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Abstract

In this paper, we consider the amplify-and-forward relay networks in mmWave systems and propose

a hybrid precoder/combiner design approach. The phase-only RF precoding/combining matrices are first

designed to support multi-stream transmission, where we compensate the phase for the eigenmodes of

the channel. Then, the baseband precoders/combiners are performed to achieve the maximum mutual

information. Based on the data processing inequality for the mutual information, we first jointly design

the baseband source and relay nodes to maximize the mutual information before the destination baseband

receiver. The proposed low-complexity iterative algorithm for the source and relay nodes is based on the

equivalence between the mutual information maximization and the weighted MMSE. After we obtain

the optimal precoder and combiner for the source and relay nodes, we implement the MMSE-SIC filter

at the baseband receiver to keep the mutual information unchanged, thus obtaining the optimal mutual

information for the whole relay system. Simulation results show that our algorithm achieves better

performance with lower complexity compared with other algorithms in the literature. In addition, we

also propose a robust joint transceiver design for imperfect channel state information.

I. INTRODUCTION

Communications over millimeter wave (mmWave) have received significant attention recently

because of the high data rates provided by the large bandwidth at the mmWave carrier frequen-

cies. Also, using large antenna arrays in mmWave communication systems is possible because
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the small wavelength allows integrating many antennas in a small area. Despite its advantages,

the mmWave carrier frequencies suffer from relatively severe propagation losses. Meanwhile, the

sparsity of the mmWave scattering environment usually results in rank-deficient channels [2].

To overcome the large path losses, large antenna arrays can be placed at both transmitters

and receivers to guarantee sufficient received signal power [3]. The large antenna arrays lead to

a large number of radio frequency (RF) chains, which greatly increase the implementation cost

and complexity. To reduce the number of RF chains, hybrid analog/digital precoding has been

proposed, which connects analog phase shifters with a reduced number of RF chains. The main

advantage of the hybrid precoding is that it can trade off between the low-complexity limited-

performance analog phase shifters and the high-complexity good-performance digital precoding

[4].

Despite the help of large antenna arrays, the severe propagation losses still limit mmWave

communications to take place within short ranges. Fortunately, the coverage can be greatly

extended with the help of relay nodes [5]. Therefore, investigating the performance of hybrid

precoding/combining in the relay scenario is important. For the conventional relay scenario,

network beamforming in amplify-and-forward (AF) relay networks was studied in [6], [7].

For a mmWave relay scenario, large antenna arrays are usually implemented to mitigate the

severe path loss. In addition, a hybrid precoding method is adopted. There are two typical

hybrid precoding structures: (i) fully-connected structure (where each RF chain is connected to

all antennas) [8], and (ii) sub-connected structure (where each RF chain is connected to a subset

of antennas) [9]. For fully-connected mmWave networks with AF relay nodes, the authors in

[10] designed hybrid precoding matrices using the orthogonal matching pursuit (OMP) algorithm.

However, the performance of the OMP algorithm used in [10] depends on the orthogonality of the

pre-determined candidates for the analog precoders. In [11], a joint source and relay precoding

design for mmWave AF relay network is proposed based on semidefinite programming (SDP).

However, the proposed method in [11] is only suitable for one data stream scenario. In [12], to

reduce the complexity, the RF and the baseband (BB) are separately designed and a minimum

mean squared error (MMSE)-based design for the BB filters is proposed. Although the algorithm

in [12] shows its advantage over the OMP algorithm in terms of sum spectral efficiency, it did

not optimize the sum rate of the system. In fact, [12] can be seen as a special case of our

proposed methods since we minimize the weighted mean squared error. In [13], an efficient

algorithm is proposed via employing the so-called Alternating Direction Method of Multipliers
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(ADMM), which greatly reduces the distance between the hybrid precoder/combiner and the

full-digital precoder/combiner. However, the ADMM algorithm has a high complexity and is

sub-optimal in terms of the data rate for the system. For sub-connected structures, [14] proposes

a MMSE-based relay hybrid precoding design. To make the problem tractable, [14] reformulates

the original problem as three subproblems and proposes an iterative successive approximation

(ISA) algorithm. The algorithm in [14] can also be extended to the fully-connected structure.

Compared with the OMP algorithm, the ISA algorithm in [14] greatly improves the performance,

however, the complexity of the ISA algorithm is high and it only optimizes the relay node.

In this paper, we study the hybrid precoding for fully-connected mmWave AF relay networks

in the domain of massive multiple-input and multiple-output (MIMO) systems. To reduce the

complexity, we separate the RF and the BB. For the RF, we first design the phase-only RF

precoding/combining matrices for multi-stream transmissions. We decompose the channel into

parallel sub-channels through singular value decomposition (SVD) and compensate the phase of

each sub-channel, i.e., each eigenmode of the channel. When the RF precoding and combining are

performed, the digital baseband precoders/combiners are performed on the equivalent baseband

channel to achieve the maximal mutual information. The problem of finding the optimal baseband

precoders/combiners for the optimal mutual information is non-convex and intractable to solve

by low-complexity methods. Based on the data processing inequality for the mutual information

[15], we first jointly design the baseband source and relay nodes to maximize the mutual

information before the destination baseband receiver. We propose a low-complexity iterative

algorithm to design the precoder and combiner for the source and relay nodes, which is based

on the equivalence between the mutual information maximization and the weighted MMSE [16].

After we obtain the optimal precoder and combiner for the source and relay nodes, we implement

the MMSE successive interference cancellation (MMSE-SIC) filter [17] at the baseband receiver

to keep the mutual information unchanged, thus obtaining the optimal mutual information for

the whole relay system. Simulation results show that our algorithm outperforms the OMP in

[10]. Moreover, our algorithm achieves better performance with lower complexity compared to

the ISA algorithm in [14].

We also propose a robust hybrid precoding/combining approach considering the inevitable

imperfect channel state information (CSI) in the second part of the paper. Robust design for

traditional relay systems has been well studied in papers, such as [18]–[20]. In [21], [22], the

topic of imperfect channel state information in amplify-and-forward relay networks has been
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studied under amplify-and-forward relay networks with limited feedback. However, there is not

much work on the effects of imperfect channel state information in mmWave relay networks.

In [23], a robust OMP-based algorithm is proposed to maximize the receiving signal-to-noise

ratio (SNR) at the destination node. Similar with the non-robust case, the performance of the

OMP-based algorithm depends on the orthogonality of the predetermined candidates for the

analog precoders. In this paper, we adopt the well-known Kronecker model [18], [24] for the

CSI mismatch. We first estimate the phase for RF precoding/combining to minimize the average

estimation error. Then, we modify our proposed weighted MMSE approach for the perfect CSI to

achieve a more robust performance for the baseband processing. Simulation results demonstrate

the robustness of the proposed algorithm against CSI mismatch.

The contributions of our paper can be summarized as follows:

• We propose a hybrid precoding/combining approach for perfect CSI in mmWave relay

systems. The phase-only RF precoding/combining matrices are first designed to achieve

large array gains and support multi-stream transmissions. Then, we design the baseband

processing system to achieve maximal mutual information by transforming the highly

complicated non-convex mutual information maximization problem into an easily tractable

weighted MMSE problem. An iterative algorithm which decouples the joint design into four

sub-problems is developed.

• A robust design for the imperfect CSI is further proposed by modifying the non-robust

precoding/combining design. To the best of our knowledge, except [23], this is the first

mmWave relay system design that is robust to channel estimation error. Numerical results

are provided to show the robustness of the proposed algorithm against CSI mismatch.

Compared with our conference version [1] which designs the hybrid filters for perfect CSI,

we analyze the impact of imperfect CSI in this paper, and further propose a robust design to

strengthen the robustness of our proposed algorithm. The remaining sections are organized as

follows. In Section II , we describe the system model and the mmWave channel model. Section

III formulates the proposed hybrid precoding/combing approach for the perfect CSI. Section

IV presents the proposed robust hybrid design for the imperfect CSI. Numerical examples are

presented and discussed in Section V. We provide concluding remarks in Section VI.

Notation: Cm×n is the set of all m× n complex matrices with Cm , Cm×1 and C , C1. Im

is the m×m identity matrix, and 0m×n is the m× n all-zero matrix. CN(µµµ,K) is a circularly-

symmetric complex Gaussian random vector with mean vector µµµ and covariance matrix K.
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Matrices AT and AH are the transpose and the Hermite transpose of matrix A, respectively. Matrix

A = [ααα1,ααα2, ...,αααL] represents the concatenation of the L vectors ααα i, and B = [A1,A2, ...,AK]

represents the concatenation of the K matrices Ai.

II. SYSTEM MODEL

In this section, we present the signal and channel model for a single user mmWave MIMO

relay system with large antenna arrays and limited RF chains.
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Fig. 1: System model

A. System model

Consider a single-user mmWave MIMO relay system using hybrid precoding as illustrated

in Fig. 1. The system consists of a source node with Nt transmission antennas, a relay node

with Nr antennas for both transmitting and receiving signals, and a destination node with Nd

antennas. Assuming Ns data streams are transmitted, the BS is equipped with NRF RF chains

such that Ns ≤ NRF ≤ Nt. Using the NRF transmit chains, an NRF×Ns baseband precoder FBB
t

is applied. The RF precoder is an Nt×NRF matrix FRF
t . Half duplex relaying is adopted. During

the first time slot, the BS transmits the Ns data streams to the relay through a MIMO channel

H1 ∈CNr×Nt . The relay receives the signal with an RF combiner WRF
r ∈CNRF×Nr and a baseband

filter GBB
r ∈ CNRF×NRF . During the second time slot, the relay transmits the data using one RF

percoder FRF
r ∈CNr×NRF through a MIMO channel H2 ∈CNd×Nr and the destination receives the

data with one RF combiner WRF
d ∈ CNRF×Nd and one baseband combiner WBB

d ∈ CNs×NRF .

We assume the transmited signal is sss = [s1,s2, ...,sNs ]T with E[ssssssH ] = INs ∈ CNs×Ns . During

the first time slot, the received signal after the baseband filter at the relay can be expressed as

yyyr = GBB
r WRF

r H1FRF
t FBB

t sss+GBB
r WRF

r nnn1, (1)
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where nnn1 ∈CNr×1 is a zero-mean complex Gaussian noise vector at the relay node with covariance

matrix E[nnn1nnnH
1 ] = σ2

1 INr ∈ CNr×Nr . The power constraint at the source node is∥∥FRF
t FBB

t
∥∥2

F ≤ Et. (2)

During the second time slot, the received signal after the combiners at the destination can be

expressed as

yyyd = WBB
d WRF

d H2FRF
r GBB

r WRF
r H1FRF

t FBB
t sss

+WBB
d WRF

d H2FRF
r GBB

r WRF
r nnn1 +WBB

d WRF
d nnn2,

(3)

where nnn2 ∈ CNd×1 is a zero-mean complex Gaussian noise vector at the destination node with

covariance matrix E[nnn2nnnH
2 ] = σ2

2 INd ∈ CNd×Nd .

To simplify the expression, we define Ft = FRF
t FBB

t ∈ CNt×Ns as the hybrid precoding matrix

at the transmitter, Gr = WRF
r GBB

r FBB
r ∈ CNr×Nr as the hybrid filter at the relay node, and Wd =

WBB
d WRF

d ∈CNs×Nd as the hybrid combiner at the destination node. Eq. (3) can be expressed as

yyyd = WdH2GrH1Ftsss+WdH2Grnnn1 +Wdnnn2. (4)

The relay’s power constraint is

E[‖GrH1Ftsss+Grnnn1‖2
F ]≤ Er. (5)

Based on this hybrid precoding/combining system model, we can derive the achieved data

rate for the system as

R =
1
2

log2 det(INs +WdH2GrH1FtR-1
n FH

t HH
1 GH

r HH
2 WH

d ), (6)

where Rn = σ2
1 WdH2GrGH

r HH
2 WH

d +σ2
2 WdWH

d is the covariance matrix of the colored Gaussian

noise at the output of the baseband combiner.

Generally, we want to jointly optimize the RF and baseband precoders/combiners to achieve

the optimal data rate. However, finding the global optima for this problem (maxmizing R

while imposing constant-amplitude on the RF analog precoder/combiners) is non-convex and

intractable. Separated RF and baseband processing designs, as [25] did, are investigated to obtain

satisfying performance. Therefore, we will separate the RF and baseband domain designs in this

paper.
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B. Channel model

MmWave channels are expected to have limited scattering characteristic [26]–[28], which

means the assumption of a rich scattering environment becomes invalid. This is called sparsity

in the literature and leads to the unreliability of traditional channel models, such as the Rayleigh

fading channel model. To characterize the limited scattering feature, we adopt the clustered

mmWave channel model in [2], [27]–[29] with L scatters. Each scatter is assumed to contribute

Ncl propagation paths to the channel matrix H. Then, the channel is given by

H =

√
NtNr

LNcl

L

∑
l=1

Ncl

∑
n=1

αl,naaar(ϕ
r
l,n,θ

r
l,n)aaa

H
t (ϕ

t
l,n,θ

t
l,n), (7)

where αl,n is the complex gain of the nth path in the lth scatter with the distribution CN(0,1),

ϕ r
l,n(θ

r
l,n) and ϕ t

l,n(θ
t
l,n) are the random azimuth and elevation angles of arrival and departure.

aaar(ϕ
r
l,n,θ

r
l,n) and aaat(ϕ

t
l,n,θ

t
l,n) are the receiving and transmitting antenna array response vectors,

respectively. While the algorithms and results in the paper can be applied to arbitrary antenna

arrays, we use uniform linear arrays (ULAs) in the simulations for simplicity. The array response

vectors take the following form [30]:

aaaULA(ϕ) =
1√
N
[1,e jkdsin(ϕ), ...,e j(N−1)kdsin(ϕ)]T , (8)

where k = 2π

λ
. Parameter λ represents the wavelength of the carrier and d is the spacing between

antenna elements. The angle ϕ is assumed to have a uniform distribution over [0,2π].

Since the channel in mmWave systems has limited scattering, we can further simplify the

channel by assuming each scatter only contributes one path to the channel matrix. Then, the

channel can be further expressed as

H =

√
NtNr

L

L

∑
l=1

αlaaar(ϕ
r
l ,θ

r
l )aaa

H
t (ϕ

t
l ,θ

t
l ). (9)

The matrix formulation can be expressed as

H =

√
NtNr

L
Ardiag(ααα)AH

t , (10)

where Ar = [aaar(ϕ
r
1,θ

r
1), ...,aaar(ϕ

r
L,θ

r
L)] and At = [aaat(ϕ

t
1,θ

t
1), ...,aaat(ϕ

t
L,θ

t
L)] are matrices containing

the receiving and transmitting array response vectors, and ααα = [α1, ...,αL]
T .
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III. HYBRID PRECODER/COMBINER DESIGN

As discussed in Section II, we use a hybrid design to reduce the number of RF chains. We

first design the RF precoder/combiner. Then, based on the designed RF precoder/combiner, we

design a low-complexity iterative algorithm for the baseband precoder/combiner to maximize

the mutual information.

A. RF precoder/combiner design

Our goal for RF precoder/combiner is to make the channels decomposed into NRF parallel sub-

channels to support the multi-stream transmission. The main challenge is the constant-magnitude

constraints on RF precoders and combiners. Without the constant-magnitude constraints, the

optimal precoder/combiner should be the right/left singular matrix of the channel, which transmits

the signals along the eigenmodes of the channel. Considering the constant-magnitude constraints,

we cannot directly use the singular matrix to rotate the signals, but we can use the projection

on each eigenmode as a criterion to choose RF precoder and combiner. For the ith eigenmode,

the best precoder should be the one that has the largest projection on that eigenmode, i.e., the

one that casts the most energy along that eigenmode direction.

Using H1 as an example, we first perform the singular value decomposition (SVD) for the

channel matrix.

H1 = U1Σ1VH
1 =

L

∑
i=1

σiuuuivvvH
i , (11)

where uuui and vvvi are the ith vectors in matrices U1 and V1, respectively, which correspond to σi.

The singular values σis are assumed to be in a descending order. L is the rank of the channel and

is equal to the number of propagation paths for the mmWave scenario. Note that for mmWave

systems, the channels usually have limited scattering characteristics, which means the number

of propagation paths is far less than min(Nt,Nr). In such cases, the channel rank is equal to

the number of propagation paths L. Eq. (11) indicates that channel H1 has L eigenmodes. We

denote the ith eigenmode by uuuivvvH
i , and its gain by σi.

For our RF precoding/combining, we want to maximize the projection of the ith data stream

onto the ith eigenmode, i.e.,
∣∣wwwH

i uuuivvvH
i fff i
∣∣, where fff i and wwwi are the ith vector of precoder FRF

t

and combiner WRF
r , respectively. To approach the maximal projection, we have the following

proposition.
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Proposition 1. The optimal phase-only vectors fff i and wwwi, which maximize the projection for

the ith data stream onto the ith eigenmode of the channel, will satisfy the following conditions:

phase( fff i[m]) = phase(vvvi[m]) ∀m = 1,2, ...,Nt, (12)

phase(wwwi[n]) = phase(uuui[n]) ∀n = 1,2, ...,Nr, (13)

where ···[k] represents the kth element of a vector.

Proof. First, we express the vectors in polar coordinates. Due to the magnitude-constant con-

straints, vectors fff i and wwwi are expressed as fff i =
1√
Nt
[e jθ i

1 ,e jθ i
2 , ...,e jθ i

Nt ]T and wwwi =
1√
Nr
[e jϕ i

1 ,e jϕ i
2 , ...,e jϕ i

Nr ]T .

Since there are no constant-magnitude constraints for vvvi and uuui, each element in the vector

has its own magnitude. The polar forms of vvvi and uuui are vvvi = [ri
1e jα i

1 ,ri
2e jα i

2 , ...,ri
Nt

e jα i
Nt ]T and

uuui = [ρ i
1e jβ i

1 ,ρ i
2e jβ i

2 , ...,ρ i
Nr

e jβ i
Nr ]T , respectively. Then, the projection can be calculated as

∣∣wwwH
i uuuivvvH

i fff i
∣∣= ∣∣∣∣∣ 1√

Nr

Nr

∑
n=1

ρ
i
ne j(ϕ i

n−β i
n)

∣∣∣∣∣
∣∣∣∣∣ 1√

Nt

Nt

∑
m=1

ri
me j(α i

m−θ i
m)

∣∣∣∣∣ . (14)

According to the Cauchy-Schwartz inequality, we have∣∣∣∣∣ 1√
Nt

Nt

∑
m=1

ri
me j(α i

m−θ i
m)

∣∣∣∣∣
2

≤ 1
Nt

Nt

∑
m=1

∣∣ri
m
∣∣2 Nt

∑
m=1

∣∣∣e j(α i
m−θ i

m)
∣∣∣2 = 1

Nt

Nt

∑
m=1

∣∣ri
m
∣∣2 . (15)

Equality can be achieved in (15) if and only if θ i
m =α i

m ∀m= 1,2, ...,Nt. This means the maximal∣∣vvvH
i fff i
∣∣ is achieved when θ i

m = α i
m ∀m = 1,2, ...,Nt. Similarly, the maximal

∣∣wwwH
i uuui
∣∣ is achieved

when ϕ i
n = β i

n ∀n = 1,2, ...,Nr. Therefore, we have the conclusion that the optimal phase-only

vectors fff i and wwwi, which maximize |wwwH
i uuuivvvH

i fff i|, will satisfy the conditions in (12) and (13).

Our RF precoders and combiners are actually compensating the phase of each sub-channel.

Note that when the number of antennas is large enough, the response vectors aaar(ϕ
r
l ,θ

r
l )s and

aaat(ϕ
t
l ,θ

t
l )s become orthogonal to each other. At and Ar become the left and right singular matrices

of the channel and they directly become our RF precoder and combiner. In this case, we can

perfectly decompose the channel into independent parallel sub-channels. The equivalent channel

after RF processing is diagonal, which makes it easier for baseband processing.
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B. Baseband system

In this section, we focus on designing the baseband precoding/combining matrices. First, we

define the equivalent baseband channels for H1 and H2 as

H̃1 = WRF
r H1FRF

t , (16)

H̃2 = WRF
d H2FRF

r . (17)

Based on the equivalent channels, we simplify our system model as shown in Fig. 2.

Relay 

Baseband

Filter

Baseband

Precoder

Baseband

Combiner

Source node Relay node Destination node

Fig. 2: Baseband System model

Using the equivalent channels (16) and (17), we rewrite the received signals at the destination

node as

ỹyyd = H̃2GBB
r H̃1FBB

t sss+ H̃2GBB
r ñnn1 + ñnn2, (18)

yyyd = WBB
d H̃2GBB

r H̃1FBB
t sss+WBB

d H̃2GBB
r ñnn1 +WBB

d ñnn2, (19)

where ñnn1 = WRF
r nnn1 and ñnn2 = WRF

d nnn2.

Our ultimate goal for the baseband design is to maximize the mutual information I(sss,yyyd).

However, directly optimizing I(sss,yyyd) is intractable. According to the data processing inequality

[15], I(sss,yyyd)≤ I(sss, ỹyyd). We first design FBB
t and GBB

r to maximize the mutual information I(sss, ỹyyd).

After we get the maximum I(sss, ỹyyd), we implement the MMSE-SIC for WBB
d , which according to

[17] is information lossless. In this way, we make I(sss,yyyd) = I(sss, ỹyyd). Since I(sss, ỹyyd) is maximized,

I(sss,yyyd) is also maximized because of the data processing inequality and the independence of

I(sss; ỹyyd) from WBB
d .
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C. FBB
t and GBB

r design

In this section, we jointly design FBB
t and GBB

r to maximize I(sss, ỹyyd). According to [16], there

exists a relationship between I(sss, ỹyyd) and the MSE matrix EMMSE, i.e.,

I(sss, ỹyyd) = log2 det(E−1
MMSE), (20)

where the MSE matrix EMMSE is defined as the mean square error covariance matrix given the

MMSE receiver. The detailed proof can be found in [16]. We give a brief derivation procedure

below.

The MMSE receiver is defined as

WMMSE
d = argminE[‖WBB

d ỹyyd− sss‖2] = (H̃2GBB
r H̃1FBB

t )H

(H̃2GBB
r H̃1FBB

t (H̃2GBB
r H̃1FBB

t )H +Rñ)
−1,

(21)

where Rñ = σ2
1 H̃2GBB

r WRF
r (H̃2GBB

r WRF
r )H +σ2

2 WRF
r (WRF

r )H .

The MMSE matrix EMMSE can be calculated by

EMMSE = E[(WMMSE
d ỹyyd− sss)(WMMSE

d ỹyyd− sss)H ]

= (INs−WMMSE
d H̃2GBB

r H̃1FBB
t )

(INs−WMMSE
d H̃2GBB

r H̃1FBB
t )H +WMMSE

d Rñ(WMMSE
d )H .

(22)

Substituting (21) into (22), we can express EMMSE as

EMMSE = (INs +(H̃2GBB
r H̃1FBB

t )HR−1
ñ H̃2GBB

r H̃1FBB
t )−1. (23)

From (23), we can obtain (20).

Based on (20), we can establish the equivalence between the I(sss, ỹyyd) maximization problem

and a WMMSE problem as [16] did.

The I(sss, ỹyyd) maximization problem is formulated as

min
FBB

t ,GBB
r

−I(sss, ỹyyd)

s.t.
∥∥FRF

t FBB
t
∥∥2

F ≤ Et,

E[
∥∥FRF

r GBB
r H̃1FBB

t sss+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]≤ Er.

(24)

The WMMSE problem is formulated as

min
FBB

t ,GBB
r ,V

Tr(VEMMSE)

s.t.
∥∥FRF

t FBB
t
∥∥2

F ≤ Et,

E[
∥∥FRF

r GBB
r H̃1FBB

t sss+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]≤ Er,

(25)
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where V is a constant weight matrix.

We will show that Problems (24) and (25) have the same optimum solution, i.e., the points

that satisfy the KKT conditions for (24) and (25) are the same. Same as [16], we set the

partial derivatives of the Lagrange functions of (24) and (25) to zero. Note that the power

constraints of (24) and (25) are the same. To prove the equivalence, we only need to calculate

the partial derivatives of −I(sss, ỹyyd) and Tr(VEMMSE) w.r.t FBB
t and GBB

r . Note that ∂ logdet(X) =

Tr(X−1∂X). Taking FBB
t as an example, for I(sss, ỹyyd), we have

∂ − I(sss, ỹyyd)

∂FBB
t

=−∂ log2 det(EMMSE)

∂FBB
t

=−
Tr(E−1

MMSE∂EMMSE)

(log2)∂FBB
t

, (26)

Note that ∂X−1 =−X−1(∂X)X−1 and ∂ (AX) = ∂ (X)A+∂ (A)X. For Tr(VEMMSE), we have

∂ Tr(VEMMSE)

∂FBB
t

=−
Tr(∂ (V(E−1

MMSE)
−1))

∂FBB
t

=−
Tr(EMMSE∂ (E−1

MMSE)EMMSEV+∂ (V)EMMSE)

∂FBB
t

=−
Tr(EMMSE∂ (E−1

MMSE)EMMSEV)

∂FBB
t

.

(27)

If we set the constant weight matrix V =
E−1

MMSE
log2 , then we have

∂ − I(sss, ỹyyd)

∂FBB
t

=
∂ Tr(VEMMSE)

∂FBB
t

. (28)

Similarly, we can derive
∂ − I(sss, ỹyyd)

∂GBB
r

=
∂ Tr(VEMMSE)

∂GBB
r

. (29)

From Eqs. (28) and (29), we can conclude that the KKT-conditions of (24) and (25) can

be satisfied simultaneously, which suggests that it is possible to solve the mutual information

maximization problem through the use of WMMSE by choosing an appropriate weight, i.e., V.

To maximize I(sss, ỹyyd), we propose an iterative algorithm based on the WMMSE problem (25).

Note that in the proposed algorithm, we also iteratively search for the appropriate weight matrix.

When the algorithm converges, we will obtain the desired weight matrix as well as the optimal

filters that maximize I(sss, ỹyyd). The detailed algorithm is described as follows:

1) Calculate the MMSE receiver WMMSE
d in Eq. (21) and the MSE matrix EMMSE in Eq. (22).

2) Update V by setting V =
E−1

MMSE
log2 .
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3) Fixing V and FBB
t , then we find GBB

r that minimizes Tr(VEMMSE) =

Tr(V((INs−WMMSE
d H̃2GBB

r H̃1FBB
t )(INs−WMMSE

d H̃2GBB
r H̃1FBB

t )H +WMMSE
d Rñ(WMMSE

d )H))

under the power constraints, i.e.,

ĜBB
r = argmin Tr(V((INs−WMMSE

d H̃2GBB
r H̃1FBB

t )

(INs−WMMSE
d H̃2GBB

r H̃1FBB
t )H +WMMSE

d Rñ(WMMSE
d )H))

s.t. E[
∥∥FRF

r GBB
r H̃1FBB

t sss+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]≤ Er.

(30)

Problem (30) is a convex optimization for GBB
r and we can solve it using the KKT

condition. Denoting the Lagrange function of Problem (30) as Lr(GBB
r ,λ r)=Tr(VEMMSE)+

λ r(
∥∥FRF

r GBB
r H̃1FBB

t sss+FRF
r GBB

r WRF
r nnn1

∥∥2
F −Er), the KKT conditions are

∂Lr(GBB
r ,λ r)

∂GBB
r

= 0, (31)

E[
∥∥FRF

r GBB
r H̃1FBB

t sss+GBB
r WRF

r nnn1
∥∥2

F ]−Er ≤ 0, (32)

λ
r(E[

∥∥FRF
r GBB

r H̃1FBB
t sss+GBB

r WRF
r nnn1

∥∥2
F ]−Er) = 0, (33)

λ
r ≥ 0. (34)

Solving (31), we have

ĜBB
r = ((WMMSE

d H̃2)
HVWMMSE

d H̃2 +λ
r(FRF

r )HFRF
r )−1

(H̃2)
H(WMMSE

d )HV(FBB
t )H(H̃1)

H

(H̃1FBB
t (H̃1FBB

t )H +σ
2
1 WRF

r (WRF
r )H)−1.

(35)

Based on (32) and (33), we can obtain the Lagrange multiplier λ r as follows. First, we

calculate ĜBB
r by setting λ r = 0. If the power constraint is satisfied, then we set λ r = 0.

If the power constraint is not satisfied, then, we initialize λ r with a pre-defined value and

substitute it into (32) and start a bisection search for λ r until the power constraint is satisfied.

4) Fixing V and GBB
r , then we find the FBB

t to minimize Tr(VEMMSE) =

Tr(V((INs−WMMSE
d H̃2GBB

r H̃1FBB
t )(INs−WMMSE

d H̃2GBB
r H̃1FBB

t )H +WMMSE
d Rñ(WMMSE

d )H))

under the power constraints, i.e.,

F̂BB
t = argmin Tr(V((INs−WMMSE

d H̃2GBB
r H̃1FBB

t )(INs

−WMMSE
d H̃2GBB

r H̃1FBB
t )H +WMMSE

d Rñ(WMMSE
d )H))

s.t.
∥∥FRF

t FBB
t
∥∥2

F ≤ Et,

E[
∥∥FRF

r GBB
r H̃1FBB

t s+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]≤ Er.

(36)
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Problem (36) is a convex optimization for FBB
t and, similar with Problem (30), we can

solve Problem (36) using the KKT conditions. Denoting the Lagrange function of Problem

(36) as Lt(FBB
t ,λ t

1,λ
t
2), the KKT conditions are

∂Lt(FBB
t ,λ t

1,λ
t
2)

∂FBB
t

= 0, (37)

∥∥FRF
t FBB

t
∥∥2

F −Et ≤ 0, (38)

E[
∥∥FRF

r GBB
r H̃1FBB

t s+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]−Er ≤ 0, (39)

λ
t
1(
∥∥FRF

t FBB
t
∥∥2

F −Et) = 0, (40)

λ
t
2(E[

∥∥FRF
r GBB

r H̃1FBB
t s+FRF

r GBB
r WRF

r nnn1
∥∥2

F ]−Er) = 0, (41)

λ
t
1,λ

t
2 ≥ 0. (42)

The optimal solution for FBB
t can be expressed as

F̂BB
t = ((WMMSE

d H̃2GBB
r H̃1)

HVWMMSE
d H̃2GBB

r H̃1

+λ
t
1(F

RF
t )HFRF

t +λ
t
2(F

RF
r GBB

r H̃1)
HFRF

r GBB
r H̃1)

−1

(VWMMSE
d H̃2GBB

r H̃1)
H ,

(43)

where λ t
1 and λ t

2 are the non-negative Lagrange multipliers corresponding to the power

constraints. Similar with Problem (30), to obtain λ t
1 and λ t

2, we consider four cases: i) if

the power constraints are satisfied when λ t
1 = 0 and λ t

2 = 0, we will set λ t
1 and λ t

2 equal to

0; ii) if case (i) is not satisfied, we then set λ t
1 = 0 and start a bisection search for λ t

2 until

the KKT condition (41) and the power constraint (38) are satisfied; iii) if (41) and (38)

cannot be satisfied simultaneously through the bisection search for λ t
2, we then set λ t

2 = 0

and start a bisection search for λ t
1 until (39) and (40) are satisfied; iv) if we cannot find the

appropriate λ t
1 to satisfy (39) and (40) at the same time, we can obtain λ t

1 and λ t
2 through

a two-layer bisection search. The search algorithm is described in Algorithm 1.

The entire design procedures for FBB
t and GBB

r are summarized in Algorithm 2.
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Algorithm 1 Two-layer bisection search for λ t
1 and λ t

2

1: initialize λ t
1,min = λ t

2,min = 0, λ t
1,max,λ t

2,max;

2: while λ t
1,max−λ t

1,min > ε1 do

3: setting λ t
1 =

λ t
1,min+λ t

1,max
2 ;

4: while λ t
2,max−λ t

2,min > ε2 do

5: setting λ t
2 =

λ t
2,min+λ t

2,max
2 ;

6: calculate FBB
t according to (43);

7: if E[
∥∥FRF

r GBB
r H̃1FBB

t s+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]≤ Er then

8: λ t
2,max = λ t

2;

9: end if

10: if E[
∥∥FRF

r GBB
r H̃1FBB

t s+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]≥ Er then

11: λ t
2,min = λ t

2;

12: end if

13: end while

14: calculate FBB
t according to (43);

15: if
∥∥FRF

t FBB
t
∥∥2

F ≤ Et then

16: λ t
1,max = λ t

1;

17: end if

18: if
∥∥FRF

t FBB
t
∥∥2

F ≥ Et then

19: λ t
1,min = λ t

1;

20: end if

21: end while

D. Convergence analysis

Since the constant weight matrix V changes at each iteration, it does not generate a monotonic

decreasing sequence, which means we cannot directly prove the convergence of the proposed

algorithm. Fortunately, according to [16], the iteration procedure to maximize the mutual in-

formation through minimizing WMMSE is the same optimization procedure for an equivalent

optimization problem as below

min
FBB

t ,GBB
r ,

V,WBB
d

Tr(VEMMSE)− logdet(V)

s.t.
∥∥FRF

t FBB
t
∥∥2

F ≤ Et,

E[
∥∥FRF

r GBB
r H̃1FBB

t sss+FRF
r GBB

r WRF
r nnn1

∥∥2
F ]≤ Er.

(44)
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Algorithm 2 Design for FBB
t and GBB

r

1: Initialize FBB(0)
t and GBB(0)

r ;

2: Set k = 1;

3: while |I(sss, ỹyyd)
(k)− I(sss, ỹyyd)

(k−1)|> ε do

4: Calculate the MMSE receiver WMMSE(k)
d according to (21) and the MSE matrix E(k)

MMSE in Eq. (22);

5: Update V by setting V =
(E(k)

MMSE)
−1

log2 ;

6: Calculate FBB(k)
t as Step III illustrates;

7: Calculate GBB(k)
r as Step IV illustrates;

8: k = k+1;

9: end while

The proof of the equivalence is similar to the proof in [16] and we omit the detailed prove for

brevity. The main idea is that the alternating minimization of the objective in (44) corresponds

to Steps 1-4 in our proposed algorithm. For example, when FBB
t ,GBB

r and V are fixed, opti-

mizing (44) w.r.t. WBB
d becomes minimizing MMSE, which gives the same result as Step 1.

When FBB
t ,GBB

r and WBB
d are fixed, the optimal solution for V which minimizes the objective

Tr(VEMMSE)− logdet(V) in (44) is the same as Step 2.

Based on this equivalence, we can prove the convergence of the proposed algorithm by proving

the monotonic convergence of Problem (44). According to [16], the objective in Problem (44) has

a lower bound, which is the negative of the maximum mutual information. Due to the alternating

minimization process, the objective in Problem (44) decreases monotonically. Since a sequence

of monotonically decreasing numbers with a lower bound converges, Problem (44) converges

and so does our proposed algorithm.

E. Complexity analysis

Since we provide closed-form solutions for each iteration, the main complexity lies in the

search for the appropriate Lagrange multipliers. Let us define the search accuracy as ε . This is

a relative measure for the search interval. For example, if the length of our search interval is

l, then the threshold for the search termination is set to be εl. Based on the accuracy ε , the

number of iterations in the bisection search in Step 3 is bounded by O(log2
1
ε
). In Step 4, we

use a two-layer bisection search, whose number of iteration is bounded by O(log2
2

1
ε
). So, for

each outer iteration, the total number of inner iterations is O(log2
1
ε
)+O(log2

2
1
ε
). Compared

with the algorithm in [14], for which the number of inner iterations is O(2(2NRFNr)
2.5 log 1

ε
) for
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each outer iteration, the complexity of our algorithm is much lower especially for large antenna

arrays.

F. WBB
d design

Since I(sss,yyyd) ≤ I(sss, ỹyyd) [15], after we find the maximum I(sss, ỹyyd), the optimal I(sss,yyyd) will

be obtained if the destination node baseband processing does not cause any information loss.

According to [17], MMSE-SIC is information lossless. Therefore, we use MMSE-SIC for our

destination baseband design. To simplify the expression, let us define

ỹyyd = H̃2GBB
r H̃1FBB

t sss+ H̃2GBB
r ñnn1 + ñnn2 = Gsss+ v̄vv, (45)

where G = [ggg1, ...,gggNs
] ∈ CNRF×Ns , v̄vv is the colored noise with covariance matrix Rñ.

To implement the MMSE-SIC for the kth stream, we subtract the effect of the first k− 1

streams from the output and obtain

ỹyyd’ = ỹyyd−
k−1

∑
i=1

gggisi + v̄vv = gggksk +
Ns

∑
j=k+1

ggg js j + v̄vv. (46)

Define WBB
d = [www1, ...,wwwNs ]

H , the baseband filter for the kth stream is derived as the MMSE

filter:

wwwH
k = gggH

k (
Ns

∑
j=k+1

ggg jggg
H
j +Rñ)

−1. (47)

IV. ROBUST DESIGN

So far, we have designed the mmWave relay precoders/combiners under the perfect channel

information. However, it is hard to avoid estimation/quantization errors while obtaining the

channel information. To study the effects of imperfect channel estimation, we adopt the model

provided in [18], [20], [24]. In this model, the relationship between the channel values and the

corresponding estimated channel values are:

H1 = H̄1 +Φ
1
2
1 ∆1Θ

1
2
1 , (48)

H2 = H̄2 +Φ
1
2
2 ∆2Θ

1
2
2 , (49)

where H1 and H2 are the actual channel matrices, i.e., the channels that we cannot precisely

estimate, and H̄1 and H̄2 are the estimated channels. The transmitting covariance matrix of the

channel estimation error at the source node and the relay node are denoted by Θ1 ∈CNt×Nt and

Θ2 ∈CNr×Nr , respectively. The receiving covariance matrix of the channel estimation error at the
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relay node and the destination node are denoted by Φ1 ∈CNr×Nr and Φ2 ∈CNd×Nd , respectively.

∆1 and ∆2 are Gaussian random matrices with independent and identically distributed (i.i.d.) zero

mean and unit variance entries and are the unknown parts of the CSI mismatch. we adopt the

exponential model [18], [20] for the channel estimation error covariance matrices Φ1, Θ1, Φ2 and

Θ2. To be specific, the entries of the matrices are given as Φ1(i, j) = σ2
e,1β

|i− j|
1 , Θ1(i, j) = α

|i− j|
1 ,

Φ2(i, j) = σ2
e,2β

|i− j|
2 and Θ2(i, j) =α

|i− j|
2 , where α1, β1, α2 and β2 are the correlation coefficients

and σ2
e,1 and σ2

e,2 denote the estimation error covariance. For simplicity, we assume α1 = α2 = α ,

β1 = β2 = β and σ2
e,1 = σ2

e,2 = σ2
e .

As shown in Section V, the imperfect channel information will result in severe performance

degradation. For example, the achievable data rate of [10], [14] can be decreased to half of what

it is for the perfect CSI.

To further increase the robustness of our proposed algorithm, in this section, we will propose

a robust precoding/combining design for the mmWave relay system based on our proposed

WMMSE algorithm.

A. RF design

Recall that our RF precoding/combining is actually phase compensation for each eigenmode.

The eigenmodes are obtained through SVD. When considering the imperfect CSI, the phase

of each eigenmode cannot be precisely acquired. Let us take the actual channel H1 and the

estimated H̄1 as an example. The left singular matrices of H1 and H̄1 are denoted by U1 and

Ū1. We denote the phase of each entry in U1 and Ū1 by θi, j and θ̄i, j, respectively. The phase

difference in each entry can be calculated as ∆θi, j = θi, j− θ̄i, j. Let us assume that ∆θi, j has

a distribution p(∆θ). We want to make an estimation on ∆θi, j to minimize the mean square

estimation error E[(∆θ̂i, j−∆θi, j)
2]. The estimation ∆θ̂i, j = E[∆θi, j] can be calculated based on

the distribution p(∆θ). Note that we can only obtain the estimated channel. Once we calculate

∆θ̂i, j, we can calibrate the phase of each entry in Ū1 as θ̂i, j = θ̄i, j +∆θ̂i, j. Using the same

approach, we can calibrate the phase of singular matrices of H̄1 and H̄2. Then, based on (12)

and (13), we can calculate the RF precoders and combiners F̄RF
t , W̄RF

r , F̄RF
r and W̄RF

d based on

the calibrated singular matrices of H̄1 and H̄2.

As we analyzed above, to calculate the RF precoders and combiners, we must know the

distribution of ∆θi, j to make the estimation ∆θ̂i, j = E[∆θi, j]. However, the theoretical analysis

for the phase distribution is intractable. To obtain the phase distribution, we simulate 100 channel
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realizations based on the imperfect channel models in (48), where we set Nr = 32, Nt = 48 and

L = 20. We adopt the correlation model from [18], [20], [24] where the entries of the correlation

matrices are selected as Φ1(i, j) = σ2
e,1β

|i− j|
1 , Θ1(i, j) = α

|i− j|
1 . In the simulation, we set α1 = 0,

β1 = 0 and σ2
e,1 = 0.1.

We collect the phase difference in each matrix entry from 60 simulations. In Fig. 3, we plot the

simulated probability density function (PDF) of the ∆θ in solid line. We use a generalized normal

distribution [31] to approximate the distribution. The PDF of a generalized normal distribution is

expressed as f (x) = β

2αΓ( 1
β
)
e−(|x−µ|/α)β

. We can see the approaching effect of different value of

the shaping parameter β in Fig. 3. We use Kullback-Leibler distance as a performance measure

for the approximation, which is calculated by DKL(YYY ||XXX) =∑
N
i=1 log(Yi

Xi
)Yi where YYY and XXX are the

probability distributions. The lower the Kullback-Leibler distance, the closer the two distributions

are. Note that the absolute value of KL-distance varies when the number of total points (i.e., N)

changes. In our simulation, the best approximation comes with the one with β = 2, since it has

the lowest Kullback-Leibler distance. When β = 2, the generalized normal distribution in Fig.

3 is a Gaussian distribution with 0 mean, which means we can estimate ∆θ̂i, j = 0.
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Fig. 3: Approximation of the Simulated PDF

B. Baseband design

Based on the RF precoders and combiners F̄RF
t , W̄RF

r , F̄RF
r and W̄RF

d designed in the last

subsection, the equivalent baseband channels after the RF processing are

H̃1 = W̄RF
r H1F̄RF

t = W̄RF
r H̄1F̄RF

t +W̄RF
r Φ

1
2
1 ∆1Θ

1
2
1 F̄RF

t

= ˜̄H1 + Φ̃
1
2
1 ∆1Θ̃

1
2
1 ,

(50)
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H̃2 = W̄RF
d H2F̄RF

r = W̄RF
d H̄2F̄RF

r +W̄RF
d Φ

1
2
2 ∆2Θ

1
2
2 F̄RF

r

= ˜̄H2 + Φ̃
1
2
2 ∆2Θ̃

1
2
2 ,

(51)

where we denote the true equivalent baseband channels by H̃1 and H̃2. The estimated equivalent

baseband channels are denoted by ˜̄H1 and ˜̄H2, which are the channels we obtain at the source

node. We define Φ̃1 := W̄RF
r Φ1(W̄RF

r )H , Φ̃2 := W̄RF
d Φ2(W̄RF

d )H , Θ̃1 := (F̄RF
t )HΘ1F̄RF

t and Θ̃2 :=

(F̄RF
r )HΘ2F̄RF

r .

For (50) and (51) , we have the following properties [32] (Using H̃1 as an example)

E∆1 [H̃1CH̃H
1 ] =

˜̄H1C ˜̄H
H
1 +Tr(CΘ̃1)Φ̃1, (52)

E∆1 [H̃
H
1 CH̃1] =

˜̄H
H
1 C ˜̄H1 +Tr(Φ̃1C)Θ̃1. (53)

To design a robust baseband system, we need to redesign the algorithm in Section III based

on the imperfect channel models (50) and (51). The main idea is similar, i.e., that we first

optimize the baseband filters F̄BB
t and ḠBB

r to maximize the average E∆1,∆2 [I(sss, ỹyyd)] , and then

we use MMSE-SIC for W̄BB
d . Note that we denote the baseband precoder/combiner based on the

estimated equivalent baseband channels ˜̄H1 and ˜̄H2 by F̄BB
t , ḠBB

r and W̄BB
d . The main challenge

here is if there still exists an equivalent relationship between the average mutual information

maximization and the WMMSE minimization.

To derive the equivalent relationship, we first derive an upper bound for the average mutual

information E∆1,∆2 [I(sss, ỹyyd)] as

EUB
∆1,∆2

[I(sss, ỹyyd)] = log2 det(E∆1,∆2 [INs +(H̃2ḠBB
r H̃1F̄BB

t )HR−1
ñ

H̃2ḠBB
r H̃1F̄BB

t ]) = log2 det(INs +( ˜̄H2ḠBB
r

˜̄H1F̄BB
t )HR−1

˜̄n

˜̄H2ḠBB
r

˜̄H1F̄BB
t +B1 +B2),

(54)

where

R ˜̄n := σ
2
2 W̄RF

r (W̄RF
r )H +σ

2
1 (

˜̄H2ḠBB
r W̄RF

r ( ˜̄H2ḠBB
r W̄RF

r )H

+Tr(ḠBB
r W̄RF

r (ḠBB
r W̄RF

r )H)Θ̃2)Φ̃2),

B1 := (ḠBB
r H̃1F̄BB

t )H Tr(Φ̃2R ˜̄n)Θ̃2ḠBB
r H̃1F̄BB

t ,

B2 := (F̄BB
t )H Tr(Φ̃1((

˜̄H2ḠBB
r )HR ˜̄n

˜̄H2ḠBB
r +

(ḠBB
r )H Tr(Φ̃2R ˜̄n)Θ̃2)ḠBB

r )Θ̃1F̄BB
t .
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Then, we need to derive the expression of E∆1,∆2 [EMMSE]. According to (23), we have

E∆1,∆2 [EMMSE]

= E∆1,∆2 [(INs +(H̃2ḠBB
r H̃1F̄BB

t )HR−1
ñ H̃2ḠBB

r H̃1F̄BB
t )−1]

= (INs +( ˜̄H2ḠBB
r

˜̄H1F̄BB
t )HR−1

˜̄n
˜̄H2ḠBB

r
˜̄H1F̄BB

t +B1 +B2)
−1.

(55)

Equation (55) implies that the relationship EUB
∆1,∆2

[I(sss, ỹyyd)] = log2 det(E∆1,∆2 [EMMSE]
−1) still holds

for the imperfect channel model, which means we can maximize the upper bound of the average

mutual information through the WMMSE minimization as discussed in Section III.

The expression of E∆1,∆2 [EMMSE] in (55) includes a matrix inverse operator, which complicates

the following calculation for F̄BB
t and ḠBB

r . To derive a simpler expression for E∆1,∆2 [EMMSE],

we first calculate the average MSE matrix E∆1,∆2 [EMSE]. The MSE matrix is given by

E∆1,∆2 [EMSE] = W̄BB
d (A+R ˜̄n)(W̄

BB
d )H− (W̄BB

d )H ˜̄H2ḠBB
r

˜̄H1F̄BB
t

− ( ˜̄H2ḠBB
r

˜̄H1F̄BB
t )HW̄BB

d + INs ,
(56)

where

A := ˜̄H2ḠBB
r A1(

˜̄H2ḠBB
r )H +Tr(ḠBB

r A1(ḠBB
r )H

Θ̃
H
2 )Φ̃2,

A1 := ˜̄H1F̄BB
t ( ˜̄H1F̄BB

t )H +Tr(F̄BB
t (F̄BB

t )H
Θ̃

H
1 )Φ̃1.

Based on (56), we can derive the W̄MMSE
d , which minimizes E∆1,∆2 [EMSE], as

W̄MMSE
d = ( ˜̄H2ḠBB

r
˜̄H1F̄BB

t )H(A+R ˜̄n)
−1. (57)

Substituting (57) into (56), we have

E∆1,∆2 [EMMSE] = W̄MMSE
d (A+R ˜̄n)(W̄

MMSE
d )H

− (W̄MMSE
d )H ˜̄H2ḠBB

r
˜̄H1F̄BB

t − ( ˜̄H2ḠBB
r

˜̄H1F̄BB
t )HW̄BB

d + INs

= INs− ( ˜̄H2ḠBB
r

˜̄H1F̄BB
t )H(A+R ˜̄n)

−1 ˜̄H2ḠBB
r

˜̄H1F̄BB
t .

(58)

Based on (58), we can amend our results based on the imperfect channel model, using the

same procedure as Section III. For ḠBB
r , the amended expression is

ḠBB
r = (K1 +λ

r(F̄RF
r )H F̄RF

r )−1( ˜̄H2)
H(W̄MMSE

d )HV̄(F̄BB
t )H

(K2 +σ
2
1 W̄RF

r (W̄RF
r )H)−1,

(59)

where

V̄ =
E∆1,∆2 [EMMSE]

−1

log2
,
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K1 := (W̄MMSE
d

˜̄H2)
HV̄W̄MMSE

d
˜̄H2 +Tr(Φ̃2(W̄MMSE

d )HV̄W̄MMSE
d )Θ̃2,

K2 := ˜̄H1F̄BB
t ( ˜̄H1F̄BB

t )H +Tr(F̄BB
t (F̄BB

t )H
Θ̃1)Φ̃1.

For F̄BB
t , the amended expression is

F̄BB
t = (T1 +λ

t
1(F̄

RF
t )H F̄RF

t +λ
t
2T2)

−1(V̄W̄MMSE
d

˜̄H2ḠBB
r

˜̄H1)
H , (60)

where

T1 := ˜̄H
H
1 (Ḡ

BB
r )HBḠBB

r
˜̄H1 +Tr(Φ̃1(ḠBB

r )HBḠBB
r )Θ̃1,

T2 := (FRF
r GBB

r H̃1)
HFRF

r GBB
r H̃1 +Tr(Φ̃1(FRF

r GBB
r )HFRF

r GBB
r )Θ̃1,

B := ˜̄H
H
2 (W̄

MMSE
d )HVW̄MMSE

d
˜̄H2 +Tr(Φ̃2(W̄MMSE

d )HVW̄MMSE
d )Θ̃2.

Based on the above modifications, our robust baseband design for ḠBB
r and F̄BB

t is as follows:

1) Calculate the MMSE receiver W̄MMSE
d in Eq. (57) and the MMSE matrix E∆1,∆2 [EMMSE]

in Eq. (58).

2) Update V̄ by setting V̄ =
E∆1,∆2 [EMMSE]

−1

log2 .

3) Fix V̄ and F̄BB
t , then we find ḠBB

r that minimizes Tr(V̄E∆1,∆2 [EMMSE]) under the power

constraints. The solution is given by Eq.(59).

4) Fix V̄ and ḠBB
r , then we find F̄BB

t that minimizes Tr(V̄E∆1,∆2 [EMMSE]) under the power

constraints. The solution is given by Eq.(60).

After we obtain ḠBB
r and F̄BB

t , we will use MMSE-SIC to design W̄BB
d , which is the same as

what we did in Section III.

V. SIMULATION RESULTS

A. non-robust case

In this section, we consider a relay MIMO system consisting of one source node equipped

with a Nt = 64 antenna array, a relay node with an Nr = 32 antenna array and a destination node

with a Nd = 48 antenna array unless other number of antennas are specifically mentioned. The

number of antennas is chosen from [14] for the purpose of the comparison. For simplicity, we use

the channel model in Eq. (9) for channel realization. Due to the limited scattering characteristic

of the mmWave channels, the number of paths should be less than the number of relay antennas.

Here, we assume each channel has L = 20 paths. The ϕl of each path is assumed to be uniformly

distributed in [0,2π]. The results are averaged over 2000 channel realizations. The SNR of the
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source-to-relay link and the relay-to-destination are assumed to be the same. In the simulation,

we calculate the variances of AWGN noises σ1 and σ2 according to the source power and the

relay power to maintain the same SNR.
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Fig. 4: Achievable rate comparison with 64×32×48 when Es = Er = Ns
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Fig. 5: Achievable rate comparison with 64×32×48 when Es = 2Er = 2Ns

In Fig. 4, we equally set the power of source node and the relay node, all to be Ns. We

compare our algorithm with the ADMM in [13], the ISA in [14] and the OMP in [10] in terms

of the achievable data rate. We use three scenarios: i) the number of data streams is Ns = 4 and

the number of RF chains is NRF = 6; ii) the number of data streams is Ns = 2 and the number

of RF chains is NRF = 4; iii) the number of data streams is Ns = 2 and the number of RF chains

is NRF = 6. The full-digital method is used as a benchmark, where we use the singular matrices

of H1 and H2 as the precoding/combing matrices. When Ns = 4, our algorithm outperforms

ADMM by 2%, ISA by 4% and OMP by 9% at SNR = 12 dB. When Ns = 2 and NRF = 4, our
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algorithm outperforms ADMM by 32%, ISA by 6% and OMP by 9% at SNR = 12 dB. When

Ns = 2 and NRF = 6, our algorithm outperforms ADMM by 34%, ISA by 6 % and OMP by 5%

at SNR = 12 dB.

In Fig. 5, we set Es = 2Er = 2Ns. Our proposed algorithm outperforms the other three methods

in three scenarios. When Ns = 4, our algorithm can provide 4%, 7% and 11% gains over ADMM,

ISA and OMP, respectively, at SNR = 12 dB. When Ns = 2 and NRF = 4, our algorithm can

provide a gain of 34% over ADMM, 5% over ISA and 8% over OMP at SNR = 12 dB. When

Ns = 2 and NRF = 6, our algorithm can provide a gain of 44% over ADMM, 5% over ISA and

4% over OMP at SNR = 12 dB.
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Fig. 6: Achievable rate comparison with different relay antennas when Ns = 4, NRF = 6 and

SNR = 5dB

Fig. 6 compares the achievable rate of different algorithms for different number of relay

antennas when Ns = 4, NRF = 6 and SNR= 5 dB. The full-digital method is used as a benchmark.

As expected, when the number of antennas at the relay node increases, the performance of all

different algorithms improves because of the additional antenna gain. Our proposed method has

the best achievable rate performance among the four methods except for Nr = 48. When Nr = 48,

ISA has the highest achievable rate among the four methods. However, as the number of antennas

at the relay node increases, the complexity of the ISA increases greatly, which will lead to a

high power consumption.

Fig. 7 compares the achievable rate for different number of antennas at the destination node

when Ns = 4, NRF = 6 and SNR = 5 dB. Similar to Fig. 6, when the number of antennas at the
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Fig. 7: Achievable rate comparison with different destination antennas when Ns = 4, NRF = 6

and SNR = 5 dB

destination node increases, the performance of all different algorithms improves because of the

additional antenna gain. Our proposed method has the best achievable rate performance among

the four methods.
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Fig. 8: Achievable rate comparison with different RF chains when Ns = 4 and SNR = 5 dB using

channel model (9)

Fig. 8 compares the achievable rate among the four methods for different number of RF chains

when Ns = 4 and SNR = 5 dB. Since our proposed method is designed to maximize the mutual

information between the destination node and the source node after RF precoding/combining,
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Fig. 9: Achievable rate comparison with different RF chains when Ns = 4 and SNR = 5 dB using

channel model (7)

the gap between our method and the full-digital method is more-or-less fixed, which is caused

by the analog processing. However, ISA and OMP are approximation algorithms jointly iterating

between the RF and the baseband. Therefore, as the number of RF chains increases, the perfor-

mance improves. When the number of RF chains is larger than 8, ISA and OMP will outperform

our proposed algorithm. However, larger number of RF chains leads to higher complexity and

more power consumption. Also, the performance of the approximation algorithms depends on

the limited scattering characteristic of the channel. The more sparse the channel is, the better

performance the approximation algorithms achieve. In Fig. 8, we use the highly limited scattering

channel model in (9), where each scatter only contributes to one path, thus the approximation

algorithms have good performance. If we use the general channel model in (7), the performance

of approximation algorithms degrades greatly as shown in Fig. 9. In Fig. 9, we set the number

of propagation paths Ncl in each scatter to be 2 and the number of scatters L to be 20. In this

case, the performance of ISA and OMP falls far behind our proposed algorithm.

Fig. 10 shows the convergence performance of different algorithms with respect to the number

of iterations. In our algorithm, we update the WMMSE matrix, the digital relay matrix and the

digital precoding matrix sequentially in each iteration. In ISA, the digital relay filter, the analog

relay receiver and the analog relay precoder are updated sequentially in each iteration. In ADMM,

the source node, the relay node and the destination node are optimized alternatively in each

iteration. In Fig. 10, our algorithm has the fastest convergence rate while ADMM has the slowest
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convergence rate. Moreover, our algorithm has much lower complexity in each iteration compared

with ISA. ISA needs to solve three optimization sub-problems, and in each sub-problem it needs

to solve an optimization problem through an iterative method. In our algorithm, we have closed-

form solutions for each step. In addition, since we preform the baseband processing after the

RF processing, the matrix dimensions are greatly reduced compared to ISA.
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Fig. 11 compares the baseband processing algorithms. Note that we apply the MMSE algorithm

only on the baseband, i.e., on the H̃1 and H̃2. Our proposed WMMSE algorithm outperforms the

MMSE algorithm in terms of the achievable data rate since we optimized the mutual information
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I(s,yd). In fact, if we set our weight matrix to be the identity matrix, our algorithm degenerates

to the MMSE algorithm. Therefore, the MMSE algorithm can be considered as a special case

of our proposed WMMSE algorithm and our algorithm strictly performs better than MMSE.

B. Robust case

As we described in Section IV, we adopt the channel estimation error model from [18],

[20], [24] where the entries of the correlation matrices are selected as Φ1(i, j) = σ2
e,1β

|i− j|
1 ,

Θ1(i, j) = α
|i− j|
1 , Φ2(i, j) = σ2

e,2β
|i− j|
2 and Θ2(i, j) = α

|i− j|
2 . Parameters α1, β1, α2 and β2 are the

correlation coefficients and σ2
e,1 and σ2

e,2 denote the estimation error covariance. For simplicity,

we assume α1 = α2 = α , β1 = β2 = β and σ2
e,1 = σ2

e,2 = σ2
e . The antenna settings are the same

as the non-robust part and the number of scatters is set to be 20. The actual channels H1 and

H2 are generated based on sparse channel model (9) and the estimated channels are generated

by H̄1 = H1−Φ
1
2
1 ∆1Θ

1
2
1 and H̄2 = H2−Φ

1
2
2 ∆2Θ

1
2
2 .

Fig. 12 shows the effects of the channel estimation error. We provide the performance of our

algorithm and those of [10], [14]. For this simulation, we have chosen σ2 = 0.1, α = 0.6 and

β = 0.4. As shown in Fig. 12, the imperfect channel information will result in severe performance

degradation. The achievable data rate of [10], [14] can be decreased to half of what it is for the

perfect CSI.

The achievable data rate performances of the proposed robust scheme with various antenna

covariance values are depicted in Figs. 13 and 14. When SNR is low, the estimation error can be

neglected compared to the noise, therefore the non-robust algorithm achieves good performance

which can be even better than that of the robust algorithm. When SNR goes up, the performance

of the non-robust algorithm starts to degrade. In Fig. 14, the performance becomes worse than that

of the low SNR region for large σ2
e . Meanwhile, the proposed robust design offers significant gain

considering various σ2
e , which demonstrates the effectiveness of the modified robust transceiver

optimization.

In Fig. 15, we compare our robust algorithm with the OMP algorithm in [23]. We set α = 0

and β = 0 for simplicity. The proposed robust design provides a large gain over the algorithm

in [23] in all three σ2
e settings, showing the advantage of our algorithm.
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e = 0.1, α = 0.6 and β = 0.4
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VI. CONCLUSION

In this paper, we considered mmWave AF relay networks in the domain of massive MIMO.

We designed the hybrid precoding/combining matrices for the source node, the relay node,

and the destination node. We first performed the RF processing to decompose the channel into

parallel sub-channels by compensating the phase of each eigenmode of the channel. Given the RF

processing matrices, we designed the baseband matrices to maximize the mutual information. The

baseband processing is divided into two parts. We first jointly designed the source node and the

relay node by making use of the equivalence between maximizing the mutual information and the

WMMSE. Given the optimal baseband source and relay filters, we implemented MMSE-SIC for
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baseband destination node to obtain the maximal mutual information. In addition, a robust hybrid

precoding/combining design was proposed for the imperfect CSI. Simulation results show that

our algorithm achieves better performance with lower complexity compared with other algorithms

in the literature.
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