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Abstract

In this paper, we consider the amplify-and-forward relay networks in mmWave systems and propose
a hybrid precoder/combiner design approach. The phase-only RF precoding/combining matrices are first
designed to support multi-stream transmission, where we compensate the phase for the eigenmodes of
the channel. Then, the baseband precoders/combiners are performed to achieve the maximum mutual
information. Based on the data processing inequality for the mutual information, we first jointly design
the baseband source and relay nodes to maximize the mutual information before the destination baseband
receiver. The proposed low-complexity iterative algorithm for the source and relay nodes is based on the
equivalence between the mutual information maximization and the weighted MMSE. After we obtain
the optimal precoder and combiner for the source and relay nodes, we implement the MMSE-SIC filter
at the baseband receiver to keep the mutual information unchanged, thus obtaining the optimal mutual
information for the whole relay system. Simulation results show that our algorithm achieves better
performance with lower complexity compared with other algorithms in the literature. In addition, we

also propose a robust joint transceiver design for imperfect channel state information.

[. INTRODUCTION

Communications over millimeter wave (mmWave) have received significant attention recently
because of the high data rates provided by the large bandwidth at the mmWave carrier frequen-

cies. Also, using large antenna arrays in mmWave communication systems is possible because
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the small wavelength allows integrating many antennas in a small area. Despite its advantages,
the mmWave carrier frequencies suffer from relatively severe propagation losses. Meanwhile, the
sparsity of the mmWave scattering environment usually results in rank-deficient channels [2].

To overcome the large path losses, large antenna arrays can be placed at both transmitters
and receivers to guarantee sufficient received signal power [3]. The large antenna arrays lead to
a large number of radio frequency (RF) chains, which greatly increase the implementation cost
and complexity. To reduce the number of RF chains, hybrid analog/digital precoding has been
proposed, which connects analog phase shifters with a reduced number of RF chains. The main
advantage of the hybrid precoding is that it can trade off between the low-complexity limited-
performance analog phase shifters and the high-complexity good-performance digital precoding
[4].

Despite the help of large antenna arrays, the severe propagation losses still limit mmWave
communications to take place within short ranges. Fortunately, the coverage can be greatly
extended with the help of relay nodes [5]. Therefore, investigating the performance of hybrid
precoding/combining in the relay scenario is important. For the conventional relay scenario,
network beamforming in amplify-and-forward (AF) relay networks was studied in [6], [7].

For a mmWave relay scenario, large antenna arrays are usually implemented to mitigate the
severe path loss. In addition, a hybrid precoding method is adopted. There are two typical
hybrid precoding structures: (i) fully-connected structure (where each RF chain is connected to
all antennas) [8], and (ii) sub-connected structure (where each RF chain is connected to a subset
of antennas) [9]. For fully-connected mmWave networks with AF relay nodes, the authors in
[10] designed hybrid precoding matrices using the orthogonal matching pursuit (OMP) algorithm.
However, the performance of the OMP algorithm used in [10] depends on the orthogonality of the
pre-determined candidates for the analog precoders. In [11], a joint source and relay precoding
design for mmWave AF relay network is proposed based on semidefinite programming (SDP).
However, the proposed method in [11] is only suitable for one data stream scenario. In [12], to
reduce the complexity, the RF and the baseband (BB) are separately designed and a minimum
mean squared error (MMSE)-based design for the BB filters is proposed. Although the algorithm
in [12] shows its advantage over the OMP algorithm in terms of sum spectral efficiency, it did
not optimize the sum rate of the system. In fact, [12] can be seen as a special case of our
proposed methods since we minimize the weighted mean squared error. In [13], an efficient

algorithm is proposed via employing the so-called Alternating Direction Method of Multipliers



(ADMM), which greatly reduces the distance between the hybrid precoder/combiner and the
full-digital precoder/combiner. However, the ADMM algorithm has a high complexity and is
sub-optimal in terms of the data rate for the system. For sub-connected structures, [14] proposes
a MMSE-based relay hybrid precoding design. To make the problem tractable, [14] reformulates
the original problem as three subproblems and proposes an iterative successive approximation
(ISA) algorithm. The algorithm in [14] can also be extended to the fully-connected structure.
Compared with the OMP algorithm, the ISA algorithm in [14] greatly improves the performance,
however, the complexity of the ISA algorithm is high and it only optimizes the relay node.

In this paper, we study the hybrid precoding for fully-connected mmWave AF relay networks
in the domain of massive multiple-input and multiple-output (MIMO) systems. To reduce the
complexity, we separate the RF and the BB. For the RF, we first design the phase-only RF
precoding/combining matrices for multi-stream transmissions. We decompose the channel into
parallel sub-channels through singular value decomposition (SVD) and compensate the phase of
each sub-channel, i.e., each eigenmode of the channel. When the RF precoding and combining are
performed, the digital baseband precoders/combiners are performed on the equivalent baseband
channel to achieve the maximal mutual information. The problem of finding the optimal baseband
precoders/combiners for the optimal mutual information is non-convex and intractable to solve
by low-complexity methods. Based on the data processing inequality for the mutual information
[15], we first jointly design the baseband source and relay nodes to maximize the mutual
information before the destination baseband receiver. We propose a low-complexity iterative
algorithm to design the precoder and combiner for the source and relay nodes, which is based
on the equivalence between the mutual information maximization and the weighted MMSE [16].
After we obtain the optimal precoder and combiner for the source and relay nodes, we implement
the MMSE successive interference cancellation (MMSE-SIC) filter [17] at the baseband receiver
to keep the mutual information unchanged, thus obtaining the optimal mutual information for
the whole relay system. Simulation results show that our algorithm outperforms the OMP in
[10]. Moreover, our algorithm achieves better performance with lower complexity compared to
the ISA algorithm in [14].

We also propose a robust hybrid precoding/combining approach considering the inevitable
imperfect channel state information (CSI) in the second part of the paper. Robust design for
traditional relay systems has been well studied in papers, such as [18]-[20]. In [21], [22], the

topic of imperfect channel state information in amplify-and-forward relay networks has been



studied under amplify-and-forward relay networks with limited feedback. However, there is not
much work on the effects of imperfect channel state information in mmWave relay networks.
In [23], a robust OMP-based algorithm is proposed to maximize the receiving signal-to-noise
ratio (SNR) at the destination node. Similar with the non-robust case, the performance of the
OMP-based algorithm depends on the orthogonality of the predetermined candidates for the
analog precoders. In this paper, we adopt the well-known Kronecker model [18], [24] for the
CSI mismatch. We first estimate the phase for RF precoding/combining to minimize the average
estimation error. Then, we modify our proposed weighted MMSE approach for the perfect CSI to
achieve a more robust performance for the baseband processing. Simulation results demonstrate
the robustness of the proposed algorithm against CSI mismatch.

The contributions of our paper can be summarized as follows:

e We propose a hybrid precoding/combining approach for perfect CSI in mmWave relay
systems. The phase-only RF precoding/combining matrices are first designed to achieve
large array gains and support multi-stream transmissions. Then, we design the baseband
processing system to achieve maximal mutual information by transforming the highly
complicated non-convex mutual information maximization problem into an easily tractable
weighted MMSE problem. An iterative algorithm which decouples the joint design into four
sub-problems is developed.

o A robust design for the imperfect CSI is further proposed by modifying the non-robust
precoding/combining design. To the best of our knowledge, except [23], this is the first
mmWave relay system design that is robust to channel estimation error. Numerical results
are provided to show the robustness of the proposed algorithm against CSI mismatch.

Compared with our conference version [1] which designs the hybrid filters for perfect CSI,

we analyze the impact of imperfect CSI in this paper, and further propose a robust design to
strengthen the robustness of our proposed algorithm. The remaining sections are organized as
follows. In Section II , we describe the system model and the mmWave channel model. Section
III formulates the proposed hybrid precoding/combing approach for the perfect CSI. Section
IV presents the proposed robust hybrid design for the imperfect CSI. Numerical examples are
presented and discussed in Section V. We provide concluding remarks in Section VI.

Notation: C™" is the set of all m x n complex matrices with C" £ C"*! and C £ C!. I,,

is the m x m identity matrix, and 0,,., is the m X n all-zero matrix. CN(u,K) is a circularly-

symmetric complex Gaussian random vector with mean vector @ and covariance matrix K.



Matrices A7 and A are the transpose and the Hermite transpose of matrix A, respectively. Matrix
A =Ja;,a;,..., 0] represents the concatenation of the L vectors &;, and B = [A], Ay, ..., Ak]

represents the concatenation of the K matrices A;.

II. SYSTEM MODEL

In this section, we present the signal and channel model for a single user mmWave MIMO

relay system with large antenna arrays and limited RF chains.
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Fig. 1: System model

A. System model

Consider a single-user mmWave MIMO relay system using hybrid precoding as illustrated
in Fig. 1. The system consists of a source node with N; transmission antennas, a relay node
with N; antennas for both transmitting and receiving signals, and a destination node with Ny
antennas. Assuming Ny data streams are transmitted, the BS is equipped with Nrg RF chains
such that Ny < Nrp < N;. Using the Nrf transmit chains, an Ngrg X Ny baseband precoder F?B
is applied. The RF precoder is an Ny x Nrg matrix FRF. Half duplex relaying is adopted. During
the first time slot, the BS transmits the Ny data streams to the relay through a MIMO channel
H; € CN~*Ne_ The relay receives the signal with an RF combiner WRF € CNrF*Nr and a baseband
filter GBB € CNre*NrF | During the second time slot, the relay transmits the data using one RF
percoder FRF ¢ CN-NRE through a MIMO channel H, € CNa*Nr and the destination receives the
data with one RF combiner WRF € CNr#*Na and one baseband combiner WEB € CNs*Nrr,

We assume the transmited signal is s = [s!,s2,...,s™]7 with E[ss"] = Iy, € CN*Ns, During

the first time slot, the received signal after the baseband filter at the relay can be expressed as

y: = GPPWRH FRYFFPPs + GPPWR g, (1)



where n; € CN*! is a zero-mean complex Gaussian noise vector at the relay node with covariance

matrix E[ninl!] = 671y, € CNNr. The power constraint at the source node is
RFLBB | |2
FEEC - < B 2)

During the second time slot, the received signal after the combiners at the destination can be

expressed as

Yo = WP WETH R  GPP W H FRTFPP s 5
+ WEEWETHLFR GPP W ny + WGP Wi,

where n, € CNe*1 is a zero-mean complex Gaussian noise vector at the destination node with
covariance matrix E[nynfl] = 631y, € CNexNa,

To simplify the expression, we define Fy = FRFFBB ¢ CN*Ns a5 the hybrid precoding matrix
at the transmitter, G, = WRFGBBFBEB ¢ CN-Nr a5 the hybrid filter at the relay node, and Wy =

WdBBWdRF € CNs*Na a5 the hybrid combiner at the destination node. Eq. (3) can be expressed as
yqg = WadHo G H | Fis + WiH,Gny + Wyn,. 4)

The relay’s power constraint is
E[||G/H,Fis + Gyny 2] < E. )

Based on this hybrid precoding/combining system model, we can derive the achieved data

rate for the system as
1
R =3 log, det(In, + WyHL G H F R, FITHY G HY W), (6)

where R, = GIZWdeGrGfI Hg ng + O'ZZWdeI is the covariance matrix of the colored Gaussian
noise at the output of the baseband combiner.

Generally, we want to jointly optimize the RF and baseband precoders/combiners to achieve
the optimal data rate. However, finding the global optima for this problem (maxmizing R
while imposing constant-amplitude on the RF analog precoder/combiners) is non-convex and
intractable. Separated RF and baseband processing designs, as [25] did, are investigated to obtain

satisfying performance. Therefore, we will separate the RF and baseband domain designs in this

paper.



B. Channel model

MmWave channels are expected to have limited scattering characteristic [26]—[28], which
means the assumption of a rich scattering environment becomes invalid. This is called sparsity
in the literature and leads to the unreliability of traditional channel models, such as the Rayleigh
fading channel model. To characterize the limited scattering feature, we adopt the clustered
mmWave channel model in [2], [27]-[29] with L scatters. Each scatter is assumed to contribute
N, propagation paths to the channel matrix H. Then, the channel is given by

NN, . r r N\ H/at t
H= LN Z Z al,nar((PlJl, el,n)at ((Pl7na el7n)7 @)
C

1 j=1n=1

where @y, is the complex gain of the n'" path in the /"™ scatter with the distribution CN(0, 1),
golryn(Glr’ ,) and qo;n(e;n) are the random azimuth and elevation angles of arrival and departure.
a:(¢;,.6/,) and at((p}’n, Oltn) are the receiving and transmitting antenna array response vectors,
respectively. While the algorithms and results in the paper can be applied to arbitrary antenna
arrays, we use uniform linear arrays (ULAs) in the simulations for simplicity. The array response

vectors take the following form [30]:

aUlA () — RS (1, etdsino)

= \/N , s ey
2

where k = 5F. Parameter A represents the wavelength of the carrier and d is the spacing between

ej(N—l)ka'sii’l((p)]T7 (8)

antenna elements. The angle ¢ is assumed to have a uniform distribution over [0,27].
Since the channel in mmWave systems has limited scattering, we can further simplify the
channel by assuming each scatter only contributes one path to the channel matrix. Then, the

channel can be further expressed as

NiN; ¢ v oar
H= /=) oua:(9f.6))a (¢}.6)). ©)
=1

The matrix formulation can be expressed as

NN
H=,/ tL "Acdiag (o)Al (10)

where A; = [a:(¢],67),....,a:(@],0] )] and A; = [a(¢],0]),...,a( @ , 6] )] are matrices containing
1"

the receiving and transmitting array response vectors, and & = [¢ty, ..., QL.



III. HYBRID PRECODER/COMBINER DESIGN

As discussed in Section II, we use a hybrid design to reduce the number of RF chains. We
first design the RF precoder/combiner. Then, based on the designed RF precoder/combiner, we
design a low-complexity iterative algorithm for the baseband precoder/combiner to maximize

the mutual information.

A. RF precoder/combiner design

Our goal for RF precoder/combiner is to make the channels decomposed into Nrr parallel sub-
channels to support the multi-stream transmission. The main challenge is the constant-magnitude
constraints on RF precoders and combiners. Without the constant-magnitude constraints, the
optimal precoder/combiner should be the right/left singular matrix of the channel, which transmits
the signals along the eigenmodes of the channel. Considering the constant-magnitude constraints,
we cannot directly use the singular matrix to rotate the signals, but we can use the projection
on each eigenmode as a criterion to choose RF precoder and combiner. For the i eigenmode,
the best precoder should be the one that has the largest projection on that eigenmode, i.e., the
one that casts the most energy along that eigenmode direction.

Using H; as an example, we first perform the singular value decomposition (SVD) for the
channel matrix.

L
H1 = U121V{{ = Z Giu,-v?, (11)
i=1

where u; and v; are the i

vectors in matrices U and V1, respectively, which correspond to o;.
The singular values o;s are assumed to be in a descending order. L is the rank of the channel and
is equal to the number of propagation paths for the mmWave scenario. Note that for mmWave
systems, the channels usually have limited scattering characteristics, which means the number
of propagation paths is far less than min(N,N;). In such cases, the channel rank is equal to
the number of propagation paths L. Eq. (11) indicates that channel H; has L eigenmodes. We
denote the i eigenmode by u,-vf] , and its gain by o;.

For our RF precoding/combining, we want to maximize the projection of the i data stream

onto the i™ eigenmode, i.c., w{" uile fi|, where f; and w; are the i" vector of precoder FRF

and combiner WRF, respectively. To approach the maximal projection, we have the following

proposition.



Proposition 1. The optimal phase-only vectors f; and w;, which maximize the projection for

the i"* data stream onto the i eigenmode of the channel, will satisfy the following conditions:
phase(f;|m]) = phase(vi[m]) Vm =1,2,...,Ny, (12)
phase(wj[n]) = phase(u;[n]) Vn=1,2,....N,, (13)
where -[k] represents the k™ element of a vector.

Proof. First, we express the vectors in polar coordinates. Due to the magnitude-constant con-

. i gi T i i
straints, vectors f; and w; are expressed as f; = \/LN—t[efel,eJ%,...,e’ VT and w; = \/LN—T[eJ‘Pl,eJ‘PZ,...,

Since there are no constant-magnitude constraints for v; and u;, each element in the vector

has its own magnitude. The polar forms of v; and u; are v; = [r’iej“f,réejaé,...,rﬁtej T and
u; = [pielPi pieifs, ...,plilrejﬁg‘r]T, respectively. Then, the projection can be calculated as
H, e | — J(®h—By) J(o,—65,)
w uv:'f. pe n—Pr) '€ (14)
‘ 1 1Yy l| ‘ \/Wr Z n tmz,l
According to the Cauchy-Schwartz inequality, we have
[ ¢ (0 =6n)
=~ Z
‘ o (15)
1 N OCI 61 1 Ni -2
r eI (0= — r
S WA ML Y

Equality can be achieved in (15) if and only if 6}, = o}, ¥m = 1,2,...,N;. This means the maximal
}vﬁ fi‘ is achieved when 6! = ! Vm =1,2,...,N. Similarly, the maximal ‘w{{ ui| is achieved
when ¢! = B! ¥n=1,2,....N;. Therefore, we have the conclusion that the optimal phase-only

vectors f; and w;, which maximize |wf1 u,-vf’ fil, will satisfy the conditions in (12) and (13). [

Our RF precoders and combiners are actually compensating the phase of each sub-channel.
Note that when the number of antennas is large enough, the response vectors a.(¢;,6/)s and
a.(¢], 8])s become orthogonal to each other. A; and A, become the left and right singular matrices
of the channel and they directly become our RF precoder and combiner. In this case, we can
perfectly decompose the channel into independent parallel sub-channels. The equivalent channel

after RF processing is diagonal, which makes it easier for baseband processing.

ej%r]T.



B. Baseband system

In this section, we focus on designing the baseband precoding/combining matrices. First, we

define the equivalent baseband channels for H; and H, as
H =W HF, (16)
H, = WRFH,FRE, (17)

Based on the equivalent channels, we simplify our system model as shown in Fig. 2.

Source node Relay node Destination node

Precoder N
Filter

BB BB
F! GI

I\‘Kl

Fig. 2: Baseband System model

Using the equivalent channels (16) and (17), we rewrite the received signals at the destination

node as

)N’d = ﬁzG?BﬁlF?BS + ﬁzG?Bﬁl + o, (18)
ya = WEBH,GEBH, FBBs + WEBH, G, + WEBiy, (19)

where #i; = WRFn; and i, = WRFn,.

Our ultimate goal for the baseband design is to maximize the mutual information I(s,yy).
However, directly optimizing /(s,y4) is intractable. According to the data processing inequality
(151, I(s,yq) <I(s,¥,). We first design FBB and GBB to maximize the mutual information I(s, ).
After we get the maximum (s, %,), we implement the MMSE-SIC for WBB, which according to
[17] is information lossless. In this way, we make I(s,y4) =I(s,¥,). Since I(s,¥,) is maximized,
I(s,yq) is also maximized because of the data processing inequality and the independence of

1(s;¥4) from WEB.

10



C. F38 and GPB design
In this section, we jointly design FPB and GBB to maximize I(s,%,). According to [16], there

exists a relationship between I(s,y4) and the MSE matrix Epysg, i-€.,

I(s,94) = log, det(EKﬁ\/ISE), (20)

where the MSE matrix Eypysg is defined as the mean square error covariance matrix given the
MMSE receiver. The detailed proof can be found in [16]. We give a brief derivation procedure

below.
The MMSE receiver is defined as
Wi = argmin B[ WGPy, —s|°] = (oGP H FPP) o
(AGEPH FEB (H,GEPH FEB) +Ry) 7,
where Ry = 62H,GBBWRF (F,GBBWRF)H 4 G2WRF (WRF)H
The MMSE matrix Eypysg can be calculated by
Envse = E[(WY VP — ) (WMEy, — 5)7]
= (I, — Wi PGP H FPP) (22)
(In, — WSAMSEﬁzG?BﬁIF?B)H 4 WI(}/IMSERﬁ(Wg/IMSE)H'
Substituting (21) into (22), we can express Eyvse as

Enmwmse = (In, + (A,GEPH FBB Y R-TA,GBBH, FEB) 1. (23)

From (23), we can obtain (20).
Based on (20), we can establish the equivalence between the I(s,¥,) maximization problem
and a WMMSE problem as [16] did.

The I(s,y4) maximization problem is formulated as

FP%’{I(I;]PB _I(S7S’d)
st |[FREFPB|2 <K, (24)

E[|FRFGEBH, FBBs 1 FRFGBBWRFy, 2] < E,.
The WMMSE problem is formulated as

min Tr (VEMMSE)
FP2.GPB.V

s, |[FREEBB|7 <E,, (25)

- 2
E[||[FR GPPH FPBs + FREGPPWE || + <E,

11



where V is a constant weight matrix.

We will show that Problems (24) and (25) have the same optimum solution, i.e., the points
that satisfy the KKT conditions for (24) and (25) are the same. Same as [16], we set the
partial derivatives of the Lagrange functions of (24) and (25) to zero. Note that the power
constraints of (24) and (25) are the same. To prove the equivalence, we only need to calculate
the partial derivatives of —I(s,¥,) and Tr(VEpysg) w.r.t FEB and GBB. Note that dlogdet(X) =
Tr(X~19X). Taking FEB as an example, for I(s,¥,), we have

d—1(s,yq) _ _dlogydet(Enmse) _ Tr(EppyspdEmmse)
JFEB JFEB (log2)dFPB  ~
Note that X! = —X~1(9X)X ! and 9(AX) = 9(X)A + d(A)X. For Tr(VEnwmsE), we have
ITr(VEmmse) _ Tr(9(V(Eyyse) "))
JFBB JFBB

_ Tr(EMMSE8 (EI:/I}\/ISE)EMMSEV + 8 (V)EMMSE) (27)
JFEB
Tr(Emmsed (Eypyse) EMuse V)
OFBB

(26)

. . Enn
If we set the constant weight matrix V = 11\324313’ then we have

8 —](S,S’d) _ 8Tr(VEMMSE)
JFEB JFEB

(28)

Similarly, we can derive
d—1(s,54) _ d Tr(VEMMSE)
JGBB JGBB

From Egs. (28) and (29), we can conclude that the KKT-conditions of (24) and (25) can

(29)

be satisfied simultaneously, which suggests that it is possible to solve the mutual information
maximization problem through the use of WMMSE by choosing an appropriate weight, i.e., V.
To maximize I(s,y,), we propose an iterative algorithm based on the WMMSE problem (25).
Note that in the proposed algorithm, we also iteratively search for the appropriate weight matrix.
When the algorithm converges, we will obtain the desired weight matrix as well as the optimal

filters that maximize I(s,y4). The detailed algorithm is described as follows:

1) Calculate the MMSE receiver WY™SE in Eq. (21) and the MSE matrix Emusg in Eq. (22).

—1
2) Update V by setting V = Ell‘gg‘;E

12



3)

4)

Fixing V and FEB, then we find GBB that minimizes Tr(VEyysE) =
Tr(V((In, — Wy VP LGP H FPP) (I, — WYSPHL GPPH FPP )M 4 WVSER (WHTVSE)))
under the power constraints, i.e.,
GBB — argmin Tr(V((In, — WYMSEH,GEBH, FBB)
(I, — WMMSERL, GBBY, BB | WMMSER . (\yMMSE)H)) (30)
st E[|[FREGBPH, FPBs + FRFGPBWRn)||2] < E,.
Problem (30) is a convex optimization for GBB and we can solve it using the KKT
condition. Denoting the Lagrange function of Problem (30) as L"(GBB, A7) = Tr(VEwMwmsE) +
AT(|[FREGPBH, FPBs + FREGPBWR n, Hi — E;), the KKT conditions are
JLF(GBB AN

=0 31
E[||FRFGEBH, FPBs + GBPWRFn, || 7] —E, <0, (32)

- 2
AT(E[||[FRFGPPH FPPs + GPPWR || ] —E) =0, (33)
AT >0. (34)

Solving (31), we have
G?B — ((Wg/IMSEﬁz)HVWg/IMSEﬁQ -l-)vr(Fl].{F)HFIBF)_]

(H)™ (W5 v (FPP)H () (35)

(L FP2 (A FPP) T 4 of Wi (WEDH) ~h
Based on (32) and (33), we can obtain the Lagrange multiplier A" as follows. First, we
calculate GFB by setting A" = 0. If the power constraint is satisfied, then we set A" = 0.
If the power constraint is not satisfied, then, we initialize A" with a pre-defined value and
substitute it into (32) and start a bisection search for A" until the power constraint is satisfied.
Fixing V and GBB, then we find the FBB to minimize Tr(VEpMmsg) =
Tr(V((In, — W™ P HL GPPH FPP ) (In, — WY™NMSEHL GPPHI FEP )+ WTMSERg (WHTVSE)H))
under the power constraints, i.e.,

FBB — argmin Tr(V((In, — WYMSEH,GBBH, FEB) (I,

_ WS/IMSEI:IQG?BﬁlF?B)H + VVIS/[MSERr~1 (WIS/IMSE)H))
) (36)
st |[FRFPR|| < By,

~ 2
E[|[FRFGPPH FPPs + FRTGPPWR ny || ] <E..

13



Problem (36) is a convex optimization for F?B and, similar with Problem (30), we can

solve Problem (36) using the KKT conditions. Denoting the Lagrange function of Problem

(36) as L'(FPB, A, A}), the KKT conditions are
OL(EP® A, 1Y)

w0 37)
[FREFRB || —E, <0, (38)
E[||FRFGEBH, FPBs + FREGBPWRFn, || 7] —E, <0, (39)
M (FREER |~ E) =0, (40)

A4 (E[|[FRGEBH, FPBs 1 FREGEEWRn, ||] — Er) =0, (41)
A2y > 0. (42)

The optimal solution for FEB can be expressed as

FEB — (WYMSER,GER R, )/ VWYMSE 1, GER

AR ARG R @)

(VWi LGP )Y,
where A{ and A} are the non-negative Lagrange multipliers corresponding to the power
constraints. Similar with Problem (30), to obtain l{ and /12‘, we consider four cases: 1) if
the power constraints are satisfied when A{ =0 and A} =0, we will set A{ and A} equal to
0; 11) if case (i) is not satisfied, we then set k{ = 0 and start a bisection search for lﬁ until
the KKT condition (41) and the power constraint (38) are satisfied; iii) if (41) and (38)
cannot be satisfied simultaneously through the bisection search for A}, we then set A} =0
and start a bisection search for l{ until (39) and (40) are satisfied; iv) if we cannot find the
appropriate A| to satisfy (39) and (40) at the same time, we can obtain A; and A} through
a two-layer bisection search. The search algorithm is described in Algorithm 1.

The entire design procedures for FEB and GBB are summarized in Algorithm 2.
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Algorithm 1 Two-layer bisection search for A} and A

1: initialize l{’min = )Lz‘,mm =0, /’Lf,max’/th,max;
2: while Alt,max - l{’min > g do

3:  setting A} = 71}*"“";”“*;

4 while A —A .. > & do

5: setting A} = M,

6: calculate FPB according to (43);

7: if E[||[FRFGEBH, FPBs+ FRFGEEWRFp, Hi} <E, then
8: 23 max = A3

9: end if

10: if E[||FRFGBBH, FBBs + FREGBBWRFp, || 7] > E, then
11 23 min = 425

12: end if

13: end while
14:  calculate FEB according to (43);

15: if |[FRFEBB||7 <E, then

16: ;L{,max = llt;

17:  end if

18 if ||FRFFBB||2 > E, then
19: M min = A5

20:  end if

21: end while

D. Convergence analysis

Since the constant weight matrix V changes at each iteration, it does not generate a monotonic
decreasing sequence, which means we cannot directly prove the convergence of the proposed
algorithm. Fortunately, according to [16], the iteration procedure to maximize the mutual in-
formation through minimizing WMMSE is the same optimization procedure for an equivalent

optimization problem as below

FFg,lg:B N Tr(VEMmmMsE) — logdet(V)
\A "
s, |[FREEBB||% <E,

] 2
E[||FRFGEPH FEPs + FRFGPP W, ||] < E.
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Algorithm 2 Design for FEB and GBB
I: Initialize F°2® and GEBO);
2: Set k=1,
3. while [I(s,54)® —I(s,54)* V| > & do
4: Calculate the MMSE receiver WI:[MSEW according to (21) and the MSE matrix El(\]/;;\/ISE in Eq. (22);

k) _
(Eise) "

5. Update V by setting V = log2 >

6: Calculate F?B(k) as Step III illustrates;
7: Calculate G?B(k) as Step IV illustrates;
8: k=k+1;

9: end while

The proof of the equivalence is similar to the proof in [16] and we omit the detailed prove for
brevity. The main idea is that the alternating minimization of the objective in (44) corresponds
to Steps 1-4 in our proposed algorithm. For example, when FPB,GBB and V are fixed, opti-
mizing (44) w.r.t. WBB becomes minimizing MMSE, which gives the same result as Step 1.
When F FB,GPB and WdBB are fixed, the optimal solution for V which minimizes the objective
Tr(VEMmMse) — logdet(V) in (44) is the same as Step 2.

Based on this equivalence, we can prove the convergence of the proposed algorithm by proving
the monotonic convergence of Problem (44). According to [16], the objective in Problem (44) has
a lower bound, which is the negative of the maximum mutual information. Due to the alternating
minimization process, the objective in Problem (44) decreases monotonically. Since a sequence
of monotonically decreasing numbers with a lower bound converges, Problem (44) converges

and so does our proposed algorithm.

E. Complexity analysis

Since we provide closed-form solutions for each iteration, the main complexity lies in the
search for the appropriate Lagrange multipliers. Let us define the search accuracy as €. This is
a relative measure for the search interval. For example, if the length of our search interval is
[, then the threshold for the search termination is set to be €/. Based on the accuracy €, the
number of iterations in the bisection search in Step 3 is bounded by ¢ (log, é) In Step 4, we
use a two-layer bisection search, whose number of iteration is bounded by ¢'(log3 %) So, for
each outer iteration, the total number of inner iterations is & (logzé) +0 (log%%). Compared

with the algorithm in [14], for which the number of inner iterations is &'(2(2NggN;)? log %) for
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each outer iteration, the complexity of our algorithm is much lower especially for large antenna

arrays.

E WdBB design

Since I(s,yq) < I(s,y4) [15], after we find the maximum I(s,y4), the optimal I(s,y4) will
be obtained if the destination node baseband processing does not cause any information loss.
According to [17], MMSE-SIC is information lossless. Therefore, we use MMSE-SIC for our

destination baseband design. To simplify the expression, let us define
¥4 = HoGPBH FPBs + H,GBPiy + i1y = Gs + 9, (45)

where G = [gy,...,8x,] € CNreXNs 1§ s the colored noise with covariance matrix Rg.
To implement the MMSE-SIC for the k™ stream, we subtract the effect of the first k — 1

streams from the output and obtain

k—1 Ns
Yo =Fa— ) &si+V=gusk+ Y, &;5j+V. (46)
i=1 j=k+1

Define WEB = [wq,...,wn, ], the baseband filter for the k" stream is derived as the MMSE

filter:

N
wil =gl (Y gig7+Ra)". (47)
j=k+1

IV. ROBUST DESIGN
So far, we have designed the mmWave relay precoders/combiners under the perfect channel
information. However, it is hard to avoid estimation/quantization errors while obtaining the
channel information. To study the effects of imperfect channel estimation, we adopt the model

provided in [18], [20], [24]. In this model, the relationship between the channel values and the

corresponding estimated channel values are:
_ 1 1
H; =H; +${A 0], (48)
_ 1 1
H, = H, + 937,03, (49)

where H; and H; are the actual channel matrices, i.e., the channels that we cannot precisely
estimate, and H; and H, are the estimated channels. The transmitting covariance matrix of the
channel estimation error at the source node and the relay node are denoted by ®; € CN*Nt and

@, € CNNr_respectively. The receiving covariance matrix of the channel estimation error at the
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relay node and the destination node are denoted by ®; € CN~*Nr and ®, € CNe*Na| respectively.
A1 and A; are Gaussian random matrices with independent and identically distributed (i.i.d.) zero
mean and unit variance entries and are the unknown parts of the CSI mismatch. we adopt the
exponential model [18], [20] for the channel estimation error covariance matrices ®1, @, ¥, and
©,. To be specific, the entries of the matrices are given as @ (i, j) = Gez_/lﬁ]‘ifj‘, 0O(i,j) = Ocyfj‘,
D, (i, j) = Gez’zﬁzﬁfj and 0,(i,j) = Ocyfj ‘, where a;y, B, o and B, are the correlation coefficients

and 662_1 and 6622 denote the estimation error covariance. For simplicity, we assume o] = 0 = «,

Bi=pB,=B and 6} = 0, =0,

As shown in Section V, the imperfect channel information will result in severe performance
degradation. For example, the achievable data rate of [10], [14] can be decreased to half of what
it is for the perfect CSI.

To further increase the robustness of our proposed algorithm, in this section, we will propose
a robust precoding/combining design for the mmWave relay system based on our proposed

WMMSE algorithm.

A. RF design

Recall that our RF precoding/combining is actually phase compensation for each eigenmode.
The eigenmodes are obtained through SVD. When considering the imperfect CSI, the phase
of each eigenmode cannot be precisely acquired. Let us take the actual channel H; and the
estimated H; as an example. The left singular matrices of H; and H; are denoted by U; and
U;. We denote the phase of each entry in U; and U; by 6;; and 0;, j» respectively. The phase
difference in each entry can be calculated as A6; ; = 6; ; — é,-y j- Let us assume that A6; ; has
a distribution p(Af). We want to make an estimation on A6; ; to minimize the mean square
estimation error E[(A8; ; — A6; ;)?]. The estimation Af; ; = E[A6; ] can be calculated based on
the distribution p(A6). Note that we can only obtain the estimated channel. Once we calculate
AB; j, we can calibrate the phase of each entry in U; as ;; = 6;;+A8; ;. Using the same
approach, we can calibrate the phase of singular matrices of H; and H,. Then, based on (12)
and (13), we can calculate the RF precoders and combiners FRF, WRF, FRF and WRF based on
the calibrated singular matrices of H; and H,.

As we analyzed above, to calculate the RF precoders and combiners, we must know the
distribution of A@; ; to make the estimation Af; ; = E[A6; ;]. However, the theoretical analysis

for the phase distribution is intractable. To obtain the phase distribution, we simulate 100 channel
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realizations based on the imperfect channel models in (48), where we set N, = 32, Ny =48 and
L =20. We adopt the correlation model from [18], [20], [24] where the entries of the correlation
matrices are selected as ®(i,j) = 631 l‘ifﬂ, 0,(i,j) = a‘lifﬂ. In the simulation, we set o =0,
Bi=0and o7, =0.1.

We collect the phase difference in each matrix entry from 60 simulations. In Fig. 3, we plot the
simulated probability density function (PDF) of the A0 in solid line. We use a generalized normal
distribution [31] to approximate the distribution. The PDF of a generalized normal distribution is

expressed as f(x) = 20‘1@(

T )e_(‘x_“'/ )P We can see the approaching effect of different value of
the shaping parameter 8 in Fig. 3. We use Kullback-Leibler distance as a performance measure
for the approximation, which is calculated by Dxp (Y| X) =YV, log(%)Yi where ¥ and X are the
probability distributions. The lower the Kullback-Leibler distance, the closer the two distributions
are. Note that the absolute value of KL-distance varies when the number of total points (i.e., N)
changes. In our simulation, the best approximation comes with the one with 8 = 2, since it has
the lowest Kullback-Leibler distance. When 8 = 2, the generalized normal distribution in Fig.

3 is a Gaussian distribution with 0 mean, which means we can estimate A6; ; = 0.

0.8

04

Simulated PDF
B=1,KLdist=0.1210
= = =B=15KLdist=0.0217
=2, KL dist = 0.0041
----- B=2.5, KL dist = 0.0258
---------- =3, KL dist = 0.0557

02

Fig. 3: Approximation of the Simulated PDF

B. Baseband design

Based on the RF precoders and combiners FRF, WRFFRF 3nd V_V(I}F designed in the last

subsection, the equivalent baseband channels after the RF processing are

~ _ - _ _ - _ 1 1_
A, = WRFH, FRF — WRFH, FRF | WRF@2 A, @2 FRF

(50)

1 1

1 —l—CI)]jAl(:)l?,

Il
s}
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~ - - - bhe = - 1 1_

H, = WYTHLFRE = WRFHLFRF + WhF D2 A, @2 FRF

= Ll L1 S
=H,+ (1322 A2®22 ,

where we denote the true equivalent baseband channels by H; and H,. The estimated equivalent

baseband channels are denoted by ﬁl and ﬁz, which are the channels we obtain at the source

node. We define &, := WRF®, (WRF)H | &, := WRFd,(WRF)H @, := (FRF)H@, FRF and 6, =

(FRF)H @, FRF.

For (50) and (51) , we have the following properties [32] (Using H; as an example)

~ ~ ~ ~ H ~ ~
E [, CHY] = H,CH, +Tr(CO;)d,, (52)

~ ~ ~H = ~ ~
E [AYCH,] = H, CH, + Tr(®,C)0;. (53)

To design a robust baseband system, we need to redesign the algorithm in Section III based
on the imperfect channel models (50) and (51). The main idea is similar, i.e., that we first
optimize the baseband filters FPB and GPB to maximize the average Ea, a,[I(s,¥4)] » and then
we use MMSE-SIC for WdBB. Note that we denote the baseband precoder/combiner based on the
estimated equivalent baseband channels H, and H, by FPB, GB® and WEB. The main challenge
here is if there still exists an equivalent relationship between the average mutual information
maximization and the WMMSE minimization.

To derive the equivalent relationship, we first derive an upper bound for the average mutual
information Ea, a,[I(s,34)] as

ENCs,[1(s,34)] = log, det(Ea, 4, [In, + (H2GPPH FPP) RS
HL,GEPH FPP)) = log, det(Iy, + (HoGEPH, FPB) R ! (54)
H,GPBH,FPP 4 B, +B,),

where

R; := o WRI(WRE) 1 62 (H, GEBWRF (H,GEBWRF
+Tr(GPPWERE (GPPWERN)T)6,) D),
B, := (GBB, F®®)" Tr(d,R-)®,GBBH, FBB,
B, = (FPP) Tr(®y (A.GPP) " R FLGEP +

(GP®)" Tr(D2R5)0,)G,P) O PP,
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Then, we need to derive the expression of Ex, a, [Emmse]- According to (23), we have

Ea, A, [EMMSE]

= Ea, 0, [(In, + (H2GPPHLFPP )R THL GPP HL FPP) ) (53)

= (INS + (ﬁzC?Bﬁlﬁ?B)HRglﬁzé?Bﬁlﬁ?B + B —|—B2)71.
Equation (55) implies that the relationship ]EIAJIPZ A, [1(8,54)] = log, det(Ex, a, [Enwmse] 1) still holds
for the imperfect channel model, which means we can maximize the upper bound of the average
mutual information through the WMMSE minimization as discussed in Section III.

The expression of Ex, a,[Emwmsg] in (55) includes a matrix inverse operator, which complicates
the following calculation for FFB and (_}?B. To derive a simpler expression for Ea, a, [EMmsg],
we first calculate the average MSE matrix [Ex, a, [Emsg]- The MSE matrix is given by

Eay a0 [Evise] = WaP (A + R (We®)" — (W) HoGPPH PP 6
— (H,GBBH, FBB)IWBB 1 Iy,
where
A= ﬁzG?BAl (I:IQ(_}?B)H -I-TI‘((_}?BAl (G?B)Hég)&)z,
Ay o= FFPB (L, FPP)Y 4 Te(FBB (FPB ) &),
Based on (56), we can derive the V_VS/IMSE, which minimizes Ea, a,[Emsg], as
WYMSE — (F,GBBH, FPB)7 (A +R;) . (57)
Substituting (57) into (56), we have
Ea, 4, [Enivise] = WY™OF (A + Rz ) (W ™8P
— (WYMSEH |, GBBY, FBB — (A, GBI, FPB )/ WBB 1 Iy, (58)
= INS — (ﬁzG?BﬁIFFB)H(A -I-Rﬁ)_lﬁz(_;?BﬁlF?B.
Based on (58), we can amend our results based on the imperfect channel model, using the

same procedure as Section III. For GBB, the amended expression is

GP® = (K, +lr(FFF)HFFF)fl(ﬁZ)H(WyMSE)HV(FPB)H 59)
(Ka+ ot WRF(WRE) =1
where
Ea, 2, [Emmse] !

V=
log?2

b
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K, = (WYMSEEL 1Y WAMSER, | Tr (b, (WYIMSE)H G WMMSE) G
K, :— B, P58 (L, F5B)Y + Tr(FPB (FBB)H ),
For FFB, the amended expression is
FPP — (T, 4 A (R Y/FRE 4+ A4T,) ) (VWAMSERL GER A7 )7 (60)

where

H _ - =~ ~ = - ~
T, :=H, (G’®)"BG;"H, + Tr(®,(G?®)"BGP)0,
T, := (FY'GPPH))FR GPPH| + Tr(P1 (FRGPP ) TFRFGEP) 01,
~H _ - = ~ - - ~
B := H, (W™ ) VWIMSEH, 4 Tr (D, (W™MSF)  VWHIMSE) @,

Based on the above modifications, our robust baseband design for GEB and FEB is as follows:

1) Calculate the MMSE receiver V_VI(}/H\’[SE in Eq. (57) and the MMSE matrix Ex, A, [Emvsg]
in Eq. (58).

c .o Eaja, [Evvse] !

2) Update V by setting V = — oz

3) Fix V and FEB, then we find GBB that minimizes Tr(V]EAl?A2 [Emmse]) under the power
constraints. The solution is given by Eq.(59).

4) Fix V and GBB, then we find FEB that minimizes Tr(VEy, s,[Emmsg]) under the power
constraints. The solution is given by Eq.(60).

After we obtain (_}?B and FPB, we will use MMSE-SIC to design WBB  which is the same as

what we did in Section III.

V. SIMULATION RESULTS
A. non-robust case

In this section, we consider a relay MIMO system consisting of one source node equipped
with a Ny = 64 antenna array, a relay node with an N; = 32 antenna array and a destination node
with a Ny = 48 antenna array unless other number of antennas are specifically mentioned. The
number of antennas is chosen from [14] for the purpose of the comparison. For simplicity, we use
the channel model in Eq. (9) for channel realization. Due to the limited scattering characteristic
of the mmWave channels, the number of paths should be less than the number of relay antennas.
Here, we assume each channel has L = 20 paths. The ¢; of each path is assumed to be uniformly

distributed in [0,27|. The results are averaged over 2000 channel realizations. The SNR of the
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source-to-relay link and the relay-to-destination are assumed to be the same. In the simulation,
we calculate the variances of AWGN noises o7 and 0, according to the source power and the

relay power to maintain the same SNR.
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Fig. 5: Achievable rate comparison with 64 x 32 x 48 when Eg = 2E, = 2Nj

In Fig. 4, we equally set the power of source node and the relay node, all to be Ng. We
compare our algorithm with the ADMM in [13], the ISA in [14] and the OMP in [10] in terms
of the achievable data rate. We use three scenarios: i) the number of data streams is Ny =4 and
the number of RF chains is Ngg = 6; ii) the number of data streams is Ny = 2 and the number
of RF chains is Nrg = 4; iii) the number of data streams is Ny = 2 and the number of RF chains
is Nrp = 6. The full-digital method is used as a benchmark, where we use the singular matrices
of H; and H; as the precoding/combing matrices. When Ny = 4, our algorithm outperforms

ADMM by 2%, ISA by 4% and OMP by 9% at SNR = 12 dB. When Ng =2 and Ngrg =4, our
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algorithm outperforms ADMM by 32%, ISA by 6% and OMP by 9% at SNR = 12 dB. When
N =2 and NgRg = 6, our algorithm outperforms ADMM by 34%, ISA by 6 % and OMP by 5%
at SNR =12 dB.

In Fig. 5, we set Eg = 2E; = 2N;. Our proposed algorithm outperforms the other three methods
in three scenarios. When Ng =4, our algorithm can provide 4%, 7% and 11% gains over ADMM,
ISA and OMP, respectively, at SNR = 12 dB. When Ny =2 and Ngrg = 4, our algorithm can
provide a gain of 34% over ADMM, 5% over ISA and 8% over OMP at SNR = 12 dB. When
Ng =2 and NRrp = 6, our algorithm can provide a gain of 44% over ADMM, 5% over ISA and
4% over OMP at SNR = 12 dB.

—o— Full-digital
——+—Our proposed Alg.

ADMM in [13]
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OMP in [10]

Achievable data rate (bits/Hz/s)

351 | | | |
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Fig. 6: Achievable rate comparison with different relay antennas when Ny = 4, Nrr = 6 and

SNR = 5dB

Fig. 6 compares the achievable rate of different algorithms for different number of relay
antennas when Ng =4, Nrg = 6 and SNR = 5 dB. The full-digital method is used as a benchmark.
As expected, when the number of antennas at the relay node increases, the performance of all
different algorithms improves because of the additional antenna gain. Our proposed method has
the best achievable rate performance among the four methods except for Ny =48. When N; =48,
ISA has the highest achievable rate among the four methods. However, as the number of antennas
at the relay node increases, the complexity of the ISA increases greatly, which will lead to a
high power consumption.

Fig. 7 compares the achievable rate for different number of antennas at the destination node

when Ny =4, Nrg = 6 and SNR =5 dB. Similar to Fig. 6, when the number of antennas at the
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Fig. 7: Achievable rate comparison with different destination antennas when Ny =4, Nrp = 6

and SNR =5 dB

destination node increases, the performance of all different algorithms improves because of the
additional antenna gain. Our proposed method has the best achievable rate performance among

the four methods.
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Fig. 8: Achievable rate comparison with different RF chains when Ny =4 and SNR =5 dB using

channel model (9)

Fig. 8 compares the achievable rate among the four methods for different number of RF chains
when Ny =4 and SNR =5 dB. Since our proposed method is designed to maximize the mutual

information between the destination node and the source node after RF precoding/combining,
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Fig. 9: Achievable rate comparison with different RF chains when Ny =4 and SNR =5 dB using

channel model (7)

the gap between our method and the full-digital method is more-or-less fixed, which is caused
by the analog processing. However, ISA and OMP are approximation algorithms jointly iterating
between the RF and the baseband. Therefore, as the number of RF chains increases, the perfor-
mance improves. When the number of RF chains is larger than 8, ISA and OMP will outperform
our proposed algorithm. However, larger number of RF chains leads to higher complexity and
more power consumption. Also, the performance of the approximation algorithms depends on
the limited scattering characteristic of the channel. The more sparse the channel is, the better
performance the approximation algorithms achieve. In Fig. 8, we use the highly limited scattering
channel model in (9), where each scatter only contributes to one path, thus the approximation
algorithms have good performance. If we use the general channel model in (7), the performance
of approximation algorithms degrades greatly as shown in Fig. 9. In Fig. 9, we set the number
of propagation paths N in each scatter to be 2 and the number of scatters L to be 20. In this
case, the performance of ISA and OMP falls far behind our proposed algorithm.

Fig. 10 shows the convergence performance of different algorithms with respect to the number
of iterations. In our algorithm, we update the WMMSE matrix, the digital relay matrix and the
digital precoding matrix sequentially in each iteration. In ISA, the digital relay filter, the analog
relay receiver and the analog relay precoder are updated sequentially in each iteration. In ADMM,
the source node, the relay node and the destination node are optimized alternatively in each

iteration. In Fig. 10, our algorithm has the fastest convergence rate while ADMM has the slowest
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convergence rate. Moreover, our algorithm has much lower complexity in each iteration compared
with ISA. ISA needs to solve three optimization sub-problems, and in each sub-problem it needs
to solve an optimization problem through an iterative method. In our algorithm, we have closed-
form solutions for each step. In addition, since we preform the baseband processing after the

RF processing, the matrix dimensions are greatly reduced compared to ISA.

Our algorithm
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Fig. 10: Convergence rate comparison
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Fig. 11: Baseband algorithms comparison
Fig. 11 compares the baseband processing algorithms. Note that we apply the MMSE algorithm

only on the baseband, i.e., on the H; and H». Our proposed WMMSE algorithm outperforms the

MMSE algorithm in terms of the achievable data rate since we optimized the mutual information
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I(s,yq). In fact, if we set our weight matrix to be the identity matrix, our algorithm degenerates
to the MMSE algorithm. Therefore, the MMSE algorithm can be considered as a special case
of our proposed WMMSE algorithm and our algorithm strictly performs better than MMSE.

B. Robust case

As we described in Section IV, we adopt the channel estimation error model from [18],
[20], [24] where the entries of the correlation matrices are selected as (i, j) = e2.,1 ﬁlifj ‘,
0,(i,)) = ay—jl, D, (i, j) = Ge%zﬁzli_j‘ and O, (i, j) = ag_jl. Parameters o, 1, ap and f3; are the
correlation coefficients and Gez-,l and 6372 denote the estimation error covariance. For simplicity,
we assume o = 0 = @, 1 = B =B and Gil = Ge%z = 02. The antenna settings are the same
as the non-robust part and the number of scatters is set to be 20. The actual channels H; and
H, are generated based on sparse channel model (9) and the estimated channels are generated
by Hy =H; — @%A@% and H, = H, — CIDZ%A2®2%.

Fig. 12 shows the effects of the channel estimation error. We provide the performance of our
algorithm and those of [10], [14]. For this simulation, we have chosen 02=0.1, « =0.6 and
B =0.4. As shown in Fig. 12, the imperfect channel information will result in severe performance
degradation. The achievable data rate of [10], [14] can be decreased to half of what it is for the
perfect CSI.

The achievable data rate performances of the proposed robust scheme with various antenna
covariance values are depicted in Figs. 13 and 14. When SNR is low, the estimation error can be
neglected compared to the noise, therefore the non-robust algorithm achieves good performance
which can be even better than that of the robust algorithm. When SNR goes up, the performance
of the non-robust algorithm starts to degrade. In Fig. 14, the performance becomes worse than that
of the low SNR region for large 662. Meanwhile, the proposed robust design offers significant gain
considering various 662, which demonstrates the effectiveness of the modified robust transceiver
optimization.

In Fig. 15, we compare our robust algorithm with the OMP algorithm in [23]. We set ¢ =0
and B = 0 for simplicity. The proposed robust design provides a large gain over the algorithm

in [23] in all three 62 settings, showing the advantage of our algorithm.
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VI. CONCLUSION

In this paper, we considered mmWave AF relay networks in the domain of massive MIMO.
We designed the hybrid precoding/combining matrices for the source node, the relay node,
and the destination node. We first performed the RF processing to decompose the channel into
parallel sub-channels by compensating the phase of each eigenmode of the channel. Given the RF
processing matrices, we designed the baseband matrices to maximize the mutual information. The
baseband processing is divided into two parts. We first jointly designed the source node and the
relay node by making use of the equivalence between maximizing the mutual information and the

WMMSE. Given the optimal baseband source and relay filters, we implemented MMSE-SIC for
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baseband destination node to obtain the maximal mutual information. In addition, a robust hybrid
precoding/combining design was proposed for the imperfect CSI. Simulation results show that

our algorithm achieves better performance with lower complexity compared with other algorithms

in the literature.

REFERENCES

[1] L. Jiang, X. L. Liu, and H. Jafarkhani, “Hybrid precoding/combining design in mmwave amplify-and-forward MIMO relay
networks,” in Proc. of IEEE International Conference on Communications (ICC), Shanghai, China, May 2019.

[2] T.S. Rappaport, J. R. W. Heath, R. C. Daniels, and J. N. Murdock, Millimeter Wave Wireless Communications. Pearson
Education, 2014.

30



(3]

(4]

(5]

(6]

(71

8]

(9]

(10]

(11]

[12]

(13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

[21]

[22]

Z. Pi and F. Khan, “An introduction to millimeter-wave mobile broadband systems,” IEEE Communications Magazine,
vol. 49, no. 6, pp. 101-107, Jun. 2011.

S. Han, I. Chih-Lin, Z. Xu, and C. Rowell, “Large-scale antenna systems with hybrid analog and digital beamforming for
millimeter wave 5G,” IEEE Communications Magazine, vol. 53, no. 1, pp. 186-194, Jan. 2015.

J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative diversity in wireless networks: Efficient protocols and
outage behavior,” IEEE Transactions on Information Theory, vol. 50, no. 12, pp. 3062-3180, Dec. 2004.

Y. Jing and H. Jafarkhani, “Network beamforming with channel means and covariances at relays,” in Proc. of IEEE
International Conference on Communications (ICC), Beijing, China, May 2008.

——, “Network beamforming using relays with perfect channel information,” IEEE Transactions on Information Theory,
vol. 55, no. 6, pp. 2499-2517, Jun. 2009.

O. El Ayach, S. Rajagopal, S. AbuSurra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO
systems,” IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, Mar. 2014.

X. Gao, L. Dai, and A. M. Sayeed, “Low RF-complexity technologies to enable millimeter-wave MIMO with large antenna
array for 5G wireless communications,” IEEE Communications Magazine, vol. 56, no. 4, pp. 211-217, Apr. 2018.

J. Lee and Y. H. Lee, “AF relaying for millimeter wave communication systems with hybrid RF/baseband MIMO
processing,” in Proc. of IEEE International Conference on Communications (ICC), Sydney, Australia, May 2014.

X. Xue, Y. Wang, X. Wang, and T. E. Bogale, “Joint source and relay precoding in multiantenna millimeter-wave systems,”
IEEE Transactions on Vehicular Technology, vol. 66, no. 6, pp. 4924-4937, Oct. 2016.

J.-S. Sheu, “Hybrid digital and analogue beamforming design for millimeter wave relaying systems,” Journal of
Communications and Networks, vol. 19, no. 5, pp. 461-469, Nov. 2017.

C. G. Tsinos, S. Chatzinotas, and B. Ottersten, “Hybrid analog-digital transceiver designs for mmwave amplify-and-forward
relaying systems,” in Proc. of 41st IEEE International Conference on Telecommunications and Signal Processing (TSP),
Athens, Greece, Jul. 2018.

X. Xue, Y. Wang, L. Dai, and C. Masouros, “Relay hybrid precoding design in millimeter-wave massive MIMO systems,”
IEEE Transactions on Signal Processing, vol. 66, no. 8, pp. 2011-2026, Apr. 2018.

R. M. Gray, Entropy and information theory. Springer Science & Business Media, 2011.

S. S. Christensen, R. Agarwal, E. De Carvalho, and J. M. Cioffi, “Weighted sum-rate maximization using weighted MMSE
for MIMO-BC beamforming design,” IEEE Transactions on Wireless Communications, vol. 7, no. 12, pp. 4792-4799, Dec.
2008.

D. Tse and P. Viswanath, Fundamentals of wireless communication. Cambridge University Press, May 2005.

C. Xing, S. Ma, and Y.-C. Wu, “Robust joint design of linear relay precoder and destination equalizer for dual-hop
amplify-and-forward MIMO relay systems,” IEEE Transactions on Signal Processing, vol. 58, no. 4, pp. 2273-2283, Apr.
2010.

C. Xing, S. Ma, Y.-C. Wu, and T.-S. Ng, “Transceiver design for dual-hop nonregenerative MIMO-OFDM relay systems
under channel uncertainties,” IEEE Transactions on Signal Processing, vol. 58, no. 12, pp. 6325-6339, Dec. 2010.

Y. Rong, “Robust design for linear non-regenerative MIMO relays with imperfect channel state information,” IEEE
Transactions on Signal Processing, vol. 59, no. 5, pp. 2455-2460, May 2011.

E. Koyuncu and H. Jafarkhani, “Distributed beamforming in wireless multiuser relay-interference networks with quantized
feedback,” IEEE Transactions on Information Theory, vol. 58, no. 7, pp. 4538-4576, Jul. 2012.

X. Liu, H. Jafarkhani, and E. Koyuncu, “Amplify-and-forward relay networks with variable-length limited feedback,” IEEE

Transactions on Wireless Communications, vol. 15, no. 11, pp. 7725-7737, Nov. 2016.

31



(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]
(32]

Z. Luo, C. Zhan, L. Zhang, and R. Zhang, “Robust hybrid beamforming in millimeter wave relay networks with imperfect
CSL” IEEE Access, vol. 6, pp. 73093-73 101, Nov. 2018.

X. Zhang, D. P. Palomar, and B. Ottersten, “Statistically robust design of linear mimo transceivers,” IEEE Transactions
on Signal Processing, vol. 56, no. 8, pp. 3678-3689, Aug. 2008.

W. Ni and X. Dong, “Hybrid block diagonalization for massive multiuser MIMO systems,” IEEE Transactions on
Communications, vol. 64, no. 1, pp. 201-211, Jan. 2016.

T. S. Rappaport, F. Gutierrez, E. BenDor, J. N. Murdock, Y. Qiao, and J. I. Tamir, “Broadband millimeter-wave propagation
measurements and models using adaptive-beam antennas for outdoor urban cellular communications,” IEEE Transactions
on Antennas and Propagation, vol. 61, no. 4, pp. 1850-1859, Apr. 2013.

P. F. Smulders and L. Correia, “Characterisation of propagation in 60 GHz radio channels,” Electronics & Communication
Engineering Journal, vol. 9, no. 2, pp. 73-80, Apr. 1997.

H. Xu, V. Kukshya, and T. S. Rappaport, “Spatial and temporal characteristics of 60-GHz indoor channels,” IEEE Journal
on Selected Areas in Communications, vol. 20, no. 3, pp. 620-630, Apr. 2002.

A. M. Sayeed, “Deconstructing multiantenna fading channels,” IEEE Transactions on Signal Processing, vol. 50, no. 10,
pp. 2563-2579, Oct. 2002.

C. A. Balanis, Antenna theory: analysis and design. John wiley & sons, 2016.

S. Nadarajah, “A generalized normal distribution,” Journal of Applied Statistics, vol. 32, no. 7, pp. 685-694, Sep. 2005.
A. K. Gupta and D. K. Nagar, Matrix variate distributions. Chapman and Hall/CRC, 2018.

32



