Large-Scale Analysis of the Docker Hub Dataset

Nannan Zhao!, Vasily Tarasov2, Hadeel Albahar!, Ali Anwar!, Lukas Rupprecht2,
Dimitrios Skourtis?, Amit S. Warke?, Mohamed Mohamed?®, and Ali R. Butt!
'Virginia Tech, 2IBM Research—Almaden, 3Apple

Abstract—Docker containers have become a prominent solu-
tion for supporting modern enterprise applications due to the
highly desirable features of isolation, low overhead, and efficient
packaging of the execution environment. Containers are created
from images which are shared between users via a Docker
registry. The amount of data Docker registries store is massive;
for example, Docker Hub, a popular public registry, stores at
least half a million public images. In this paper, we analyze
over 167 TB of uncompressed Docker Hub images, characterize
them using multiple metrics and evaluate the potential of file-
level deduplication in Docker Hub. Our analysis helps to make
conscious decisions when designing storage for containers in
general and Docker registries in particular. For example, only
3% of the files in images are unique, which means file-level
deduplication has a great potential to save storage space for
the registry. Our findings can motivate and help improve the
design of data reduction, caching, and pulling optimizations for
registries.

I. INTRODUCTION

Recently, containers [1] have gained significant traction as
an alternative to virtual machines [2] for virtualization both
on premises and in the cloud. Polls suggest that 87% of
enterprises are in the process of adopting containers, and that
containers are expected to constitute a lucrative $2.5 billion
market by 2020 [3]. In contrast to Virtual Machines (VMs),
containers share the same kernel but are isolated in terms
of process visibility (e.g., via namespaces [4]) and resource
usage (e.g., via control groups [5]). Containers require fewer
memory and storage resources, start faster, and typically incur
less execution overhead than VMs [6]-[8].

A driving force for fast container adoption is the pop-
ular Docker [9] container management framework. Docker
combines process containerization with convenient packaging
of an application’s complete runtime environment in images.
For storage and network efficiency, images are composed
of independent, shareable layers of files. Images and their
corresponding layers are stored in a centralized registry and
accessed by clients as needed. Docker Hub [10] is the most
popular registry, currently storing more than 500,000 public
image repositories comprising over 2 million layers. The size
of the registry is steadily increasing. Over a period from June
to September 2017, we observed a linear growth of the number
of images in Docker Hub with an average creation rate of
1,241 public repositories per day. We expect this trend to
continue as containers gain more popularity.

While the massive image dataset presents challenges to the
registry and client storage infrastructure, storage for containers

978-1-7281-4734-5/19/$31.00 ©2019 IEEE

has remained a largely unexplored area. We believe one of
the prime reasons is the limited understanding of what data is
stored inside containers. This knowledge can help improve the
container storage infrastructure and ensure scalability of and
fast accesses to the registry service. Existing work has focused
on various aspects of containerization [11]-[16]. However, the
registry and its contents have yet to be studied in detail.

In this paper, we perform the first, comprehensive, large-
scale characterization and redundancy analysis of the images
and layers stored in the Docker Hub registry (§II). We
download all 1atest publicly accessible images (as of May
2017), which amount to 47 TB of image data (§1II). Based on
that dataset, we analyze traditional storage properties, such as
file count, data compression ratios, directory depths, as well
as Docker-specific properties, e.g., the number of layers per
image, image popularity, and the amount of layer sharing.
Furthermore, we investigate the potential for data reduction
in the Docker registry by using file-level deduplication.

Our analysis reveals several interesting insights (§IV). First,
the majority of layers are small in size and show a low com-
pression ratio. 50% of the layers are smaller than 4 MB which
holds both for compressed and uncompressed layers, and the
median layer compression ratio is 2.6. As compression is
computationally intensive, storing small layers in the registry
uncompressed can improve latency during pulls as layers do
not have to be uncompressed locally anymore. Second, we find
that only around 3% of the files are unique while others are
redundant copies. This suggests that file-level deduplication
has a great potential to save storage space for large-scale
registries.

We also find that image accesses are skewed towards a small
number of popular images. Specifically, 90% of repositories
are pulled less than 300 times since creation, while the largest
number of pulls we record for an image is over 600 million.
This suggests that image caching is a viable improvement
for the registry. Our analysis provides a first insight into the
Docker image dataset, which can help improve the design of
current data reduction, caching, and pulling optimizations for
container registries.

II. BACKGROUND

Container-based virtualization (such as Linux Contain-
ers (LXC) [17]) has emerged as a lightweight virtualization
alternative. Compared to Virtual Machine based server vir-
tualization technologies (e.g., VMware [18] or Xen [19]),
container virtualization works at the operating system level.
Containers share the same kernel which improves startup

Docker hub

docker push | image docker pull [jimage

~oomvsaL
Base image: Ubuntu

PHP }Jmage layers

docker pull (Read only)

e

Fig. 1. Docker ecosystem

times and significantly reduces the storage and memory over-
head [20].

A. Docker

Docker is a popular containerization framework, which
extends LXC with higher level APIs and additional func-
tionality. It automates the deployment of applications inside
Linux containers, and provides the capability to package an
application with its runtime dependencies into a container [14].

As shown in Figure 1, the Docker ecosystem consists of
several components. Users interact with Docker via the Docker
client, which sends commands to the Docker daemon. The
daemon is responsible for running containers from locally
available images. Additionally, the daemon supports building
new images and pushing them to a Docker registry. When a
user wants to launch a container from an image that is not
available locally, the daemon pulls the required image from
the registry.

B. Docker images and layers

At the center of Docker is the concept of container images
for packaging, distributing, and running applications. Docker
images consist of a series of individual layers. A layer contains
a subset of the files in the image and often represents a
specific component/dependency of the image, e.g., a library.
This modular design allows layers to be shared between two
images if both images depend on the same component.

Image layers are read-only. When users start a container,
Docker creates a new writable layer on top of the underlying
read-only layers as shown in Figure 1. Any changes made
to files in the image will be reflected inside the writable
layer via a copy-on-write mechanism. This leaves image layers
unmodified throughout the lifetime of a container and enables
layer sharing. Docker supports multiple storage drivers, e.g.,
Aufs and Btrfs, which efficiently combine read-only and
writable layers in a single file-system namespace and support
copy-on-write [21]. The writable layers are discarded when
the container is deleted.

An image is represented by a manifest file, which contains
a list of layer identifiers (digests) for all layers required by
the image. Moreover, it describes the various parameters of

Docker hub

Get <url>

Parser

~ manifest

Profiler
+ +

Image profiles Layer profiles

Fig. 2. Crawler, Downloader, and Analyzer

a Docker image, such as the target hardware platform and
environment settings.

C. Docker registry

The Docker registry is a platform for storing and sharing
container images. It stores images in repositories, each con-
taining different versions of the same image. Image layers are
stored as compressed archival files and image manifests as
JSON-based files. Docker Hub is one of the most popular
public registries, supporting both public and private repos-
itories, where users can upload, search, and download im-
ages [10]. In Docker Hub, the user repositories are namespaced
by user name, i.e., <username>/<repository name>,
while the official repositories, which are directly provided by
Docker Inc. and partners, are called <repository name>.

III. METHODOLOGY

Our image analysis methodology consists of three steps (see
Figure 2): i) crawl Docker Hub to list all repositories;
ii) download the latest version of an image and all referenced
layers from each repository based on the crawler results; iii)
decompress and analyze images and layers.

A. Crawler

To download a particular image, the name of the repository
which the image belongs to needs to be provided. The crawler
is responsible for generating a list of repositories for the
downloader.

Public repositories in Docker Hub (i.e., the repositories that
anyone can pull from) are divided into official repositories,
served by the Docker Hub partners, and non-official reposito-
ries, provided by regular users and third-party organizations.
The number of official repositories is less than 200, while,
the majority of repositories in Docker Hub are non-official
(over 400,000). Listing non-official repositories requires web
crawling because Docker Hub does not support an API to
retrieve all repository names.

Our crawler utilizes the Docker Hub’s Web-based search
engine to find all available repositories. As the name of non-
official repositories is comprised of the user name and the

repository name separated by a “/’, we can search for ““/”
and obtain a list of all non-official repositories. The Crawler
downloads all pages from the search results and parses the web
content to build a list of all non-official repositories. We ran the
crawler on May 30th, 2017 and it delivered a list of 634,412
repositories. After removing duplicate entries (introduced by
Docker Hub indexing logic), the final repository list consists
of 457,627 distinct repositories.

B. Downloader

Images in Docker Hub repositories are labeled with version
tags to track different image versions. If a user does not
provide a tag when pulling an image, Docker client pulls the
latest tag by default. In this work we focus on downloading
images with the latest tag to make the analysis more
feasible. We plan to extend our analysis to other image tags
in the future.

Instead of using the Docker client to download images,
we implement our own downloader, which calls the Docker
registry API directly [22] to download manifests and image
layers in parallel. Note that we only download unique layers.
Our downloader runs significantly faster than a docker
pull-based downloader which performs many other opera-
tions in addition to downloading the image. For example, it
automatically extracts each layer’s tar archive file and creates
the corresponding read-only snapshot using the configured
Docker storage driver. This not only takes considerable amount
of time but also leads to overly high storage space utilization.
Furthermore, the local storage format of Docker images makes
it difficult to analyze the contents of each layer separately. Our
downloader can download multiple images simultaneously and
fetch the individual layers of an image in parallel. Layers are
transferred as gzip compressed tar archives.

The whole downloading process took around 30 days. Over-
all, we downloaded 355,319 images, resulting in 1,792,609
compressed layers and 5,278,465,130 files, with a total com-
pressed dataset size of 47 TB. A total of 111,384 images could
not be downloaded due to two reasons: 1) 13% of these images
required authentication; 2) 87% of these images did not have
a latest tag.

C. Analyzer

The analyzer extracts the downloaded layers and analyzes
them along with the image manifests. For each image, it
creates an image profile and individual layer profiles, which
contain metrics for the whole image and its individual layers,
respectively.

a) Layer profile: To produce the layer profile, the an-
alyzer first decompresses and extracts each layer tarball to a
layer directory. Then, it recursively traverses each subdirectory
and obtains its metadata information. A layer profile contains
the following information:

1) Layer metadata: { layer digest; layer size, which is the sum
of contained file sizes (FLS); compressed layer size, which
is the size of compressed layer tarball (CLS); directory
count; file count; max. directory depth }

e 1p210
£ - [Compressed
§o08 10 [Uncompressed
Qo >
[2 g
= 06| £
o o
& L6
o 0.4 o
2 2 4
K 5
go0z2 ——Compressed 2
3 0 -~ ~Uncompressed
0 128 256 384 512 0 5 25 45 65 85 105 125
Layer size (MB) Layer size (MB)

(a) CDF of layer sizes (b) Histogram of layer sizes

Fig. 3. Layer size distribution

2) Compression ratio: { FLS-to-CLS; }

3) Directory metadata (for every directory in the layer): {
directory name; directory depth; file count; }

4) File metadata (for every file in the layer): { file name; file
digest; file type (identified by magic number); file size; }

b) Image profile: To create the image profile, the an-
alyzer parses the manifest and obtains the configuration in-
formation such as OS and target architecture. Further, once
individual layers are analyzed, the analyzer builds the image
profile by including pointers to its layer profiles. An image
profile consists of:

1) Image metadata: { image name; sum of containing file sizes
(FIS); compressed image size (CIS); directory count; file
count; }

2) Compression ratio: { FIS-to-CIS; }

IV. DATASET CHARACTERIZATION

In this section we carry out our analysis of the Docker
Hub dataset by characterizing layers, images, and files. While
overall we are interested in its general structure, we also
analyze specific properties that allow us to draw conclusions
regarding the caching, compression, and resource provisioning
for Docker images.

A. Layers

We start by analyzing layers in terms of size and compress-
ibility, file and directory counts, and directory depths.

a) Layer sizes: We characterize layer sizes using two
different metrics: 1) compressed layer size (CLS)—the format
a layer is stored in the registry or transferred to a client;
and 2) files in layer size (FLS)—the sum of the sizes of the
uncompressed files contained in the layer. Figure 3(a) shows
the CDF of the two metrics.

We see that 90% of the layers are smaller than 177 MB in
uncompressed format and smaller than 63 MB in compressed
format. Interestingly, about half of the layers are smaller than
4 MB, independent of the format. That means that the registry
stores a large number of small layers which do not benefit
from compression. To analyze the frequencies, we zoom into
the 0-128 MB range (see Figure 3(b)). More than 1 million
and 800,000 layers are smaller than 5 MB in compressed and
uncompressed format, respectively. Beyond that, the frequency
drops rapidly and we only see around 100,000 layers between
5SMB and 15MB.

5
1 6x 10

=

3 5

08 >

< <S4

Q ()

= 0.6 3

53 83

o =

g 0.4 § o

K 8

202 1

S

o B i
0 10 20 30 40 50 8.5 5.5 105 155 205 25

Compression ratio Compression ratio

(a) CDF of compression ratio (b) Histogram of comp. ratios

Fig. 4. Layer compression ratio distribution

2 2

3 5

508 ©08

= [

Q o

5 06 5 0.6 :

))

0 0.4 0 0.4

2 2

k<l s

g 0.2 2 0.2

= -

° 0 < 0

0 2500 5000 7500 10000 0 250 500 750 1000 1200

Files Directories

Fig. 5. File count distr. Fig. 6. Dir. count distr.

To further study the sizes and the impact of compression, we
calculate the FLS-to-CLS compression ratios (see Figure 4(a)).
90% of layers have a FLS-to-CLS ratio less than 4 and the
median compression ratio is 2.6. The largest compression ratio
is 1026. Looking at the histogram in Figure 4(b), we see that
around 600,000 layers have a compression ratio of between 2
and 3 while more than 300,000 between 1 and 2.

Our size analysis reveals an interesting trade-off. Com-
pression is computationally expensive and is one of the
major sources of latency when pulling an image from Docker
Hub [14]. As the majority of layers are small and have low
compression ratios, it can be beneficial to store small layers
uncompressed in the registry to reduce pull latencies.

b) File and directory counts: Next, we look at file and
directory metrics in layers. Figures 5 and 6 show the CDFs
of file and directory counts in all layers, respectively. The
results show that 90% of layers contain less than 7,410 files
while half of the layers have less than 30 files. We also found
that 27% of the layers only have a single file while 7% even
showed no files at all. We currently do not know the exact
reason for the layers without files. One theory is that these
layers use Docker volumes (i.e., host file system directory
‘/var/lib/docker/volumes/’ on Linux) to store all required files
(including executables). On the other hand, the largest layer
contains 826,196 files and was part of a Debian image. For
directories, 90% of the layers have less than 826 directories
and half of the layers consist of less than 11 directories.
We again observe a wide range with a minimum of a single
directory and a maximum of 111,940. The layer with the most
directories was part of the conjurinc/developer-quiz image.

Besides the count, we also calculate the maximum directory
depth for each layer (Figure 7(a)). Around 90% of all layers
have a directory depth less than 10 while for 50% of the
layers, the directory depth is less than 4. The most frequent

x10

4
2 g
Sos H
89 g3
I fra
506 5
E) &2
2 0.4 g
8 R
= 3
g 02 g
= 3
[&] 6]

o
OO

12 18 24 30
Layer directory depth

6 24 30

12 18
Layer directory depth

(a) CDF of layers by layer directory (b) Histogram of layers by layer di-

depth rectory depth
Fig. 7. Layer directory depth distribution

4

o 4x 10

Z09

©

Qo >

g 8

5 0.6 >

2 g

£ 0.3 °

=]

E

3

O

S

150 200 250
Pull count

200 400 600 800 1000
Pull count

(a) CDF of repositories by pull count (b) Histogram of repositories by pull
count

Fig. 8. Repository popularity distribution

directory depth is 3 with 313,000 layers showing this depth
value (Figure 7(b)).

This analysis shows that the majority of layers consist only
of a small number of files and does not contain deeply nested
directory hierarchies. Hence, except for few outliers, unpacked
layers do not require a large amount of metadata from the
storage system.

B. Images

Next, we study images in terms of their popularity, size and
their use of layers.

a) Image popularity: We start by analyzing image pop-
ularity. Figure 8 shows the repository popularity distribution
in terms of the pull count of individual images. The CDF in
Figure 8(a) reveals a large degree of skew in image pulls. In
the median, images are only pulled 40 times while in the 90%
percentile we see a pull count of 333. On the other hand, the
largest pull count is more than 650M which is for the official
nginx repository. This is followed by Google’s cadvisor (434M
pulls), redis (264M pulls), ubuntu (28M pulls) and GliderLabs’
registrator (212M pulls).

Looking at the pull frequencies for repositories (see Fig-
ure 8(b)) confirms the skewness. We see that 31,200 of
repositories are only pulled between O and 2 times while
34,100 repositories are pulled between 3 to 5 times. What is
interesting is that there is a second peak around a pull count
of 37 which does not fit a heavy-tailed distribution.

The skewness of the two curves in Figure 8 suggests that
Docker Hub is a good fit for caching popular repositories or
images to reduce pull latencies.

b) Image size distribution: Similarly to layers, we also
measure compressed image size (CIS), i.e. the sum of the sizes

o
®
154
© -

o
)

o
3

o o
[
o
3

Cumulative image probability
Cumulative image probability

—— Compressed
- =~ ~Uncompressed

1 2 3 4 5 6 0
Image size (GB)

(a) CDF of images by size (GB)

——Compressed
- - -Uncompressed

256 512 768 1024 1280 1536
Image size (MB)

o

o
4
w

(b) CDF of images by size (MB)

Fig. 9. Image size distribution

S

x
o,

o o
o ©

o
P
Image frequency
- N (&) » o (2}

o
)

Cumulative image probability

o
2

o

10 20 30 40 50
Layer count in images

20 40 60 80
Layer count in images

100 120

(a) CDF of layer count in images (b) Histogram of layer count in im-

ages

Fig. 10. Layer count

of the compressed image layers, and the sum of the sizes of
files contained in the image (FIS). Figure 9(a) and 9(b) show
the image size distributions at a coarse GB resolution and a
finer resolution only covering images smaller than 1.5 GB.

90% of the images have an uncompressed size less than
1.3 GB while compressed images are less than 0.48 GB. In
the median, this decreases to 94 MB and 17 MB, respectively.
The largest uncompressed image is 498 GB which is a Ubuntu-
based image. Figure 9 shows that the majority of uncom-
pressed images in Docker Hub are small which aligns with the
Docker philosophy to package software and distribute software
in containers but include only its necessary dependencies.

c) Layer count distribution: As discussed in §II-B, im-
ages consist of a set of layers. It is important to understand
the layer count of the images as previous work found that
the number of layers can impact the performance of 1/O
operations [14]. Therefore, we count the number of layers per
image and plot the CDF (see Figure 10(a)) and layer count
frequencies (see Figure 10(b)) for all Docker Hub images.

The results show that 90% of the images have less than
18 layers while half of the images have less than 8 layers. 8
layers is also the most frequent layer count per image with
51,300 images consisting of exactly 8 layers. The maximum
layer count is 120 in the cfgarden/120-layer-image. We also
find that there are 7,060 images that consist of only a single
layer.

d) Directory and file count distribution: Lastly, we look
at directory (see Figure 11) and file counts (see Figure 12)
in images to determine if deploying images requires handling
of large amounts of metadata. Looking at directories, we see
that 90% of images have less than 7,344 directories while the

-

= =
3 3
B 808
S S
o o
0 0.6 206
2 &
g £
% 0.4 ‘0 04
2 2
£ k|
S o2 302
€ =
3 4 © o
0 3000 6000 9000 12000 0 2 Fins 6 8
Directories x10

Fig. 11. CDF of images by directories Fig. 12. CDF of images by files

median is at 296. For files, 90% of images have less than
64,780 files with a median of 1,090.

This is consistent with our analysis of layer-based file and
directory counts and the number of layers per image. Again,
we conclude that most images do not require an extensive
amount of metadata when being deployed as file and directory
counts are low except for relatively rare outliers.

C. Files

After analyzing layers and images, we conducted a deeper
analysis on the files that are stored in containers. Specifically,
we characterize files in terms of size and type. Based on
this characterization, we create a three-level classification
hierarchy as shown in Figure 13. At the highest level, we
created two categories: Commonly used file types and non-
commonly used file types based on the total file size and file
count for each type. Totally, we got around 1,500 types after
analyzing our whole dataset. We found that only 133 file
types take up more than 7 GB individually and occupy the
most capacity (98.4%, with 166.8 TB) totally. We put these
133 file types into commonly used file type group and the
remaining files into non-commonly used file types. Our further
classification expands on the 98.4% commonly used file types.

At the second level of the hierarchy, we clustered commonly
used file types based on the major file format, usage, or
platform involved by each file type. We identified commonly
used file types relevant to EOL (executable, object code, and
libraries), source code, scripts, documents, archival, images,
databases, and others.

At the third level, we present the specific file types which
take a large percentage of storage space.

a) Common used file types: Figure 14 shows the 8 type
groups in terms of file count and capacity. 13%, 11%, and 9%
of files are source code, EOL, and scripts. EOL files occupy
the most capacity (37%).

We also see that 44% of files are document files such as
Microsoft office files, LaTeX files, etc. Only 4% of files are
image data files, e.g., PNG, JPEG, etc. Besides, we found a
small amount of video files like AVI, MPEG, etc.

To find how file type relate to file size, we calculated the
average file size by file type group as shown in Figure 15. We
see that Database files are much bigger (978.8 KB) than the
files within other type groups. The average size of EOL and
Archival files are around 100 KB.

All file types (1500)

| Commonly used file types (133) |

[Non-commonly used file types (1367) |

Executables, object [Archival | [Sourcecode| [Scripts | [Documents | [Database | [Image | [Others |
code, libraries
‘ o Cloir e Python e HTMLUXML/XHTML e Salite e PNG
o ELFfiles * Zp e Perl5 o AWK e PS/PDF o Berkeley DB e JPEG
o COFF files e Gzip e Ruby e Ruby e LaTex e Dbase e SVG
o Intermediate compiled ¢ Xz o Assembler e Per e Composite e NDBM e FITS
e MS executables e Bzip2 s Pascal e Makefile o ASClltext e MySQL o TIFF
e Libraries e Tar e Fortran e PHP o UTF-8/16 text e Others e EPS
e Debian/RPM bin. e Others e Applesoft Basic e Bash/Shell e 1SO-8859 o Others
e Others e Lisp/Scheme o M4 e Others
e Others
Fig. 13. Taxonomy of file types.
0.8 0.4 08 1
3 @ S s
g 0.6 %0,3 %) 0.6 %
2@ ® i © 0.6
=04 o2 O 04 e
3 s o |
o 12} 2]
0.2 £ 0.1 202 2 02
ES ES

e Doc. SC. EOL Arch. Scr. Img. DB Oths.

0EOL Arch.Doc. SC. DB. Scr. Img Oths.
(a) File count (in %) by file type (b) Capacity (in %) by file type group.
group.

Fig. 14. Commonly used file types

1000
800
600
400
200

Avg. file size (KB)

0 DB EOL Arch.Doc. Img Scr. SC. Oths.

Fig. 15. Average file size by file type group.

b) Executable, object code, and libraries (EOL): Based
on the third-level classification, we further investigate the file
size and file count by specific file types. We start with EOL
group which contains the following types: ELF files, COFF
files, intermediate representation that can be executed by a
virtual machine, Microsoft executables, Debian/RPM binary
packages, libraries, and other EOL files.

Figure 16 shows file type distribution in terms of file count
and capacity for EOL type group. We see that majority of
EOL files are ELF and intermediate representations (shown
as “Com.” in the Figures). ELF files mainly contain ELF
relocatables, shared objects, and executables. Intermediate
representations mainly contain Python byte-compiled files
(majority), compiled java class, and terminfo compiled files.
Although intermediate representations take up to 64% of
EOL files, 30% of EOL files occupy 84% of storage space
consumed by the EOL group. This is because average ELF file
size is 312 KB while the average intermediate compiled file
size is 9 KB. In addition to ELF files and representations, we
found Microsoft executables (2%) and Mach-O files (<0.01%)
in the EOL group.

We conclude that among all file types, ELF files occupy
most capacity. There are large amount of intermediate repre-
sentations but they take much less storage space.

To know what kind of libraries are used in Docker contain-

ELF Com. Lib. COFF MS.e. Pack. Oths.

o Com. ELF

Lib. MS.ex. COFF Pack. Oths

(a) File count (in %) by file type. (b) Capacity (in %) by file type.

Fig. 16. EOL files

% of source
code files
cooo
oON A~ OO =

C/C++ Perl5 m. Ruby m. Pascal Fortran A. Basic Scheme Oths.

(a) File count (in %) by file type.

% of capacity
o000
ONHOO =

C/C++ Perl5 m. Ruby m. Pascal Fortran A. Basic Scheme Oths.

(b) Capacity (in %) by file type.
Fig. 17. Source codes

ers, we categorized the libraries. The most popular libraries we
found are: the Palm OS dynamic library, the OCaml library,
and the GNU C library.

c) Source code (SC.): Next, we inspect what kind of lan-
guages are commonly used by Docker developers. Figure 17
shows 7 major types of source codes in our dataset: C/C++,

% of scripts
oooo
oONH O

Python Ruby Perl PHP AWK Node BashMakefile M4. Tcl Oths.

(a) File count (in %) by file type.

% of capacity
[eNeloNo]
oA

PHP Makefile M4 Node

Python AWK Bash Ruby Perl Tcl Oths.
(b) Capacity (in %) by file type.

Fig. 18. Scripts

% of docs

1 T
.8
.6
.4
.2

0

L L 1 1 |
ASCIl HTML. UTF PDF LaTex [ISO-X Com.doc Oths.

(a) File count (in %) by file type.

oMo

% of capacity
[eNeolNoNe)

. . . .
ISO-X LaTex Com.doc. Oths.

ASCII

HTML UTF PDF

(b) Capacity (in %) by file type.

Fig. 19. Documents

Perl5 module, Ruby module, Pascal, Fortran, Applesoft basic,
and Lisp/Scheme. 80.3% of source files are C/C++ sources
which take about 80% of storage space within the source code
group. Perl5 module source code and Ruby module source
code have an almost similar percentage in terms of file count
(9% for Perl5 module source and 8% for Ruby module source)
but occupy different percentage in terms of capacity (11% for
Perl5 modules and 3% for Ruby modules).

d) Scripts (Scr.): Compared to the source code group, we
found a larger variety of scripting languages used. Our script
group includes Python scripts, AWK, Ruby, Perl, PHP, Make,
M4 macro processor, node, Tcl, Bash/shell, and others. We
see in Figure 18 that more than half of the scripts are Python-
based script (53.5%), which take around 66% of storage space
occupied by all scripts. Another commonly used script type
are Bash/shell scripts (20%) which only occupy 6% of storage
space. 10% of scripts are Ruby scripts which take around 5%
of storage space in the scripts group.

e) Documents (Doc.): As discussed before, 44% of files
are documents which take up to 14% of storage space. As
shown in Figure 19, we see that majority of documents are
text files including ASCII text (80%), UTF8/16 text (5%),
and ISO-8859 text (0.4%), which take up to 70% of storage
space occupied by documents. Note that these text files are raw
text files since we already filter the text based well-known file
types, such as scripts and source code.

Another observation is that XML/HTML/XHTML docu-
ments are the second most commonly used documents (13%),
which take up over 18% of storage space occupied by doc-
uments. Moreover, we found a small amount of PDF/PS
documents and LaTeX files in our dataset.

f) Archival (Arch.): The archival file group, takes up to
23% of capacity and is the second most commonly used file
type group. To figure out what kind of archival files are used in
Docker containers, we look at the archival file type distribution
as shown in Figure 20. We see that majority of archival files
are Zip/gzip files (96.3%) which take up to 70% of storage
space within the archival files, meaning that Zip/gzip files have
a lower average file size. We calculated the average file size
for each file type. The average file sizes are 67 KB, 199 KB,
466 KB, and 534 KB for Zip/gzip, bzip2, tar, and xz files,

N Do
N s o

o

% of archival
[eNeoNoNe)
o

% of capacity
o O o

Zip/GzipBzip2 XZ Tar Oths. Zip/Gzip XZ Bzip2 Tar Oths.

(a) File count (in %) by file type. (b) Capacity (in %) by file type.

Fig. 20. Archival files

o 9 9
o » o

% of capacity

0,
R berkeley MySQL Dbase NDBM SQLite Oths.

SQLite Berkeley Dbase MySQL NDBM Oths.

(a) File count (in %) by file type. (b) Capacity (in %) by file type.

Fig. 21. Databases

respectively.

g) Databases (DB.): Interestingly, we found a certain
amount of database related files in our dataset. As shown in
Figure 21, over half of the database related files are Berkely
DB (33%) and MySQL (30%) files, but these types take up
less than 40% of capacity occupied by database related files.
7% of database related files are SQLite DB files, which take
up over 57% of capacity.

This finding means that Docker developers run databases
inside Docker containers. The most frequently used databases
are Berkeley DB and MySQL, while the database using most
of capacity is SQLite. We currently do not know whether these
databases are mainly read-only or are also used for write-based
workloads. This might cause performance problems in some
situations due to the copy-on-write overhead of the storage
drivers [21].

h) Images (Img.): We also found some image data files,
such as PNG, JPEG, SVG, etc. in Docker container images. As
shown in Figure 22, more than half of image files are PNG
files (67%), which take about 45% of capacity occupied by
image files. The second most commonly used image files are
JPEG files which take up around 20% capacity.

V. DEDUPLICATION ANALYSIS

In this section, we investigate the potential for data reduc-
tion in the Docker registry by analyzing the efficacy of layer
sharing and file-level deduplication.

A. Layer sharing

Compared to other existing containerization frame-
works [23], [24], Docker supports the sharing of layers among
different images. To study the effectiveness of this approach,
we compute how many times each layer is referenced by
images. Specifically, we analyze all image manifests and count

>
=05
806 S o4
Eo4 =3
Boz2 202
° o
X o o 0
PNG SVG JPEG FITS TIFF EPS Oths. B PNG JPEG SVG FIT TIFF EPS Oths.

(a) File count (in %) by file type. (b) Capacity (in %) by file type.

Fig. 22. Images

o
©
o P

o
©

Cumulative layer probability

o
0
a

6 1 16 21 25
Repeat count

Fig. 23. CDF of layer reference count

40——
100 % [IFilecnt g
@ 80 7 =30 -Capacity s
= 60 /' — Cumulative distr. |1 % -
6 40|-fA| — Probability distr. |{ £
o Q
S 20b SN A {1 310
0 ‘ 8
10° 10! 102 103~ 0

10° 1.7x10°

10 10* 10°
Sample layer dataset layer cnt

File repeat count

Fig. 24. File repeat count distribu- Fig. 25.

. Deduplication ratio
tion.

growth.

for each layer, how many times it is referenced by an image.
Figure 23 shows that around 90% of layers are referenced by
a single image, an additional 5% are referenced by 2 images,
and less than 1% of the layers are shared by more than 25
images.

Interestingly, there is one layer that is referenced by 184,171
images. Further analysis reveals that this is an empty layer.
The presence of an empty layer in an image can be explained
by the fact that during the image build, Docker creates a new
layer for every RUN <cmd> instruction in the Dockerfile [25].
If the <cmd>, which can be an arbitrary shell command, does
not modify any files in the file system, an empty layer is
created. The next 5 top-ranked layers by reference count are
included in 29,200 — 33,413 images. Specifically, one layer
contains a whole Ubuntu 14.04.2 LTS distribution, one
layer contains a sources.list file for apt, and one layer
contains binaries and libraries needed for dpkg. The other
two layers are related to cowsay, a program that can generate
ASCII pictures of a cow with a message [26]. One layer
contains a whole installation package for cowsay 3.03
while the other layer only contains the binaries for cowsay.

From the above data we can estimate that without layer
sharing, the Docker Hub dataset would grow from 47 TB to
85 TB, implying a 1.8 x deduplication ratio provided by layer
sharing.

B. File-level deduplication

Next, we calculate the deduplication ratio in terms of file
count and capacity for the complete dataset. After removing
redundant files, there are only 3.2% of files left, which in total
occupy 24 TB, resulting in deduplication ratios of 31.5x and
6.9x in terms of file count and capacity, respectively.

We further analyze the repeat count for every file (see
Figure 24). We observe that over 99.4% of files have more
than one copy. Around 50% of files have exactly 4 copies
and 90% of files have 10 or less copies. The file that has
the maximum repeat count of 53,654,306 is an empty file.

2 Capacity é —— Capacity
©

g i — File cnt g 08 ——File cnt.
o v Q

0 06 i 4 0.6

53 : &

04 £ 04

202 J 2 02

s} =

=) " =]

E 0 02 04 06 08 1 2 G0 02 04 06 08 1
&) Redundant ratio o Redundant ratio

(a) CDF of cross layer file duplicate (b) CDF of cross-image file duplicate
ratio. ratio.

Fig. 26. Cross layer file duplicates and cross image file duplicates

Around 4% of empty files are __init__ .py files, which
make Python treat a directory as containing packages and are
usually empty. Other frequent empty files include lock or
.gitkeep files.

We also analyze the top five most frequently repeated
files which repeat between 3,338,145 and 11,847,356 times.
Specifically, two files 1ibkrb5-3:amd64.postrm and
libkrb5-3:amd64.postinst are two Kerberos runtime
libraries for dpkg. Another two files are related to the
npm package manager (license and .npmignore) and
the last file, dependency_links.txt, contains a list of
dependency URLs for Python.

This shows that there is a high file-level redundancy in
Docker images which cannot be addressed by the existing
layer sharing mechanism. Hence, there is a large potential for
file deduplication in the Docker registry.

C. Deduplication ratio growth

To further study the potential of file-level deduplication,
we analyze the deduplication for an increasing number of
files stored in the registry (see Figure 25). The x-axis values
correspond to the sizes of 4 random samples drawn from the
whole dataset and the size of the whole dataset.

We see that the deduplication ratio increases almost linearly
with the layer dataset size. In terms of file count, it increases
from 3.6x to 31.5x while in terms of capacity, it increases
from 1.9x to 6.9x as the layer dataset grows from 1000 to 1.7
million layers. This confirms the high potential for file-level
deduplication in large-scale Docker registry deployments.

D. Cross layer file duplicates

Based on the high deduplication ratio, we conclude that
a large amount of files are shared between layers and the
large potential from deduplication is due to large amount of
file duplicates among layers. Cross layer file duplicates are
files that are stored in more than one layer, which cannot be
eliminated by the layer-level-sharing mechanism. This could
be a common problem for layers in the Docker registry. For
example, different developers may use the same libraries and
build same executables in their layers. But only few files in
their layers are different from each other, which makes their
layers different.

Figure 26(a) shows the percentage of cross layer file du-
plicates for each layer. We find that 90% of layers contain
more than 97.6% of files that are duplicated across layers. We

1
60 . . %0 o
o o 092
P T D40 . <
o . o= £ s
[SP1) : B 95 = 2
E = 8
g 8 gx o7g
& 20 085 & 10 3
S . 2 a
a
0

ELF IP. PE. Pack. Libr. COFFOths. 05

3

0 0.
EOL Arch.Doc. SC. DB. Scr. Img Oths.

Fig. 28. Deduplication results for

Fig. 27. Overall deduplication ratio. EOL filles.

IS
o
©

w
Deduplication ratio

I
4
©

N

Capacity (TB)
S
3

o
o

o
3

C/C++ Perl5 m.Ruby m. Pascal Fortran A.Basic Scheme Oths.

Fig. 29. Deduplication results for source codes.

also calculate the percentage of files that are duplicated across
images. As shown in Figure 26(b), 90% of images contain
more than 99.4% of files that are duplicated across images,
indicating that majority of files are duplicated across different
images and layers.

E. Deduplication by file types

To understand what are the file duplicates and why there are
so many file duplicates, we look at the deduplication results
from the perspective of file types. In this section, we present
the deduplication results for common file types that occupy
the most capacity.

Figure 27 shows deduplication results for the following
type groups: EOL, archival, documents, source code, scripts,
images, and databases. Note that the y-axes show the capacity
occupied by different type groups and their deduplication
ratios.

The overall deduplication ratio is 85.69%, and most of the
type groups have a comparable ratio. For example, 86% of
EOL files, which include executables, object files, and li-
braries, can be deduplicated at file-level. Source codes, scripts,
and documents have the highest deduplication ratio (96.8% for
source codes, 98% for scripts, and 92% for documents), which
means that Docker developers are more prone to duplicate
source code, scripts, and documents.

Next, we see that EOL files, archival, and images have a
similar deduplication ratio of around 86%. Compared to other
type groups, the redundant EOL files and archival files occupy
over half of the capacity (51.4%). Database related files have
the lowest deduplication ratio (76%), which contributes little
to the overall savings.

a) Executable, object code, and libraries (EOL): We
further calculate the deduplication ratio for specific file types
in each common type group. We start from the EOL group
since it occupies the most capacity and contributes a lot to the
overall savings after deduplication.

Figure 28 shows the deduplication results for EOL files. We
see that ELF files, intermediate representations, and PE files

have the highest deduplication ratio (around 87%). Especially,
the redundant ELF files occupy the most capacity (73.4%).
Libraries and COFF files have the lowest deduplication ratio
of 53.5% and 61% respectively.

We also calculate the deduplication ratio for each intermedi-
ate representation and libraries. We found that all the interme-
diate representations have a high deduplication ratio (greater
than 77%). Especially, the redundant Python byte-compiled
code take up to 67% of capacity occupied by intermediate
representations. Although the overall deduplication ratio of
the library group is lower, we observed that the GNU C/C++
library and the Palm OS dynamic library have a deduplication
ratio of over 90%.

b) Source code (SC.): As discussed, Docker developers
are more prone to replicate source code. To find out which
kind of source codes are replicated frequently, we study
deduplication on 7 common languages as shown in Figure 29.

We see that all the languages have a high deduplication ratio
of over 90% except for Lisp/Scheme. In particular, redundant
C/C++ source files take up over 77% of capacity occupied
by source code files. To find out why there are so many
duplicate C/C++ source files, we inspect those files and find
a frequently reused sources related to Google Test [27], a
cross-platform C++ test framework available on GitHub [27].
Interestingly, we also observe that there are a large number
of repositories related to Google Test but there is no official
repository. We suspect that many developers replicate open
source code from external public repositories, such as GitHub,
and store it in their container images. This could also explain
why there are so many shared source code files across different
images. Considering that Docker Hub allows developer to
automatically build images from source code in external public
repositories and automatically push the built image to their
Docker repositories, we believe that replicated source code in
different images is a common case in the Docker Hub registry.

VI. RELATED WORK

Due to its increasing popularity, Docker has recently
received increased attention from the research community.
Slacker [14] studied 57 images from Docker Hub for a variety
of metrics. The authors used the results from their study
to derive a benchmark to evaluate the push, pull, and run
performance of Docker graph drivers based on the studied
images. Compared to Slacker, our analysis focuses on the
entire Docker Hub dataset. Anwar et al. [28] propose a new
Docker registry design that employs a two-tier registry cache
hierarchy. Bolt [29] presents a hyperconverged Docker registry
to improve latency and throughput. However, both of these
designs are based on workload traces and do not consider
content and storage properties of images. Cito et al. [13]
conducted an empirical study for characterizing the Docker
ecosystem with a focus on prevalent quality issues, and the
evolution of Docker files based on a dataset of 70,000 Docker
files. However, their study did not focus on actual image data.
Shu et al. [15] studied the security vulnerabilities in Docker
Hub images based on a dataset of 356,218 images and found

there is a strong need for more automated and systematic
methods of applying security updates to Docker images. While
the amount of images is similar compared to our study, Shu et
al. focused on a subset of 100,000 repositories and different
image tags in these repositories.

Dockerfinder [12] is a microservice-based prototype that
allows searching for images based on multiple attributes, e.g.,
image name, image size, or supported software distributions.
It also crawls images from a remote Docker registry but the
authors do not provide a detailed description of their crawling
mechanism. Bhimani et al. [11] characterized the performance
of persistent storage options for I/O intensive containerized
applications with NVMe SSDs. Unlike our study, their analysis
is focused on the execution of containers rather than on their
storage at the registry side. Skourtis et al. [30] looked at
the deduplication ratio of 10,000 most popular images in
Docker Hub to motivate the new approach to more efficient
organization of Docker images. Our study focuses on wider
and larger scale characterization of Docker images.

Future work In the future, we plan to extend our anal-
ysis to multiple versions of Docker images and study the
dependencies among them. In addition, we will further analyze
how layer hierarchy and compression methods impact access
latency. Moreover, we plan to extend our image popularity
analysis to cache performance analysis. We also plan to utilize
our deduplication observations to improve storage efficiency
for Docker registry.

VII. CONCLUSION

In this paper, we carried out the first comprehensive analysis
of container images stored in Docker Hub. We presented a
methodology to exhaustively crawl and efficiently download
Docker Hub images. Using this approach, we analyzed a
47 TB dataset resulting in 1,792,609 layers and 5,278,465,130
files. Based on this dataset, we carried out a detailed study
of a variety of storage metrics on both layers, images, and
files. Metrics included layer and image sizes, compressibility,
deduplication ratio, and popularity. Our findings reveal that
there is room for optimizing how images are stored and used.
For example, we observed that compression may not always
be beneficial for small layers as it can increase pull latencies.
Additionally, layers are rarely shared between images which
increases storage utilization. Moreover, file-level deduplication
can eliminate 96.8% of the files. We plan to investigate such
improvements in the future.

Acknowledgments This work is sponsored by the NSF
under the grants: CNS-1405697, CNS-1615411, and CNS-
1565314/1838271.

REFERENCES

[1] P. Menage, “Adding Generic Process Containers to the Linux Kernel,”
in Linux Symposium, 2007.

[2] M. Rosenblum and T. Garfinkel, “Virtual Machine Monitors: Current
Technology and Future Trends,” Computer, vol. 38, no. 5, 2005.

[3] 451 Research, “Application Containers Will Be a $2.7Bn Market by
2020.” https://tinyurl.com/ya358jbn.

[4] “Namespaces(7) <— linux programmer’s manual.” http://man7.org/linux/
man-pages/man7/namespaces.7.html.

[5

[6]

[7

—

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]
[24
[25]
[26]
[27

(28]

[29]

[30]

“Control Group v2.”
cgroup-v2.txt.

E. Bugnion, S. Devine, K. Govil, and M. Rosenblum, “Disco: Running
Commodity Operating Systems on Scalable Multiprocessors,” ACM
Transactions on Computer Systems (TOCS), vol. 15, no. 4, 1997.

W. Felter, A. Ferreira, R. Rajamony, and J. Rubio, “An Updated
Performance Comparison of Virtual Machines and Linux Containers,” in
Proceedings of the 2015 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2015.

R. Morabito, J. Kjéllman, and M. Komu, “Hypervisors vs. Lightweight
Virtualization: A Performance Comparison,” in Proceedings of the 3rd
IEEE International Conference on Cloud Engineering (IC2E), 2015.
“Docker.” https://www.docker.com/.

“Docker Hub.” https://hub.docker.com/.

J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Panduran-
gan, and V. Balakrishnan, “Understanding performance of I/O intensive
containerized applications for NVMe SSDs,” in Proceedings of the
35th IEEE International Performance Computing and Communications
Conference (IPCCC), 2016.

A. Brogi, D. Neri, and J. Soldani, “DockerFinder: Multi-attribute Search
of Docker Images,” in Proceedings of the 5th IEEE International
Conference on Cloud Engineering (IC2E), 2017.

J. Cito, G. Schermann, J. E. Wittern, P. Leitner, S. Zumberi, and H. C.
Gall, “An Empirical Analysis of the Docker Container Ecosystem on
GitHub,” in Proceedings of the 14th International Conference on Mining
Software Repositories (MSR), 2017.

T. Harter, B. Salmon, R. Liu, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau, “Slacker: Fast Distribution with Lazy Docker Containers,”
in Proceedings of the 14th USENIX Conference on File and Storage
Technologies (FAST), 2016.

R. Shu, X. Gu, and W. Enck, “A Study of Security Vulnerabilities on
Docker Hub,” in Proceedings of the 7th ACM Conference on Data and
Application Security and Privacy (CODASPY), 2017.

N. Zhao, V. Tarasov, A. Anwar, L. Rupprecht, D. Skourtis, A. S. Warke,
M. Mohamed, and A. R. Butt, “Slimmer: Weight loss secrets for docker
registries,” in IEEE Cloud, 2019.

“Linux Containers.” http://linuxcontainers.org.

J. Sugerman, G. Venkitachalam, and B.-H. Lim, “Virtualizing I/O
Devices on VMware Workstation’s Hosted Virtual Machine Monitor,”
in Proceedings of 2001 USENIX Annual Technical Conference (ATC),
2001.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauer, I. Pratt, and A. Warfield, “Xen and the Art of Virtualization,”
in Proceedings of the 19th ACM Symposium on Operating Systems
Principles (SOSP), 2003.

S. Soltesz, H. Potzl, M. E. Fiuczynski, A. Bavier, and L. Peterson,
“Container-based Operating System Virtualization: A Scalable, High-
performance Alternative to Hypervisors,” in Proceedings of the 2nd ACM
SIGOPS/EuroSys European Conference on Computer Systems (EuroSys),
2007.

V. Tarasov, L. Rupprecht, D. Skourtis, A. Warke, D. Hildebrand,
M. Mohamed, N. Mandagere, W. Li, R. Rangaswami, and M. Zhao,
“In Search of the Ideal Storage Configuration for Docker Containers,”
in Proceedings of the 1st Workshop on Autonomic Management of Large
Scale Container-based System (AMLCS), 2017.

“Docker Registry Client.” https://github.com/heroku/
docker-registry-client.

“OpenVZ Linux Containers Wiki.” http://openvz.org/.

“singularity.” http://singularity.lbl.gov/.

“Dockerfile.” https://docs.docker.com/engine/reference/builder/.
“cowsay.” https://github.com/piuccio/cowsay.

“Google test - google testing and mocking framework.” https://github.
com/google/googletest.

A. Anwar, M. Mohamed, V. Tarasov, M. Littley, L. Rupprecht, Y. Cheng,
N. Zhao, D. Skourtis, A. S. Warke, H. Ludwig, and A. R. Butt, “Im-
proving docker registry design based on production workload analysis,”
in 16th USENIX Conference on File and Storage Technologies, 2018.
M. Littley, A. Anwar, H. Fayyaz, Z. Fayyaz, V. Tarasov, L. Rupprecht,
D. Skourtis, M. Mohamed, H. Ludwig, Y. Cheng, and A. R. Butt, “Bolt:
Towards a scalable docker registry via hyperconvergence,” in IEEE
International Conference on Cloud Computing, 2019.

D. Skourtis, L. Rupprecht, V. Tarasov, and N. Megiddo, “Carving perfect
layers out of docker images,” in HotCloud, 2019.

https://www.kernel.org/doc/Documentation/

