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Abstract—To provide a reliable wireless uplink for users in
a given ground area, one can deploy Unmanned Aerial Vehicles
(UAVs) as base stations (BSs). In another application, one can use
UAVs to collect data from sensors on the ground. For a power-
efficient and scalable deployment of such flying BSs, directional
antennas can be utilized to efficiently cover arbitrary 2-D ground
areas. We consider a large-scale wireless path-loss model with
a realistic angle-dependent radiation pattern for the directional
antennas. Based on such a model, we determine the optimal 3-D
deployment of N UAVs to minimize the average transmit-power
consumption of the users in a given target area. The users are
assumed to have identical transmitters with ideal omnidirectional
antennas and the UAVs have identical directional antennas with
given half-power beamwidth (HPBW) and symmetric radiation
pattern along the vertical axis. For uniformly distributed ground
users, we show that the UAVs have to share a common flight
height in an optimal power-efficient deployment, by simulations.
We also derive in closed-form the asymptotic optimal common
flight height of N UAVs in terms of the area size, data-rate,
bandwidth, HPBW, and path-loss exponent.

Index Terms—Node deployment, UAVs, directional antennas,
power optimization

I. INTRODUCTION

Due to the decreasing production cost of Unmanned Aerial
Vehicles (UAVs), wireless communication coverage for large
areas can be achieved efficiently and flexibly by using a
network of UAVs equipped with wireless transceivers [2]–[5].
These UAVs can communicate to each other or to nearby
stationary base stations and operate as a relay network for
users on the ground [6], [7]. To improve wireless links to
the users, such flying base stations (BSs) use directional
antennas to concentrate the radiation power to smaller cells
on the ground. Hence, directional antennas reduce power
consumption and interference with neighboring cells [8]–[13].
It is common to assume that the antenna pattern of a directional
antenna is an ideal beam and symmetric in the azimuth plane.
In such a model, the radiation intensity is constant for elevation
angles inside the beam, defined by its beamwidth, and zero or
small outside [11]–[15]. Such an approximation is sufficient
for high-altitude UAVs where the ground cells can be covered
uniformly by a small fraction of the beamwidth. But, when
the same number of UAVs needs to cover the same cells at
a lower altitude, they require the whole beamwidth or even
more, which for realistic directional antennas does not result in
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a constant radiation pattern. Moreover, the objective is to find
the maximum cell-radius which guarantees a reliable downlink
at a given data-rate (coverage). Using the Shannon capacity
formula, for a given bandwidth and noise power, this reduces
to a minimum required receive power at the UAV for each
ground user equipment (UE) [16]. To cover a given target area
at the ground, efficiently with N identical UAVs, an optimal
common height is determined. Because of the circular cell
shapes, this approach, does not result in a full coverage of
the target area if the cells do not overlap or in an inefficient
full coverage if the cells overlap. By focusing on an uplink
coverage and a more realistic model, our approach is slightly
different. UEs can adjust their transmit powers to achieve a
reliable uplink connection in a given range and at a given data-
rate. Therefore, we consider a full coverage model by using
a transmit-power model which is continuous in the elevation
angle and hence continuous in the UE positions. Assuming
the UEs are distributed by a given density function in a given
ground area and for a given uplink data-rate, the objective for
an optimal UAV deployment is then to minimize the average
transmit-power over all UEs in the target area [1], [17], [18].
The target area can have any polygonal shape which can be
fully covered by any number of UAVs.

To achieve our goal, we use a more realistic directional
antenna pattern, which considers a continuous angle-dependent
radiation gain. The impact of antenna radiation patterns on the
UAV coverage performance is well studied in [19]. Our recent
conference paper introduced a similar concept for 2-D UAV
deployments to cover 1-D ground areas [1]. The received UAV
power depends on the line-of-sight (LoS) distance between
the UAV and the corresponding ground user and the UAV’s
antenna gain at the corresponding Angle of Arrival (AoA). As
shown in Fig. 1, the AoA θ is the arc-cosine of the ratio of the
height and the LoS distance. In this paper, we extend the model
to 3-D deployments and adjustable beamwidths. We model
the antenna gain by various cosine-powers of the radiation
angle (AoA) [20], [21]. To minimize the average transmit
power of UEs in a 2-D ground area, by deploying N UAVs, a
continuous N−facility locational optimization problem has to
be solved. This can also be seen as an N−point parameterized
quantization problem, where the N UAV ground positions
are the reproduction points and the N ground cells are the
quantization regions of the target area. The goal is to find
the optimal quantizer (UAV deployment) which minimizes
the distortion measure, given by the average transmit-power
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of the UEs, in a given target area. We assume that only
one UE per cell communicates at each time, as in a time-
division multiple-access (TDMA) system. This problem has
been investigated for example in [18], [22]–[24] by assuming
a given common UAV height and an ideal beam. In this
work, we investigate the UAV optimization problem over all
possible ground locations in the target area and heights. This
results in a 3-D optimization problem with a power function
parameterized by the UAV heights. Such a parameterized cost
function can also be used to formulate heterogeneous sensor
deployment problems, as for example investigated in [24]. In
many applications, as in sensor or vehicle deployments, the
optimal weights and parameters of the system are usually
unknown, but adjustable. Therefore, one wishes to optimize
the deployment over all admissible parameter values [25].
In this work, for a large number of UAVs, we derive the
closed-form optimal deployments to serve users uniformly
distributed in a given 2-D target area. For given arbitrary
flight heights, the optimal regions (cells) are known to be
generalized Voronoi (Möbius) regions, which can be non-
convex and disconnected sets [26]. A deployment optimization
over arbitrary heights constitutes a heterogeneous problem
whose solution is not known in a closed-form [23]. However,
our numerical solutions show that asymptotically a common
height is optimal.

A dual problem is a downlink scenario, which minimizes the
UAVs’ average transmit-power to cover UEs at a given average
downlink-rate [15]. Our uplink UAV deployment solution is
also optimal for the downlink problem. The contributions of
the paper can be summarized as:

• We consider a more realistic directional antenna model
that considers a continuous angle-dependent radiation
gain.

• We investigate the optimal 3-D UAV deployment problem
over all possible ground locations and flight heights to
minimize the total average transmit-power.

• We show numerically that the global optimal deployment
is asymptotically given by a hexagonal lattice of the UAV
ground positions and a unique common flight height.

The rest of the paper is organized as follows: We introduce a
realistic and mathematically tractable wireless communication
model for ground users to UAVs with directional antennas
in Section II. We formulate and solve the optimal 3-D UAV
deployment problem over given arbitrary ground areas in
Section III. In Section IV, we provide iterative Lloyd-like
algorithms to derive UAV deployments for various parameters
with uniform and non-uniform user distributions. In Section V,
we provide simulation results to compare to other deployments
derived in [13], [18] and verify the asymptotic optimality of
common height deployments. Finally, we provide conclusions
in Section VI.

a) Notation: We denote the first N natural numbers, N,
by [N ] = {1, 2, . . . , N}. We write real numbers in R by small
letters and row vectors by bold letters. The Euclidean norm
of x is given by ‖x‖ =

√∑
n x

2
n. We denote by Vc the

complement of the set V ⊂ Rd. The real numbers larger than
some a ≥ 0 are denoted by Ra.

II. SYSTEM MODEL

We investigate the 3-D deployment of N UAVs positioned
in Ω×R0, operating as flying BSs to provide a wireless com-
munication link to UEs in a given 2-D target region Ω ⊂ R2 on
the ground. Here, the nth UAV’s position, (qn, hn), is given by
its ground position qn = (xn, yn) ∈ Ω and its height hn ∈ R0.
The optimal UAV deployment is then defined by the minimum
average transmit-power to provide an uplink connection for
UEs, distributed by a continuous density function λ in Ω.
Each UE selects the UAV which requires the smallest transmit-
power1. This results in a so called generalized Voronoi (user)
region for each UAV and partitions Ω into N user regions.
Hence, the optimal average-power deployment problem of
N UAVs is similar to an N−point quantization problem,
as defined in [1], [17], [18], [22], [23], [25], [27]–[30]. For
homogeneous deployments, where the BSs are mounted on the
ground or at a fixed common height, the Voronoi regions for
a large number of BSs converge to the well-known hexagonal
regions [31]. For heterogeneous BSs or different heights, the
optimal regions are unknown [23].

Recently, UAVs with directional antennas have been widely
studied in the literature to increase the efficiency of wireless
links [8]–[14], [32]. Usually, the antenna gain in a given
direction is approximated by a constant gain ḠHPBW within
a 3dB beamwidth θHPBW, called the half-power-beam-width
(HPBW), and by zero or a small value outside the beamwidth,
resulting in an ideal directional antenna pattern (radiation
intensity or directional gain)

GHPBW(θ) = GHPBW(θ, φ)

=

{
ḠHPBW, |θ| ≤ θHPBW/2

0, else
, θ ∈ [0, π], φ ∈ [0, 2π],

(1)

which is independent of the azimuth angle φ and depends only
on the radiation angle θ or elevation angle θE = π/2 − θ,
see also Fig. 1. Hence, the antenna pattern is symmetric
in the azimuth plane. The gain ḠHPBW describes the aver-
age directional gain over the main lobe. However, definition
(1) ignores the strong angle-dependent gain of directional
antennas [20]. Since, due to the flight zone restrictions of
aircrafts, the maximum heights for UAVs are typically less
than 1000m, such an angle-dependent gain becomes crucial
if a few UAVs need to cover large target areas. As shown in
Fig. 1, to obtain a more realistic uplink model, we consider an
antenna gain that depends continuously on the actual radiation
angle or angle of destination (AoD) θn(ω) ∈ [0, π2 ] from
the nth UAV at pn = (qn, hn) ∈ Ω × R0 to a UE at
ω = (x, y) ∈ Ω = [0, 10]2. We denote by θE,n(ω) the
elevation angle or angle of arrival (AoA). To capture the power
fall-off versus the LoS distance dn along with the random
attenuation due to shadowing, we adopt the following model
[33, (2.51)]

PLdB = 10 log10K − 10α log10(dn/d0)− ψdB , (2)

where K is a unit-less constant depending on the antenna

1We assume an orthogonal communication by using frequency or time
separation (slotted protocols) with no inter-user interference.
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Fig. 1: UAV deployment with directional antenna gains and associ-
ated UE cells with path-loss α = 2, antenna parameter κ = 1, and
N = 2 UAVs for a uniform UE distribution in Ω = [0, 1]2.

characteristics and frequency, d0 is a reference distance to the
actual distance dn > d0 at which an exponential path-loss
needs to be considered, α ≥ 1 is the path-loss exponent, and
ψdB is a Gaussian random variable following N

(
0, σ2

ψdB

)
representing the random channel attenuation (shadowing). This
Cellular-to-UAV or terrestrial log-distance path-loss model is
widely used and recommended by both 3GPP and ITU [34],
[35]. Practical values of α are between 1 and 6. The LoS
distance of UE at ω to the nth UAV at (qn, hn) is given by

dn(ω)=
√
‖qn − ω‖2 + h2

n=
√

(xn − x)2 + (yn − y)2 + h2
n.

(3)

Common practical measurements of α have been provided in
[35]. With this model, the received power at the nth UAV from
a UE at ω is given by [33]

PRX,n(ω) = PTX,n(ω)β̃n(ω)

= PTX,n(ω)GTXGRX,n(ω)K
dα0

dαn(ω)
10−

ψdB
10 ,

(4)

where
√
β̃n(ω) is the effective channel attenuation between

the UE and the UAV. To derive a realistic channel model, not
only do we consider the LoS distance in β̃n(ω), but also we
take into account the corresponding angle between the UE
and the UAV. For the UE, the dimensionless transmit antenna
gain GTX > 0 is assumed to model a perfect omnidirectional
antenna, which is identical for all UEs. The UAVs are equipped
with identical directional receive antennas with gains

GRX,n(ω, κ) = Gκ(θn(ω))

= D0(κ) cosκ (θn(ω)) = D0(κ)
hκn

dκn(ω)
.

(5)

These gains depend on the radiation angle θ = θn(ω) ∈
[−π/2, π/2] and are symmetric along the vertical direction,
i.e., independent of the azimuth angle φ, as for example in
horn or uniform linear array (ULA) antennas [21, Sec.2.6.1].
Compared to our conference paper [1], we have added an
additional antenna parameter κ ≥ 1 to the directional antenna
gain which defines the maximum directivity of the antenna

D0(κ) =
4π

ΩA(κ)
≥ 1, (6)

where ΩA(κ) denotes the beam solid angle [21, (2-23)].
For simplicity, in the antenna pattern Uκ(θ) = cosκ(θ), we

ignore the l possible minor (side) lobes, which are usually
modeled by cos(lθ) for a more realistic antenna pattern [20].
We can ignore the side lobes and especially the back lobes
(|θ| > π/2) since there is no significant reflection above and
side-wards the UAVs when they fly at a reasonable flight
height, as shown in Fig. 1 and Fig. 2a. In fact, since we are
only interested in a power averaged over all user positions
in a cell, we essentially average the antenna pattern over
all radiation angles which is exactly what (5) describes. To
account for the power concentration compared to an ideal
isotropic antenna with gain G0 = 1 in each direction, we
normalize the symmetric directional antenna gain Gκ(θ) in (5)
by the maximal directivity (6), which is inverse proportional
to the beam solid angle

ΩA(κ) =

∫ 2π

0

∫ π

0

Uκ(θ) sin(θ)dθdφ

= 2π

∫ π/2

0

cosκ(θ) sin(θ)dθ =
2π

κ+ 1
, κ ≥ 1,

(7)

where the closed-form expression for the last integral is
provided in [36, (2.537.1)]. Combining (6) and (7) results in
D0(κ) = 2(κ + 1), for κ ≥ 1. Note that we assumed no
back-lobe, i.e., Uk(θ) = 0 for π ≥ |θ| ≥ π/2. For κ = 0,
we have an isotropic radiation pattern which results in a beam
solid angle (no back reflector) ΩA(0) = 4π and hence to the
directivity D0(0) = 1. The directivity of a directional antenna
describes the overall power gain, compared to an isotropic
antenna, in the direction of maximum gain (θ = 0). The larger
κ, the larger the directivity of the directional antenna, and the
smaller the beam. Then, large κ’s model antennas with small
beamwidths and allow to focus (collect) the radiation power in
a smaller area on the ground (cell), as shown in [20, Fig. 4] and
Fig. 2a. A more insightful antenna parameter is given by the
beamwidth θHPBW. The HPBW is by definition [21] twice the
angle θHPBW/2 at which the gain is half of the maximum gain,
i.e., for the normalized pattern Uκ(θHPBW/2)=1/2. Hence, for
the pattern Uκ(θ) = cosκ(θ), the HPBW relates to κ by

θHPBW(κ) = 2 arccos(2−1/κ). (8)

However, the HPBW only describes the solid angle, in which
the gain is at least half the maximum gain Uκ(0). The
assumption that most of the radiated power is radiated in
this solid angle leads to the approximation in (1). Not only
does such an approximation neglect the radiation outside the
beamwidth, but also it ignores the fact that the continuous
radiation pattern monotonically decreases in |θ| over the range
[−π/2, π/2].

To see the approximation error for a constant directional
pattern in (1) versus a cosine pattern (5), we can compare
the average powers for uniformly distributed UEs in a circle
ground region, covered by a single UAV with beamwidth
θHPBW(κ) in (8). Here, we only need to adjust ḠHPBW
such that (1) has the same total radiation power as (5),
i.e., ḠHPBW

∫ 2π

0

∫ arccos(2−1/κ)

0
sin(θ)dθdφ = 4π, which gives

ḠHPBW,κ = 2/(1 − 2−1/κ). For a given height h, path-
loss exponent α and beamwidth exponent κ, the average
received power with cosine-pattern is given by (4) and (5) as
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P̄RX(h, κ, α) = 1
h tan(θHPBW(κ))

∫ θHPBW(κ)

0
Gκ(θ)hα/ cosα(θ)dθ,

where we ignored the constant parts. Taking the power ratio
of cosine directional gain and constant directional gain results
in

ρ(κ, α)=(κ+1)(1−2−1/κ)

∫ arccos(2−1/κ)

0
cosκ−α(θ)dθ∫ arccos(2−1/κ)

0
cos−α(θ)dθ

, (9)

which is independent of the height (area of the covered circle).
This indicates how much a constant antenna gain will bias the
optimal average transmit power of the users. For κ = α = 2
in Fig. 2a, the ratio is ρ(2, 2) = 0.348, which corresponds to
a 4.6 dB power penalty for the cosine-pattern compared to a
constant-pattern.

By using the gain in (5), we have a mathematically tractable
model which respects such a continuous angle-dependent
radiation gain. Accordingly, the transmit power with random

(a)

(b)
Fig. 2: (a) Isotropic (dotted), directional with κ = κLoS = 2

(solid), and constant-beamwidth (dashed) antenna gain (linear) in the
elevation plane and normalized to total radiation power 4π. (b) shows
the attenuation over the elevation angle θE for some regularized LoS
path-loss parameters versus the cosine antenna pattern with κLoS = 2.

attenuation ψdB can be rewritten as

PTX,n(ω) =
PRX,n(ω)

hκnKGTXD0(κ)dα0
dα+κ
n (ω)10

ψdB
10 . (10)

The expectation over the random path-loss attenuation ψdB
yields the transmit power

Pn(ω)=E[PTX,n(ω)] =
PRX,n(ω)

hκnKGTXD0(κ)dα0
·

dα+κn (ω)√
2πσψdB

∫
R
exp

(
ln(10)

ψdB
10
− ψ2

dB

2σ2
ψdB

)
dψdB .

(11)

We consider the communication between UE and UAV as
reliable if the corresponding bit-rate is at least Rb. Given
a channel bandwidth B and noise power N0, the Shannon
formula suggests that Rb = B log2

(
1 +

PRX,n
N0

)
. Therefore,

the minimum required received power is P0 = (2Rb/B−1)N0.
The minimum transmit power of UE to achieve a minimum
received power of P0 at the nth UAV is then given by

Pn(ω) = PTX(qn, hn,ω) =
1

β0(α)
· d

α+κ
n (ω)

D0(κ) · hκn
, (12)

where the independent and fixed parameters of the channel
attenuation are combined to

β0(α)=
KGTXd

α
0

P0
exp

(
σ2
ψdB

(ln 10)2

200

)
=
KGTXd

α
0 σ

2
ψ

(2
Rb
B −1)N0

, (13)

where σ2
ψ is the (linear) average-power of the random shadow

attenuation. Hence, β0(α), with unit mα/W, describes the
shadowing, noise-power, bandwidth/data-rate, and the an-
tenna characteristics controlled by the path-loss exponent α.
The second factor in (12) is the inverse of the angle and
distance-dependent channel/antenna attenuation βn(ω, κ, α) =
GRX,n(ω, κ)/dαn(ω), which depends on (5), the directional
antenna gain GRX,n(ω, κ) =D0(κ)(hn/dn(ω))κ of the nth
UAV to a UE at ω, and is the novel part of our model. In
this model, the directional antenna gain decreases with the
radiation angle and punishes large radiation angles, i.e., UEs
with a small elevation angle. A larger κ increases this effect
but at the same time provides a larger maximum directivity.

The main goal of this work is to understand the optimal
UAV deployment and optimal directional antenna beam for a
given user area Ω and number N of UAVs. For the validity
of the path-loss model in (2), we need to ensure that dn > d0

for any UE position ω, which requires a minimum flight
height hmin > d0 for each UAV. Such a minimum flight
height can also be justified from a security point of view, to
prevent collisions of the UAV with objects or people on the
ground. Furthermore, a very low UAV height can result in high
transmit-powers for far distant UEs, which is not acceptable.
As can be seen from (12), the transmit-power PTX is a function
of the parameter hn (UAV flight height) in addition to the
ground distance between qn (UAV ground position) and ω
(UE position).

So far, we have considered a large-scale fading channel
model for Cellular-to-UAV links, in which we have included
the angle-dependent directional antenna gain. However, for a
ground-user-to-UAV link in an urban area, we also need to
consider small-scale fading with Non-LoS (NLoS) paths. Such
a NLoS path is due to the blockage of objects on the ground,
for example by buildings, trees, or moving vehicles [15], [35],
[37], [38]. A NLoS propagation results in a higher path-loss
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and hence in an additional attenuation of some βNLoS ≤ 1.
The probability for a LoS propagation can be approximated
in the elevation angle θE = π/2− θ (in radians) by

PrLoS(θE) =
1

1 + ae−b(
180
π θE−a)

, (14)

for some parameters b > 0 and 0 < a < 90 [7], [13], [16].
The probability of a LoS path is monotone increasing in the
elevation angle and has an S−shaped curve, as shown by the
thick blue curve in Fig. 2b. In more dense urban areas, the
NLoS paths are more likely, even at larger elevation angles,
and the S-curve shifts to the right [16, Fig. 2]. A probabilistic
mixing of LoS βLoS and NLoS βNLoS attenuation results in a
regularized LoS path-loss given by

β̂LoS(θE) = PrLoS(θE)βLoS + (1− PrLoS(θE))βNLoS

=
1 + βNLoSae

−b( 180
π θE−a)

1 + ae−b(
180
π θE−a)

,
(15)

where we set βLoS = 1 and βNLoS ≤ 1 on the right hand side
without loss of generality [7], [38]. We rename the beamwidth
exponent to κLoS to study the effects of LoS and NLoS in
Fig. 2. Dividing (12) by the regularized LoS path-loss in (15)
provides the required transmit power

Pn(ω) =
1

β0(α)

1

βn(ω, κLoS, α)

1

β̂LoS(π/2− θn(ω))
. (16)

Since βn(ω, κLoS, α) = d−αn (ω)D0(κLoS) cosκLoS(θn(ω)),
the angle-dependent component of (16) is β̂LoS(π/2 − θ) ·
cosκLoS(θ). But since the directional antenna pattern cosκLoS(θ),
for some κLoS ≥ 1, decays fast to zero if the AoD θ approaches
π/2, the antenna intensity dominates the attenuation gain for
large θ. As shown in Fig. 2b, the cosine antenna pattern
for κ = κLoS = 2 (black square curve) fully absorbs the
regularized LoS attenuation of the S-curve (15) for large
elevation angles θE = π/2 − θ (red curve). The result is
only affected for very small elevation angles (large AoDs).
By choosing a proper minimum height hmin for a given area
A = |Ω|, small elevation angles can be avoided, such that we
can neglect the NLoS path effects. Furthermore, we can also
add an additional exponent κNLoS in the cosine antenna pattern
to increase or decrease the descent of the Cosine

Pn(ω) ≈ 1

β0(α)D0(κLoS)

dαn(ω)

cos(θn(ω))κNLoS+κLoS

=
1

β0(α)D0(κLoS)

dα+κNLoS+κLoS
n (ω)

hκNLoS+κLoS
n

,

(17)

which can approximate the regularized LoS path in denser
urban areas, as shown in Fig. 2b for κNLoS + κLoS = 4 + 2 =
6. Note that the maximum directivity only depends on κLoS.
Hence, for fixed α, κLoS, and κNLoS, a minimization of the
average transmit-power for a full coverage of users in Ω results
in a 3-D UAV deployment problem that is solved in the next
section. For simplicity, from now on, we set β0(α)D0(κLoS) =
1 (mα/W) since it does not affect the optimal deployment for
fixed α, κLoS. Moreover, in the next section we only consider
the constant κ = κLoS + κNLoS.

III. POWER-EFFICIENT UAV DEPLOYMENTS

The transmit power (17) defines, with hn, qn and fixed
α, κ ≥ 1, a parameter-dependent power function over ω,
by identifying d2

n(ω) = ‖ω − qn‖2 + h2
n. For a given UE

density λ in Ω, UAV deployment (Q,h) with ground positions
Q = (q1, . . . ,qN ), heights h = (h1, . . . , hN ), and user
regions (cells) R = {R1, . . . ,RN} with

⋃
Rn = Ω, the

average transmit power P̄ of each UE in Ω for γ = α+κ
2 ≥ 1

is given by

P̄ (Q,h,R) =
N∑
n=1

∫
Rn

P (ω,qn, hn)λ(ω)dω

with P (ω,qn, hn) =
(‖ω − qn‖2 + h2

n)γ

hκn
.

(18)

Here, we assume that the UE at ω transmits with the smallest
power P to achieve a reliable link to the nearest UAV at
(qn, hn). The N regions, which minimize the average transmit
power for given ground positions and heights (Q,h), define
a generalized Voronoi tessellation V = {Vn(Q,h)} of Ω by

P̄ (Q,h) =

∫
Ω

min
n∈[N ]

{P (ω,qn, hn)}λ(ω)dω

=

N∑
n=1

∫
Vn(Q,h)

P (ω,qn, hn)λ(ω)dω,

(19)

where the generalized Voronoi regions Vn(Q,h) are de-
fined as the set of sample points (user positions) ω with
smallest power to the nth ground position qn with param-
eter hn (UAV position). Minimizing the average transmit-
power P̄ (Q,h,V) over all UAV positions can be seen as an
N−facility locational-parameter optimization problem [17],
[27], [28], [31], [39], where calculating the gradient over
a location-dependent integral region Vn(Q,h) is the most
challenging part. According to the definition of the Voronoi
region in (19), we have

Vn(Q,h) = {ω ∈ Ω | P (ω,qn, hn)

≤ P (ω,qm, hm) for all m 6= n}.
(20)

The minimum average transmit-power over all possible de-
ployments with minimal flight height hmin is then given by

P̄ ∗ = P̄ (Q∗,h∗) = min
(Q,h)∈ΩN×RNhmin

P̄ (Q,h)

= min
(Q,h)∈ΩN×RNhmin

min
R={Rn}⊂Ω

P̄ (Q,h,R).
(21)

Like the traditional N−facility locational-parameter optimiza-
tion problem2 in [39], where κ = 0 and hn = 0, the
optimization problem in (21) is a constrained non-convex
optimization problem. The computational complexity of find-
ing the global optimum for such an N−facility problem has
been proved to be NP-hard [41]. To find the local extrema
of (19) analytically, we need the objective function P̄ to be
continuously differentiable at any point in ΩN × RN0 . Such
a property was shown to be true for piecewise continuous

2The traditional N−facility locational-parameter optimization problem has
been widely explored for 2-D deployment and can be solved by Lloyd
Algorithm with super-polynomial complexity [40].
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non-decreasing cost functions with Euclidean metrics over ΩN

[39, Thm. 2.2] and weighted Euclidean metrics [27]. Then,
the necessary condition for a local extremum is the vanishing
of the gradient at a critical point3. By [27], the gradient of
this kind of optimization problem depends on the Voronoi
region’s geometric characteristics. Thus, in the next lemma,
we derive and explore the generalized Voronoi regions for
sets Ω ⊂ Rd with d = 1, 2 and for any height hn ∈ R0.
The derived generalized Voronoi regions are special cases of
Möbius diagrams (tessellations), introduced in [26].

Lemma 1. Let Q = (q1,q2, . . . ,qN ) ∈ ΩN ⊂ (Rd)N for
d ∈ {1, 2} be the ground positions and h ∈ RN+ the associated
heights. For fixed parameters κ ≥ 1 and γ ≥ 1+κ

2 with
uniform density λ in Ω, the minimal average power over all
possible N regions is given by

P̄ (Q,h) =
N∑
n=1

∫
Vn

(‖qn − ω‖2 + h2
n)γ

hκn
λ(ω)dω, (22)

where the generalized Voronoi region Vn = Vn(Q,h) =⋂
m 6=n Vnm and the dominance region of n over m is defined

by

Vnm =


{ω ∈ Ω | ‖qn − ω‖ ≤ ‖qm − ω‖} , hm = hn,

{ω ∈ Ω | ‖ω − cnm‖ ≤ rnm} , hn < hm,

{ω ∈ Ω | ‖ω − cnm‖ ≥ rnm} , hn > hm,

(23)

where center cnm and radius rnm of the circle are given by

cnm=
qn − hnmqm

1− hnm
and

rnm=

(
hnm

(1− hnm)
2 ‖qn − qm‖2+h2

n

h
1− 2γ

κ
nm − 1

1− hnm

)1
2

.

(24)

Here, we denoted the height ratio of the nth and mth UAV by
hnm = (hn/hm)

κ
γ .

Proof. See Appendix A.

Remark. It is also possible that two UAV ground positions are
the same, but have different heights. If the height ratio is very
small or very large, one of the UAVs can become redundant,
i.e., its region is empty and the UAV is not connected to any
UE, as shown in the following example. In fact, optimizing
over all UAVs excludes such a case. We showed this fact for
the optimal 2-D deployment in [42, Lem. 3].

Example. Fig. 1 plots the UE regions for a uniform distribution
in Ω = [0, 10]2 and N = 2 UAVs placed on q1 = (1, 2), h1 =
4 and q2 = (6, 6), h2 = 8, with parameters κ = 1 and
α = 2. If the second UAV reaches an altitude of h2 ≥ 18.4,
its Voronoi region V2 = V2,1 is empty.

A. Necessary optimal conditions
To find the optimal deployment of N UAVs, we have to

minimize the average transmit power (18) over all possible

3If ∇P̄ is not continuous in PN , then any jump-point is a potential critical
point and has to be checked individually.

UAV positions with minimum flight height hmin, i.e., we
have to solve the following non-convex N−facility locational-
parameter optimization problem (25) where Vn(Q,h) is the
Möbius region defined in (23) for a fixed (Q,h). The integral
kernel f(‖qn − ω‖2 , hn) = (‖qn − ω‖2 +h2

n)γ/hκn is a non-
decreasing positive function in the Euclidean distance of qn
and ω for fixed hn, since γ ≥ (1+κ)/2 ≥ 1. A point (Q∗,h∗)
with Möbius diagram V∗ = V(Q∗,h∗) = {V∗1 , . . . ,V∗N} is a
critical point of (25) if all horizontal partial derivatives of P̄
and the vertical partial derivatives of P̄ are vanishing , i.e., if
for each n ∈ [N ], we have (26) and (27) [27]. If h∗n < hmin,
then we set h∗n = hmin. In this case, the global optimal
deployment is not admissible and (Q∗,h∗) becomes a local
optimum. However, it is possible to achieve a global optimum,
by adjusting the parameters α, κ,N, and Ω accordingly. For
N = 1, the integral regions do not depend on Q or h and since
the integral kernel f is continuously differentiable and non-
decreasing in ‖qn − ω‖2, the partial derivatives only apply to
the integral kernel [43]. For N > 1, the conservation-of-mass
law [39] can be used to show that the derivatives of the integral
domains cancel each other, see [27] for a detailed proof.

Remark. The shape of the regions depends on the UAV heights.
If the height is different for each UAV (heterogeneous), some
region boundaries will be spherical instead of polyhedral.
Later, we show that homogeneous (common) heights with
polyhedral regions are optimal.

B. Optimal common height in a 3-D UAV deployment

We showed in the conference paper version of this work [1]
that, in an optimal 2-D deployment, UAVs settle at a common
flight height in the asymptotic limit (N → ∞). Therefore,
let us assume a common height for all UAVs in the 3-D
deployment. By simulations, we show in Section V that the
optimal deployment indeed converges to a common height
deployment for large N . For any common height, Lemma 1
shows that the ground regions are polyhedral, since the cost
function is homogeneous. Hence, in the asymptotic limit, the
optimal ground positions result in congruent hexagonal regions
given a fixed common height [43].

In fact, we can show that the 3-D UAV deployment problem
with a common height restriction and for large N has only
one local optimum deployment, given by centroidal ground
positions with hexagonal regions and an optimal common
height h∗.

Theorem 1. Let κ ≥ 1, γ ≥ (1 + κ)/2, and Ω ⊂ R2 be
a set with area µ(Ω) = A > 0. For a uniform density
λ over Ω, the optimal deployment of N UAVs, minimizing
the average transmit-power in (25) under the restriction of a
common height, with ground locations Q∗ = (q∗1, . . . ,q

∗
N )

and common height h∗ is attained asymptotically (N → ∞,
high resolution case) by the hexagonal lattice, where each
Voronoi region V∗n is congruent to the hexagon H and the
optimal ground locations are the corresponding centroids.
Moreover, the global optimal common height is given by
h∗ = h∗(γ, κ,H) for H = A/N . For γ = 1, 2, 3, we derive
the optimal height asymptotically as
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P̄ (Q∗,h∗) = min
Q∈ΩN ,h∈RNhmin

N∑
n=1

∫
Vn(Q,h)

h−κn (‖qn − ω‖2 + h2
n)γλ(ω)dω, (25)

∇qn P̄
∣∣∣
qn=q∗n

=
2γ

h∗κn

∫
V∗n

(q∗n − ω)(‖q∗n − ω‖2 + h∗2n )γ−1λ(ω)dω = 0, (26)

∇hn P̄
∣∣∣
hn=h∗n

=
κ

h∗κ+1
n

∫
V∗n

(
2γh∗2n
κ

(‖q∗n − ω‖2 + h∗2n )γ−1 − (‖q∗n − ω‖2+h∗2n )γ
)
λ(ω)dω = 0. (27)

h∗(γ, κ,H) ∼ c(γ, κ)
√
H for 1 ≤ κ ≤ 2γ − 1, (28)

with scaling factors (29), where

u(κ) = (143360− 16728κ− 444κ2 + 37κ3)/4375, (30)

v(κ) =
12(6− κ)

125 · 35

√
3

5
· (31)√

6607552+659680κ+103387κ2−108408κ3+9034κ4,

which achieves for β0 = 1 and directivity D0(κ) in (6) the
minimal average transmit powers (32).

Proof. See Appendix B

Remark. The optimal common height in (28) scales with
c(γ, κ), which increases with κ for fixed γ. Note that c(γ, κ) ≤
1 for γ ∈ {1, 2, 3} and all admissible 1 ≤ κ ≤ 2γ − 1. For a
realistic path-loss model of the wireless link in (2), the ratio
H = A/N and the parameters α and κ have to be chosen such
that the optimal height satisfies h∗ ≥ hmin > d0 ≥ 1, where
hmin is the minimum height constraint. Combining c(γ, κ) ≤ 1
and (28) results in H > 1. In the asymptotic limit, H = A/N
can be seen as the cell (region) size per UAV, i.e., the size
of the hexagon H. Note that if d0 = 1, then β0 in (13) is
independent of α.

Although, the analytic results in Theorem 1 are only asymp-
totic in N , simulations in Section V validate similar results
already for N = 100 UAVs. Hence, deploying the N UAV
ground positions on a hexagonal grid at a common height (28),
yields a very power-efficient uplink coverage of the UEs. Due
to the non-linearity of the problem, the closed-form solutions
of the height (28) and power (32) are difficult to derive.
However, using the proof techniques in Appendix B, the
optimal common height h∗ =

√
z∗ for any α, γ combinations

can be calculated numerically by solving (40) for z. Using
hexagonal Voronoi regions and inserting the optimal common
height in (25) results in the minimal average transmit-power
of the UEs. Therefore, the closed-form solutions in Theorem 1
can be used to study the general behavior of the optimal
deployment, such as the optimal power behavior over cell size
H or beamwidth (antenna) parameter κ, as shown in Fig. 3.
Here, Fig. 3a and Fig. 3b show the minimum average transmit-
power in dB over H for κ = 1 and over various 1 ≤ κ ≤ 2γ−1
and γ = 1, 2, 3 corresponding to α = 2γ − κ, respectively.
Note that, in Fig. 3b, an increase in κ decreases α since γ is
fixed. Since the directivity D0 = 2(κ + 1) increases with κ,
it reduces the average transmit-power in (32). For α = 1 and
κ = 1 (solid curve), we gain 3 dB if we use κ = 3 (dashed
curve). Hence, in Fig. 3b, P̄ ∗(2, 3, 100) is the smallest average
transmit power for H = 100, given for example by N = 100

UAVs covering Ω = [0, 100]2.
Moreover, it can be seen that the (local) optimal heights

(28) scale with
√
H and the transmit-powers (32) scale with

(
√
H)2γ−1, since the power depends on the height in (51)

by a power of maximal 2γ − 1. Indeed, the derivations for
γ = 1, 2, 3 show a power scaling with Hγ−1/2. Hence, for
large H and constant κ, the average power P̄ ∗ increases in
γ ≥ 1, as can be seen in Fig. 3a. On the other hand, for fixed
κ, c(γ, κ) decreases in γ ≥ 1 and so the common optimal
height. We can also confirm this behavior by simulations in
Fig. 8a for fixed κ ∈ {1, 2} and H . Similar results hold for
the 2-D deployment and can be shown analytically [42, Thm.
1].

Let us note that, in the high-resolution case, all values of cell
size H = A/N can be achieved by an appropriate choice of
the target size A. An increase of κ for fixed α can change the
transmit-power, but only slightly changes the optimal common
height. Hence, the optimal κ can be determined to minimize
the transmit-power by optimizing the effective beamwidth.

From simulations in the next section, for a uniform user
density, we see that restricting the heights to be the same, i.e.,
a common height, does not lead to larger average transmit-
power if N is very large. Therefore, we conjecture that
the optimal common height with centroidal ground positions
asymptotically achieves the global minimum average transmit-
power.

IV. LLYOD-LIKE ALGORITHMS

In this section, we introduce two Lloyd-like algorithms,
presented in Algorithm 1, to optimize the deployment for 3-D
scenarios. The proposed algorithms iterate between two steps:
(i) The partitioning is optimized while the UAV positions are
fixed; (ii) The UAV positions are optimized through gradient
descent while the ground cell partitioning is fixed. In Lloyd-A,
all UAVs share a common height while Lloyd-B allows UAVs
with different heights. Like Lloyd Algorithm, Lloyd-A and
Lloyd-B are iterative improvement algorithms and converge.
In Section III, we have proved that generalized Voronoi regions
are the optimal cell partitions for a given UAV deployment.
Therefore, the average power cannot increase in Step (i).
During Step (ii), the cell partition is fixed and the original
optimization problem can be divided into N separate subprob-
lems: min(qn,hn)∈Ω×Rhmin

∫
Vn

(‖qn−ω‖2+h2
n)γ

hκn
λ(ω)dω, for all

n ∈ {1, . . . , N}. Each UAV attempts to move along the
opposite direction of the gradient to reduce the power over
its own cell partition Vn. To avoid power increase, a complete
loop over n is applied to tune the movement distance. As a
result, each UAV will stay still or move to a new location with
smaller power consumption. Thus, Step (ii) cannot increase
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c(1)=

√
5

18
√

3
, c(2, κ)=

√
5

18
√

3

√
(172−43κ) κ

125 +4−(2−κ)

4−κ
, c(3, κ)=

√
5

18
√

3

(u(κ)−v(κ))
1
3+(u(κ)+v(κ))

1
3−(4−k)

6− κ
(29)

P̄ ∗(1, 1, H) ∼ 1

D0(1)

√
10

9
√

3
H

1
2 , P̄ ∗(2, κ,H) ∼ 1

D0(κ)

(
14

405c(2, κ)
+

5c(2, κ)

9
√

3
+c3(2, κ)

)
H

3
2 ,

P̄ ∗(3, κ,H) ∼ 1

D0(κ)

(
83

195 · 27c(3, κ)
+

14c(3, κ)

135
+

5c3(3, κ)

9
√

3
+ c5(3, κ)

)
H

5
2 . (32)

(a)

(b)
Fig. 3: Optimal average-powers for γ=1, 2, 3 (a) over cells of size
H=A/N for κ = 1 and (b) over various κ for H = 100.

the power consumption either. In addition, we limit UAVs’
vertical movement to satisfy the constraint hn ≥ hmin. The
main difference between Lloyd-A and Lloyd-B is in the
computation of the gradients. The gradient formula for Lloyd-
B is provided by Eqs. (26) and (27). To derive the same
formula for Lloyd-A, the N heights, {hn}, are replaced by
a common height h. Then, the partial derivative with respect
to h is the sum of the partial derivatives with respect to hn,
i.e., ∇h =

∑N
n=1∇hn |hn=h.

A. Algorithm Complexity

Before calculating the complexity of Lloyd-A and Lloyd-
B algorithms, we need to study the complexity of computing
gradient {∇qn ,∇hn} and generalized Voronoi regions {Vn}.
Both ∇qn and ∇hn are integrals over generalized Voronoi
region Vn. Many methods to calculate integrals, such as
uniform sampling, stratified sampling, importance sampling,
sequential Monte Carlo, and Risch algorithm are available in

Algorithm 1 Lloyd-like Algorithms (Lloyd-A and Lloyd-B)

Input: Target area: Ω; probability density function: λ(·); the
initial UAV ground deployment: Q = (q1,q2, . . . ,qN );
the initial UAV heights: h = (h1, h2, . . . , hN ) ( h1 =
h2 = · · · = hN for Lloyd-A); path-loss exponent: α; the
antenna pattern exponent: κ; the minimum flight height:
hmin; the initial step size: δ; the stop threshold: ε; the
maximum number of iterations for the external loop: Lex;
the maximum number of iterations for the internal loop:
Lin.

Output: the final UAV ground deployments
Q = (q1,q2, . . . ,qN ); the final flight height:
h = (h, . . . , h) for Lloyd-A or h = (h1, h2, . . . , hN )
for Lloyd-B; Total average transmit-power at the final
deployment P̄ (Q,h).

1: Calculate the generalized Voronoi regions {Vn}n∈{1,...,N}.
2: Initialize the external loop index i = 1
3: do
4: Calculate the old total power P̄old = P̄ (Q,h)
5: Calculate the gradient ∇qn and ∇hn by (26) and (27)
6: Initialize step size t = δ
7: if (∇qn 6= 0 or ∇hn 6= 0, ∀ n ∈ {1, . . . , N}) then
8: do
9: Initialize the internal loop index j = 1

10: Calculate the ground positions q′n=qn−t∗∇qn

11: Calculate the new UAV flight heights{
h′n = max(hmin, hn − t ∗

∑
n∇hn), Lloyd-A

h′n = max(hmin, hn − t ∗ ∇hn), Lloyd-B
12: Adjust the step size t = t/2
13: Calculate the power P̄ (Q′,h′)
14: while P̄ (Q,h) ≤ P̄ (Q′,h′) and j < Lin
15: end if
16: Update UAV deployment Q = Q′, h = h′

17: Update the generalized Voronoi regions {Vn}n∈{1,...,N}.
18: Calculate the new total power P̄new = P̄ (Q,h)
19: i = i+ 1
20: while P̄old−P̄new

P̄old
> ε and i < Lex

the literature [44], [45]. For simplicity, we assume the integrals
in ∇qn and ∇hn are calculated by uniform sampling4. In
this case, the computational complexity of ∇qn and ∇hn is
proportional to the number of samples, O(µ(Vn)

τ ), where τ is
the sample size. Thus, the total complexity of computing all
∇qn and ∇hn terms is O(

∑N
n=1 µ(Vn)

τ ) = O(µ(Ω)
τ ). Similarly,

the total power P̄ (Q∗,h∗) is an integral over Ω and can be

4The integral is approximated by the summation over uniform samples.
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calculated within O(µ(Ω)
τ ).

Next, we analyze the computational complexity of general-
ized Voronoi regions. Since all UAVs share a common height
in Lloyd-A, the 2-D generalized Voronoi regions are degraded
to standard 2-D Voronoi regions and can be computed with
complexity O(N) [46]. For Lloyd-B, we use a 2-D generalized
Voronoi diagram which has the same structure as the 2-D
multiplicatively weighted Voronoi diagram5. As a result, the
2-D generalized Voronoi diagram and the 2-D multiplicatively
weighted Voronoi diagram have the same complexity O(N2)
[47].

Now, we use the above analysis to derive the complexity
of the proposed algorithms. Given ∇qn and ∇hn , the com-
putational complexity of q′n and h′n is O(1) while calculat-
ing the power P̄ (Q′,h′) has complexity O

(
µ(Ω)
τ

)
. Thus,

the complexity of the internal loop (Lines 8 - 14) can be
determined as O

(
Lin

(
O(µ(Ω)

τ ) +O(1)
))

= O
(
Linµ(Ω)

τ

)
,

where Lin is the maximum number of iterations of the
internal loop. In the external loop, we calculate the gra-
dient and cell partitioning. Therefore, the total complex-
ity for Lloyd-A is O

(
Lex ·O(Linµ(Ω)

τ ) +O(µ(Ω)
τ ) +N

)
=

O
(
Lex

(
Linµ(Ω)

τ +N
))

, where Lex is the maximum number
of iterations of the external loop. Similarly, the complexity of
Loyd-B is O

(
Lex

(
Linµ(Ω)

τ +N2
))

.

V. SIMULATION RESULTS

In what follows, we provide simulation results over the 2-
D target region Ω = [0, 1000]2 with uniform and non-uniform
density functions. The non-uniform density function is a Gaus-

sian mixture of the form
∑3
k=1

Ak√
2πσ2

k

exp

(
− ‖ω−ck‖

2

2σk

)
∫
Ω

(∑3
k=1

Ak√
2πσ2

k

exp
(
− ‖ω−ck‖2

2σk

))
dω

,

where the weights, Ak, k = 1, 2, 3 are 0.5, 0.25, 0.25,
the means, ck, are (300, 300), (600, 700), (750, 250), the
standard deviations, σk, are 1.5, 2, and 1, respectively. All
length parameters are measured in meters. The power values
depend on the fixed parameters defining β0 in (13), given by
the bandwidth B, data-rate Rb, noise-power N0 at the UAV,
channel attenuation power σ2

ψ , antenna characteristic K, UE
antenna gain GTX ( = 1 for perfect isotropic antennas), and the
reference distance dα0 (usually set to 1). The beam-exponent
κLoS and path-loss exponent α are dimensionless and can be
adjusted to obtain optimal heights and average-transmit powers
in a desired range. In our simulations, we set β0(2) = 10−2

m2/W, β0(3) = 10−3 m3/W, and β0(4) = 10−4 m4/W.
To evaluate the performance, we compare the average

transmit-power in Watt for deployments derived by Lloyd-
A, Lloyd-B, the algorithm in [18], denoted by KSS, and
the algorithm in [13], denoted by MSBD, with various path-
loss exponents α and various minimum heights6. KSS de-
ployment Algorithm is designed to minimize the average
power of UAVs with omni-directional antennas whose antenna

5The only difference between the generalized Voronoi diagram and multi-
plicatively weighted Voronoi diagram is the value of the centroid and radii
which are provided in Eq. (24).

6To make KSS and MSBD Algorithms satisfy the minimum height con-
straint, we adjust their final heights by hmin, i.e., hn = max(hn, hmin).

gains are identical among all directions (κLoS = 0). Taking
a "constant" directional antenna pattern into consideration,
MSBD Algorithm applies a circle packing [48] to derive the
ground positions of the N UAVs with a common cell radius7

and then determines the heights in terms of θHPBW. In our
simulations, the HPBW for "constant" antenna patterns is set
to θHPBW = 120◦. To make a fair comparison, the directivity
parameter for cosine-shape patterns is set to κLoS = 1, which
according to (8) corresponds to θHPBW(1) = 120◦. For κLoS =
2, we obtain θHPBW(2) = 90◦. Lloyd-like algorithms (KSS,
Lloyd-A and Lloyd-B) require an initial UAV deployment. We
generate 100 initial UAV deployments randomly, i.e., every
UAV location is generated according to a uniform distribution
on 1000 × 1000 × 100. Then, the Lloyd-like algorithms are
initialized with the generated random deployments and the
power is calculated as the average over 100 runs.

The performance comparisons for different path-loss param-
eters and different minimum heights are shown in Fig. 4. The
omni-antenna power and cosine-directional-antenna power are
calculated from (18) divided by the maximum directivity8 (6)
with κLoS = 0 and κLoS = 1, respectively. Note that KSS
Algorithm generates the optimal deployment for UAVs with
omni-antennas. When the number of UAVs is large, Fig. 4
shows that KSS Algorithm can benefit from replacing omni-
antennas by cosine-directional antennas. However, when the
number of UAVs is small, KSS Algorithm spends more energy
on cosine-directional antennas compared to omni-antennas.
For example, given 20 UAVs in Fig. 4a, KSS Algorithm spends
the average power of P̄ = 0.98 (W) on cosine-directional
antennas which is larger than that of omni-antennas, i.e.,
P̄ = 0.91 (W). However, if 40 UAVs are deployed, the omni-
antenna power P̄ = 0.48 (W) exceeds the cosine-directional
antenna power of P̄ = 0.37 (W). Moreover, one can save
power by deploying more UAVs or using an environment with
less path-loss exponent. On one hand, deploying more UAVs
will reduce the overall communication distance between UEs
and UAVs and thus spend less power. On the other hand,
a small path-loss exponent α means less power attenuation.
Thus, given the communication distance, the environment with
a small α is more energy efficient.

By comparing the average powers of cosine-directional-
antennas provided by different algorithms, we can conclude
that the proposed Lloyd-B is the best solution for cosine-
directional-antennas. Moreover, cosine-directional-antennas’
minimum powers which are achieved by Lloyd-B, are al-
ways smaller than omni-antennas’ minimum powers which
are achieved by KSS Algorithm. In other words, cosine-
directional-antennas are more energy-efficient compared to
omni-antennas. An intuitive explanation is that omni-antennas
radiate power among all directions, which is a waste of energy,
while cosine-directional-antennas concentrate the power to a
specific UE cell on the ground. Furthermore, using cosine-
directional-antennas, UAVs can cover all UEs in the target area

7The optimal N−circle packing over a square can be found, e.g., at
http://hydra.nat.uni-magdeburg.de/packing/csq/csq.html.

8In Section II, we assume β0(α)D0(κLoS) = 1 for simplicity. However,
when we compare the powers of different antennas (or different κLoSs), the
antenna directivity D0(κLoS) is taken into account.
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Fig. 4: The performance comparison for various path-loss exponents α and various minimum heights with the uniform density function and
beam-exponent κLoS = 1 and NLoS exponent κNLoS = 0. (a) α = 2, hmin = 25; (b) α = 3, hmin = 25; (c) α = 4, hmin = 25; (d) α = 2,
hmin = 50; (e) α = 3, hmin = 50; (f) α = 4, hmin = 50.

while MSBD Algorithm using a constant-directional antenna
model achieves only a partial coverage, due to non-overlapping
circular ground cells. For example, if we apply constant-
directional-antenna pattern to MSBD deployment in Fig. 4a,
the coverage will be dropped from 100% to 78.54%. In fact,
the constant-directional-antenna model is an ideal but not
realistic antenna model. Thus, one should use model (5) rather
than model (1) to evaluate the power consumption. The gap
between the green and red curves in Figs. 4 and 5 shows how
much power we can save by using our proposed deployment
against MSBD deployment with the realistic model (5). For
a given deployment, when the constant-directional-antenna
model is replaced by the realistic cosine-directional-antenna
model, the corresponding power is significantly increased.
Furthermore, the circle packing solution, used in MSBD
Algorithm, is only available over some special-shaped target
regions, e.g, squares and circles. However, Lloyd-A(B) can be
applied to arbitrary target regions.

From Fig. 4, one can also find that the average powers
spent by Lloyd-A and Lloyd-B are very close (the difference
is less than 0.5%), indicating the optimality of the common
height when the density function is uniform. However, the
gap between Lloyd-A and Lloyd-B in Figs. 5a, 5b, 5c for a
non-uniform density function is non-negligible. For instance,
given 20 UAVs with path-loss exponent α = 3, the average
power by Lloyd-A is 0.56 (W) while the average power by
Lloyd-B is only 0.52 (W) which is 7.1% lower. As a result,
the optimality of the common height cannot be extended to
the scenarios with non-uniform density functions. Intuitively,
the system should allocate more resources, e.g., UAVs, to the
high density region. As a result, the cell size in a high density

region should be smaller than that of a low density region.
As we will see in Section V-A, UAVs tend to have lower
heights with smaller cell sizes. Therefore, instead of flying
on a common height, UAVs over a non-uniform distributed
target region will have relatively low altitudes in high density
regions and relatively high altitudes in low density regions.
Meanwhile, the minimum flight height has an influence on the
deployment. If the minimum flight height is large, it may limit
the capability of the algorithm to choose the best locations
and force it to place the UAVs at the minimum height. For
example, Lloyd-A(B), like KSS Algorithm, places UAVs at
the height of 50 in Figs. 4d, 4e and 4f. As a result, the average
power of KSS Algorithm with cosine-directional-antennas is
much closer to that of Lloyd-A(B) in Figs. 4d, 4e and 4f.
Nonetheless, as shown in Figs. 4d, 4e, and 4f, Lloyd-A(B)’s
power is not larger than that of KSS Algorithm even if the
performance is limited by a large minimum flight height.

To study the influence of beamwidth which is reflected
by κLoS, we compare the average power for various κLoSs.
Fig. 6a shows that the minimum power for different hmins is
achieved by different beamwidths. When the height constraint
is loose9, i.e., hmin = 25, the power increases as the κLoS goes
up and the minimum power is achieved at κLoS = 1. When
hmin is increased to 50 m, optimal UAV heights with small
beamwidth are limited to 50 m. In this case, the minimum
power for uniform and non-uniform distributions is achieved at
κLoS = 2.5 and κLoS = 3.5, respectively. The power decreases
as κLoS increases for a tight constraint, i.e., hmin = 100 m,
where UAV heights are fixed to 100 m. Consequently, we

9Without the constraint on minimum fight, optimal UAV heights for κ ∈
[1, 4] are between 25 m and 75 m.
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Fig. 5: The performance comparison for various path-loss exponents α and various minimum flight heights with a non-uniform density
function and beam-exponent κLoS = 1 and NLoS exponent κNLoS = 0. (a) α = 2, hmin = 25; (b) α = 3, hmin = 25; (c) α = 4, hmin = 25.

should use broad beamwidth (small κLoS) for low-altitude
UAVs and narrow beamwidth (large κLoS) for high-altitude
UAVs. Furthermore, as we mentioned in Section II, adding
NLoS components can be approximated by adding κNLoS to
κLoS and effectively increasing the cosine power. Form Fig.
6b, we observe that the average power increases as κNLoS goes
up, which means the NLoS component leads to more power
consumption.

Figs. 7a and 7b illustrate the UAV ground cells and their
partitions for a uniform distribution and square region. As
the number of UAVs increases, the UAV partitions converge
to hexagons. This implies that the optimality of congruent
partitioning in the 1-D case [42, Thm. 1] might be valid for
uniformly distributed users in the 2-D case as well. However,
the UAV partitions in Figs. 7c and 7d show that congruent
partitioning is not optimal for a non-uniform distribution.

A. Different antenna beamwidths

Let us investigate the effect of the beamwidth parameter
κLoS = κ on the average power by setting κNLoS = 0, i.e.,
ignoring the NLoS. If we increase the antenna parameter κ in
(5), the radiation gain concentrates on a smaller area and hence
decreases the effective beamwidth. This affects the scaling
factors c(γ, κ) and directivity D0(κ) in Theorem 1 but not
the dependence on H . To verify the optimal common heights
derived in Theorem 1, we first perform a brute force search
to obtain the optimal height for one UAV over uniformly
distributed regular hexagons with different sizes. For each
regular hexagon, we generate 5000 samples 10 and compare the
powers. The optimal UAV height is the one with the minimum
power among the generated samples. Fig. 8 depicts the optimal
common heights of one UAV over a regular hexagon for
κ = 1 and κ = 2. Overall, the optimal common height
increases as the number of UAVs increases. For a constant
target area, increasing the number of UAVs, N , results in a
finer partition/tessellation/quantization of the target area, i.e.,
in more cells. Therefore, the cell sizes shrink. As a result, using
the same beamwidth, UAVs at a lower height can still provide
the full coverage. At the same time, lowering the height results
in a smaller path-loss and therefore smaller required average
transmit power. Hence, the optimal power efficient solution

105000 UAV heights are uniformly selected from [0, L], where L = 2R
is the length of the regular hexagon. UAV ground position is placed at the
geometric centroid of the hexagon according to Theorem 1.

will have a smaller common height for larger N . Besides,
the optimal common height increases if κ increases, but the
average power does not necessarily decrease by increasing κ,
as is the case in Fig. 3b. Such a conclusion is only valid for
large N where

√
H � h∗ and the cells are small enough such

that small beams can compensate the path-loss by antenna
gains.

Moreover, we employ Lloyd-B to get the standard deviation
of the optimal heights of multiple UAVs over a uniformly
distributed 10 × 10 square. From Fig. 8b, we find that the
standard deviation of heights decreases as the number N of
UAVs increases. We also observe the same trend for other
κs by simulations. In other words, in the asymptotic regime,
the UAVs tend to have approximately an optimal common
height11.

VI. CONCLUSIONS

We studied a continuous coverage problem with N UAVs
for providing a static reliable wireless communication link to
ground users in a given target area. We adopted a realistic
angle-dependent directional antenna model for the UAVs and
an ideal omni-directional antenna model for the ground users.
We derived the exact average power consumption of the
users to establish a reliable upload link to the UAVs at a
given bandwidth, noise power, and bit-rate. The optimal 3-D
deployment of the UAVs for minimizing the average transmit-
power of the ground users is derived in closed-form for an
arbitrary path-loss exponent, antenna beamwidth, area size,
and number of UAVs. Using the derived necessary conditions
for optimal deployment, we designed Lloyd-like algorithms to
minimize the transmit-power. We demonstrated numerically
with brute-force search that asymptotically the global optimal
deployment is provided by a hexagonal lattice of the UAV
ground positions and a unique common flight height. We
derived closed-form solutions for the optimal common height.
The optimal common height depends on the cell size per
UAV, the antenna beamwidth, and the path-loss exponent. Our
deployment algorithm can be used for static or airborne base-
stations. An optimal power efficient deployment reduces in-
terference with other wireless communications as well, which
again saves power and resources.

11Due to the boundary effect, i.e., the target region cannot be perfectly
divided by congruent hexagons and the UAV heights are not exactly the same.
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Fig. 6: The performance comparison with 100 UAVs for various
minimum heights hmin and various density function λ(ω). The path-
loss exponent is set to α = 2. (a) κLoS ∈ [1, 4], κNLoS = 0; (b)
κLoS = 1, κNLoS ∈ [0, 3].

APPENDIX A
PROOF OF LEMMA 1

The minimization of the distortion functions over Ω defines
an assignment rule for a generalized Voronoi tessellation
V(Q,h) = {V1,V2, . . . ,VN} where

Vn = Vn(Q,h) (33)

= {ω ∈ Ω|an ‖qn−ω‖2+bn ≤ am ‖qm−ω‖2+bm,m 6= n}

(a) (b)

(c) (d)
Fig. 7: UAV ground cells, generalized Voronoi regions, for α = 2
and a uniform probability density function (a) with 32 UAVs, (b)
with 100 UAVs, and a non-uniform density (c) with 32 UAVs, (d)
with 100 UAVs.

is the nth generalized Voronoi region [31, Chap. 3]. Here, we
denote the weights as in (12) by the positive numbers an =

h
−κγ
n and bn = h

2−κγ
n and define a Möbius tessellations [26],

[49]. As shown below, the bisectors of Möbius tessellation are
circles or lines in R2 . The nth Voronoi region is defined by
N −1 inequalities, which can be written as the intersection of
the N − 1 dominance regions of qn over qm, given by

Vnm =
{
ω ∈ Ω

∣∣∣ an ‖qn−ω‖2+bn ≤ am ‖qm−ω‖2+bm

}
.

(34)

If hn = hm, then an = am and bn = bm, such that Vnm is
the left half-space between qn and qm. For hm > hn(an >
am), we can rewrite the inequality for each dominance region
Vnm as circular regions ‖ω−cn,m‖2 ≤ rn,m with center point
cn,m and radius rn,m as given in Theorem 1. If hm < hn,
then the dominance region is the complement of the disc with
respect to Ω. For more details see [50, App. A].

APPENDIX B
PROOF OF THEOREM 1

For the homogeneous case with fixed common height h =
hn, the distortion function d is given by a non-decreasing
continuous and positive function in the Euclidean distance
r = ‖q− ω‖ as

d(q,ω) = fγ,κ(‖q− ω‖ , h) = (‖q− ω‖2 + h2)γ/hκ. (35)

Since we assume a uniform density, we have λ(ω) = 1/A for
all ω ∈ Ω.
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Fig. 8: (a) Optimal common height for α = 1, 2, 3, 4, 5 and κ =
1, 2 over

√
H =

√
A/N , derived with brute force optimization and

analytically by Theorem 1. (b) The variance (standard deviation) of
all N optimal heights converge exponentially fast in N for κ = 2.

The optimal deployment problem with h = hn has centroidal
ground positions given by [43]∫

V∗n

(‖q∗n − ω‖2 + h∗2)γ

h∗κ
dω

= min
q∈Clos(V∗n)

∫
V∗n

(‖q− ω‖2 + h∗2)γ

h∗κ
dω,

(36)

where Clos(V∗n) denotes the convex closure of the set V∗n.
Unfortunately, there is no closed form expression for arbitrary
γ. However, asymptotically (N → ∞, high-resolution) it
is known that the optimal Voronoi regions are congruent to
the regular Hexagon, i.e., V∗n ∼ Hn [43]. Hence, from the
conditions (26) and (27), we obtain a local critical common

height, if and only if

z = h∗2 =
1
A

∫
Hn(‖ω − q∗n‖

2
+ h∗2)γdω

2γ
κA

∫
Hn(‖ω − q∗n‖+ h∗2)γ−1dω

. (37)

We know that h∗ > 0 and hence h∗2 = z > 0 is associated
to only one height. Since the optimal ground positions are all
centroidal and the regions Vn are all congruent, asymptotically
we have∫
Hn

(‖ω−q∗n‖
2
+z)γdω∼

∫
H

(‖ω‖2+z)γdω=M̃H(2γ,H).

(38)

Here, we centered the HexagonH such that the centroids are at
the origin q∗ = 0. The integral M̃H(2γ,H) denotes a distorted
polar moment of a hexagon with area H = µ(H) = µ(V∗n) =
A/N . More precisely, the additive distortion z creates a
polynomial of different polar moments of the hexagon. Since
we need to identify the distortion z which achieves equality in
(37), we have to calculate the polar moments, which determine
the polynomial coefficients of

gγ(z)=

∫
H

2γ

κ
z(‖ω‖2+z)γ−1dω−

∫
H

(‖ω‖2+z)γdω=0.

(39)

Note that both integrals are strictly positive increasing and
continuous functions in z ≥ 0 for any real-valued γ ≥ 1. Since
for z = 0 the first integral is vanishing and the second one is
not, there can exist only one z > 0 for which the difference
vanishes. Such a z exists, since for 2γ/κ > 1 the first integral
increases faster in z compared with the second one. Hence,
there exists only one optimal common height h∗ =

√
z.

Furthermore, the kernel integral only depends on the radius
‖ω‖ and since the hexagon H consists of 12 right-angled
triangles ∆, which are identical up to a rotation around the
origin, as shown in Fig. 9, we derive the equivalent condition
for (39):∫

∆

(
2γ

κ
z(‖ω‖2 + z)γ−1 − (‖ω‖2 + z)γ

)
dω = 0. (40)

Hence, we only have to deal with polar moments of the triangle
∆. To calculate solutions for specific values of γ, we need to
explicitly calculate the integrals. The areas of the hexagon and
triangles in terms of the radius r of the inscribed circle, are
respectively,

H=µ(H)=12

∫
∆

dω=6r2tan
π

6
=2
√

3r2, µ(∆)=
H

12
, (41)

see for example [51, p. 4.5.3] and Fig. 9. Note that the length
of the edges are the same as the outer radius R = 2r√

3
. How-

ever, for arbitrary γ ≥ 1, we need general orders of the mo-
ments M∆(ε,H) =

∫
∆
‖ω‖ε dω. Since ‖ω‖ε = f(ρ, φ) = ρε,

is continuous in the radius ρ and angle φ, we can parameterize
the integral in polar coordinates, as shown in Fig. 9a, to derive

M∆(ε,H)=
rε+2

2ε+4
β

(
ε+3

2

)
=

(
H

2
√

3

)ε+2
1

2ε+4
β

(
ε+3

2

)
. (42)

With the integral representation in [36, 8.375(2)], for odd ε =
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(a)

(b)
Fig. 9: Hexagon parameterization in 12 right triangles ∆ with (a)
Polar and (b) Cartesian coordinates.

2n− 1, we get the expression

β(n+ 1) = (−1)n ln 2 +
n∑
i=1

(−1)i+n

i
, n ∈ N+. (43)

Unfortunately, a closed-form expression for β(n + 1/2) or
β(x) is difficult to derive since they are given in terms of
the Gamma or Riemann-Zeta function. However, we can use
the Cartesian parameterization to derive the even moments for
ε = 0, 2, 4, 6.

M∆(0, H)=
H

12
,M∆(2, H)=

5H2

216
√

3
,

M∆(4, H)=
7H3

270 · 9
,M∆(6, H)=

83H4

72 · 35 · 27
√

3
,

(44)

where we used (41) for H . For more details on the derivation
of even moments of inertia see [50, App. C]. With (40), this
yields to the global common height for γ = κ = 1

h∗(1, H) ∼
√
z =

√
κ

2− κ
M∆(2, H)

M∆(0, H)
= c(1)

√
H,

c(1) =

√
5

18
√

3
≈
√

0.1603.

(45)

For γ = 2 and 3 ≥ κ ≥ 1, we obtain from (40) a quadratic
equation in z:

g2(z) =

∫
∆

(
4− κ
κ

z2 +
4− 2κ

κ
z ‖ω‖2 − ‖ω‖4

)
dω. (46)

Solving for z and taking the square root, we obtain the optimal
height and scaling constant

h∗(2, κ,H) = c(2, κ)
√
H with

c(2, κ) =

√√√√√ (172−43κ)κ
5 + 100− 10 + 5κ

18
√

3(4− κ)
.

(47)

Finally, for γ = 3 and 5 ≥ κ ≥ 1, we get a cubic equation

g3(z) =z3 6− κ
κ

∫
∆

+z2 12− 3κ

κ

∫
∆

‖ω‖2

+ z
6− 3κ

κ

∫
∆

‖ω‖4 −
∫

∆

‖ω‖6 .
(48)

Inserting the moments (44), we get as valid solutions of the
cubic equation [52, (3.8.2)] as

z1 = s
1/3
1 + s

1/3
2 − 5H(4− κ)

18
√

3(6− κ)
with

s1 = p+
√
q3 + p2, s2 = p−

√
q3 + p2,

(49)

where we have

q =
43κ2 − 344κ+ 16

4860(6− κ)2
H2,

p =
−143360 + 16728κ+ 444κ2 − 37κ3

612360
√

3(6− κ)3
H3.

(50)

Note that the discriminant q3 + p2 > 0 for 1 ≤ κ ≤ 5 and
every H > 0. Therefore, there exists only one real-valued
solution, given by z1. Then, asymptotically, the optimal height
for H and γ = 3 can be derived as h∗(3, κ,H) = c(3, κ)

√
H

with constant c(3, κ) as in (29). Asymptotically, the minimal
average distortion is given by (25) as

P̄ ∗(γ,H) ∼ N

A

∫
H

(‖ω‖2 + (h∗(γ,H))2)γ

h∗(γ,H)
dω

=
12

H

∫
∆

(‖ω‖2 + (h∗(γ,H))2)γ

h∗(γ,H)
dω.

(51)

For γ = 1, 2, 3, using (45) and the moments (44), after some
calculations, we get (52), (53), and (54). Normalizing by the
maximal directivity will give the final result [50, App. B].
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