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Abstract—We propose a novel analytical framework for evalu-
ating the coverage performance of a millimeter wave (mmWave)
cellular network where idle user equipments (UEs) act as relays.
In this network, the base station (BS) adopts either the direct
mode to transmit to the destination UE, or the relay mode if the
direct mode fails, where the BS transmits to the relay UE and
then the relay UE transmits to the destination UE. To address
the drastic rotational movements of destination UEs in practice,
we propose to adopt selection combining at destination UEs.
New expression is derived for the signal-to-interference-plus-
noise ratio (SINR) coverage probability of the network. Using
numerical results, we first demonstrate the accuracy of our new
expression. Then we show that ignoring spatial correlation, which
has been commonly adopted in the literature, leads to severe
overestimation of the SINR coverage probability. Furthermore,
we show that introducing relays into a mmWave cellular network
vastly improves the coverage performance. In addition, we show
that the optimal BS density maximizing the SINR coverage
probability can be determined by using our analysis.

I. INTRODUCTION

Millimeter wave (mmWave) has been widely acknowledged
as a key enabler for multi-gigabit-per-second cellular networks
[1], since the rich available spectrum at the mmWave band can
effectively resolve the bandwidth shortage problem faced by
global cellular operators. One of the most pressing challenges
for mmWave cellular networks is to enhance the coverage
performance, due to the unique properties of mmWave prop-
agation such as its extreme sensitivity to blockage [2]. One
promising strategy to enhance the coverage performance is to
introduce relays into mmWave cellular networks for circum-
venting the blockage [3, 4]. The introduction of relays can be
realized by either deploying infrastructure relays or allowing
idle user equipments (UEs) to function as relays (e.g., idle UEs
serve as device-to-device (D2D) transmitters) [4]. In this paper,
we consider idle relay UEs since such relays have practical
advantages relative to infrastructure relays, e.g., avoiding extra
cost in infrastructure.
Motivated by the benefits of relays, the performance of relay

assisted mmWave networks has been studied in the literature,
e.g., [4–8]. For example, [5] investigated relay selection among
multiple decode-and-forward (DF) relays between one base
station (BS) and one UE. Focusing on an amplified-and-
forward (AF) relay, [6] evaluated the maximum achievable
rates for half-duplex and full-duplex relaying. It is noted that

neither [5] nor [6] considered multiple BSs or multiple UEs.
To overcome such limitations, [7] investigated the coverage
performance of a relay assisted mmWave cellular network with
multiple BSs and multiple UEs while ignoring the interference
in the network. Recently, [4] considered the interference
when analyzing the coverage performance of a relay assisted
mmWave cellular network. However, small scale fading was
not considered in this analysis and directional combining was
assumed at UEs.

The consideration of directional combining at multi-antenna
UEs, such as [4], was commonly adopted in mmWave studies,
e.g., [9–12]. The main rationale behind this consideration
is that directional combining not only enhances the desired
signal quality but also reduces the interference, under the
assumption that the direction of the UE is perfectly aligned
with its associated transmitter. However, as pointed out in
[13], it is extremely difficult to keep this perfect alignment in
practical usage scenarios, due to the frequent drastic rotational
movements of UEs, especially when UEs are not idle. For
example, when people play video games, the UE is frequently
rotated since more and more video games need to exploit the
gyroscopic sensor at the UE. Notably, the rotational movement
when people play video games can be up to 80◦ per 100
ms [13]. When the UE adopts directional combining, its
rotational movement causes a severe misalignment problem,
which significantly damages the reliability of the mmWave
cellular network [13]. Motivated by this, we propose to adopt
selection combining at UEs when they receive downlink data.
We emphasize that, unlike directional combining, selection
combining does not incur misalignment problems since it does
not require the UE to align its direction with its associated
transmitter.

In this paper, we analyze the coverage performance of a
relay assisted mmWave cellular network which consists of
multiple BSs, multiple relay UEs, and multiple destination
UEs. In this network, the BS transmits data either directly
to the destination UE, or indirectly via the relay UE when
the direct transmission fails. We propose a new analytical
framework to derive the signal-to-interference-plus-noise ratio
(SINR) coverage probability of the network. In this frame-
work, we consider (1) generalized Nakagami-m fading, (2)
interference, (3) selection combining at destination UEs, and



BS

BS

destination UEdestination UE

relay UE

Fig. 1. The two transmission modes of the considered relay assisted mmWave
cellular network.

(4) spatial correlation. Here, spatial correlation addresses the
phenomenon that the received signals at the destination UE
antennas are not independent, which has commonly been
ignored in existing studies for simplifying analysis. Using
numerical results, we first demonstrate the correctness of
the derived SINR coverage probability. We also show that
ignoring spatial correlation leads to severe overestimation of
the coverage probability, as well as severe underestimation of
the minimum number of antennas needed at destination UEs to
achieve an SINR coverage probability target. We further show
the benefit of introducing relays for coverage performance
enhancement and that the optimal BS density maximizing the
SINR coverage probability can be found through our analysis.

II. RELAY ASSISTED MMWAVE CELLULAR NETWORK

In this paper, we consider a relay assisted mmWave cellular
network where BSs communicate with UEs. In this network,
we assume that there are three types of UEs: 1) Destination
UEs which are the UEs that require downlink data from
BSs, 2) Uplink UEs which are the UEs that transmit uplink
data to BSs, and 3) Relay UEs which are idle UEs that
function as relays (or equivalently, D2D transmitters) to help
the transmission between a BS and a destination UE. As
depicted in Fig. 1, there are two transmission modes in the
considered network: 1) Direct mode where the BS transmits
data to the destination UE directly, and 2) Relay mode where
the BS first transmits data to the relay UE and then the relay
UE forwards data to the destination UE. Specifically, the relay
mode serves as a backup option when the direct mode fails,
i.e., the SINR of the direct link from the BS to the destination
UE is below a given SINR threshold.

A. Locations of BSs and UEs

We assume that the locations of BSs, relay UEs, and
destination UEs follow three PPPs in R2, the densities of
which are denoted by λ̂b, λ̂r, and λ̂d, respectively. In this
paper, we randomly select one destination UE, refer to it as
the typical destination UE, and establish a polar coordinate

system with the typical destination UE at the origin, o. Based
on the Slivnyak theorem, the conclusions drawn for the typical
destination UE can be extended to other destination UEs.

We note that mmWave communications are extremely sen-
sitive to blockage [2]. Moreover, the diffraction of mmWave
propagation is weak due to the used high frequencies. Thus,
in this work we only consider line-of-sight (LoS) links as in
[11, 14]. To model the spatial distribution of LoS BSs and LoS
relay UEs, we adopt an accurate and simple LoS ball model
as in [11, 12, 15]. As per this model, the probability of a link
being LoS, PLoS (ℓ), is a function of the distance between
the transmitter and the receiver, ℓ. Mathematically, PLoS (ℓ) is
given by

PLoS (ℓ) =

{
ϱε, if 0 < ℓ < rε,

0, otherwise,
(1)

where ε ∈ {b, u}, rb and ru are the radii of the BS LoS
ball and the relay UE LoS ball, respectively, and 0 ≤ ϱb ≤
1 and 0 ≤ ϱu ≤ 1 are the LoS probabilities of BSs and
relay UEs, respectively. According to the thinning theorem
[16, Prop. (1.3.5)], the LoS BSs follow a PPP Φb with density
λb , ϱbλ̂b within the circular area B (o, rb). Similarly, the LoS
relay UEs follow another PPP Φr with density λr , ϱuλ̂r
within the circular area B (o, ru). We denote the set of LoS
BSs by Φb = {b0, b1, b2, . . .}, where b0 is the associated BS,
bk is the kth interfering BS, and k ∈ {1, 2, . . .}.

B. Directional Gains

We assume that an Nb element uniform linear antenna array
is adopted at each BS and an Nu element uniform linear
antenna array is adopted at each UE. At BSs, highly directional
beams are assumed to be adopted to combat the high path
loss of mmWave transmission. Then we note that destination
UEs often experience rapid rotational movements. Thus, we
assume that the typical destination UE does not leverage
directional beams to avoid the beam misalignment caused
by rapid rotational movements. Instead, it adopts selection
combining to choose the signal with the maximum SINR,
out of Nu received SINRs at Nu antennas. Furthermore, we
assume that relay UEs leverage directional beams since relay
UEs are idle such that they do not experience rapid rotational
movements.

To characterize the mmWave transmission in the net-
work, we adopt the sectored directional gain model [15,
17, 18] which incorporates key characteristics including the
beamwidth, main lobe gain, and side lobe gain. Under the
assumption that an Nb element uniform linear antenna array
is adopted at each BS, the beamwidth, main lobe gain, and
side lobe gain of BSs are given by θb = 102π

180Nb
, GB = Nb,

and Gb = 1
Nb

, respectively. Similarly, the beamwidth, main
lobe gain, and side lobe gain of relay UEs and uplink UEs are
given by θu = 102π

180Nu
, GU = Nu, and Gu = 1

Nu
, respectively.

Based on such notations, the directional gain of bk, Gbk , is
a function of the angle off the boresight direction, θo, given
by Gbk = GB , if |θo| ≤ 1

2θb, and Gbk = Gb, otherwise.
Here, we model θo as a uniform random variable between



−π and π. Thus, Gbk is a discrete random variable which
equals GB with probability (w. p.) θb

2π , and Gb w. p. 1−
θb
2π .

Similarly, the directional gain of relay UEs, Ge, is a discrete
random variable which equals GU w. p. θu

2π , and Gu w. p.
1 − θu

2π . Furthermore, we define the directional gain from bk
to the relay UE as Gbkr , GbkGe. Thus, the probability mass
function of Gbkr is given by

Gbkr =


GBGU , w. p. θbθu4π2 ,

GBGu, w. p. θb
2π

(
1− θu

2π

)
,

GbGU , w. p.
(
1− θb

2π

)
θu
2π ,

GbGu, w. p.
(
1− θb

2π

) (
1− θu

2π

)
.

(2)

C. Association Strategy

We assume that all BSs have the same transmit power, Pb,
and all relay UEs and uplink UEs have the same transmit
power, Pu. We then assume that the maximum signal strength
association strategy is applied in the network. Thus, in the
direct mode, the destination UE always associates with its
nearest LoS BS, while in the relay mode, the destination
UE always associates with its nearest LoS relay UE and the
associated relay UE always associates with the associated relay
UE’s nearest LoS BS [4]. Thus, throughout this paper, the link
from the associated BS to the typical destination UE is referred
to as the direct link, the link from the associated BS to the
associated relay UE is referred to as the BR link, and the link
from the associated relay UE to the typical destination UE
is referred to as the RD link. We denote the distances of the
direct link, the BR link, and the RD link by ℓbd, ℓbr, and
ℓrd, respectively. If Φb ̸= ∅, the probability density function
(PDF) of ℓbd is the same as the PDF of ℓbr, which is given
by fℓbd (x) = fℓbr (x) = 2πλbxe

−πλbx2

/Ξb, where Ξb ,
Pr (Φb ̸= ∅) = 1 − e−πλbr

2
b and 0 < x < rb [16]. If Φr ̸= ∅,

the PDF of ℓrd is given by fℓrd (x) = 2πλrxe
−πλrx2

/Ξr,
where Ξr , Pr (Φr ̸= ∅) = 1− e−πλrr

2
u and 0 < x < ru.

D. SINR Formulation

In this subsection, we first characterize the interference from
the BS to the destination UE, the interference from the BS to
the relay UE, and the interference from the relay UE to the
destination UE. Then we formulate the SINRs between two
nodes based on the interference characterization.
We assume that frequency division duplex is adopted, i.e.,

downlink frequency band and uplink frequency band are non-
overlapping. Thus, the transmission using the downlink fre-
quency band and the transmission using the uplink frequency
band do not interfere with each other. In this network, we
clarify that there are three types of transmitters: 1) BSs that
transmit to destination UEs in the direct mode and relay UEs
in the relay mode, 2) Relay UEs that transmit to destination
UEs, and 3) Uplink UEs that transmit uplink data to BSs.
Similar to [4], we assume that BSs transmit using the downlink
frequency band, while relay UEs and uplink UEs transmit
using the uplink frequency band. Thus, the transmission from
BSs and the transmissions from relay UEs and uplink UEs do
not interfere with each other, but the transmission from relay

UEs and the transmission from uplink UEs interfere with each
other. It follows that in the direct link and the BR link, the
interference solely comes from other BSs. Differently, in the
RD link, the interference comes from not only other relay UEs
but also uplink UEs.

We emphasize that not all relay UEs and uplink UEs
interfere with the RD link. It is widely acknowledged that
in a cellular network, network resources must be divided
into multiple sub-channels to enable multiple access. In this
paper, we assume that the UEs using the same sub-channel
interfere with each other, while the UEs using different sub-
channels do not. Thus, in the RD link, only the relay UEs and
uplink UEs which use the same sub-channel as the associated
relay UE cause interference. In the following, we define all
interfering relay UEs and uplink UEs as interfering UEs. In
order to model the distribution of all interfering UEs, we
define a multiplexing factor, ρ, which represents the average
number of interfering UEs on each sub-channel within the cell
[4]. Considering the distribution of BSs, the distribution of
LoS interfering UEs can be modeled by a homogeneous PPP
with density λi , ϱuρλ̂b within the circular area B (o, ru),
Φi = {i1, i2, . . .}, where ik is the kth interfering UE and
k ∈ {1, 2, . . .}.

Based on the aforementioned interference characterization,
we obtain that the SINR at antenna n in the direct link, denoted
by γbd,n where n ∈ {1, 2, . . . , Nu}, is written as

γbd,n =
PbGBℓ

−η
bd |hnb0 |

2∑
bk∈Φ̃b

PbGbkℓ
−η
bkd

|hnbk |
2
+ σ2

, (3)

where Φ̃b , Φb\ {b0} denotes the set of LoS BSs excluding
b0, ℓbkd is the distance between bk and the typical destination
UE, η ≥ 2 is the path loss exponent, hnbl is the small
scale fading from bl to antenna n, l ∈ {0, k}, and σ2 is
the variance of the additive white Gaussian noise (AWGN)
at antenna n. In this work, we assume that hnbl is subject
to independent and identically distributed (i.i.d.) Nakagami-m
fading1. By defining ~nbl , |hnbl |

2, we find that ~nbl follows
the Gamma distribution with the shape parameter mbd and the
scale parameter 1

mbd
, i.e., ~nbl ∼ Γ

(
mbd,

1
mbd

)
.

In the BR link, the SINR at the relay UE, denoted by γbr,
is written as

γbr =
PbGBGU ℓ

−η
br ~b0∑

bk∈Φ̃b
PbGbkrℓ

−η
bkr

~bk + σ2
, (4)

where ℓbkr is the distance between bk and the relay UE, ~bl
is the small scale fading gain between bl and the relay UE,
l ∈ {0, k}. In this work, we assume that ~bl is subject to
i.i.d. Gamma distribution with the shape parameter mbr and
the scale parameter 1

mbr
, i.e., ~bl ∼ Γ

(
mbr,

1
mbr

)
.

In the RD link, the SINR at antenna n, n ∈ {1, 2, . . . , Nu},

1We clarify that Nakagami-m fading is a generalized fading model which
can fit a variety of empirical measurements, such as Rayleigh fading by setting
m = 1 and Rician-K fading by setting m = (K + 1)2 / (2K + 1).



denoted by γrd,n, is written as

γrd,n =
PuGU ℓ

−η
rd ~nr∑

ik∈Φi
PuGeℓ

−η
ikd

~nik + σ2
, (5)

where ℓikd is the distance between the kth interfering UE and
the destination UE, ~nr is the small scale fading gain from the
relay UE to antenna n, ~nik is the small scale fading from ik
to antenna n. In this work, we assume that ~nr and ~nik are
subject to i.i.d. Gamma distribution with the shape parameter
mrd and the scale parameter 1

mrd
, i.e., ~nr ∼ Γ

(
mrd,

1
mrd

)
and ~nik ∼ Γ

(
mrd,

1
mrd

)
.

Under the assumption that the Nakagami-m fading pa-
rameters, e.g., mbd, mbr, and mrd, are positive integers
[11, 17], the moment generating function (MGF) of ~µ
is given by M~µ (s) =

(
1− s

mν

)−mν
, where (µ, ν) ∈

{(nbl, mbd), (bl, mbr), (nr, mrd), (nik, mrd)}. Moreover,
as given in [19, Lemma 1], the cumulative distribution function
(CDF) of ~µ can be tightly lower bounded by

F~µ (x) = 1− e−mνx
mν−1∑
ω=0

(mνx)
ω

ω!
>
(
1− e−ανx

)mν
, (6)

where αν = mν (mν !)
− 1
mν . In the analysis presented in Sec-

tion III, we adopt the lower bound on F~µ (x) since this lower
bound enables us to derive the SINR coverage probability
when the Nakagami-m fading parameters are higher than one.
By observing (3) and (5), we find that the interference

signals at the Nu UE antennas are correlated due to the
common interfering BSs’ location or the common interfering
UEs’ location. Also, the desired signals at the Nu UE antennas
are correlated due to the common associated BS’ location
or the common associated relay UE’s location. Despite that
both interference signals and desired signals are correlated in
wireless networks, these spatial correlations are often ignored
in the existing studies on mmWave systems to simplify the
analysis. To overcome this, we address the spatial correlation
when analyzing the coverage performance of the network
considered in this paper.

III. SINR COVERAGE PROBABILITY ANALYSIS

In this section, we derive the SINR coverage probability
of the considered network, PNu (τ). Here, PNu (τ) is defined
as the probability that the SINR at the Nu-antenna typical
destination UE is higher than a given SINR threshold, τ .
As aforementioned, we derive PNu (τ) by considering spa-
tial correlation at the destination UE. This mandates a new
and challenging analytical framework for the SINR coverage
probability, as pointed out in [20]. Furthermore, we aim to
answer an open question in mmWave cellular networks: “Is
the analysis error caused by ignoring spatial correlation
acceptable?” To answer this question, we also derive the SINR
coverage probability for the case where spatial correlation
is ignored, which enables us to compare the two coverage
probabilities in Section IV.

We assume that the half-duplex DF relay protocol is
adopted. Thus, in the relay mode, the SINR at the typical
destination UE is higher than τ when both the SINR of the
BR link and the SINR of the RD link are higher than τ . We
denote the SINR coverage probability of the direct link, the BR
link, and the RD link as PNu,bd (τ), Pbr (τ), and PNu,rd (τ),
respectively. This allows us to express PNu (τ) as

PNu (τ) = 1− [1− PNu,bd (τ)] [1− Pbr (τ)PNu,rd (τ)] . (7)

We next derive and present PNu,bd (τ), Pbr (τ), and PNu,rd (τ)
in Theorems 1, 2, and 3, respectively.

Theorem 1: Under the assumption that F~nbl (x) is approx-
imated as (1− e−αbdx)

mbd , the SINR coverage probability of
the direct link is derived as

PNu,bd (τ) = Ξb

Nu∑
κ=1

(−1)
κ+1

(
Nu
κ

) ∑
j1+j2+···+jmbd=κ

βbd

×
∫ rb

0

e
− ταbdΩbdσ

2

PbGBx
−η −2πλb

∫ rb
x
ℓ(1−vbd(ℓ))dℓ

fℓbd (x) dx, (8)

where j1, j2, . . . , jmbd are nonnegative integers, Ωbd , j1 +
2j2 + · · ·+mbdjmbd , δbd , αbdτ

PbGBℓ
−η
bd

, βbd is defined as

βbd ,
(
κ

j1

)(
κ− j1
j2

)
· · ·
(
κ− j1 − · · · − jmbd−1

jmbd

)(
mbd

1

)j1
×
(
mbd

2

)j2
· · ·
(
mbd

mbd

)jmbd
(−1)

j1+j2+···+jmbd+Ωbd , (9)

and vbd (ℓ) is defined as

vbd (ℓ) ,
θb
2π

mbd∏
q=1

(
1 +

qδbdPbGBℓ
−η

mbd

)−mbdjq

+

(
1− θb

2π

)mbd∏
q=1

(
1 +

qδbdPbGbℓ
−η

mbd

)−mbdjq
. (10)

Proof: We define ϵn as the event that γbd,n is higher than
τ , where n ∈ {1, 2, . . . , Nu}. As per the rules of selection
combining, PNu,bd (τ) is written as

PNu,bd (τ) = Pr

(
Nu∪
n=1

ϵn

)

=

Nu∑
κ=1

(−1)
κ+1

∑
1≤ζ1<ζ2<···<ζκ≤Nu

Pr (ϵζ1 ∩ ϵζ2 ∩ · · · ∩ ϵζκ) . (11)

We note that in the considered network, the probability of
the intersection of κ events, Pr (ϵζ1 ∩ ϵζ2 ∩ · · · ∩ ϵζκ), is the
same, regardless of which κ out of Nu events are chosen.
Thus, we rewrite (11) as

PNu,bd (τ) =
Nu∑
κ=1

(−1)
κ+1

(
Nu
κ

)
Pr

(
κ∩
n=1

ϵn

)
. (12)



Based on (3), we derive Pr

(
κ∩
n=1

ϵn

)
as

Pr

(
κ∩
n=1

ϵn

)

=Ξb Pr

(
κ∩
n=1

~nb0 >
τ
(∑

bk∈Φ̃ PbGbkℓ
−η
bkd

~nbk + σ2
)

PbGBℓ
−η
bd

)
(f)
=ΞbEℓbd,Φ̃b,Gbk ,ϑ

[
κ∏
n=1

mbd∑
j=1

(
mbd

j

)
(−1)

j+1

× e
−jδbd

(∑
bk∈Φ̃ PbGbk ℓ

−η
bkd

~nbk+σ
2
)]
.

(13)

Here, step (f) is achieved by following the binomial the-
orem and making the assumption that F~nbl (x) is approx-
imated as (1− e−αbdx)

mbd , while ϑ is defined as ϑ ,∑mbd
q=1

∑jq
p=1 q~Iq,p,bk , where Iq,p ∈ {1, . . . , κ} with q ∈

{1, . . . ,mbd} and p ∈ {1, . . . , jq} and the values of Iq,p differ
from each other. By defining Ψ =

∑
bk∈Φ̃b

δbdPbGbkℓ
−η
bkd
ϑ, we

further derive (13) as

Pr

(
κ∩
n=1

ϵn

)

= Ξb
∑

j1+j2+···+jmbd=κ
Eℓbd

[
e−δbdσ

2Ωbd
∑
Iq,p

EΦ̃b,Gbk ,ϑ

[
e−Ψ

]]

×
(
mbd

1

)j1(mbd

2

)j2
· · ·
(
mbd

mbd

)jmbd
(−1)

j1+j2+···+jmbd+Ωbd

(g)
= Ξb

∑
j1+j2+···+jmbd=κ

βbdEℓbd
[
e−δbdσ

2ΩbdEΦ̃b,Gbk ,ϑ

[
e−Ψ

]]
. (14)

To achieve step (g), we find that given M~nbl (s), the MGF

of ϑ isMϑ (s) =
∏mbd
q=1

(
1− qs

mbd

)−mbdjq
. This indicates that

given j1, j2, . . . , jmbd , the MGF of ϑ does not change with
the values of Iq,p. We also find that given j1, j2, . . . , jmbd ,
EΦ̃,Gbk ,ϑ

[
e−Ψ

]
does not change with the values of Iq,p.

Thus, step (g) is achieved due to
∑
Iq,p

EΦ̃b,Gbk ,ϑ

[
e−Ψ

]
=(

k
j1

)(
k−j1
j2

)
· · ·
(k−j1−···−jmbd−1

jmbd

)
EΦ̃b,Gbk ,ϑ

[
e−Ψ

]
.

Using the MGF of ϑ, we derive EΦ̃b,Gbk ,ϑ

[
e−Ψ

]
as

EΦ̃b,Gbk ,ϑ

[
e−Ψ

]
= EΦ̃b,Gb,ϑ

[∏
Φ̃b

e
−δbdPbGbk ℓ

−η
bkd

ϑ

]

(h)
= EΦ̃b,Gbk

[∏
Φ̃b

mbd∏
q=1

(
1 +

qδbdPbGbkℓ
−η
bkd

mbd

)−mbdjq ]

= EΦ̃b

[∏
Φ̃b

vbd (ℓbkd)

]

= e
−2πλb

∫ rb
ℓbd

ℓ(1−vbd(ℓ))dℓ. (15)

Here, step (h) is achieved by using Mϑ (s). Finally, by
substituting (14) and (15) into (12), we obtain the desired
result in (8) and complete the proof.

Theorem 2: Under the assumption that the CDF of ~bl is
approximated as (1− e−αbrx)

mbr , the SINR coverage proba-
bility of the BR link is derived as

Pbr (τ) =Ξb

mbr∑
j=1

(−1)
j+1

(
mbr

j

)
×
∫ rb

0

e−ψx
ησ2−2πλb

∫ rb
x
ℓΩbdℓfℓbr (x)dx, (16)

where ψ , jαbrτ
PbGBGU

and Ωb is defined as (17).
Proof: Based on (4), we derive Pbr (τ) as

Pbr (τ)

= ΞbEℓbr,I∗b

[
Pr

(
~b0 >

τ(I∗b + σ2)

PbGBGU ℓ
−η
br

)]

(i)
= ΞbEℓbr,I∗b

mbr∑
j=1

(−1)
j+1

(
mbr

j

)
e
−
jαbrτ(I∗b+σ2)
PbGBGUℓ

−η
br


= Ξb

mbr∑
j=1

(−1)
j+1

(
mbr

j

)
Eℓbr,I∗b

e−ψ(I∗b+σ2)
ℓ
−η
br


= Ξb

mbr∑
j=1

(−1)
j+1

(
mbr

j

)
Eℓbr

[
e
−ψσ2

ℓ
−η
br EI∗b

[
e
−ψI∗b
ℓ
−η
br

]]

= Ξb

mbr∑
j=1

(−1)
j+1

(
mbr

j

)
×
∫ rb

0

e−ψx
ησ2

EI∗b

[
e−

ψI∗b
x−η

]
fℓbr (x)dx, (18)

where I∗b ,
∑
bk∈Φ̃b

PbGbkrℓ
−η
bkr

~bk . Here, step (i) is achieved
by following the binomial theorem and making the assumption
that the CDF of ~bl is approximated as (1− e−αbrx)

mbr . We

further derive EI∗b

[
e−

ψI∗b
x−η

]
as

EI∗b

[
e−

ψI∗b
x−η

]
= EI∗b

[
e−ψx

ηI∗b

]
(j)
= e

−λb
∫ rb
x
ℓ
∫ 2π
0

(
1−E~bk

[
e
−~bk

ψxηPbGbkr
ℓ−η

])
dθdℓ

(k)
= e

−λb
∫ rb
x
ℓ
∫ 2π
0

(
1−
(
1+

ψxηPbGbkr
ℓ−η

mbr

)−mbr
)
dθdℓ

(l)
= e−2πλb

∫ rb
x
ℓΩbdℓ. (19)

Here, step (j) is achieved as per [16, Cor. (2.3.2)], step (k)
is achieved by using the MGF of Gamma distribution, and
step (l) is achieved as per (2). Finally, we substitute (19) into
(18) to obtain the desired result in (16) and thus, the proof is
completed.

Theorem 3: Under the assumption that the CDFs of ~nr
and ~nik are approximated as (1− e−αrdx)

mrd , the SINR



Ωb ,
θu
2π

(
1− θb

2π

)[
1−

(
1 +

ψxηPbGbGU
mbrℓη

)−mbr
]
+

(
1− θb

2π

)(
1− θu

2π

)[
1−

(
1 +

ψxηPbGbGu
mbrℓη

)−mbr
]

+
θb
2π

(
1− θu

2π

)[
1−

(
1 +

ψxηPbGBGu
mbrℓη

)−mbr
]
+
θb
2π

θu
2π

[
1−

(
1 +

ψxηPbGBGU
mbrℓη

)−mbr
]
. (17)

coverage probability of the RD link is derived as

PNu,rd (τ) = Ξr

Nu∑
κ=1

(−1)
κ+1

(
Nu
κ

) ∑
j1+j2+···+jmrd=κ

βrd

×
∫ ru

0

e
− ταrdΩrdσ

2

PuGUx
−η −2πλi

∫ ru
0

ℓ(1−vrd(ℓ))dℓ
fℓrd (x) dx, (20)

where j1, j2, . . . , jmrd are nonnegative integers, Ωrd , j1 +
2j2 + · · ·+mrdjmrd , δrd , αrdτ

PuGU ℓ
−η
rd

, βrd is defined as

βrd ,
(
κ

j1

)(
κ− j1
j2

)
· · ·
(
κ− j1 − · · · − jmrd−1

jmrd

)(
mrd

1

)j1
×
(
mrd

2

)j2
· · ·
(
mrd

mrd

)jmrd
(−1)

j1+j2+···+jmrd+Ωrd ,

(21)

and vrd (ℓ) is defined as

vrd (ℓ) ,
θu
2π

mrd∏
q=1

(
1 +

qδrdPuGU ℓ
−η

mrd

)−mrdjq

+

(
1− θu

2π

)mrd∏
q=1

(
1 +

qδrdPuGuℓ
−η

mrd

)−mrdjq
. (22)

Proof: The proof of Theorem 3 is omitted here because
(20) can be obtained by following the procedure presented in
the proof of Theorem 1.
We now examine the case where spatial correlation is

ignored. In this case, the SINRs received at the Nu antennas
of the destination UE are assumed to be independent with
each other. Thus, when spatial correlation is ignored, the SINR
coverage probability of the direct link, P̂Nu,bd (τ), is given by

P̂Nu,bd (τ) = 1− (1− P1,bd (τ))
Nu , (23)

and the SINR coverage probability of the RD link, P̂Nu,rd (τ),
is given by

P̂Nu,rd (τ) = 1− (1− P1,rd (τ))
Nu . (24)

Therefore, when spatial correlation is ignored, the probability
that the SINR at the Nu-antenna typical destination UE is
higher than τ , P̂Nu (τ), is obtained as

P̂Nu (τ) = 1−
[
1− P̂Nu,bd (τ)

] [
1− Pbr (τ) P̂Nu,rd (τ)

]
.

(25)
The difference between (7) and (25) indicates that spatial
correlation imposes a profound impact on the SINR coverage
probability of the Nu-antenna destination UE. This will be
further examined in Section IV.

TABLE I
SIMULATION PARAMETERS USED IN SECTION IV

Parameter Value
BS transmit power, Pb 35 dBm
UE transmit power, Pu 25 dBm
Noise power, σ2 0 dBm
Number of antennas at each BS, Nb 10
Number of antennas at each UE, Nu 4
Path loss exponent, η 2.4
Nakagami-m fading parameters, mbd, mbr , mrd 2
BS LoS ball radius, rb 100 m
UE LoS ball radius, ru 20 m
BS LoS probability, ϱb 0.9
UE LoS probability, ϱu 0.63
LoS BS density, λb 0.0002/m2

LoS relay UE density, λr 0.002/m2

Multiplexing factor, ρ 0.9
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Fig. 2. The SINR coverage probability, PNu (τ), versus the SINR threshold,
τ , for different values of Nu.

IV. NUMERICAL RESULTS

In this section, we present numerical results to evaluate
the impact of spatial correlation and network parameters on
the SINR coverage probability, PNu (τ). The values of the
parameters used in this section are summarized in Table I,
unless otherwise specified.

First, we examine the impact of spatial correlation and Nu
on PNu (τ) in Fig. 2. We observe that our analysis with spatial
correlation given by (7) matches the simulations very well,
which confirms that (7) is an accurate approximation. More-
over, we observe that PNu (τ) significantly increases when Nu



TABLE II
Nmin VERSUS N̂min FOR DIFFERENT VALUES OF ξ

ξ 60% 70% 80% 90%
Nmin 4 5 7 12
N̂min 2 3 4 5

increases. Specifically, when τ = 10 dB, PNu (τ) increases
from 0.36 to 0.48 and then to 0.82 when Nu increases from
1 to 2 and then to 8. Furthermore, we observe that ignoring
spatial correlation leads to severe overestimation of the SINR
coverage probability, which is evident when comparing the
analysis ignoring spatial correlation, given by (25), with Monte
Carlo simulation points. Specifically, when τ = 14 dB and
Nu = 8, P̂Nu (τ) is 0.83 while the simulation shows that
the actual SINR coverage probability is 0.51. Indeed, spatial
correlation significantly reduces the probability of successful
reception at the destination UE, thus cannot be ignored.
In order to further examine the analysis error caused

by ignoring spatial correlation, we investigate the mini-
mum number of antennas needed at the destination UE to
achieve a given SINR coverage probability target, ξ, for
a given τ . Mathematically, it is expressed as Nmin ,
min {Nu : PNu (τ) > ξ} when spatial correlation is consid-
ered. When spatial correlation is ignored, the expression is
N̂min , min

{
Nu : P̂Nu (τ) > ξ

}
. Table II shows Nmin and

N̂min for different ξ when τ = 10 dB. This table confirms the
underestimation of the minimum number of antennas needed
when spatial correlation is ignored. For example, when ξ =
90%, if spatial correlation is ignored, the minimum number of
antennas needed is 5. However, the actual minimum number
of antennas needed is 12. Again, this example shows that
ignoring spatial correlation is not acceptable when designing
relay assisted mmWave cellular networks.
We now examine the impact of the transmit power at the BS,

Pb, on PNu (τ) and compare the SINR coverage probability
without relays with PNu (τ) in Fig. 3. We remark that the
SINR coverage probability without relays is PNu,bd (τ), since
without relays, the relay mode does not exist. We observe that
PNu (τ) increases as Pb increases. This is due to the fact that
both γbd,n and γbr increase as Pb increases. Moreover, we
observe that PNu (τ) is significantly higher than PNu,bd (τ).
Specifically, when τ = 10 dB, Nu = 8, and Pb = 35 dBm,
PNu (τ) is 0.83 while PNu,bd (τ) is 0.59. This confirms that
introducing relays into a mmWave cellular network vastly
improves the SINR coverage probability. Furthermore, we
observe that the gain brought by relays, i.e., the gap between
PNu (τ) and PNu,bd (τ), becomes larger when Nu increases
from 2 to 8, especially when Pb is not high, e.g., Pb =
30− 40 dBm. This is due to the fact that when Nu increases,
the directional gain of relay UEs, given by GU = Nu,
increases. When GU increases, γbr and γrd,n increase. Thus,
Pbr (τ) and PNu,rd (τ) increase as Nu increases. Hence, based
on (7), the gain brought by relays increases as Nu increases.
Finally, we examine the impact of the LoS BS density, λb,
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= 2, without relays
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Fig. 3. The SINR coverage probability, PNu (τ), versus the BS transmit
power, Pb, for different values of Nu, with τ =10 dB.

10
-4

10
-3

10
-2

LoS BS Density (/m2)

*= 1.26  10
-3

0

0.2

0.4

0.6

0.8

1

S
IN

R
 C

o
v
er

ag
e 

P
ro

b
ab

il
it

y

N
b

= 4

N
b

= 8

N
b

= 16

*= 1.58  10
-3

*= 1.78  10
-3

Fig. 4. The SINR coverage probability, PNu (τ), versus the LoS BS density,
λb, for different values of Nb, with τ =10 dB.

and the number of antennas at the BS, Nb, on PNu (τ) in
Fig. 4. We observe that PNu (τ) first increases then decreases
as λb increases. This is due to the fact that the impact of
deploying more BSs is twofold. First, the associated BS is
closer, which increases the desired signal power. Second, there
are more interfering BSs, which increases the interference
power. When λb increases from 10−4/m2, the first impact
dominates the second. After λb exceeds a certain value, which
is the optimal BS density, λ∗b , the second impact dominates the
first. Thus, we highlight that λ∗b that maximizes PNu (τ) can
be numerically found with the aid of our analysis. Specifically,
when Nb = 4, 8, and 16, the optimal BS densities are
λ∗b = 1.26×10−3/m2, 1.58×10−3/m2, and 1.78×10−3/m2,



respectively. In addition, we observe that PNu (τ) increases
as Nb increases. Specifically, when λb = 10−3/m2, PNu (τ)
increases from 0.59 to 0.83 and then to 0.95 whenNb increases
from 4 to 8 and then to 16. This observation is expected
because the BS beamwidth, given by θb = 102π

180Nb
, decreases

as Nb increases and BSs with narrower beams cause less
interference.

V. CONCLUSION

In this paper, we proposed a new analytical framework for
the relay assisted mmWave cellular network which adopts
selection combining at destination UEs to avoid the misalign-
ment problem caused by traditional directional combining. Our
results showed that ignoring spatial correlation to simplify
the analysis is unacceptable, since it leads to severe over-
estimation of the SINR coverage probability. Moreover, our
results showed that introducing relays into a mmWave cellular
network vastly improves the SINR coverage performance.
Furthermore, we examined the impact of network parameters
such as the BS density on the SINR coverage probability and
found that the optimal BS density which maximizes the SINR
coverage probability can be determined by using our analysis.
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