
Large-Scale Analysis of the Docker Hub Dataset

Nannan Zhao1, Vasily Tarasov2, Hadeel Albahar1, Ali Anwar1, Lukas Rupprecht2,

Dimitrios Skourtis2, Amit S. Warke2, Mohamed Mohamed3, and Ali R. Butt1

1Virginia Tech, 2IBM Research—Almaden, 3Apple

Abstract—Docker containers have become a prominent solu-
tion for supporting modern enterprise applications due to the
highly desirable features of isolation, low overhead, and efficient
packaging of the execution environment. Containers are created
from images which are shared between users via a Docker
registry. The amount of data Docker registries store is massive;
for example, Docker Hub, a popular public registry, stores at
least half a million public images. In this paper, we analyze
over 167TB of uncompressed Docker Hub images, characterize
them using multiple metrics and evaluate the potential of file-
level deduplication in Docker Hub. Our analysis helps to make
conscious decisions when designing storage for containers in
general and Docker registries in particular. For example, only
3% of the files in images are unique, which means file-level
deduplication has a great potential to save storage space for
the registry. Our findings can motivate and help improve the
design of data reduction, caching, and pulling optimizations for
registries.

I. INTRODUCTION

Recently, containers [1] have gained significant traction as

an alternative to virtual machines [2] for virtualization both

on premises and in the cloud. Polls suggest that 87% of

enterprises are in the process of adopting containers, and that

containers are expected to constitute a lucrative $2.5 billion

market by 2020 [3]. In contrast to Virtual Machines (VMs),

containers share the same kernel but are isolated in terms

of process visibility (e.g., via namespaces [4]) and resource

usage (e.g., via control groups [5]). Containers require fewer

memory and storage resources, start faster, and typically incur

less execution overhead than VMs [6]–[8].

A driving force for fast container adoption is the pop-

ular Docker [9] container management framework. Docker

combines process containerization with convenient packaging

of an application’s complete runtime environment in images.
For storage and network efficiency, images are composed

of independent, shareable layers of files. Images and their

corresponding layers are stored in a centralized registry and

accessed by clients as needed. Docker Hub [10] is the most

popular registry, currently storing more than 500,000 public

image repositories comprising over 2 million layers. The size

of the registry is steadily increasing. Over a period from June

to September 2017, we observed a linear growth of the number

of images in Docker Hub with an average creation rate of

1,241 public repositories per day. We expect this trend to

continue as containers gain more popularity.

While the massive image dataset presents challenges to the

registry and client storage infrastructure, storage for containers

978-1-7281-4734-5/19/$31.00 ©2019 IEEE

has remained a largely unexplored area. We believe one of

the prime reasons is the limited understanding of what data is

stored inside containers. This knowledge can help improve the

container storage infrastructure and ensure scalability of and

fast accesses to the registry service. Existing work has focused

on various aspects of containerization [11]–[16]. However, the

registry and its contents have yet to be studied in detail.

In this paper, we perform the first, comprehensive, large-

scale characterization and redundancy analysis of the images

and layers stored in the Docker Hub registry (§II). We

download all latest publicly accessible images (as of May

2017), which amount to 47 TB of image data (§III). Based on

that dataset, we analyze traditional storage properties, such as

file count, data compression ratios, directory depths, as well

as Docker-specific properties, e.g., the number of layers per

image, image popularity, and the amount of layer sharing.

Furthermore, we investigate the potential for data reduction

in the Docker registry by using file-level deduplication.

Our analysis reveals several interesting insights (§IV). First,

the majority of layers are small in size and show a low com-

pression ratio. 50% of the layers are smaller than 4MB which

holds both for compressed and uncompressed layers, and the

median layer compression ratio is 2.6. As compression is

computationally intensive, storing small layers in the registry

uncompressed can improve latency during pulls as layers do

not have to be uncompressed locally anymore. Second, we find

that only around 3% of the files are unique while others are

redundant copies. This suggests that file-level deduplication

has a great potential to save storage space for large-scale

registries.

We also find that image accesses are skewed towards a small

number of popular images. Specifically, 90% of repositories

are pulled less than 300 times since creation, while the largest

number of pulls we record for an image is over 600 million.

This suggests that image caching is a viable improvement

for the registry. Our analysis provides a first insight into the

Docker image dataset, which can help improve the design of

current data reduction, caching, and pulling optimizations for

container registries.

II. BACKGROUND

Container-based virtualization (such as Linux Contain-

ers (LXC) [17]) has emerged as a lightweight virtualization

alternative. Compared to Virtual Machine based server vir-

tualization technologies (e.g., VMware [18] or Xen [19]),

container virtualization works at the operating system level.

Containers share the same kernel which improves startup

repository name separated by a “/”, we can search for “/”

and obtain a list of all non-official repositories. The Crawler

downloads all pages from the search results and parses the web

content to build a list of all non-official repositories. We ran the

crawler on May 30th, 2017 and it delivered a list of 634,412

repositories. After removing duplicate entries (introduced by

Docker Hub indexing logic), the final repository list consists

of 457,627 distinct repositories.

B. Downloader

Images in Docker Hub repositories are labeled with version
tags to track different image versions. If a user does not

provide a tag when pulling an image, Docker client pulls the

latest tag by default. In this work we focus on downloading

images with the latest tag to make the analysis more

feasible. We plan to extend our analysis to other image tags

in the future.

Instead of using the Docker client to download images,

we implement our own downloader, which calls the Docker

registry API directly [22] to download manifests and image

layers in parallel. Note that we only download unique layers.

Our downloader runs significantly faster than a docker
pull-based downloader which performs many other opera-

tions in addition to downloading the image. For example, it

automatically extracts each layer’s tar archive file and creates

the corresponding read-only snapshot using the configured

Docker storage driver. This not only takes considerable amount

of time but also leads to overly high storage space utilization.

Furthermore, the local storage format of Docker images makes

it difficult to analyze the contents of each layer separately. Our

downloader can download multiple images simultaneously and

fetch the individual layers of an image in parallel. Layers are

transferred as gzip compressed tar archives.

The whole downloading process took around 30 days. Over-

all, we downloaded 355,319 images, resulting in 1,792,609

compressed layers and 5,278,465,130 files, with a total com-

pressed dataset size of 47 TB. A total of 111,384 images could

not be downloaded due to two reasons: 1) 13% of these images

required authentication; 2) 87% of these images did not have

a latest tag.

C. Analyzer

The analyzer extracts the downloaded layers and analyzes

them along with the image manifests. For each image, it

creates an image profile and individual layer profiles, which

contain metrics for the whole image and its individual layers,

respectively.

a) Layer profile: To produce the layer profile, the an-

alyzer first decompresses and extracts each layer tarball to a

layer directory. Then, it recursively traverses each subdirectory

and obtains its metadata information. A layer profile contains

the following information:

1) Layer metadata: { layer digest; layer size, which is the sum

of contained file sizes (FLS); compressed layer size, which

is the size of compressed layer tarball (CLS); directory

count; file count; max. directory depth }

0 128 256 384 512
0

0.2

0.4

0.6

0.8

1

Layer size (MB)

C
um

ul
at

iv
e

la
ye

r p
ro

ba
bi

lit
y

Compressed
Uncompressed

(a) CDF of layer sizes

5 25 45 65 85 105 125
0

2

4

6

8

10

12
x 105

Layer size (MB)

La
ye

r f
re

qu
en

cy

Compressed
Uncompressed

(b) Histogram of layer sizes

Fig. 3. Layer size distribution

2) Compression ratio: { FLS-to-CLS; }
3) Directory metadata (for every directory in the layer): {

directory name; directory depth; file count; }
4) File metadata (for every file in the layer): { file name; file

digest; file type (identified by magic number); file size; }
b) Image profile: To create the image profile, the an-

alyzer parses the manifest and obtains the configuration in-

formation such as OS and target architecture. Further, once

individual layers are analyzed, the analyzer builds the image

profile by including pointers to its layer profiles. An image

profile consists of:

1) Image metadata: { image name; sum of containing file sizes

(FIS); compressed image size (CIS); directory count; file

count; }
2) Compression ratio: { FIS-to-CIS; }

IV. DATASET CHARACTERIZATION

In this section we carry out our analysis of the Docker

Hub dataset by characterizing layers, images, and files. While

overall we are interested in its general structure, we also

analyze specific properties that allow us to draw conclusions

regarding the caching, compression, and resource provisioning

for Docker images.

A. Layers

We start by analyzing layers in terms of size and compress-

ibility, file and directory counts, and directory depths.
a) Layer sizes: We characterize layer sizes using two

different metrics: 1) compressed layer size (CLS)—the format

a layer is stored in the registry or transferred to a client;

and 2) files in layer size (FLS)—the sum of the sizes of the

uncompressed files contained in the layer. Figure 3(a) shows

the CDF of the two metrics.

We see that 90% of the layers are smaller than 177MB in

uncompressed format and smaller than 63MB in compressed

format. Interestingly, about half of the layers are smaller than

4MB, independent of the format. That means that the registry

stores a large number of small layers which do not benefit

from compression. To analyze the frequencies, we zoom into

the 0–128MB range (see Figure 3(b)). More than 1 million

and 800,000 layers are smaller than 5MB in compressed and

uncompressed format, respectively. Beyond that, the frequency

drops rapidly and we only see around 100,000 layers between

5MB and 15MB.

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Image size (GB)

C
um

ul
at

iv
e

im
ag

e
pr

ob
ab

ili
ty

Compressed
Uncompressed

(a) CDF of images by size (GB)

0 256 512 768 1024 1280 1536
0.3

0.5

0.7

0.9

1

Image size (MB)

C
um

ul
at

iv
e

im
ag

e
pr

ob
ab

ili
ty

Compressed
Uncompressed

(b) CDF of images by size (MB)

Fig. 9. Image size distribution

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Layer count in images

C
um

ul
at

iv
e

im
ag

e
pr

ob
ab

ili
ty

(a) CDF of layer count in images

0 20 40 60 80 100 120
0

1

2

3

4

5

6
x 104

Layer count in images

Im
ag

e
fre

qu
en

cy

(b) Histogram of layer count in im-
ages

Fig. 10. Layer count

of the compressed image layers, and the sum of the sizes of

files contained in the image (FIS). Figure 9(a) and 9(b) show

the image size distributions at a coarse GB resolution and a

finer resolution only covering images smaller than 1.5GB.

90% of the images have an uncompressed size less than

1.3GB while compressed images are less than 0.48GB. In

the median, this decreases to 94MB and 17MB, respectively.

The largest uncompressed image is 498GB which is a Ubuntu-

based image. Figure 9 shows that the majority of uncom-

pressed images in Docker Hub are small which aligns with the

Docker philosophy to package software and distribute software

in containers but include only its necessary dependencies.

c) Layer count distribution: As discussed in §II-B, im-

ages consist of a set of layers. It is important to understand

the layer count of the images as previous work found that

the number of layers can impact the performance of I/O

operations [14]. Therefore, we count the number of layers per

image and plot the CDF (see Figure 10(a)) and layer count

frequencies (see Figure 10(b)) for all Docker Hub images.

The results show that 90% of the images have less than

18 layers while half of the images have less than 8 layers. 8

layers is also the most frequent layer count per image with

51,300 images consisting of exactly 8 layers. The maximum

layer count is 120 in the cfgarden/120-layer-image. We also

find that there are 7,060 images that consist of only a single

layer.

d) Directory and file count distribution: Lastly, we look

at directory (see Figure 11) and file counts (see Figure 12)

in images to determine if deploying images requires handling

of large amounts of metadata. Looking at directories, we see

that 90% of images have less than 7,344 directories while the

0 3000 6000 9000 12000
0

0.2

0.4

0.6

0.8

1

Directories

C
um

ul
at

iv
e

im
ag

e
pr

ob
ab

ili
ty

Fig. 11. CDF of images by directories

0 2 4 6 8

x 104

0

0.2

0.4

0.6

0.8

1

Files

C
um

ul
at

iv
e

im
ag

e
pr

ob
ab

ili
ty

Fig. 12. CDF of images by files

median is at 296. For files, 90% of images have less than

64,780 files with a median of 1,090.

This is consistent with our analysis of layer-based file and

directory counts and the number of layers per image. Again,

we conclude that most images do not require an extensive

amount of metadata when being deployed as file and directory

counts are low except for relatively rare outliers.

C. Files

After analyzing layers and images, we conducted a deeper

analysis on the files that are stored in containers. Specifically,

we characterize files in terms of size and type. Based on

this characterization, we create a three-level classification

hierarchy as shown in Figure 13. At the highest level, we

created two categories: Commonly used file types and non-
commonly used file types based on the total file size and file

count for each type. Totally, we got around 1,500 types after

analyzing our whole dataset. We found that only 133 file

types take up more than 7GB individually and occupy the

most capacity (98.4%, with 166.8 TB) totally. We put these

133 file types into commonly used file type group and the

remaining files into non-commonly used file types. Our further

classification expands on the 98.4% commonly used file types.

At the second level of the hierarchy, we clustered commonly

used file types based on the major file format, usage, or

platform involved by each file type. We identified commonly

used file types relevant to EOL (executable, object code, and
libraries), source code, scripts, documents, archival, images,
databases, and others.
At the third level, we present the specific file types which

take a large percentage of storage space.

a) Common used file types: Figure 14 shows the 8 type

groups in terms of file count and capacity. 13%, 11%, and 9%

of files are source code, EOL, and scripts. EOL files occupy

the most capacity (37%).

We also see that 44% of files are document files such as

Microsoft office files, LaTeX files, etc. Only 4% of files are

image data files, e.g., PNG, JPEG, etc. Besides, we found a

small amount of video files like AVI, MPEG, etc.

To find how file type relate to file size, we calculated the

average file size by file type group as shown in Figure 15. We

see that Database files are much bigger (978.8 KB) than the

files within other type groups. The average size of EOL and

Archival files are around 100 KB.

ASCII HTML. UTF PDF LaTex ISO−X Com.doc Oths.
0

0.2
0.4
0.6
0.8

1

%
 o

f d
oc

s

(a) File count (in %) by file type.

ASCII HTML UTF PDF ISO−X LaTex Com.doc. Oths.
0

0.2
0.4
0.6
0.8

1

%
 o

f c
ap

ac
ity

(b) Capacity (in %) by file type.

Fig. 19. Documents

Perl5 module, Ruby module, Pascal, Fortran, Applesoft basic,

and Lisp/Scheme. 80.3% of source files are C/C++ sources

which take about 80% of storage space within the source code

group. Perl5 module source code and Ruby module source

code have an almost similar percentage in terms of file count

(9% for Perl5 module source and 8% for Ruby module source)

but occupy different percentage in terms of capacity (11% for

Perl5 modules and 3% for Ruby modules).

d) Scripts (Scr.): Compared to the source code group, we

found a larger variety of scripting languages used. Our script

group includes Python scripts, AWK, Ruby, Perl, PHP, Make,

M4 macro processor, node, Tcl, Bash/shell, and others. We

see in Figure 18 that more than half of the scripts are Python-

based script (53.5%), which take around 66% of storage space

occupied by all scripts. Another commonly used script type

are Bash/shell scripts (20%) which only occupy 6% of storage

space. 10% of scripts are Ruby scripts which take around 5%

of storage space in the scripts group.

e) Documents (Doc.): As discussed before, 44% of files

are documents which take up to 14% of storage space. As

shown in Figure 19, we see that majority of documents are

text files including ASCII text (80%), UTF8/16 text (5%),

and ISO-8859 text (0.4%), which take up to 70% of storage

space occupied by documents. Note that these text files are raw
text files since we already filter the text based well-known file

types, such as scripts and source code.

Another observation is that XML/HTML/XHTML docu-

ments are the second most commonly used documents (13%),

which take up over 18% of storage space occupied by doc-

uments. Moreover, we found a small amount of PDF/PS

documents and LaTeX files in our dataset.

f) Archival (Arch.): The archival file group, takes up to

23% of capacity and is the second most commonly used file

type group. To figure out what kind of archival files are used in

Docker containers, we look at the archival file type distribution

as shown in Figure 20. We see that majority of archival files

are Zip/gzip files (96.3%) which take up to 70% of storage

space within the archival files, meaning that Zip/gzip files have

a lower average file size. We calculated the average file size

for each file type. The average file sizes are 67 KB, 199 KB,

466 KB, and 534 KB for Zip/gzip, bzip2, tar, and xz files,

Zip/GzipBzip2 XZ Tar Oths.
0

0.2
0.4
0.6
0.8

1

%
 o

f a
rc

hi
va

l

(a) File count (in %) by file type.

Zip/Gzip XZ Bzip2 Tar Oths.
0

0.2

0.4

0.6

%
 o

f c
ap

ac
ity

(b) Capacity (in %) by file type.

Fig. 20. Archival files

berkeley MySQL Dbase NDBM SQLite Oths.
0

0.1
0.2
0.3
0.4

%
 o

f D
B

. f
ile

s

(a) File count (in %) by file type.

SQLite Berkeley Dbase MySQL NDBM Oths.
0

0.2

0.4

0.6

%
 o

f c
ap

ac
ity

(b) Capacity (in %) by file type.

Fig. 21. Databases

respectively.

g) Databases (DB.): Interestingly, we found a certain

amount of database related files in our dataset. As shown in

Figure 21, over half of the database related files are Berkely

DB (33%) and MySQL (30%) files, but these types take up

less than 40% of capacity occupied by database related files.

7% of database related files are SQLite DB files, which take

up over 57% of capacity.

This finding means that Docker developers run databases

inside Docker containers. The most frequently used databases

are Berkeley DB and MySQL, while the database using most

of capacity is SQLite. We currently do not know whether these

databases are mainly read-only or are also used for write-based

workloads. This might cause performance problems in some

situations due to the copy-on-write overhead of the storage

drivers [21].

h) Images (Img.): We also found some image data files,

such as PNG, JPEG, SVG, etc. in Docker container images. As

shown in Figure 22, more than half of image files are PNG

files (67%), which take about 45% of capacity occupied by

image files. The second most commonly used image files are

JPEG files which take up around 20% capacity.

V. DEDUPLICATION ANALYSIS

In this section, we investigate the potential for data reduc-

tion in the Docker registry by analyzing the efficacy of layer

sharing and file-level deduplication.

A. Layer sharing

Compared to other existing containerization frame-

works [23], [24], Docker supports the sharing of layers among

different images. To study the effectiveness of this approach,

we compute how many times each layer is referenced by

images. Specifically, we analyze all image manifests and count

PNG SVG JPEG FITS TIFF EPS Oths.
0

0.2

0.4

0.6

%
 o

f I
m

gs

(a) File count (in %) by file type.

PNG JPEG SVG FIT TIFF EPS Oths.
0

0.2

0.4
0.5

%
 o

f c
ap

ac
ity

(b) Capacity (in %) by file type.

Fig. 22. Images

EOL Arch.Doc. SC. DB. Scr. Img Oths.
0

20

40

60
C

ap
ac

ity
 (T

B
)

0.7

0.8

0.9

1

D
ed

up
lic

at
io

n
ra

tio

Fig. 27. Overall deduplication ratio.

ELF IP. PE. Pack. Libr. COFFOths.
0

10

20

30

40

50

C
ap

ac
ity

 (T
B

)

0.5

0.7

0.9

1

D
ed

up
lic

at
io

n
ra

tio

Fig. 28. Deduplication results for
EOL files.

C/C++ Perl5 m.Ruby m. Pascal Fortran A.Basic Scheme Oths.
0

1

2

3

4

5

C
ap

ac
ity

 (T
B

)

0.5

0.6

0.7

0.8

0.9

1

D
ed

up
lic

at
io

n
ra

tio

Fig. 29. Deduplication results for source codes.

also calculate the percentage of files that are duplicated across

images. As shown in Figure 26(b), 90% of images contain

more than 99.4% of files that are duplicated across images,

indicating that majority of files are duplicated across different

images and layers.

E. Deduplication by file types

To understand what are the file duplicates and why there are

so many file duplicates, we look at the deduplication results

from the perspective of file types. In this section, we present

the deduplication results for common file types that occupy

the most capacity.

Figure 27 shows deduplication results for the following

type groups: EOL, archival, documents, source code, scripts,

images, and databases. Note that the y-axes show the capacity

occupied by different type groups and their deduplication

ratios.

The overall deduplication ratio is 85.69%, and most of the

type groups have a comparable ratio. For example, 86% of

EOL files, which include executables, object files, and li-

braries, can be deduplicated at file-level. Source codes, scripts,

and documents have the highest deduplication ratio (96.8% for

source codes, 98% for scripts, and 92% for documents), which

means that Docker developers are more prone to duplicate

source code, scripts, and documents.

Next, we see that EOL files, archival, and images have a

similar deduplication ratio of around 86%. Compared to other

type groups, the redundant EOL files and archival files occupy

over half of the capacity (51.4%). Database related files have

the lowest deduplication ratio (76%), which contributes little

to the overall savings.

a) Executable, object code, and libraries (EOL): We

further calculate the deduplication ratio for specific file types

in each common type group. We start from the EOL group

since it occupies the most capacity and contributes a lot to the

overall savings after deduplication.

Figure 28 shows the deduplication results for EOL files. We

see that ELF files, intermediate representations, and PE files

have the highest deduplication ratio (around 87%). Especially,

the redundant ELF files occupy the most capacity (73.4%).

Libraries and COFF files have the lowest deduplication ratio

of 53.5% and 61% respectively.

We also calculate the deduplication ratio for each intermedi-

ate representation and libraries. We found that all the interme-

diate representations have a high deduplication ratio (greater

than 77%). Especially, the redundant Python byte-compiled

code take up to 67% of capacity occupied by intermediate

representations. Although the overall deduplication ratio of

the library group is lower, we observed that the GNU C/C++

library and the Palm OS dynamic library have a deduplication

ratio of over 90%.

b) Source code (SC.): As discussed, Docker developers

are more prone to replicate source code. To find out which

kind of source codes are replicated frequently, we study

deduplication on 7 common languages as shown in Figure 29.

We see that all the languages have a high deduplication ratio

of over 90% except for Lisp/Scheme. In particular, redundant

C/C++ source files take up over 77% of capacity occupied

by source code files. To find out why there are so many

duplicate C/C++ source files, we inspect those files and find

a frequently reused sources related to Google Test [27], a

cross-platform C++ test framework available on GitHub [27].

Interestingly, we also observe that there are a large number

of repositories related to Google Test but there is no official

repository. We suspect that many developers replicate open

source code from external public repositories, such as GitHub,

and store it in their container images. This could also explain

why there are so many shared source code files across different

images. Considering that Docker Hub allows developer to

automatically build images from source code in external public

repositories and automatically push the built image to their

Docker repositories, we believe that replicated source code in

different images is a common case in the Docker Hub registry.

VI. RELATED WORK

Due to its increasing popularity, Docker has recently

received increased attention from the research community.

Slacker [14] studied 57 images from Docker Hub for a variety

of metrics. The authors used the results from their study

to derive a benchmark to evaluate the push, pull, and run

performance of Docker graph drivers based on the studied

images. Compared to Slacker, our analysis focuses on the

entire Docker Hub dataset. Anwar et al. [28] propose a new

Docker registry design that employs a two-tier registry cache

hierarchy. Bolt [29] presents a hyperconverged Docker registry

to improve latency and throughput. However, both of these

designs are based on workload traces and do not consider

content and storage properties of images. Cito et al. [13]

conducted an empirical study for characterizing the Docker

ecosystem with a focus on prevalent quality issues, and the

evolution of Docker files based on a dataset of 70,000 Docker

files. However, their study did not focus on actual image data.

Shu et al. [15] studied the security vulnerabilities in Docker

Hub images based on a dataset of 356,218 images and found

there is a strong need for more automated and systematic

methods of applying security updates to Docker images. While

the amount of images is similar compared to our study, Shu et

al. focused on a subset of 100,000 repositories and different

image tags in these repositories.

Dockerfinder [12] is a microservice-based prototype that

allows searching for images based on multiple attributes, e.g.,

image name, image size, or supported software distributions.

It also crawls images from a remote Docker registry but the

authors do not provide a detailed description of their crawling

mechanism. Bhimani et al. [11] characterized the performance

of persistent storage options for I/O intensive containerized

applications with NVMe SSDs. Unlike our study, their analysis

is focused on the execution of containers rather than on their

storage at the registry side. Skourtis et al. [30] looked at

the deduplication ratio of 10,000 most popular images in

Docker Hub to motivate the new approach to more efficient

organization of Docker images. Our study focuses on wider

and larger scale characterization of Docker images.

Future work In the future, we plan to extend our anal-

ysis to multiple versions of Docker images and study the

dependencies among them. In addition, we will further analyze

how layer hierarchy and compression methods impact access

latency. Moreover, we plan to extend our image popularity

analysis to cache performance analysis. We also plan to utilize

our deduplication observations to improve storage efficiency

for Docker registry.

VII. CONCLUSION

In this paper, we carried out the first comprehensive analysis

of container images stored in Docker Hub. We presented a

methodology to exhaustively crawl and efficiently download

Docker Hub images. Using this approach, we analyzed a

47 TB dataset resulting in 1,792,609 layers and 5,278,465,130

files. Based on this dataset, we carried out a detailed study

of a variety of storage metrics on both layers, images, and

files. Metrics included layer and image sizes, compressibility,

deduplication ratio, and popularity. Our findings reveal that

there is room for optimizing how images are stored and used.

For example, we observed that compression may not always

be beneficial for small layers as it can increase pull latencies.

Additionally, layers are rarely shared between images which

increases storage utilization. Moreover, file-level deduplication

can eliminate 96.8% of the files. We plan to investigate such

improvements in the future.

Acknowledgments This work is sponsored by the NSF

under the grants: CNS-1405697, CNS-1615411, and CNS-

1565314/1838271.

REFERENCES

[1] P. Menage, “Adding Generic Process Containers to the Linux Kernel,”
in Linux Symposium, 2007.

[2] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors: Current
Technology and Future Trends,” Computer, vol. 38, no. 5, 2005.

[3] 451 Research, “Application Containers Will Be a $2.7Bn Market by
2020.” https://tinyurl.com/ya358jbn.

[4] “Namespaces(7) ← linux programmer’s manual.” http://man7.org/linux/
man-pages/man7/namespaces.7.html.

[5] “Control Group v2.” https://www.kernel.org/doc/Documentation/
cgroup-v2.txt.

[6] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum, “Disco: Running
Commodity Operating Systems on Scalable Multiprocessors,” ACM
Transactions on Computer Systems (TOCS), vol. 15, no. 4, 1997.

[7] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An Updated
Performance Comparison of Virtual Machines and Linux Containers,” in
Proceedings of the 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2015.

[8] R. Morabito, J. Kjällman, and M. Komu, “Hypervisors vs. Lightweight
Virtualization: A Performance Comparison,” in Proceedings of the 3rd
IEEE International Conference on Cloud Engineering (IC2E), 2015.

[9] “Docker.” https://www.docker.com/.
[10] “Docker Hub.” https://hub.docker.com/.
[11] J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Panduran-

gan, and V. Balakrishnan, “Understanding performance of I/O intensive
containerized applications for NVMe SSDs,” in Proceedings of the
35th IEEE International Performance Computing and Communications
Conference (IPCCC), 2016.

[12] A. Brogi, D. Neri, and J. Soldani, “DockerFinder: Multi-attribute Search
of Docker Images,” in Proceedings of the 5th IEEE International
Conference on Cloud Engineering (IC2E), 2017.

[13] J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C.
Gall, “An Empirical Analysis of the Docker Container Ecosystem on
GitHub,” in Proceedings of the 14th International Conference on Mining
Software Repositories (MSR), 2017.

[14] T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Slacker: Fast Distribution with Lazy Docker Containers,”
in Proceedings of the 14th USENIX Conference on File and Storage
Technologies (FAST), 2016.

[15] R. Shu, X. Gu, and W. Enck, “A Study of Security Vulnerabilities on
Docker Hub,” in Proceedings of the 7th ACM Conference on Data and
Application Security and Privacy (CODASPY), 2017.

[16] N. Zhao, V. Tarasov, A. Anwar, L. Rupprecht, D. Skourtis, A. S. Warke,
M. Mohamed, and A. R. Butt, “Slimmer: Weight loss secrets for docker
registries,” in IEEE Cloud, 2019.

[17] “Linux Containers.” http://linuxcontainers.org.
[18] J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing I/O

Devices on VMware Workstation’s Hosted Virtual Machine Monitor,”
in Proceedings of 2001 USENIX Annual Technical Conference (ATC),
2001.

[19] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP), 2003.

[20] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based Operating System Virtualization: A Scalable, High-
performance Alternative to Hypervisors,” in Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems (EuroSys),
2007.

[21] V. Tarasov, L. Rupprecht, D. Skourtis, A. Warke, D. Hildebrand,
M. Mohamed, N. Mandagere, W. Li, R. Rangaswami, and M. Zhao,
“In Search of the Ideal Storage Configuration for Docker Containers,”
in Proceedings of the 1st Workshop on Autonomic Management of Large
Scale Container-based System (AMLCS), 2017.

[22] “Docker Registry Client.” https://github.com/heroku/
docker-registry-client.

[23] “OpenVZ Linux Containers Wiki.” http://openvz.org/.
[24] “singularity.” http://singularity.lbl.gov/.
[25] “Dockerfile.” https://docs.docker.com/engine/reference/builder/.
[26] “cowsay.” https://github.com/piuccio/cowsay.
[27] “Google test - google testing and mocking framework.” https://github.

com/google/googletest.
[28] A. Anwar, M. Mohamed, V. Tarasov, M. Littley, L. Rupprecht, Y. Cheng,

N. Zhao, D. Skourtis, A. S. Warke, H. Ludwig, and A. R. Butt, “Im-
proving docker registry design based on production workload analysis,”
in 16th USENIX Conference on File and Storage Technologies, 2018.

[29] M. Littley, A. Anwar, H. Fayyaz, Z. Fayyaz, V. Tarasov, L. Rupprecht,
D. Skourtis, M. Mohamed, H. Ludwig, Y. Cheng, and A. R. Butt, “Bolt:
Towards a scalable docker registry via hyperconvergence,” in IEEE
International Conference on Cloud Computing, 2019.

[30] D. Skourtis, L. Rupprecht, V. Tarasov, and N. Megiddo, “Carving perfect
layers out of docker images,” in HotCloud, 2019.

