sets
on the world’s fastest supercomputer, Summit, equipped
with six V100 NVIDIA GPUs on each node con-
nected with NVLink. We evaluate MARBLE for both
single- and multi-node training. Compared to the current
LSF [27] job scheduler, MARBLE reduces the total
completion time of training DL jobs by up to 48.3% and
increases the overall GPU utilization by up to 86%.

II. BACKGROUND

A. HPC Supercomputer Architecture
HPC systems, e.g., Summit, have evolved into systems with

extreme parallelism and heterogeneity by deploying multiple

Fig. 1: System architecture of Summit.

TABLE I: CNN model information. (Conv. = Convolution, Incept.
= Inceptional, FC. = Fully Connected)

CNN Model Number of Layers Number of
Conv. Incept. FC. Parameters

LeNet [36] 2 0 2 60K
AlexNet [37] 5 0 3 61M
ResNet-50 [20] 49 0 1 25M
Inception-v3 [38] 7 11 1 24M
ResNet-101 [20] 100 0 1 45M
VGG-16 [19] 13 0 3 138M

GPUs per node to meet the high concurrency requirements
from both scientific simulations and AI workloads. However,
introducing multi-GPU leads to high I/O cost between GPUs
as well as the communication overhead between CPUs and
GPUs. To reduce the I/O bottleneck, the latest HPC systems
have begun to use NVLink [9] that is 5× faster than the
conventional PCIe [28] interface. Large scale HPC systems
with thousands of nodes also adopt high-performance net-
works between nodes, e.g., 115 TB/s bisection bandwidth [29]
to avoid network bottleneck. Apart from high-performance
parallel storage systems, e.g., GPFS [30] and Lustre [31],
each node is typically equipped with a non-volatile memory
(NVM) [32] to be used as burst buffer to speed up data I/O. An
example of such an architecture is shown in Figure 1, which
handles DL workloads efficiently [2], [10], [29], [33].

B. Convolutional Neural Network (CNN)

CNN is one of the DL methods that contains multiple
convolutional layers. We focus on CNN because the scientific
community mainly uses DL for image analysis workloads [2],
[3], [33]–[35]. Each layer in CNN consists of a set of filters to
extract features from the input. Convolution of feature maps
requires multiplications and accumulations for all input data,
hence DL training involves a series of convolution operation
with a large number of parameters at each layer. Overall, CNN
training requires high computational capacity to perform a
series of iterative steps over a large number of data samples.

Table I shows well-known CNN models which are used as
representative workloads in this paper. LeNet [36] is a classical
CNN model which is relatively small and requires less com-
puting resources. AlexNet [37] is the first implementation to
use GPU for training CNN models. ResNet [20] uses residual

2



learning as shortcut connections to solve the degradation
problem of very deep models. The Inception model [38]
contains inception layers where smaller multiple convolution
layers and a pooling layer reside as one or two layers, which
makes computation cost much lower than the previous DL
models. Although ResNet-50 and Inception-v3 contain much
deeper layers than AlexNet, their parameter set is less than
half of the size of AlexNet because of residual blocks and
inception layers. VGG-16 [19] has a simple architecture but
contains too many parameters due to three fully connected
layers. These models require different computing powers and
system resources based on their fundamental design choices.

III. RELATED WORKS

There are existing studies on scheduling and resource
management for DL training. Optimus [21] adjusts resource
allocation dynamically based on DL training time prediction
using job progress. Cynthia [25] provides cost-efficient re-
source management via profiling network throughput. Optimus
and Cynthia focus on adjusting cluster configuration (e.g.,
the numbers of parameter servers and worker nodes), which
does not work well with HPC environment with quota based
resource allocation. However, MARBLE aims to dynamically
allocate GPU resources per node within the allocated cluster.
Gandiva [15] manages GPU resources by leveraging GPU
time sharing for mainly targeting efficient hyper-parameter
search. However, it is known that Gandiva achieves limited
improvement in the job completion time [22]. Tiresias [22]
performs scheduling based on the number of used GPUs
and executed time, which minimizes job completion times of
DL training. RALP [24] places memory-intensive layers into
parameter servers to reduce network traffic between parameter
servers and worker nodes. Salus [39] performs fine-grained
GPU sharing to reduce average job completion time. Most
of these works focus on more flexible cloud environments.
Compared to these works, MARBLE focuses on end-to-end
application (may include multiple DL jobs with or without
parameter server) run time on latest HPC systems [7], [11].

These existing efforts do not consider the non-linear scal-
ability of multiple GPUs across the nodes for reducing DL
training time. To the extent of our knowledge, this paper is
the first to leverage the non-linear scalability of multi-GPU
for DL training. The recent studies [15], [39] use a suspend
and resume mechanism for the time-slicing scheduling for
DL training, while our work uses suspend and resume for
dynamically assigning optimal GPU resources to DL jobs.

IV. MOTIVATION

In this section, we describe our observation of the current
state of the art in multi-GPU scalability and the insensitivity
for batch sizes and GPU locality for DL workloads, which
motivates our work.

A. Non-linear Scalability of Multiple GPUs

We study the impact of the number of GPUs in a single
server on the training throughput performance of different DL

 0

 200

 400

 600

 800

 1000

Le
Net

Alex
Net

Re
sN

et-
50

Inc
ep

tio
n-

v3

Re
sN

et-
10

1

VG
G-1

6

Im
ag

es
/s

ec

Single GPU
2 GPUs
3 GPUs
4 GPUs
5 GPUs
6 GPUs

Fig. 2: Training throughput using multiple GPUs.

 0

 20

 40

 60

 80

 100

Le
Net

Alex
Net

Re
sN

et-
50

Inc
ep

tio
n-

v3

Re
sN

et-
10

1

VG
G-1

6
GP

U 
Ut

ili
za

tio
n 

(%
)

Single GPU
2 GPUs
3 GPUs
4 GPUs
5 GPUs
6 GPUs

Fig. 3: GPU utilization using multiple GPUs.

models and show the result in Figure 2. Unlike the existing
studies [16], [17], [40], [41], training using more than 3 GPUs
on a single node is not scalable in our target HPC setting.
Moreover, three DL models, i.e., LeNet, ResNet-50, and VGG-
16 experience performance degradation, when they are trained
on 6 GPUs. However, we observe that compute-intensive
workloads lead to more scalable multi-GPU training. Thus,
when the computation workload is not high (e.g., LeNet),
it has a negative impact on the scalability because adding
more GPUs for less compute-intensive workloads results in
low overall GPU utilization [42]. To verify this, we also plot
GPU utilization results in Figure 3. LeNet presents a low GPU
utilization and adding more GPUs causes more coordination
overhead than the benefit from parallelism. Training AlexNet
or ResNet-50 on two GPUs achieves substantial speedup as
compared to using a single GPU. However, training using 3
or 4 GPUs does not give substantial performance improvement
because of incurred communication overhead between GPUs.
Conversely, the training performance of VGG-16 keeps in-
creasing with 3, 4, or 5 GPUs. Hence, for DL models with
a high computational workload, the computational workload
is divided among multiple GPUs to achieve better throughput
benefits than synchronization overhead.

The current multi-GPU environment of the latest HPC
system does not provide linear scalability for DL training.
Moreover, each DL model shows a different scalability trend.
Therefore, the scheduler should consider an optimal number
of GPUs for different DL jobs instead of simply adding more
GPUs to enhance throughput and efficiency.

3



B. Insensitivity to Batch Size

Batch size is one of the most important configuration factors
that affect DL training throughput [14], [43]. Since large-batch
training decreases gradient aggregation frequency and weight
update, it requires fewer iterations. Although large batch size
results in low accuracy, there are efforts [2], [3], [43] to address
this issue by using learning rate algorithms, such as Layer-
wise Adaptive Rate Scaling (LARS) [44]. These approaches
show that large-batch training gives performance benefits from
large-scale HPC systems without loss of accuracy.

According to our recent study [42], increasing the batch
size from 128 images to 256 images results in a slight
performance enhancement, i.e., 1.0% ∼ 3.7% for three
models (LeNet, AlexNet, ResNet-50). However, performance
degradation occurs when larger batch sizes, e.g., 4K and 8K,
are used. This result shows different performance patterns
from a recent work [14] which observed linear performance
improvements with increasing batch size from 256 to 11K
images using P100 GPUs. Previous studies [13], [45] assumed
that connections between CPU and GPU are slow. However,
the latest supercomputers have started employing NVLink
between CPUs and GPUs, which provides 5× faster CPU-
to-GPU throughput than PCIe bus [28]. As a result, a large
batch size for hiding communication overhead is not effective
to improve performance for these systems.

C. Insensitivity to GPU Locality

We measure the impact of GPU locality within the same
node. When 2 GPUs having different CPU affinity are used
for a 2-GPU training job, performance degradation occurs due
to the communication overhead [15]. However, we observe
that GPU locality within a single node has a little impact on
the training throughput. We train each DL model with two
different CPU-affinity configurations, i.e., the same socket and
different socket configurations. The performance difference
is very slight (i.e., 0.2% ∼ 1.9%). This is because as
stated earlier, the latest HPC systems deploy NVLink between
GPUs and CPUs connections, which mitigates communication
overhead. For example, the X-Bus on Summit is 64GB/s and
the NVLink is 50GB/s; so a CPU can get to another CPU-GPU
complex at NVLink speeds. Thus, GPU locality is no longer
a significant factor for fast DL throughput, which suggests
that DL scheduling policy does not need to incorporate GPU
locality when allocating GPUs to DL jobs.

D. Limitation of HPC Cluster Scheduler

Several schedulers, e.g., SLURM [46], IBM Platform
LSF [27], have been proposed for HPC environments for batch
job processing. Unlike other cloud environments or non-HPC
systems, dedicated machines are allocated exclusively for a
single HPC user in a gang-scheduling fashion. Job scheduling,
queuing and monitoring on HPC systems are maintained by
batch schedulers [47]. Usually, these HPC schedulers target
long-running jobs for scientific simulation and modeling work-
loads [48]. Jobs are received from users in batches. These jobs
are placed into job queues and are dispatched to compute

nodes when required resources are available. These gang-
schedulers do not provide flexibility for dynamic configuration
and resource sharing. The resource configuration is defined
by the user at the time of job submission and remains fixed
until job completion even if the resources are configured
inefficiently and wastefully. Moreover, the current HPC sched-
ulers do not support features optimized for DL workloads and
treat DL jobs as black-boxes, i.e., they do not leverage the
non-linear characteristics of multi-GPU training. To enhance
system performance and utilization of emerging HPC systems,
GPU resources should be allocated efficiently according to the
scalability of multi-GPU workloads with dynamic resource
management. However, it is difficult to change the existing
HPC job schedulers as the majority of the resident applications
on HPC are still modeling and simulations. To this end,
MARBLE does not aim to completely replace HPC job
schedulers but works alongside HPC job scheduler for DL jobs
to dynamically adjust the GPU resources within the resource
set allocated by HPC job schedulers.

V. DESIGN

In this section, we describe the details of the developed job
scheduler, MARBLE, for DL workloads that assigns GPU
resources to each job based on multi-GPU scalability and
supports dynamic allocation of GPUs during training. As we
show in Section IV, a large-batch size and GPU locality have
little impact on the training throughput. Therefore, MARBLE
does not consider the batch size and GPU locality, and instead
addresses the following:
• Reducing the overall job completion time by allocating

the optimal number of GPUs based on non-linear scala-
bility of multi-GPU training.

• Increasing GPU utilization by collocating multiple jobs
in parallel with a suspend/resume mechanism.

A. Design Objectives

The objective of MARBLE is to minimize the total training
time (T ) of all DL jobs, i.e., T =

∑
∀i ti, where ti denotes

the original training time of a DL job i without scalability-
awareness. We assume that jobs are executed serially with
different starting times within limited resource settings (e.g.,
single-node training). Each ti can be reduced by α through
allocating the optimal GPUs that provide the best throughput,
instead of using the maximum number of GPUs provided by
a single node. α is dependent on the DL models and HPC
systems. As shown in Figure 2, the maximum value of α is
2.91% on the studied HPC systems when VGG-16 is trained
on 5 GPUs instead of 6 GPUs. Additionally, the total execution
time can be reduced by parallel execution of DL jobs, because
multiple DL jobs can be concurrently executed on the same
node. Thus, total time T can be optimized by scheduling
algorithm of MARBLE as:

T =
∑
∀i

(ti × (1− αi)− pi) (1)

4



Fig. 4: MARBLE components and their interactions.

pi indicates the gain in execution time of each DL job when
a DL job is executed concurrently with other DL jobs. For
example, if a DL job is executed concurrently with other DL
jobs with higher priority until the completion of the DL job,
pi will be equal to ti×(1− αi) of the DL job. However, if all
GPUs on a node are used by a single DL job, then the value
of pi will be zero as no performance gains would be achieved
through concurrent execution.

B. System Architecture

MARBLE is composed of a job scheduler and a resource
monitor as shown in Figure 4. It resides next to the cluster-
level job scheduler and takes control of the node-level DL
job scheduling by reading a set of submitted DL jobs into a
FIFO queue. The user does not need to consider the number
of GPUs. Instead, MARBLE determines the GPU numbers
automatically according to the scalability of the DL model
and the availability of GPUs in the system. MARBLE then
schedules a job with the optimized number of GPUs and sends
these jobs to DL frameworks (e.g., TensorFlow) for execution
through the existing HPC scheduler.

C. Scheduling Policy

MARBLE employs a FIFO-based scheduling policy and
runs multiple jobs in parallel as either a primary or a secondary
job. The primary job is defined as one where the optimal
number of GPUs is assigned to provide the best throughput.
The secondary jobs are jobs that share GPU resources with
other jobs and run using a suboptimal number of GPUs. We
use the FIFO scheduler to preserve the task order (in case
tasks are dependent on each other) and scheduling fairness.
Algorithm 1 gives a detailed procedure of our scheduling
mechanism. The scheduler picks the first job in the queue as a
primary job, decides the optimal number of GPUs based on the
characteristics of the model, and assigns GPUs to the primary
job, where the job can be run at the best throughput. Then, the
scheduler selects the next job which is marked as independent
and checks the number of available GPUs that the compute
node can provide. If the optimal number of GPUs for the
given job is less than the number of available GPUs, then the
selected job is marked as a primary job and allocated with the
optimal number of GPUs. Otherwise, the job is assigned with
the remaining GPUs, thus identified as a secondary job. MAR-
BLE repeats this procedure until all GPUs are occupied or
all jobs are scheduled. MARBLE proposes a suspend/resume
mechanism to dynamically allocate GPU resources to the

Algorithm 1: Job scheduling algorithm in MARBLE.
Input: jobSet

1 begin
2 run multiple jobs();
3 forall job ∈ jobSet do
4 Monitor running Jobs;
5 if Job is finished then
6 if Available GPUs >= GPUoptimal &

Jobsecondary is still running then
7 Suspend a running Jobsecondary;
8 Resume the suspended job as Jobprimary;
9 end

10 run multiple jobs();
11 end
12 end
13 end
14 Function run_multiple_jobs()
15 while Available GPUs > 0 do
16 if Available GPUs >= GPUoptimal then
17 Run next job as Jobprimary;
18 else
19 Run next job as Jobsecondary;
20 end
21 end

secondary job by providing an optimal number of GPUs when
free GPUs are available. The scheduler monitors all running
jobs to track their completion. Upon completion of a job,
MARBLE searches for a running secondary job and tries to
promote it to a primary job by assigning more GPUs freed by
completed jobs until the job reaches the optimal number, i.e.,
the secondary job is suspended and resumed with the optimal
number of GPUs. If there is no running secondary job, the next
job in the queue is chosen for scheduling. The new job will
be run as either a primary job or a secondary job according
to the number of available GPUs and the optimal number of
GPUs required by the job.

Figure 5 shows an example working of MARBLE. There
are 3 jobs, i.e., ResNet-50, Inception-v3, and VGG-16 with 6
GPUs on a single node. The first job executes as a primary job
as there are enough GPUs available. Thus, Job 1 (ResNet-50)
is executed on 3 GPUs as training ResNet-50 on 3 GPUs is
the fastest. However, Job 2 (Inception-v3) cannot be executed
as a primary job because there are not enough GPUs available.
Although the optimal number of GPU for training Inception-
v3 is 4, Job 2 (Inception-v3) is scheduled as a secondary job
with 3 GPUs. Here, for maximizing GPU utilization, when
one of the jobs is finished, the current running secondary job
(Job 2) on 3 GPU is suspended and resumed by MARBLE
with the optimal number of GPUs (i.e., 4 GPUs). MARBLE
selects Job 3 (VGG-16) as a secondary job as there are only
2 GPUs available.

The complexity of computation overhead of scheduling
algorithm is O(n), where n indicates the number of jobs

5



(a) Initial job assignment

(b) Suspend/resume during training

Fig. 5: GPU resource assignment based on multi-GPU scalability
awareness.

running in parallel. The scheduling algorithm needs to choose
the optimal number of GPUs and runs the jobs in parallel. For
example, if 4 parallel jobs can be run after a job is finished, the
algorithm will be repeated four times for allocating resources
and executing jobs. Therefore, MARBLE is scalable in terms
of the number of running n parallel jobs. However, the com-
plexity of our algorithm does not depend on other components
in the HPC cluster, e.g., the number of total DL jobs, the
number of GPUs per node, and the number of available nodes.

D. Optimal Number of GPUs

MARBLE determines the optimal number of GPUs through
offline profiling to reduce the runtime complexity. MARBLE
derives the number of GPUs for each DL model from the
historical execution data measured during the offline profiling
stage. This information is used at the runtime at the scheduling
stage to determine the optimal number of GPUs that should
be assigned to run a particular job.

VI. IMPLEMENTATION

MARBLE is framework-independent and can work with
any DL framework. However, we have implemented it with
TensorFlow to leverage its checkpointing mechanism.

Suspend/Resume: We use the checkpointing mechanism
for suspending and resuming jobs. The checkpointing method
has been widely used for saving and restoring DL models. We
checkpoint the state of the current training job and resume

the job from a checkpointed file. The checkpoints are stored
by TensorFlow after the completion of a DL job. The check-
point files are saved at separate directories under the same
parent directory. We use the Unix signal mechanism [49], i.e.,
SIGTSTP and SIGUSR1 signals to terminate the running job.
MARBLE sends a SIGTSTP signal to TensorFlow to suspend
a DL job. We introduce a new flag (i.e., SUSPEND_FLAG)
in TensorFlow to check if the signal is received from the
scheduler per iteration. We also add a signal handler for a
SIGTSTP signal to TensorFlow. When TensorFlow receives a
SIGTSTP signal from the scheduler, the signal handler sets
SUSPEND_FLAG. The SUSPEND_FLAG flag is checked by
train_step function per iteration during training. If the
SUSPEND_FLAG flag is set, then the request_stop() is
called and checkpoint will be saved. After finishing check-
pointing, TensorFlow sends a SIGUSR1 signal to the sched-
uler, which leverages the resume operation to start the DL
job with updated configuration parameters, e.g., the number
of GPUs, and the number of steps

Job Monitoring: MARBLE periodically monitors all run-
ning jobs with a configurable interval, e.g., 10 seconds or 30
seconds. In our implementation, MARBLE monitors jobs by
using system commands, i.e., ls [50] and nvidia-smi [51],
that are not intrusive and incur minimal overhead.

VII. EVALUATION

We evaluate MARBLE on a modern IBM-POWER based
HPC system. We randomly selected job sets shown in Table II
and Table III and show the performance of both single and
multiple node training. We compare MARBLE with the
default LSF scheduler used in the system. We also compare
MARBLE to Optimus, a recent DL scheduler. We run exper-
iments five times and report the averages and 95% confidence
intervals. The highlights of our evaluation are as follows:

• MARBLE improves the overall job completion time by
up to 48.3% and the overall GPU utilization by up to 86%
for single-node training. It concurrently runs multiple DL
jobs within a single server, maximizing GPU efficiency
based on non-linear scalability.

• MARBLE improves the overall job completion time by
up to 30.5% and the overall GPU utilization by up to
34.6% for multi-node training.

A. Methodology

Testbed. We conduct our experiments on the top-ranked
supercomputer Summit. Our system architecture is shown in
Figure 1. Specifically, each compute node in Summit has six
NVIDIA Tesla V100 GPUs and two IBM POWER9 CPUs,
512 GB memory, one 800 GB NVMe SSD, and uses GPFS
as the main storage system. The nodes are connected using
Mellanox IB EDR with a 100 Gbps bandwidth switch. Each
V100 GPU has 5120 CUDA cores and 16 GB memory with the
memory bandwidth of 900 GB/s. POWER9 CPUs and V100
GPUs are connected by NVLink 2.0 (50 GB/s).

6



TABLE II: DL job sets for single-node training.
(a) Job set 1

Job ID Network Steps
1 ResNet-50 800
2 ResNet-50 3600
3 Inception-v3 1400

(b) Job set 2
Job ID Network Steps

1 Inception-v3 2400
2 ResNet-50 600
3 ResNet-101 1000

(c) Job set 3
Job ID Network Steps

1 ResNet-50 900
2 Inception-v3 2000
3 VGG-16 800

Software. We run TensorFlow 1.8 DL framework with CUDA
9.0 [52] and cuDNN 7.0.3 [53]. We built TensorFlow from the
source code to run on the IBM POWER-based system.
Workloads. We select the ImageNet dataset [54] for training
the model with as large data as possible in our setup. It
consists of 1.2 million images of 1, 000 categories for train-
ing and 50, 000 images for validation. For training, we use
TensorFlow-Slim [55] suite, a library that provides various
DNN models. We choose different sets of DL jobs, as shown
in Table II and Table III. For single-node training, we use
3 job sets which comprise 3 different jobs. For multi-node
training, we measure 3 job sets which consist of 5 different
jobs. These job sets include widely used CNN models such as
ResNet, Inception-v3, and VGG-16.
Metrics. We measure the overall job set completion time as
our performance metric. We also measure the GPU utilization
and GPU memory utilization as our resource utilization metric.
Suspend and Resume latency in seconds is provided as our
runtime overhead metric.
Baseline. We compare MARBLE with IBM Platform LSF
scheduler [27]. LSF is one of the widely used HPC job
scheduler for large scale HPC systems [56]. LSF scheduler
allocates the maximum number of GPUs (e.g., 6 GPUs) to
each DL job without considering non-linear scalability. In LSF,
jobs wait in a queue until there are enough GPUs available to
run the job. MARBLE assigns the optimal number of GPUs
to each job according to the scalability characteristics of DL
models and shares GPU resources by running multiple jobs
concurrently with dynamic GPU allocation.

B. Performance Comparison to Baseline

In this section, we show the effectiveness of MARBLE
when scheduling jobs on both single and multiple nodes. We
also conduct experiments to study how scaling characteristics
of the studied DL workloads impact the training throughput
and GPU resource utilization.

1) Single-Node Setup: We submit the job sets shown in
Table II to the system one by one, and specify to use a single
node during submission. We measure the total job completion
time of each set and the results are shown in Figure 6a. LSF

TABLE III: DL job sets for distributed training on multiple nodes.
(a) Job set 4

Job ID Network Steps
1 ResNet-50 9000
2 Inception-v3 1200
3 Inception-v3 4200
4 ResNet-50 6000
5 ResNet-101 2000

(b) Job set 5
Job ID Network Steps

1 Inception-v3 4800
2 Inception-v3 9000
3 VGG-16 9600
4 ResNet-50 3000
5 Inception-v3 3000

(c) Job set 6
Job ID Network Steps

1 ResNet-50 8400
2 VGG-16 4800
3 Inception-v3 9300
4 ResNet-50 2000
5 ResNet-101 3000

takes 958 sec, 940 sec, and 707 sec to complete training of
these 3 job sets, where all jobs use the fixed number of GPUs
(e.g., 6 GPUs) during training. On the contrary, MARBLE is
able to complete job sets in 496 sec, 608 sec, and 501 sec,
which achieves 48.3%, 35.3%, and 29.1% reduction in the total
job completion time of each job set. For job set 2, job ID 1
is selected as the primary job, where 4 GPUs are assigned
because Inception-v3 shows the fastest throughput using 4
GPUs. Then, job ID 2 is executed on the remaining 2 GPUs as
the secondary job in parallel with the primary job. When job
ID 2 is finished, job ID 1 is not finished, yet. Then, job ID 3
is executed on the remaining GPUs as a secondary job. When
job ID 1 is finished, job ID 3 is suspended by the scheduler
and resumed with 3 GPUs. Job ID 2 can be completed faster
than the existing scheduling approach because the job ID 2
on remaining GPUs is executed as a secondary job in parallel
with job ID 1 earlier than job ID 2 is executed as a primary
job. Therefore, MARBLE leverages non-linear scalability of
multi-GPU with parallel job execution and reduces the overall
completion time of DL training jobs.

GPU Utilization: MARBLE achieves higher GPU utiliza-
tion. As shown in Figure 6b and Figure 6c, GPU utilization
and GPU memory utilization of job set 1 increase by 86% and
91% respectively, compared to LSF. Other job sets also provide
improvements, i.e., 51% and 52%, 37% and 38% for job set
2 and job set 3, respectively. This is because two jobs are
executed in parallel and the available GPUs are utilized fully
through suspend/resume mechanism. As a result, MARBLE
improves the overall GPU utilization, as well as the total job
completion time.

2) Multi-Node Setup: We measure how MARBLE impacts
distributed training on multiple nodes. To do so, we employ the
parameter server architecture [57] for distributed training with
data parallelism, which consists of one parameter server and
eight worker nodes. Input data and computational workloads

7



 0

 200

 400

 600

 800

 1000

Job set 1 Job set 2 Job set 3To
ta

l J
ob

 C
om

pl
et

io
n 

Ti
m

e 
(s

ec
)

LSF
MARBLE

(a) Overall job completion time.

 0

 5

 10

 15

 20

 25

Job set 1 Job set 2 Job set 3

GP
U 

Ut
ili

za
tio

n 
(%

)

LSF
MARBLE

(b) Average GPU utilization.

 0

 2

 4

 6

 8

 10

 12

 14

Job set 1 Job set 2 Job set 3

GP
U 

M
em

or
y 

Ut
ili

za
tio

n 
(%

) LSF
MARBLE

(c) Average GPU memory utilization.
Fig. 6: Training on a single node.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Job set 4 Job set 5 Job set 6To
ta

l J
ob

 C
om

pl
et

io
n 

Ti
m

e 
(s

ec
)

LSF
MARBLE

(a) Overall job completion time.

 0

 2

 4

 6

 8

 10

 12

 14

Job set 4 Job set 5 Job set 6

GP
U 

Ut
ili

za
tio

n 
(%

)

LSF
MARBLE

(b) Average GPU utilization.

 0

 1

 2

 3

 4

 5

 6

 7

 8

Job set 4 Job set 5 Job set 6

GP
U 

M
em

or
y 

Ut
ili

za
tio

n 
(%

) LSF
MARBLE

(c) Average GPU memory utilization.
Fig. 7: Distributed training on multiple nodes.

 0

 1000
 2000

 3000
 4000

 5000
 6000

 7000

Job set 7 Job set 8 Job set 9

Co
m

pl
et

io
n 

Ti
m

e 
(s

ec
)

Optimus
MARBLE

Fig. 8: Overall job completion time of Optimus and MARBLE.

are distributed across all worker nodes. Each worker node
retrieves the latest parameters from the parameter server, reads
input data from the storage systems, processes training, and
sends updated parameters back to the parameter server. We
submit job sets from Table III one by one and measure job
training time, GPU utilization, and GPU memory utilization.
Figure 7 shows the results. Similar to the single-node set-
ting, MARBLE achieves performance improvement of 21.1%,
30.5%, and 30.5%, for job set 4, 5 and 6, respectively, as
shown in Figure 7a. MARBLE is also able to increase GPU
utilization (shown in Figure 7b) by up to 34.6%. Similar
results, i.e., 22.1%, 33.0%, and 27.6% are observed for GPU
memory utilization (shown in Figure 7c).

C. Performance Comparison to Other DL Scheduling

We compare MARBLE to Optimus [21]. Both approaches
are based on checkpointing approach for dynamic resource
allocation. While Optimus adjusts the numbers of workers
and parameter servers, MARBLE configures the number of
GPUs per node. As shown in Table IV, we choose different
sets of DL jobs as job set 7, 8 and 9, where each DL job
is trained for 1 epoch (39,936 steps). As shown in Figure 8,
MARBLE improves job completion time by up to 47% as
compared to Optimus. This is because, unlike Cloud, network

TABLE IV: DL job sets for Optimus.
(a) Job set 7

Job ID Network Steps
1 ResNet-101 39936
2 Inception-v3 39936
3 Inception-v3 39936
4 VGG-16 39936

(b) Job set 8
Job ID Network Steps

1 Inception-v3 39936
2 ResNet-50 39936
3 VGG-16 39936
4 ResNet-50 39936

(c) Job set 9
Job ID Network Steps

1 Inception-v3 39936
2 ResNet-50 39936
3 ResNet-50 39936
4 ResNet-101 39936

is not a significant bottleneck on the latest supercomputers.
Thus, adjusting the number of GPUs per node is more effective
than adjusting the numbers of Worker/PS for latest HPC
systems [7], [11]. Moreover, Optimus schedules DL jobs in
10 minutes slots requiring more frequent suspend and resume
than MARBLE (e.g., 9 times vs 2 times).

D. Runtime Overhead

MARBLE relies on runtime routines such as suspending
and resuming jobs, for dynamic GPU allocation, and job and
resource monitoring for instant resource scheduling, which
can incur runtime overhead. In this section, we conduct
experiments to evaluate the runtime overhead of MARBLE.

1) Suspend/Resume: MARBLE adopts a checkpoint-based
suspend/resume mechanism to realize dynamic GPU alloca-
tion. The overhead of suspend/resume comes from file I/O
on the parallel file system, including a write for suspending

8



 0

 10

 20

 30

 40

 50

Le
Net

Alex
Net

Re
sN

et-
50

Inc
ep

tio
n-

v3

Re
sN

et-
10

1

VG
G-1

6

Su
sp

en
d 

Ti
m

e 
(S

ec
)

Single GPU
2 GPUs
3 GPUs
4 GPUs
5 GPUs
6 GPUs

(a) Suspend time.

 0

 20

 40

 60

 80

 100

 120

 140

Le
Net

Alex
Net

Re
sN

et-
50

Inc
ep

tio
n-

v3

Re
sN

et-
10

1

VG
G-1

6

Re
su

m
e 

Ti
m

e 
(S

ec
)

Single GPU
2 GPUs
3 GPUs
4 GPUs
5 GPUs
6 GPUs

(b) Resume time.
Fig. 9: Overhead of the suspend and resume operations.

and read for resuming. We could improve the overhead with
a burst buffer. Suspend/resume time is not much variant when
using multi-node, because only one node saves and restores
the checkpointing file. All I/O accesses are to GPFS, therefore
there is no difference in I/O performance for single and multi-
node settings. However, in single-node training, MARBLE
can further reduce the overhead a local bust buffer backed by
an NVMe SSD. To understand the overhead of job suspension,
we conduct the next set of experiments and measure the time
incurred by suspending and resuming DL training of different
models. The results are shown in Figure 9. The suspend and
resume times are proportional to the size of the corresponding
meta checkpoint file that is used for rebuilding TensorFlow
graphs. For example, although the number of variables of
VGG-16 is much higher than the other models (Table I),
the size of meta checkpoint file of VGG-16 is much smaller
than the other models such as ResNet-50, Inception-v3, and
ResNet-101 (i.e., 1.31 MB vs 7.22 MB, 12.15 MB, 14.09 MB).
Moreover, it shows an increasing trend with the increase in the
number of GPUs as it requires additional meta-information for
other GPUs. The overheads of suspend/resume are as low as
13.2% (job set 1) and up to 26.6% (job set 3) of the total
training time for the job sets in Table II. Based on our results
in Section VII-B, it is beneficial to suspend jobs with this
overhead to achieve overall performance improvement.

2) Monitoring Overhead: We evaluate the monitoring over-
head and the calculating algorithm overhead, using workloads
in Table II. Here we set the monitoring interval of one
second. The average monitoring time is 11.81, 11.32, and

12.66 milliseconds, respectively per monitoring cycle. The
total monitoring time is 5.22, 3.79, and 4.56 seconds, which
accounts for 1.05%, 0.62%, and 0.91% of the total training
time respectively. This shows that MARBLE incurs negligible
monitoring overhead.

3) Scheduling Overhead: We measure the scheduling over-
head of MARBLE for the studied job sets. We record the
scheduling overhead of 173, 124, and 112 milliseconds for
the job sets in Table II. These results show that MARBLE
provides overall performance improvement and increased GPU
utilization with negligible runtime overhead.

VIII. CONCLUSION

In this paper, we present MARBLE, a multi-GPU
scalability-aware job scheduling system for fast DL training,
which leverages non-linear scalability characteristics of paral-
lel training using multiple GPUs on the latest HPC platforms.
Our scheduling method runs multiple DL jobs on a single node
to fully utilize the GPU resources and adopts a suspend and
resume mechanism to dynamically assign the optimal number
of GPUs for minimizing the total execution time of the given
set of DL jobs. To the best of our knowledge, this is the
first effort to use non-linear scalability of multiple GPUs per
node for scheduling DL training on modern HPC systems. The
evaluation of MARBLE using Summit supercomputer and the
representative workloads shows a performance improvement
of up to 48.3%, and an improvement in the GPU utilization
by up to 86%, compared to the default LSF job scheduler.
In our future work, we aim to further explore how to reduce
overheads of suspend/resume. Moreover, we will explore a
better way of approximating an optimal number of GPUs.

ACKNOWLEDGMENT

This work is sponsored in part by the NSF under the
grants: CCF-1919113, CNS-1405697, CNS-1615411, and
CNS-1565314/1838271. This research used resources of the
Oak Ridge Leadership Computing Facility, located in the
National Center for Computational Sciences at the Oak Ridge
National Laboratory, which is supported by the Office of
Science of the DOE under Contract DE-AC05-00OR22725.

REFERENCES

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning.
nature, 521(7553):436, 2015.

[2] Thorsten Kurth, Sean Treichler, Joshua Romero, Mayur Mudigonda,
Nathan Luehr, Everett Phillips, Ankur Mahesh, Michael Matheson, Jack
Deslippe, Massimiliano Fatica, et al. Exascale deep learning for climate
analytics. In Proc. IEEE/ACM SC, 2018.

[3] Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Mead-
ows, James Arnemann, Lei Shao, Siyu He, Tuomas Kärnä, Diana Moise,
Simon J Pennycook, et al. Cosmoflow: using deep learning to learn the
universe at scale. In Proc. IEEE/ACM SC, 2018.

[4] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud
Arindra Adiyoso Setio, Francesco Ciompi, Mohsen Ghafoorian,
Jeroen Awm Van Der Laak, Bram Van Ginneken, and Clara I Sánchez.
A survey on deep learning in medical image analysis. Medical image
analysis, 42:60–88, 2017.

[5] Amogh Katti, Giuseppe Di Fatta, Thomas Naughton, and Christian
Engelmann. Epidemic failure detection and consensus for extreme
parallelism. SAGE IJHPCA, 32(5):729–743, 2018.

[6] Top500. http://www.top500.org, 2018.

9



[7] ORNL Launches Summit Supercomputer. https://www.ornl.gov/news/
ornl-launches-summit-supercomputer, 2018.

[8] NVIDIA Tesla V100. https://www.nvidia.com/en-us/data-center/tesla-
v100/, 2018.

[9] NVLink. https://www.nvidia.com/en-us/data-center/nvlink/, 2018.
[10] Jonathan Hines. Stepping up to summit. Computing in Science &

Engineering, 20(2):78–82, 2018.
[11] Sierra. https://hpc.llnl.gov/hardware/platforms/sierra, 2018.
[12] Frontier). https://www.olcf.ornl.gov/frontier, 2019.
[13] Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong,

Feihu Zhou, Liqiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu,
Tiegang Chen, Guangxiao Hu, Shaohuai Shi, and Xiaowen Chu. Highly
scalable deep learning training system with mixed-precision: Training
imagenet in four minutes. CoRR, abs/1807.11205, 2018.

[14] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz
Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming
He. Accurate, large minibatch SGD: training imagenet in 1 hour. CoRR,
abs/1706.02677, 2017.

[15] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Si-
vathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,
Hanyu Zhao, Quanlu Zhang, et al. Gandiva: Introspective cluster
scheduling for deep learning. In Proc. USENIX OSDI, 2018.

[16] Shaohuai Shi, Qiang Wang, Xiaowen Chu, and Bo Li. Modeling and
evaluation of synchronous stochastic gradient descent in distributed deep
learning on multiple gpus. CoRR, abs/1805.03812, 2018.

[17] Saiful A Mojumder, Marcia S Louis, Yifan Sun, Amir Kavyan Ziabari,
José L Abellán, John Kim, David Kaeli, and Ajay Joshi. Profiling dnn
workloads on a volta-based dgx-1 system. In Proc. IEEE IISWC, 2018.

[18] NVIDIA Tesla P100. https://www.nvidia.com/en-us/data-center/tesla-
p100/, 2019.

[19] Karen Simonyan and Andrew Zisserman. Very deep convolu-
tional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proc. IEEE CVPR, 2016.

[21] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong
Guo. Optimus: an efficient dynamic resource scheduler for deep learning
clusters. In Proc. ACM EuroSys, 2018.

[22] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeong-
jae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. Tiresias:
A gpu cluster manager for distributed deep learning. In Proc. USENIX
NSDI, 2019.

[23] Luna Xu, Ali R Butt, Seung-Hwan Lim, and Ramakrishnan Kannan. A
heterogeneity-aware task scheduler for spark. In Proc. IEEE CLUSTER,
2018.

[24] Jay H Park, Sunghwan Kim, Jinwon Lee, Myeongjae Jeon, and Sam H
Noh. Accelerated training for cnn distributed deep learning through
automatic resource-aware layer placement. CoRR, abs/1901.05803,
2019.

[25] Haoyue Zheng, Fei Xu, Li Chen, Zhi Zhou, and Fangming Liu. Cynthia:
Cost-efficient cloud resource provisioning for predictable distributed
deep neural network training. In Proc. ACM ICPP, 2019.

[26] Haichen Shen, Lequn Chen, Yuchen Jin, Liangyu Zhao, Bingyu Kong,
Matthai Philipose, Arvind Krishnamurthy, and Ravi Sundaram. Nexus:
a gpu cluster engine for accelerating dnn-based video analysis. In Proc.
ACM SOSP, 2019.

[27] IBM Platform LSF. https://www.ibm.com/support/knowledgecenter/en/
SSETD4/product welcome platform lsf.html, 2019.

[28] Burak Bastem, Didem Unat, Weiqun Zhang, Ann Almgren, and John
Shalf. Overlapping data transfers with computation on gpu with tiles.
In Proc. IEEE ICPP, 2017.

[29] Sudharshan S Vazhkudai, Bronis R de Supinski, Arthur S Bland,
Al Geist, James Sexton, Jim Kahle, Christopher J Zimmer, Scott Atchley,
Sarp Oral, Don E Maxwell, et al. The design, deployment, and evaluation
of the coral pre-exascale systems. In Proc. IEEE/ACM SC, 2018.

[30] Frank B Schmuck and Roger L Haskin. Gpfs: A shared-disk file system
for large computing clusters. In Proc. USENIX FAST, 2002.

[31] Lustre. http://lustre.org, 2019.
[32] Sparsh Mittal and Jeffrey S Vetter. A survey of software techniques

for using non-volatile memories for storage and main memory systems.
IEEE TPDS, 27(5):1537–1550, 2016.

[33] Robert M Patton, J Travis Johnston, Steven R Young, Catherine D
Schuman, Don D March, Thomas E Potok, Derek C Rose, Seung-
Hwan Lim, Thomas P Karnowski, Maxim A Ziatdinov, et al. 167-pflops

deep learning for electron microscopy: from learning physics to atomic
manipulation. In Proc. IEEE/ACM SC, 2018.

[34] Thorsten Kurth, Jian Zhang, Nadathur Satish, Evan Racah, Ioannis
Mitliagkas, Md Mostofa Ali Patwary, Tareq Malas, Narayanan Sun-
daram, Wahid Bhimji, Mikhail Smorkalov, et al. Deep learning at 15pf:
supervised and semi-supervised classification for scientific data. In Proc.
IEEE/ACM SC, 2017.

[35] Sam Ade Jacobs, Brian Van Essen, David Hysom, Jae-Seung Yeom,
Tim Moon, Rushil Anirudh, Jayaraman J Thiagaranjan, Shusen Liu,
Peer-Timo Bremer, Jim Gaffney, et al. Parallelizing training of deep
generative models on massive scientific datasets. In Proc. IEEE
CLUSTER, 2019.

[36] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner, et al.
Gradient-based learning applied to document recognition. Proceedings
of the IEEE, 86(11):2278–2324, 1998.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[38] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew
Rabinovich. Going deeper with convolutions. In Proc. IEEE CVPR,
2015.

[39] Peifeng Yu and Mosharaf Chowdhury. Salus: Fine-grained gpu sharing
primitives for deep learning applications. CoRR, abs/1902.04610, 2019.

[40] Vı́ctor Campos, Francesc Sastre, Maurici Yagües, Jordi Torres, and
Xavier Giró-i Nieto. Scaling a convolutional neural network for
classification of adjective noun pairs with tensorflow on gpu clusters.
In Proc. IEEE/ACM CCGRID, 2017.

[41] Shang-Xuan Zou, Chun-Yen Chen, Jui-Lin Wu, Chun-Nan Chou, Chia-
Chin Tsao, Kuan-Chieh Tung, Ting-Wei Lin, Cheng-Lung Sung, and
Edward Y Chang. Distributed training large-scale deep architectures. In
Proc. Springer ADMA, 2017.

[42] Jingoo Han, Luna Xu, M Mustafa Rafique, Ali R Butt, and Seung-Hwan
Lim. A quantitative study of deep learning training on heterogeneous
supercomputers. In Proc. IEEE CLUSTER, 2019.

[43] Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt
Keutzer. Imagenet training in minutes. In Proc. ACM ICPP, 2018.

[44] Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to
32k for imagenet training. CoRR, abs/1708.03888, 2017.

[45] Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large
minibatch sgd: training resnet-50 on imagenet in 15 minutes. CoRR,
abs/1711.04325, 2017.

[46] Andy B Yoo, Morris A Jette, and Mark Grondona. Slurm: Simple linux
utility for resource management. In Proc. Springer JSSPP, 2003.

[47] Rafael Dolezal, Vladimir Sobeslav, Ondrej Hornig, Ladislav Balik,
Jan Korabecny, and Kamil Kuca. Hpc cloud technologies for virtual
screening in drug discovery. In Proc. Springer ACIIDS, 2015.

[48] Albert Reuther, Chansup Byun, William Arcand, David Bestor, Bill
Bergeron, Matthew Hubbell, Michael Jones, Peter Michaleas, Andrew
Prout, Antonio Rosa, et al. Scalable system scheduling for hpc and big
data. Elsevier JPDC, 111:76–92, 2018.

[49] Maurice J Bach et al. The design of the UNIX operating system,
volume 5. Prentice-Hall Englewood Cliffs, NJ, 1986.

[50] Unix ls. https://en.wikipedia.org/wiki/Ls, 2019.
[51] NVIDIA System Management Interface. https://developer.nvidia.com/

nvidia-system-management-interface, 2019.
[52] Compute Unified Device Architecture (CUDA). https://developer.nvidia.

com/cuda-zone, 2019.
[53] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen,

John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: Efficient
primitives for deep learning. CoRR, abs/1410.0759, 2014.

[54] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In Proc IEEE
CVPR, 2009.

[55] TensorFlow-Slim. https://github.com/tensorflow/models/tree/master/
research/slim, 2019.

[56] Xiuqiao Li, Nan Qi, Yuanyuan He, and Bill McMillan. Practical resource
usage prediction method for large memory jobs in hpc clusters. In
David Abramson and Bronis R. de Supinski, editors, Lecture Notes in
Computer Science, Springer SCFA, 2019.

[57] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin,
Mark Mao, Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al.
Large scale distributed deep networks. In Proc. NIPS, 2012.

10


