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Abstract—Enterprise KV stores are often not well suited for HPC applications, and thus cumbersome end-to-end KV design
customization is required to meet the needs of modern HPC applications. To this end, in this article we present BespoKV, an adaptive,
extensible, and scale-out KV store framework. BespoKV decouples the KV store design into the control plane for distributed
management and the data plane for local data store. For the control plane, BespoKVprovides pre-built modules, called controlets,
supporting common distributed functionalities (e.g., replication, consistency, and topology) and their various combinations. This
decoupling allows BespoKV to take a user-provided single-server KV store, called a datalet, and transparently enables a scalable and
fault-tolerant distributed KV store service. The resulting distributed stores are also adaptive to consistency or topology requirement
changes and can be easily extended for new types of services. Such specializations enable innovative uses of KV stores in HPC
applications, especially for emerging applications that utilize KV-friendly workloads. We evaluate BespoKV in a local testbed as well as
in a public cloud settings. Experiments show that BespoKV-enabled distributed KV stores scale horizontally to a large number of nodes,
and performs comparably and sometimes 1.2x to 2.6 x better than the state-of-the-art systems.

Index Terms—Key-value stores, HPC KV stores, scale-out KV stores, application tailored storage

1 INTRODUCTION

HE underlying storage and I/O fabric of modern high per-

formance computing (HPC) increasingly employ new
technologies such as flash-based systems and non-volatile
memory (NVM). While improving I/O performance, e.g., via
providing more efficient and fast I/O burst buffer, such tech-
nologies also provide for opportunities to explore the use of
in-memory storage such as key-value (KV) stores in the HPC
setting. Distributed KV stores are beginning to play an
increasingly critical role in supporting today’s HPC applica-
tions. Examples of this use include dynamic consistency
control [1], coupling applications [2], [3], and storing interme-
diate results [4], among others. Relatively simple data
schemas and indexing enable KV stores to achieve high per-
formance and high scalability, and allow them to serve as a
cache for quickly answering various queries, where user expe-
rience satisfaction often determines the success of the applica-
tions. Consequently, a variety of distributed KV stores have
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been developed, mainly in two forms: natively-distributed
and proxy-based KV stores.

The natively-distributed KV stores [5], [6], [7], [8], [9],
shown in Fig. 1a, are designed with distributed services
(e.g., topology, consistency, replication, and fault tolerance)
in mind from the beginning, and are often specialized for
one specific setting. For example, HyperDex [10] supports
Master-Slave topology and Strong Consistency (MS+5C).
Facebook relies on its own distributed Memcache [8] with
Master-Slave topology and Eventual Consistency (MS+EC).
Amazon employs Dynamo [6] with Active-Active' topology
and Eventual Consistency (AA+EC).

The key limitation of natively-distributed KV stores lie in
their inflexible monolithic design where distributed features
are deeply baked with backend data stores. Such a design
allows the developers to highly optimize the KV store perfor-
mance. However, such optimizations are not portable to any
other KV store. The rigid design implies that these KV stores
are not adaptive to ever-changing user demands for different
backend, topology, consistency, or other services. For
instance, Social Artisan [11] and Behance [12] moved from
MongoDB to Cassandra for scalability and maintenance rea-
sons [13]. Conversely, Flowdock [14] migrated from Cassan-
dra to MongoDB due to stability issues. Unfortunately,
this migration process is very frustrating and time/money-
consuming as requires data remodeling and extra migration
resources [13].

Alternatively, proxy-based distributed KV stores leverage
a proxy layer to add distributed services into existing back-
end data stores. For example, Mcrouter [15], and Twem-
proxy [16] can be used as a proxy to enable a basic form of
distributed Memcached [17] with partitioning, as shown in
Fig. 1b. Twemproxy supports additional Redis [18] backend

1. Active-Active is also called multi-master in database literature.
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Fig. 1. Different approaches to enable distributed KV stores: (a) natively-
distributed (b-d) proxy-based.

as well. Recently, Netflix Dynomite [19] extended Twem-
proxy to support high availability and cross-datacenter rep-
lication, as illustrated in Fig. 1c.

Unlike monolithic natively-distributed KV stores, the use
of a separate proxy layer enables support for multiple back-
ends. Each single-server KV store such as Memcached [17],
Redis [18], LevelDB [20], and Masstree [21] has own its merit,
so the ability to choose one or mix is an ample reward. How-
ever, existing proxy-based KV stores are still limited to a sin-
gle topology and consistency: e.g., Dynomite supports AA
+EC only. We see that existing solutions have not yet
extracted the full potential of proxy-based distributed KV
stores. Table 1 summarizes the limitations of existing proxy-
based KV solutions such as Dynomite and Twmemproxy.

This paper presents BesPoKV, a flexible, ready-to-use,
adaptive, and extensible distributed KV store framework.
Fig. 1d illustrates BesPOKV’s distributed KV store architecture.
BESPOKYV takes as input a single-server KV store, which we call
datalet, and transparently enables a distributed KV store ser-
vice, supporting a variety of cluster topologies, consistency
models, replication options, and fault tolerance (Section 3).
For the control plane, BesPoKV provides a set of distributed
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TABLE 1
BesPOKYV versus State-of-the-Art Systems for KV Stores
System S R MB MC MT AR P
Single-server X X X X X X X
Twemproxy o x v X X X X
Mcrouter v /X X X L.
Dynomite v v X X X X
BESPOKV (Ourwork) v v/ / 4 4 v o/

S: Sharding; R: Replication; MB: Multiple backends; MC: Multiple consistency
techniques, e.g. strong, eventual, per-request, etc.; MT: Multiple network topol-
ogies, e.g. Master-Slave, Master-Master, Peer-to-Peer, etc.; AR: Automatic
failover recovery; P: Programmable.

management units, referred to as controlets. To the best of our
knowledge, BEsPOKYV is the first system supporting multiple con-
sistency techniques, multiple network topologies, dynamic topology/
consistency adaptation, automatic failover, and programmability,
all at the same time.

Table 2 shows the benefit of the proposed BesPOKV frame-
work. Here, four snippet implementations of the core func-
tions for a simple KV store are presented in pseudocode. To
implement everything from scratch ((a) Vanilla), a devel-
oper creates her own concurrency control functionality
(Lock (), Unlock()), and consistency and quorum man-
agement logic (Sync (), Quorum()). Using a distributed
lock server ((b) Lockserver-based), the developer can
avoid implementing synchronization functions. Similarly,
using Vsync [22] library ((c) Vsync-based) for consis-
tency management further reduces engineering effort. How-
ever, there are two limitations. First, developers still need to
familiarize themselves with a large collection of system/
library interfaces to use them appropriately in the applica-
tion code. Second, such approaches often provide only a sin-
gle technique for replication or consistency: e.g., Vsync uses
only a virtual synchrony to replicate data. In contrast, using
BESPOKV (option (d)), developers only need to implement a
non-distributed version of the KV store (datalet), and then
BESPOKV transparently scales it out to a variety of distributed
environments with different requirements.

TABLE 2
An Example of Four Possible Approaches to Developing a Distributed KV Store With the Last One Being the Proposed Approach

(a) Vanilla (b) Lockserver-based

(c) Vsync-based (d) BESPOKV-based

1 void Put(Str key, Obj val) { | 1 void Put(Str key, Obj val) {

2 if (this.master): 2 if (this.master):

3 Lock (key) 3 Is.Lock(key) // lockserver
4 Table.insert(key, val) 4 Table.insert(key, val)

5 Unlock (key) 5 Is.Unlock(key) // lockserver
6  Sync(master.slaves) 6  Sync(master.slaves)

9 Obj Get(Str key) { 9 Obj Get(Str key) {

10 if (this.master) 10 if (this.master) 10
11 Obj val = Quorum(key) 11 Obj val = Quorum(key) 11 Obj Get(Str key) {
12 Sync(master.slaves) 12 Sync(master.slaves) 12 if (this.master)
13 return val 13 return val 13 Obj val = Vsync.Quorum(key)
14 } 14 } 14  Vsync.Sync(master.slaves)
15 15 15  return val
16 void Lock(Str key) { 16 void Sync(Replicas peers) { 16 }
. // Acquire lock 17 . // Update replicas
18 } 18 }
19 19
20 void Unlock(Str key) { 20 void Quorum(Str key) {
21 ... /I Release lock 21 ... I/ Select a node
2} 22}
23
24 void Sync(Replicas peers) {
25 ... // Update replicas
26 }
27
28 void Quorum(Str key) {
29 ... I/ Select a node
30 }

1 #include <vsynclib> 1 void Put(Str key, Obj val) {
2 Table.insert(key, val)
void Put(Str key, Obj val) { 3}
if (this.master): 4

Is.Lock(key) // lockserver 5 Obj Get(Str key) {
Table.insert (key, val) 6 return Table(key)
Is.Unlock(key) // lockserver | 7 }

Vsync.Sync(master.slaves)

00N U W
-

In case of (a) vanilla, LoC of Lock, Unlock, Sync, and Quorumis not shown. Similarly, LoC to implement Lock and Unlock recipe for ZooKeeper is
not shown. Vsync is available in C# and requires use of proper APIs but for the sake of simplicity and consistency we assume a C++ language grammar.
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BESPOKV’s decoupled control and data plane architecture,
configurability, and extensibility enable new solutions for
emerging HPC systems and workloads. First, BesPoKV makes
it easy for HPC developers to explore different design trade-
offs in future HPC systems with heterogeneous hardware
resources. Prior solutions are developed for one architecture.
For instance, SKV [4] is designed for the IBM Blue Gene
Active Storage I/O nodes equipped with flash storage, while
PapyrusKYV [1] is designed to leverage non-volatile memory
(NVM) in HPC systems. Future HPC architectures are
expected to have hierarchical, heterogeneous resources such
as DRAM, NVM, and high-bandwidth memory (HBM).
BESPOKV seamlessly supports the use of different datalets,
each of which can be tuned for different memory and storage
architecture. BesPoOKV’s proxy-based design may add perfor-
mance overhead with an additional layer in theory, but we
found them they remain small during our evaluation.

Second, BEsPOKV enables new HPC services for emerging
workloads such as deep learning and massive IoT data proc-
essing: (1) Data layout: While existing KV solutions are
rigid/fixed for one setting, BEsPOKV allows storing data in
different datalets, adapt and switch datalets as needed, and
thus can handle diverse characteristics of new data work-
loads. For example, a datalet using B-tree as main data struc-
ture is better suited for read-intensive workloads (e.g., deep
learning), while Log Structured Merge (LSM) tree based
datalet is a better choice for write-intensive workloads due
to high write amplification and no fragmentation. (2) Multi-
tenancy and geo-distribution: IoT applications increasingly
require multi-tenancy support, e.g., smart road big data used
by different applications. Different tenant would require dif-
ferent consistency and topologies. Even for a single tenant
the topology requirements may change. For example, simple
MS topology may be sufficient for sensors deployed in one
building but as the scale of deployment increases, AA may
become more beneficial. Existing systems do not provide
such support. (3) Low latency: deep learning queries require
ultra low latency to take advantage of in-memory KV stor-
age. For this purpose, we added support for DPDK kernel
bypassing in BesPOKV.

This paper makes the following contributions:

e We propose a novel distributed KV store architecture
that follows best architectural practices such as decou-
pling of control and data planes. Decoupling allows
BESPOKV to transparently turn a user-provided (single-
server) datalet into scalable, fault-tolerant distributed
KV stores. Such specialization will enables innovative
uses of KV stores in HPC applications, especially for
emerging applications that utilize KV-friendly work-
loads. Our implementation of BEsPOKV is publicly
available at https:/ / github.com/tddg/bespokv.

e We demonstrate that BEsPOKV can be easily extended
to offer advanced features such as range query, per-
request consistency, polyglot persistence, and more.
To the best of our knowledge, BespoKYV is first to sup-
port a seamless on-the-fly topology/consistency adap-
tation. As examples, we present a novel mechanism to
make transitions from MS+EC to MS+SC, and from
AA+EC to MS+EC. We also present several use cases
to show effectiveness of BEsSPOKV.
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e  Wedeploy BespoKV-enabled distributed KV stores in a
local testbed as well as in a public cloud (Google Cloud
Platform [23]) and evaluate their performance. Using
five (two new and three existing) datalets, We show
that with all the aforementioned benefits, BEsPOKV-
enabled distributed KV stores scale horizontally and
performs comparable (and sometimes 1.2x to 2.6x
better) to state-of-the-art distributed KV stores.

2 CHALLENGES

Several challenges arise when designing BesPoKV to meet the
competing goals of compatibility, versatility, modularity,
and performance.

Compatibility. BespoKV strives to transparently make a non-
distributed KV store into a distributed one. It should be
easy to use, such that a developer simply “drops” the non-
distributed version of the store into BEspoKV; in turn, BEsPOKV
will automatically clone and convert the store into various
types of highly scalable and reliable distributed clusters.

However, in reality, every datalet is different, resulting in
compatibility issues. Moreover, KV stores use different
communication protocols. For instance, Redis’s protocol is
different from Cassandra’s. This implies that BesPOKV’s com-
munication substrate should be designed to understand the
basic message semantics, e.g., request routing. We describe
this in Section 3.1.

Versatility. Due to the diversity of data storage and
retrieval requirements, almost all the points on the cluster
topology (MS, AA, etc.), consistency (strong, eventual, etc.),
replication, and fault tolerance spectrum are valid. However,
existing systems only support a fixed single design point,
which limits flexibility and adaptability. Therefore, BEsSPOKV
architecture should be versatile enough to cover various
design options, and be flexible to support reconfiguration.

Different storage applications implement their distrib-
uted management and protocols with preference on diverse
dimensions such as cluster topology and consistency. To
support applications with tradeoffs among these different
dimensions through a generic framework, one should ensure
that each configurable dimension has a clear boundary and
well defined interface. Hence, different dimensions can be
seamlessly combined with each other to form a highly versa-
tile choice of options for application developers. Moreover,
the distributed network architecture should be flexible
enough to support these wide range of options. Section 3
presents this aspect of BEsPOKV’s versatile architecture.

Modularity. Building various design options using differ-
ent implementations is simply a matter of putting in more
engineering effort and not as challenging. In fact, such a
naive monolithic redesign approach would essentially be
similar to the current approach of per-application imple-
mentations. Instead, BesPoOKV should be designed in a mod-
ular fashion, which makes it possible to reuse a previously
developed component. For instance, a controlet supporting
MS+SC or AA+EC can be reused for multiple backend data
stores. Furthermore, the modules in BEsPOKV should be
expandable to meet the ever-growing needs for advanced
features.

Performance. Achieving the above goals is the major focus
of our work. However, BesPoKV should be realized without
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Fig. 2. BespoKV architecture and the interactions between components. LSM Tree: Log-structured merge-tree. DLM: Distributed lock manager.

sacrificing performance. Design choices for protocol han-
dling, network architecture, and diverse components should
be carefully made with efficiency in mind.

3 BESPOKV DESIGN

In this section, we describe the design of BEsPOKV and how it
provides compatibility, versatility, modularity, and high
performance for supporting distributed KV stores. Fig. 2
shows the overall architecture of BEsPoKV comprising five
modules: datalet, controlet, coordinator, client library, and
optional components. A collection of datalets form the data
plane, the rest of the modules makes up the control plane.

Datalet is supplied by the user and responsible for storing
data within a single node. Datalet should provide the basic
I/0 interfaces (e.g., Put and Get) for the KV stores to be
implemented. We refer to this interface as the datalet APL
For example, a user can develop a simplest form of in-
memory hash table. Users can also mix and match datalets
with each datalet using a different data structure.

Controlet is supplied by BespoKV and provides a datalet
with distributed management services to realize and enable
the distributed KV stores associated with the datalet. The
controlet processes client requests and routes the requests to
the associated entities: e.g., to a datalet for storing data.
BEsPOKV provides a default set of controlets, and allows
advanced users to extend and design new controlets as
needed for realizing a service that may require specialized
handling in the controlet.

BEsPOKYV allows an arbitrary mapping between a controlet
and a datalet. A controlet may handle N (> 1) instances of
datalets, depending on the processing capacity of the con-
trolet and its datalets, and can leverage physical resource
(datacenter) heterogeneity [24], [25] for better overall utili-
zation. For instance, a controlet running on a high-capacity
node may manage more datalet nodes than a controlet run-
ning on a low-capacity node. For simplicity, we use one-to-
one controlet-datalet mappings in the rest of the paper.

Coordinator provides three main functions. (1) It main-
tains the metadata regarding the whole cluster topology
and provides a query service as a metadata server. (2) It
tracks the liveness of the cluster by exchanging periodic
heartbeat messages with the controlets. (3) It coordinates
failover in case of a node failure. The coordinator can run
on separate node or alongside other controlets.

BEsPOKV implements the coordinator on top of Zoo-
Keeper [26] for better resilience. Similar to designing spe-
cialized controlets, advanced users have the option to
design customized coordinators if needed. It is also possible

to design a new coordinator as a special form of controlet
from scratch using the BESPOKV-provided controlet pro-
gramming abstraction as shown in Section 3.2. Nonetheless,
because it is widely used across many KV stores, BEsPOKV
includes the coordinator as a default module in the control
plane.

Client library is provided by BesroKV and used by the cli-
ent applications to utilize the services created by BEsPoKV.
The library provides a flexible means for mapping data to
controlets. The client application uses the library interface
to consult with the coordinator and fetch data partitioning
and mapping information, which is then used to route
requests to appropriate controlets. BesPoKV allows different
developers to choose their own partitioning techniques
such as consistent hashing and range-based partitioning.

Optional Components. BesPoKV provides two optional com-
ponents facilitating the controlet development: 1) a distrib-
uted lock manager (DLM) for a locking service, and 2) a
Shared Log for an ordering service. One can build such a dis-
tributed management service as a special form of controlets
from the scratch, but given its common use in distributed KV
store development, BEsPOKV imports existing solutions (e.g.,
Redlock [27] for DLM, and ZLog [28], [29], [30] for Shared
Log) and provides interface libraries (Section 3.2, Table 4).

3.1 Data Plane

A collection of datalets running on different distributed
nodes form the data plane for BesPoKV. A single-server data-
let is completely unaware of other datalets.

Datalet Development. BesPoKV supports multiple backends.
Users can make use of off-the-shelf single-serve data stores
such as Redis [18], SSDB [31], and Masstree [21]. In addition,
BESPOKV provides datalet templates based on commonly
used data structures: currently, a hash-table-based tHT, a
log-based tLog, and a tree-based tMT. For the ease of dev-
elopment, BEsPOKV furnishes an asynchronous event-driven
network programming framework in which developers can
design new datalets, starting from existing templates. We
evaluate the reduced engineering effort in Section 8.

APIs and Protocol Parsers. For compatibility and modular-
ity, BesPOKV provides a clean set of datalet APIs (between
controlet and datalet) and client APIs (between client app
and client library). Table 3 presents example datalet and
client APIs. As these APIs are consistent with existing I/O
interfaces of existing KV stores. Datalet developers can
adopt them in a straightforward manner to enable distrib-
uted services. This is much easier than library-based replica-
tion solutions such as Vsync [22] where developers should
learn complex new APIs.

Authorized licensed use limited to: George Mason University. Downloaded on July 03,2020 at 02:04:30 UTC from IEEE Xplore. Restrictions apply.
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TABLE 3
APls to Put, Get, and Del a KV Pair

Datalet API (provided by application developers)

pPut (key, val)
val=Get (key)
Del (key)

Write the {key, val} pair to the datalet
Read val of key from the datalet
Delete {key,val} pair from the datalet

Client API (provided by BespoKV)
CreateTable (T) Create a table T to insert data
Put (key, val, T) Write the {key,val} pair to table T
val=Get (key, T) Read val of key from table T
Del (key, T) Delete {key,val} pair from table T
DeleteTable(T) Delete table T

Datalet and Client APIs are for using pre-built controlets.

To offer compatibility and be able to understand applica-
tion protocols to process incoming requests properly,
BESPOKV’s communication substrate supports two options.
(1) It provides a BEsPoKV-defined protocol using Google
Protocol Buffers [32]. This option is suitable for new datalets
and is preferred due to its ease of use and better program-
mability. (2) BespoKV allows developers to provide a parser
for their own protocols. This option is mainly available for
porting existing datalets such as Redis or SSDB.

3.2 Control Plane

BEsPOKV provides a set of pre-built controlets that provide
datalets with common distributed management. Given a
datalet, BesPoKV makes distributed KV stores immediately
ready-to-use. Developers can also extend these pre-built
controlets or design new ones from scratch for advanced
services.

Pre-Built Controlets. BespoKV identifies four core compo-
nents for distributed management, and provides pre-built
controlets that support common design options in existing
distributed KV stores. The choice is based on our compre-
hensive study of existing systems that revealed three key
observations: (1) cluster topology, consistency model, repli-
cation, and fault tolerance generally define distributed fea-
tures of KV stores; (2) for the topology, MS and AA are
common; and (3) for the consistency model, SC and EC are
popular. Detailed descriptions of exemplary controlets sup-
porting MS+5SC, MS+EC, AA+SC, and AA+EC options fol-
low in Section 4.

Controlet Development. To support advanced users and
new kinds of services, BEsPOKV provides an asynchronous
event-driven network programming framework for contro-
let development as well. For each event (e.g., Put request,
timeout, etc.), developer can define event handlers to
instruct how the controlet should process the event to
enable versatile distributed management services in the
control plane. The aforementioned pre-built controlets
indeed consist of a set of pre-defined event handlers for
common distributed services.

Discussion. Load imbalance due to hot keys (ie., hot-
spots) can be solved by integrating a small metadata cache
at BespoKV’s client library to keep track of hot keys [33];
once the popularity of hot keys exceeds a certain pre-
defined threshold, client library replicates this key on a
shadow server that is rehashed by adding a suffix to the
key. In fact, our proxy-based architecture naturally fits for
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TABLE 4
APIs for Events, Shared Log, DLM, and Coordinator
for New Controlet Development

Events API (provided by BespoKV)

Register(c,e,chb)
Enable(c,e)

Register basic event e for conn c to call func cb
Enable event e to be triggered onc time for conn ¢

On (e, cb) Register extended event e to call func cb
Emit (e) Emit event e

Shared Log API (provided by BesPoKV)
CreateLog Creates a new log instance L

PutSharedLog (m, L)
AsyncFetch (L)

Append message m to log L
Asynchronous read from log L

DLM API (provided by BesPoKV)
Acquire lock on key
Unlock key

Lock (key)
Unlock (key)

Coordinator API (provided by BEsPOKV)
LogHeartbeat (c,d) Log heartbeat for controlet ¢ & datalet d
map=GetShardInfo (s) Get controlet & datalet list for shard s
c=LeaderElect (s) Elect new Master controlet for shard s

Due to space limitation, we list only important APIs.

adding a controlet-side small cache or data migration/repli-
cation for load balancing purpose [34], [35], [36], [37], [38].

Control Plane Configuration. To configure the system, each
controlet takes as input (1) a JSON configuration file that
specifies the basic system deployment parameters such as
topology, consistency model, the number of replicas, and
coordinator address; and (2) a datalet host file containing
the list of datalets to be managed. BesPOKV loads the runtime
configuration information at the coordinator, which serves
as the query point for the client library and controlets to
periodically retrieve configuration updates. Any change in
configuration at runtime (e.g., topology/ consistency switch)
results in replacing old controlets with new ones. We
describe dynamic adaptation mechanisms in Section 5 in
detail.

Controlet Programming Abstraction. BesPOKV uses asynchro-
nous event-driven programming model to achieve high
throughput. For each event (e.g., incoming network input,
timer, etc.), developers are asked to define event handlers to
process the event. There are two types of events in BEsPOKV:
basic and extended events. Basic events represent pre-defined
conditions. Developers can create their own extended events
by using basic or existing extended events.

Other Controlet APIs. BesPOKV provides a set of libraries
and APIs with common features for controlet development,
shown in Table 4.

4 BESPOKV-BASED DISTRIBUTED KV STORES

BESPOKYV, to be specific its control plane, transparently turns
a user-provided single-server datalet to a scalable, fault-
tolerant distributed KV store. Using hash-based tHT datalet
and consistent hashing for the client library as an example,
this section presents support for MS+SC, MS+EC, AA+SC,
AA+EC and four examples to enable new forms of distrib-
uted gervices by combining existing controlets or extending
ones.

2. Please note that these examples present just one way to imple-
ment each combination. Controlet developers can easily implement
their own versions.
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Fig. 3. Put/Get paths in MS+SC. M means master; Sn means the nth
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4.1 Master-Slave & Strong Consistency

We start from a KV store supporting the MS topology with
the SC model (MS+SC). Perhaps the simplest way to ensure
SC is to rely on a locking mechanism using ZooKeeper [26]
at the cost of serialization. However, alternative scalable
designs exist such as chain replication (CR) [39], value-
dependent chaining [10], and their variants. The pre-built
BESPOKV controlet for MS+SC leverages CR algorithm. Our
modular design allows BesPOKV to adopt other optimiza-
tions for CR [40], [41] as well, but so far we have not imple-
mented those. The original CR paper describes the tail
sending a message directly back to the client; but similar to
CRAQ [41], our implementation lets the head respond after
it receives an acknowledgment from the tail, given its pre-
existing network connection with the client.

Example. Fig. 3 shows how MS+SC is implemented in
BEsPOKV. Here, clients route Puts to the head of the corre-
sponding controlet-datalet chains via consistent hashing
(step 1). The head controlet forwards the incoming Put
request to its local datalet (step 2) and then to mid node
(step 3), which forwards the request to its local datalet and
then to tail (step 4). Tail first forwards the request to local data-
let and then sends Ackback to mid, which sends Ack back to
head (step 5). Once the head controlet receives the Ack from
the mid, the head controlet marks the request completed and
responds to the client (step 6). Gets are routed to the tail node
of the corresponding chains. This provides the SC guarantee
as clients are only notified of the successful completions of
Puts after the data is persisted through the tail nodes.

Failover. In all cases (MMS+SC, MS+EC, AA+SC, and AA
+EC), when the coordinator detects a node failure using a
periodic heartbeat message, it launches a new controlet—
datalet pair in recovery mode on one of the standby nodes.
The new controlet then recovers the data from one of the
datalets.

In particular, for MS+SC using chain replication, the coor-
dinator performs the chain recovery process and adds the
new pair as the new tail to the end of the chain. The former
chain recovery process depends on the location of the failure
in the replica chain as follows. If a middle node fails, the
coordinator notifies the head controlet to skip forwarding
requests to the failed node. In case the tail node fails, the
coordinator informs the head controlet to skip forwarding
requests to the tail datalet and temporarily marks the second
to the last node as the new tail so that future incoming Get
requests can be redirected properly. If the head node fails,
the coordinator appoints the second node in chain as the
new head, and updates the cluster metadata. Upon seeing
the change, the clients redirect future writes to the new head.
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Every node maintains a list of requests received but not yet
processed by the tail, which is used to resolve in-flight
requests [39], [41].

4.2 Master-Slave & Eventual Consistency

BEsPOKV’s pre-built controlet takes a simple approach to
support MS+EC where the master copies the data to slaves
asynchronously.

Example. Fig. 4a shows an example for MS+EC. Here,
upon receiving an incoming Put request (step 1), the master
node commits the request to the local datalet (step 2) before
it sends an acknowledgement back to the client (step 3).
Unlike the previous SC case, the master does not wait until
the propagation finishes.®> Subsequently, BesPOKV provides
EC by asynchronously forwarding Put requests to other
datalets (step 4).

Failover. Upon a node failure, the coordinator launches a
new controlet-datalet pair, and then the new controlet
recovers the requests from another datalet. For MS+EC, the
new pair is added as a slave. If the master node fails, the
coordinator promotes one of the slave nodes to master after
a leader election process. The coordinator then updates the
cluster topology metadata so that future incoming writes
can be routed to the new master, similar to the case of head
failure in MS+SC.

4.3 Active-Active & Strong Consistency

Supporting AA and SC is expensive in general. AA allows
multiple nodes to handle Put requests and SC requires
global ordering (serialization) between them. Thus, CR-like
optimization is not applicable under AA. For simplicity and
comparison purposes, the current sBesroKV’s AA+SC contro-
let takes the distributed locking based implementation, using
the DLM library (Section 3.2). For performance improve-
ment, optimistic concurrency control [42] and inconsistent
replication [9] can be added. Instead of using DLM, one can
also enable SC using a Shared Log to maintain a global and
sequential order of concurrent requests, which we used for
AA+EC later in a relaxed manner.

Example. Fig. 4b shows a DLM-based AA+SC example.
Clients’ Put requests are routed to any controlet (step 1 and
step 2). Concurrent Puts from another client (step 2 in our
example) are synchronized via the distributed locking ser-
vice. The first receiving controlet acquires a write lock
(step 3) on the key and updates all the relevant datalets
(step 4 & 5), releases the lock (step 6), and finally acknowl-
edges to the client (step 7). For a Getrequest, the controlet
that receives the request acquires a read lock on that key,
reads the value from the local datalet, releases the lock, and
then sends a response back to the client.

Failover Like the previous cases, when a node fails the coor-
dinator launches a new controlet—datalet pair. The new con-
trolet then performs data recovery from another datalet. As
AA+SC uses locking, ensuring SC for the new node and add-
ing it as an active node are trivial because all writes are syn-
chronized using locks. However, deadlock freedom should

3. This way at least one datalet is written straight away as in Cassan-
dra [7]. An alternative design choice is to forward the request to more
than one datalet and then acknowledge back. However, this decision
solely depends on the type of eventual consistency that is desired.
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Fig. 4. The Put/Get paths in MS+EC (a), AA+SC (b), and AA+EC (c). The Get path is same in all three, except in AA+SC, where the difference is
that each Get needs to acquire a read lock before proceeding. Mn means the nth master.

be guaranteed. Thus, BEsPOKV enforces that locks are released
after a configurable period of time. If a controlet fails after
acquiring a lock, the lock is auto-released after it expires. Note
that if a lock is auto-released, but a controlet has not failed
and was simply unresponsive for a while, it is terminated to
ensure proper continuation of operations. Also, one of the
master nodes cleans up the in-flight requests.

4.4 Active-Active & Eventual Consistency

For an AA topology, relaxed data consistency is more
widely used in practice for performance as in Dynamo [6],
Cassandra [7]), and Dynomite [19]. In particular, these sys-
tems use gossip-based protocols and provide a weaker data
consistency model, e.g., acknowledging back to the client if a
Put request is written to one node, N nodes, or a quorum [43].

In order to ensure EC, when multiple masters receive
concurrent PUT requests, AA should be able to resolve con-
flicts and agree on the global order of them, unlike MS
where one master gets all the writes. In this sense, Dynomite
does not support (a strict form of) EC when conflicting PUT
requests arrive within a time period less than the latency of
replication [44].

To address this issue, BEsPoOKV’s AA+EC controlet uses a
Shared Log to keep track of the request ordering. From the
Shared Log, asynchronous propagation of writes occur to
support EC. One disadvantage of this approach is that we
need to scale the Shared Log setup as BEspOKV scales. Alter-
native approach is to add anti-entropy/reconciliation [45].

Example. Fig. 4c depicts how BEspOKV supports AA+EC. In
AA, clients can route Get /Put to any of the master contro-
lets (step 1a). On a Put, the receiving controlet (in our exam-
ple the leftmost one) writes to the Shared Log first (step 2a),
commiits the request on its local datalet (step 3a), and then
responds back to the client (step 4a). All the controlets asyn-
chronously fetch the request (step 5). Gets can be handled
by any of the corresponding controlets by retrieving the data
from their local datalets. The duration to keep the requests in
Shared Log is configurable.

Failover.For AA+EC, the failover is handled like with MS
+EC, except that leader election is not needed in this case.

5 DyYNAMIC ADAPTATION TO CONSISTENCY
AND TOPOLOGY MODEL CHANGES

Separating the control and data planes bring another bene-
fit: BesPoOKV-enabled distributed KV stores can seamlessly

adapt to consistency and topology model changes at run-
time by switching the controlets while keeping the datalets
unchanged. At a high level, upon a consistency and/or
topology change request, Coordinator launches a new set of
controlets that will provide new services. Two old and new
controlets are mapped to one datalet during the transition
phase. The old controlet provides the old service with no
downtime, and forwards some requests to the new controlet
so that it can prepare the new service. When the transition
completes, the new controlet takes over the old one. The
transition protocol differs per each case. BEsPoKV supports
any transition between four aforementioned topology and
consistency combinations, among which we describe two
interesting cases in detail. Section 9.4 presents the experi-
mental results on this aspect.

5.1 Transition From MS+EC to MS+SC

To make a transition from EC to SC, the master node needs
to make sure that all the Put requests 1) that have arrived
before the transition starts and 2) that arrive during transi-
tion are fully propagated to the slave nodes. For the former,
the old master keeps flushing out any pending propagation.
For the latter, the old master forwards an incoming Put
request to the new master controlet which uses chain repli-
cation for SC, instead of propagating it asynchronously.
When there is no more pending propagation left in the old
controlet, the transition is over. SC guarantees will be
enforced after the transition has completed. During the tran-
sition, any node may respond to Get requests, providing
EC guarantee. This means that a Get request, even after the
reconfiguration was requested, may experience EC until the
transition is over. As controlet developers are responsible
for developing the transition functionality for the various
consistency/topology modes. A controlet developer can
choose an alternative route to fence all writes as soon as the
reconfiguration is requested so that all reads observe the
same and latest applied value.

Fig. 5a shows transition from MS+EC to MS+SC.* Client 1
sends a Put request (Step 1a) to the old master controlet C1.
A concurrent Get request (Step 1b) from Client 2 gets ser-
viced as it used to be. The old master forwards Put request
(Step 2) to the new master controlet which guarantees SC.

4. Reverse transition from MS+SC to MS+EC is trivial as the new
master just needs to start using asynch. propagation instead of chain
replication.
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When the new master completes its chain replication pro-
cess, it acknowledges the old master, which in turn acknowl-
edges Client 1. When the transition completes, a Put request
(Step 3) is routed to the new master controlet.

5.2 Transition From AA+EC to MS+EC

In AA+EC, any active node can get a Put request. To
maintain a global ordering between concurrent Puts, an
active node relies on the Shared Log that propagates Puts
to the other nodes on its behalf. On the other hand, in MS
+EC, only the master node gets Put requests and is in
charge of propagating them to the slaves. Therefore, the
key operation in the transition from AA+EC to MS+EC is
to move the role of propagating Puts from the Shared Log
to the new master. To this end, when the transition starts,
the new master node takes the in-flight Puts that have not
been propagated yet from the Shared Log and starts prop-
agating them by itself. When an old active controlet
receives a Put request during transition, it does not con-
sult with Shared Log, but forwards the request to the new
master node which will eventually propagates the request.
The Get requests are not affected. Fig. 5b shows an exam-
ple where a Put request (Step 1) is forward to the new
master (Step 2) during transition. When the transition
completes, a Put request (Step 3) is serviced by the new
master. The transition from MS+EC to AA+EC can be sup-
ported by the reverse step order.

6 EXTENSIONS TO KV STORES

BEsPOKV is immediately ready-to-use for popular distrib-
uted KV store use cases. If desired, BesPoKV’s control plane
can be extended to enable new forms of distributed services
by combining existing controlets or extending ones. This
section demonstrates four examples. We evaluated perfor-
mance of Scan requests (range query) in Section 9.2, and
the next two per-request consistency and polyglot persis-
tence in Section 9.5.

6.1 Range Query

We support range query or scan operations as follows. For
datalets, the Masstree-based tMT template is used and
extended to expose a range query API such as GetRange
(Start, End). The client library supports range-based
partitioning, e.g., dividing the name space by alphabetical
order (e.g., A-C on one node, D-F on another node, and so
on). The controlet divides a client request into sub-requests
and forwards the sub-range query requests to correspond-
ing datalets that store the specified range.
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6.2 Per-Request Consistency

We extend the client library GET API to support consis-
tency/topology specification on a per-request basis. For
instance, under MS+SC, if the user specifies a lower value
of consistency level, GETs can go to any of the replicas, thus
only eventual consistency is guaranteed.

6.3 Polyglot Persistence

A use case for KV store is to support businesses that may be
divided into different components, and each component
requires its own private data storage. BEsPoKV supports such
polyglot persistence [46] by launching custom controlets for
cross-app lazy synchronization (eventual consistency).

6.4 Other Topologies

BESPOKV also supports an AA-MS hybrid topology by config-
uring an MS topology for each shard on top of the logical AA
overlay. Similarly, a P2P-like topology can also be enabled
by allowing clients to send a request to any controlet, which
then routes the request to the actual controlet that manages
the requested data. In this case, a controlet needs to maintain
a routing map similar to a finger table [47] to determine the
location of keys.

Variants of AA. BespoKV can support Adding routing flex-
ibility to the AA topology is straightforward. Clients can
simply send a request to any of the controlets (or use some
load balancing techniques such as round robin), which then
routes the request to the actual controlet-datalet that holds
the requested data. The extra logic we need to add into con-
trolets is a routing map similar to a finger-table [47] to deter-
mine the location of keys.

6.5 Other Consistency Models

Our Shared Log-based asynchronous fetches for eventual
consistency can be easily configured to support bounded
staleness. Developers simply specify a T-sec polling period,
so that clients are guaranteed not to see the stale data for
more than 7" sec. Similarly, causal consistency can also be
supported if the controlet serving the Get request fetches
all the pending data from the shared log and communicates
it to other controlets before replying back to the client.

7 BESPOKV’S USe CASES

7.1 Hierarchical and Heterogeneous Storage of HPC
HPC big data problems require efficient and scalable storage
systems, but load balancing I/O servers at scale remains
a challenge. Statistical analysis [48] and Markov chain
model [49] have been used to predict shared resource usage.
A KV store can be used to collect runtime statistics from
HPC storage systems for accurate prediction. However,
existing KV stores are designed for one type of storage archi-
tecture (in-memory, SSD, NVM, etc.), leading to suboptimal
performance.

BESPOKV supports the use of different datalets to store
replicas of a KV pair, where each of these datalet can be
tuned for different memory and storage architecture. By
doing so, BEsPOKV unifies multiple data abstraction together
and enables multifaceted view on shared data with configu-
rable consistency and topology. Fig. 6 shows an example of
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how BEsPOKV unifies three different data abstractions — a
log-structure merge-tree, Masstree, and log, and transpar-
ently provides master-slave topology (MS) and eventual
consistency (EC). Data is replicated asynchronously in batch
mode from master to slaves. In this design, it is possible
to run applications with different properties (e.g., write-
intensive and read-intensive apps) together.

There are two advantages of this design architecture.
First, different applications can choose datalet that best suits
their need. As a typical use case, monitoring data collection
is write-intensive workload, and prefers a scalable solution
that is able to persist all data on persistent storage. Whereas,
analytical models incur read intensive workload which
could benefit from high read throughput. Second, replicas
in different datalets are not evicted simultaneously. For
instance, a replica of a KV pair may evict from in-memory
based datalet due to size restriction but another replica may
stay longer in NVM/SSD based datalet or stay forever in log
based datalet that uses HDD.

7.2 Building Burst Buffer File Systems

Burst buffer file systems are becoming an indispensable
framework to quickly absorb application I/O requests in
exascale computing [50], [51], [52], [53]. Many burst buffer
file systems adopt KV stores to manage file system metadata.
BEsPOKV allows to develop similar file systems with less
development effort. In particular, the dynamic and flexible
nature of BEsPOKV well suits with ephemeral burst buffer file
systems [50]. An ephemeral burst buffer file system has to
be dynamically constructed and destroyed within compute
nodes assigned to a corresponding job. In such a scenario,
BESPOKV can quickly initialize the distributed KV store for
storing file system metadata.

Furthermore, BesPOKV also allows to dynamically tune
the file system behavior. For instance, it is often preferred to
relax the strong POSIX consistency semantics for certain
HPC workloads (e.g., checkpointing) to maximize the paral-
lel I/O performance [54]. BEsPoKV can simplify the develop-
ment of such a file system, because it natively supports an
instantiation of the distributed KV store with desired con-
sistency and reliability levels.

7.3 Accelerating the File System Metadata
Performance

KV store is also widely adopted to enhance the performance
of file system metadata operations in HPC systems. Metadata
performance is one of the major limitations in HPC parallel
file systems. A popular approach to address this limitation is
to stack up a special file system atop the parallel file
system [55], [56], [57]. The stacked file system then quickly
absorbs the metadata operations by exploiting a distributed
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KV store. BEsPOKV can accelerate the development of such a
stacked file system (evaluated in Section 9.2). Specifically,
BESPOKV allows to explore various datalets in backend, and
also dynamically tune the file system behavior to comply with
the desired performance, consistency and reliability levels.

7.4 Resource and Process Management

KV store has also been used to aid the resource and process
management in HPC systems [2], [58]. BEsPoKV can help
develop an advanced job launching system, because it can
adapt to different topology and consistency models on the
fly. For example, the simple MS topology may be sufficient
for handling jobs on a single cluster, but the AA topology
may become more suitable when jobs spans multiple
clusters (evaluated in Sections 9.2 and 9.4).

8 BESPOKYV IMPLEMENTATION

Current implementation of BesPoKV consists of 69k lines of
C++/Python code without counting comments or blank
lines. Except controlets, BEsPOKV consists of five components.
(1) Control Core implements the control plane backbone with
support for event and message handling. (2) Client library
helps clients route requests to appropriate controlets, and is
extended from libmc [59], a in-memory KV store client
library. (3) Coordinator uses ZooKeeper [26] to store topology
metadata of the whole cluster and coordinates leader elec-
tions during failover. It includes a Python-written failover
manager that directly controls the data recovery as well as
handling BespoKV process failover. (4) Lock server APIs imple-
ment two lock server options—ZooKeeper-based [60] and
Redlock-based [27]. (5) Shared Log handler is implemented
using ZLog [28], based on CORFU.

The BesPoKV prototype has four pre-built controlets as
described in Section 4. All controlet shares the sample event-
handling controlet template of 150 LoC. In addition, BEsPOKV
supports multiple backend datalets with protocol parsers.
Using the common datalet template of 966 LoC, we imple-
mented three new datalets with a Protobuf-based [32]
parser: tHT, an in-memory hash table; tLog, a persistent log-
structured store that uses tHT as the in-memory index; and
tMT, a Masstree-based [61] store. In addition, BesPoOKV are
compatible with existing single-server KV stores SSDB [31]
and Redis [18] that use a simple text-based protocol parser.
With protocol parsers, we refer them tSSDB and tRedis,
respectively. Docker based BEspOKV is partially supported
right now. We plan to use Kubernetes [62] to simplify
deployment in near future.

Using the template-based design approach, we note that
for developers (with few years of C/C++ programming
experience) non familiar to BEsPOKV it took almost three and
six person-days time to develop datalet and controlet,
respectively. This underscores BesroKV’s ability to ease
development of distributed KV stores.

9 EVALUATION
Our evaluation answers the following questions:
e Are BEsPOKV-enabled distributed KV stores scalable

(Section 9.2), adaptive to topology and consistency
changes (Section 9.4), and extensible (Section 9.5)?
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e How does BEsPOKV compare to existing proxy-based
(Section 9.6), and natively-distributed (Section 9.7)
KV stores?

e How well BEspoKV handles a node failure? (Section 10)

9.1 Experimental Setup

Testbeds and Configuration. We perform our evaluation on
Google Cloud Engine (GCE) and a local testbed. For larger
scale experiments (Sections 9.2, 9.3, 9.4, 9.5, and 9.6), we
make use of VMs provisioned from the us-eastl-b
Zone in GCE. Each controlet-datalet pair runs on an nl-
standard-4 VM instance type, which has 4 virtual CPUs
and 15 GB memory. Workloads are generated on a separate
cluster comprising nodes of n1-highcpu-8 VM type with
8 virtual CPUs to saturate the cloud network and server-
side CPUs. A 1 Gbps network interconnect was used.

For performance stress test (Section 9.7) and fault toler-
ance experiments (Section 10), we use a local testbed consist-
ing of 12 physical machines, each equipped with 8 2.0 GHz
Intel Xeon cores, 64 GB memory, with a 10 Gbps network
interconnect. The coordinator is a single process (backed-up
using ZooKeeper [26] with a standby process as follower)
configured to exchange heartbeat messages every 5 sec with
controlets. We deploy the DLM, Shared Log, Coordinator
and ZooKeeper on separate set of nodes. BEsPoKV’s coordina-
tor communicate with ZooKeeper for storing metadata.

Workloads. We use two workloads obtained from typical
HPC services: job launch, and 1/O forwarding and three
workloads from the Yahoo! Cloud Serving Benchmark
(YCSB) [63].

We use approach similar to [2] to generate HPC work-
loads. The job launch workload is obtained by monitoring
the messages between the server and client during a MPI
job launch. Control messages from the distributed servers
are treated as Get whereas results from the compute nodes
back to the servers as Put. The I/O forwarding workloads
is generated by running SeaweedFS [64], a distributed file
system which supports KV store for metadata management.
The clients first create 10,000 files, and then performs reads
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Fig. 8. BespoKV scales HPC workloads.

or writes (with 50 percent probability) on each file. We col-
lect the log of the metadata server. We extend these work-
loads several times until reaching 10M requests with the
goal to reflect the time serialization property of the obtained
messages.

For YCSB we use an update-intensive workload (Get:
Put ratio of 50%:50%), a read-mostly workload (95 percent
Get), and a scan-intensive workload (95 percent Scan and
5 percent Put). All workloads consist of 10 million unique
KV tuples, each with 16 B key and 32 B value, unless
mentioned otherwise. Each benchmark process generates
10 million operations following a balanced uniform KV
popularity distribution and a skewed Zipfian distribution
(where Zipfian constant = 0.99). The reported throughput is
measured in terms of thousand queries per second (kQPS)
as an arithmetic mean of three runs.

9.2 Scalability

In this test, we evaluate the scalability of the BESPOKV-
enabled distributed KV store using four datalets: tHT and
tLog, as examples of newly developed datalets; and tSSDB
and tMT, as representatives of existing persistent KV stores.
Fig. 7 shows the scalability of BesPoKV-enabled distributed
tHT. We measure the throughput when scaling out tHT
from 3 to 48 nodes on GCE. The number of replicas is set to
three. We present results for all four topology and consis-
tency combinations: MS+SC, MS+EC, AA+SC, and AA+EC.
For all cases, BespoKV scales tHT out linearly as the number
of nodes increases for both read-intensive (95 percent Get)
and write-intensive (50 percent Get) workloads. For SC, MS
+5C using chain replication scales well, while AA+SC per-
forms worse as expected in locking based implementation.
For EC, the results show that our EC support scales well for
both MS+EC and AA+EC. Performance comparison to exist-
ing distributed KV stores will follow in Section 9.7.

Fig. 8 shows similar trend for HPC oriented workloads.
We again observe that MS outperforms AA for SC whereas
the trend is opposite for EC where AA performs better than
MS. We also observe that performance of I/O forwarding is
slightly better than Job launch. This is because 1/O forward-
ing workload has 12 percent more reads than Job launch
with Get:Put ratio of 62%:38%.

Fig. 9 shows the scalability when varying the number of
nodes from 3 to 48, with tSSDB, tLog, and tMT as datalet. Due
to space constraints, we only present the result with the MS
+EC configuration. While enabling eventual consistency with
fault tolerance, BEsPOKV provides good scalability for all three.
In terms of performance, tMT is an in-memory database and
thus outperforms both tLog and tSSDB which persist data on
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Fig. 9. BespoKV scales tSSDB, tLog, and tMT with MS+EC.

disk. It is as expected that the throughput of Scans (range
queries) is much lower than point queries. A 48 node tMT
cluster gives 18k QPS on Zipfian 95 percent Scan, while Uni-
form yields slightly higher throughput (21k). Interestingly,
this test covers a potential use case of BesPoOKV+tLog for flash
storage disaggregation, where users can exploit the scale-out
capacity of an array of fast SSD (flash) devices/nodes with
low-latency datacenter network [65], [66].

9.3 Impact of Varying Replication Factor

Next, we analyze the impact of varying the replication fac-
tor on performance. Fig. 10 shows the average throughput
of an 8-shard cluster when varying the number of replicas
from 1 to 3.

For cluster configurations with EC under read-intensive
(uniform and Zipfian 95 percent Get) workloads, a larger
replication factor results in higher performance. This is
because there are more nodes that can serve Get requests.
The effect is more significant for uniform workload, as the
load is more balanced.

On the other hand, for MS+SC, scaling the number of
replicas does not improve performance. Performance stops
scaling above 2 replicas under read-intensive workloads,
and it actually degrades by a factor of 2 to 3 for write-
intensive workloads. This is because BEsPOKV uses chain
replication to support MS+SC, and all Puts are going to the
head controlets, which need to do more work as the length
of the chain increases.

Increasing the number of replicas does increase the per-
formance for AA+SC under read-intensive workloads but
with limited improvement. This is due to the high cost of
distributed locking. Zipfian workloads severely increase the
lock contention at the lock server, leading to the observed
performance drop.

9.4 Adaptability

We evaluate BesPoOKV’s adaptability in switching online con-
sistency levels and topology configurations (Section 5). In
all the tests we use 3 shards with a Zipfian workload of
95 percent Get. As shown in Fig. 11, the transition is

o (] Unif 95% GET
O 400 () Zipf 95% GE
2 () Unif 50% GET
E” 200 @ Zipf 50% GET
Y L
g
= L | . fe -
1 2 3 1 2 3 1 2 3 1 2 3

MS+SC MS+EC AA+SC AA+EC

Fig. 10. Varying the number of replicas in BespoKV.
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scheduled to be triggered at 20 sec. The throughput drops to
the lowest point for all three cases. This is because clients
switch connection to the new controlets. Performance stabil-
izes in’5 sec, because all the in-flight requests are handled
during this process. We observe similar trends for other pos-
sible transitions that can be enabled by BespoKV. This demon-
strates BEsPOKV’s flexibility and adaptability in switching
between different key designs & configurations. This also
shows that BesPOKV is able to complete switching in
extremely short time compared to existing solutions because
BESPOKV does not require data migration or down time.

9.5 Extensibility and New Services

As sketched in Section 4, BEsPoOKV can be extended to sup-
port new forms of distributed services. This section evalu-
ates two examples: per-request consistency and polyglot
persistence.

We evaluate the per-request consistency service
(Section 6.2) under MS+5C and a Zipfian workload with a
25:75 percent ratio of SC:EC as the desired consistency. We
observed the performance to be between MS+SC and MS
+EC as shown in Fig. 7; for example, with 24 nodes, we
obtain ~ 300k QPS for 95 percent Get and ~ 270k QPS for
50 percent Get workloads. We also evaluate the average
latency of each request. With a weaker consistency requ-
irement, the GET latency is 0.67 ms. We get an average of
1.02 ms latency with default strong consistency.

We test polyglot persistence (Section 6.3) by storing each
replica in a different type of datalet. We use tHT, tLog and
tMT in MS topology with eventual consistency. The perfor-
mance of the resulting configuration under Uniform work-
load is very similar to the numbers in Figs. 7 and 9; for
example, with 24 nodes, we obtain 375k QPS for 95 percent
Get and 200k QPS for the 50 percent Get workload.

9.6 Comparison to Proxy-Based Systems
This section shows that BEsPoKV can support new topologies
and consistency models for existing single-server KV store,
and them compares BesPOKV with two state-of-the-art Proxy-
based KV stores. We test BesPOKV+Redis (tRedis) running in
MS+SC, MS+EC and AA+EC modes, reusing SSDB'’s text-
based protocol parser for Redis. We measure the throughput
of fRedis on eight 3-replica shards across 24 nodes on GCE,
and compare it with Dynomite [19] supporting AA+EC only,
and Twemproxy [16] supporting MS+EC only. We perform
each test at three different periods of time to capture inter-
fernce caused by cloud-based multi tenancy.

Fig. 12 shows the throughput. BEsPOKV enables new MS
+SC (~ 500k QPS under Zipfian 95 percent Get) and AA+EC
(~750k QPS under Zipfian 95 percent Get) configurations
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Fig. 13. Average latency versus throughput achieved by various systems
under Zipfian workloads.

with reasonable performance. As expected, MS+SC is more
expensive than MS+EC. Twemproxy is just a proxy to route
requests using consistent hashing to a pool of backend serv-
ers. Hence, Twemproxy+Redis in supporting MS+EC per-
forms slightly better than BespoKV in supporting MS+EC.”
However, we observed the same performance for Dynomite
+Redis in supporting AA+EC configuration for Redis as
BEsPOKV in supporting AA+EC. The small error bars in
Fig. 12 show that inherent multi tenancy effect of cloud-
based environment is almost negligible.

9.7 Comparison to Natively-Distributed Systems

In this experiment, we compare BesPOKV-enabled KV stores
with two widely used natively-distributed (off-the-shelf) KV
stores: Cassandra [7] and LinkedIn’s Voldemort [67]. These
experiments were conducted on our 12-node local testbed in
order to avoid confounding issues arising from sharing a vir-
tualized platform. We launch the storage servers on six
nodes and YCSB clients on the other four nodes to saturate
the server side. The coordinator, lock server (only for AA
+5C), ZLog (only for AA+EC), and ZooKeeper are launched
on separate nodes. We use tHT as a datalet to show high effi-
ciency of BesPoKV-enabled KV stores.

For Cassandra, we specify consistency level of one to
make consistency requirements less stringent. Cassandra’s
replication mechanism follows the AA topology with
EC [68]. For Voldemort we use a server-side routing policy,
all-routing as the routing strategy, a replication factor of
three, one as the number of reads or writes that can succeed
without client getting an exception, and persistence set to
memory.

Fig. 13 shows the latency and throughput for all tested
systems/configurations when varying the number of clients

5. Twemproxy itself does not provide any consistency support.
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to increase the throughput in units of kQPS.® For AA+EC,
BEsPOKV outperforms Cassandra and Voldemort. For read-
intensive workload, BEsPoKV’s throughput gain over Cassan-
dra and Voldemort is 4.5x and 1.6 %, respectively. For write-
intensive workload, BespoKV’s throughput gain is 4.4x over
Cassandra and 2.75x over Voldemort. In this experiment
Cassandra was configured to use persistent storage. How-
ever even using tLog as a datalet for BesPoOKV (also uses persis-
tent storage) we observed a throughput gain of 2.6x and
1.2x over Cassandra and Voldemort, respectively. We sus-
pect that this is because Cassandra uses compaction in its
storage engine which significantly effects the write perfor-
mance and increases the read latency due to use of extra
CPU and disk usage [69]. Voldemort uses the same design
and both are based on Amazon’s Dynamo paper [6]. Further-
more, our findings are consistent with Dynomite in terms of
the performance comparison with Cassandra [69].

As an extra data point, we also see interesting tradeoffs
when experimenting with different configurations sup-
ported by BespoKV. For instance, MS+EC achieves perfor-
mance comparable to AA+EC under 95 percent Get
workload since both configurations serve Gets from all rep-
licas. AA+EC achieves 47 percent higher throughput than
MS+EC under 50 percent Get workload, because AA+EC
serves Puts from all replicas. For AA+SC, lock contention
at the DLM caps the performance for both read- and write-
intensive workloads. As a result, MS+SC performs 3.2x bet-
ter than AA+SC for read-intensive workload and 2x better
for the write-intensive workload.

9.8 DPDK Optimization

We recently added support for DPDK based communica-
tion between clients, controlets, and datalets in to BEsPOKV.
In this experiment, we show performance of socket versus
DPDK based communication. We deployed a single shard
on our local testbed (Section 9.1) and measured latency and
throughput using YCSB. Each node in our local setup is
equipped with Intel ethernet controller X540-AT2. We used
Intel’s DPDK framework version 17.05. Fig. 14 shows that
DPDK reduces latency by up to 65 percent. We also observe
3x improvement in throughput compared to socket based
communication. Another interesting finding is that DPDK
based communication results in more stable performance.

10 FAILOVER & DATA RECOVERY

We also evaluate how BesPOKV performs in case of a node
failure, and compare it with Redis’s replication used by
Dynomite for failover recovery. In this set of tests, we use 3
shards (each with 3 replicas) to clearly reflect the impact of
a failure on throughput. The workload consists of 1 million

6. Uniform workloads show similar trend, hence are omitted.

Authorized licensed use limited to: George Mason University. Downloaded on July 03,2020 at 02:04:30 UTC from IEEE Xplore. Restrictions apply.



ANWAR ET AL.: CUSTOMIZABLE SCALE-OUT KEY-VALUE STORES

Failure Failure
50 ECGET ij . ]
—~ - e
G SC GET ALY
&40 e o Dyno 95% GET =
4 T / Dyno 50% GET ~
"S53 EC 95% GET*
= EC 50% GET=
= EC PUT
ol ey o :
S |ee “‘k”f« ' SC 95% GET-e—
3 SCPUT \pgeess : SC 50% GET——
210 . P YOI e P9TY.
=
0 5101520253035 0 10 20 30 40 50 60
Time (sec) Time (sec)

(a) Master-slave (MS). (b) Active-active (AA).

Fig. 15. Throughput timeline on failover. EC: eventual consistency; SC:
strong consistency; Dyno: Dynomite.

KV tuples generated with a Zipfian distribution. We inten-
tionally crash a node to emulate a failure, and Fig. 15 shows
the resulting throughput change.

MS topology. For MS+SC, we bring down the head node
under the write-intensive workload (50 percent Put, as
shown in the bottom half of Fig. 15a) and the tail node for
the read-intensive workload (95 percent Get, as shown in
top half of the figure), to maximize the performance disrup-
tion on the respective workloads. For MS+EC, we take
down the master node for the write-intensive workload and
a random slave node for the read-intensive workload.

We observe that for MS+SC, Put throughput goes down
by about 1/3 when the head node crashes at 20 sec, as we
have 3 shards. The coordinator detects the node failure from
the lack of heartbeat message before assigning the master role
to the second node in the chain. The coordinator then
launches a new controlet-datalet pair in recovery mode, and
inserts the pair to the end of the chain once data recovery com-
pletes at around 35 sec. Meanwhile the throughput stabilizes.
MS+EC failover shows a similar trend. The top half of Fig. 15a
shows the impact of node failure on Get performance under
MS topology. For MS+SC, killing the tail brings down Get
throughput by 1/3. Once failure is detected, the coordinator
makes the 2nd-from-last node in the chain the new tail, and
updates the topology metadata. Once clients see the update,
they reroute the corresponding Gets to the new tail. Hence,
the throughput goes back to normal in”5 sec. MS+EC behaves
differently as Gets are served by any of the 3 replicas. Thus,
the slave failure drops throughput by only1/9.

AA Topology. In BEsPOKV’s AA and Dynomite (with Redis)
failover test, we randomly kill a node at 20 sec and record the
overall throughput. As shown in Fig. 15b, the throughput is
slightly impacted in all cases, because both BesPoOKV AA and
Dynomite serve reads and writes from all replicas. Dynomite
leverages Redis’ master-slave replication to recover data
directly from the surviving nodes. We observe trend similar
to Dynmoite as BEsPoKV also uses datalet’s callback functions
to import and export the data. Please note that users can
choose to add more replicas to increase the overall perfor-
mance so that in case of a single node failure or a topology/
consistency switch the performance drop is not significant
enough to affect the HPC application.

11 RELATED WORK

Dynomite [19] adds fault tolerance and consistency support
for simple data stores such as Redis. Dynomite only
supports eventual consistency with AA topology. It also
requires the single-server applications to support distributed
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management functions such as Redis’ streaming data recov-
ery/migration mechanism. BespoKV’s datalet is completely
oblivious of the upper-level distributed management, which
offers improved flexibility and programmability.

Pileus [70] is a cloud storage system that offers a range of
consistency-level SLAs. Some storage systems offer tunable
consistency, e.g., ManhattanDB [71]. Flex-KV [72] is another
flexible key-value store that can be configured to act as a
non-persistent/durable store and operates consistently/
inconsistently. Morphus [73] provides support towards
reconfigurations for NoSQL stores in an online manner.
MOS [74], [75] and hatS [76], [77] provide flexible and elastic
resource-level partitioning for serving heterogeneous object
store workloads. ClusterOn [78] proposes to offer generic
distributed systems management for a range of distributed
storage systems. MBal [36], [37] provides fine-grained
service-level differentiation via flexible data partitioning. To
the best of our knowledge, BesroKYV is the first generic frame-
work that offers a broad range of consistency/topology
options for both users and KV store application developers.

Vsync [22] is a library for building replicated cloud serv-
ices. BEsPOKV embeds single-node KV store application code
and automatically scales it with a rich choice of services.
Going one step further, BEsPOKV can be an ideal platform to
leverage Vsync to further enrich flexibility. EventWave [79]
elastically scales inelastic cloud programs. PADS [80] pro-
vides policy architecture to build distributed applications.
Similarly, mOS [81] provides reusable networking stack to
allows developers to focus on the core application logic
instead of dealing with low-level packet processing. BEsPOKV
focuses on a specific domain with a well-defined limited set
of events—KV store applications.

12 CONCLUSION

We have presented the design and implementation of
BESPOKYV, a framework, which takes a single-server data store
and transparently enables a scalable, fault-tolerant distrib-
uted KV store service. BEsPOKV’s decoupled control and data
plane architecture, configurability, and extensibility enable
new solutions for emerging HPC systems and workloads.
BESPOKV can be easily extended to offer advanced features
such as range query, per-request consistency, polyglot per-
sistence, and more. To the best of our knowledge, BesPoKYV is
first to support a seamless on-the-fly topology/consistency
adaptation. As examples, we present a novel mechanism to
make transitions from MS+EC to MS+SC, and from AA+EC
to MS+EC. We also present several use cases to show effec-
tiveness of BEsPoKV to support HPC applications. Evaluation
shows that BespoKYV is flexible, adaptive to new user require-
ments, achieves high performance, and scales horizontally.
BESPOKV has been open-sourced and is available at https://
github.com/tddg/bespokv
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