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Abstract—We study a wireless ad-hoc sensor network (WASN)
where N sensors gather data from the surrounding environment
and transmit their sensed information to M fusion centers (FCs)
via multi-hop wireless communications. This node deployment
problem is formulated as an optimization problem to make a
trade-off between the sensing uncertainty and energy consump-
tion of the network. Our primary goal is to find an optimal
deployment of sensors and FCs that minimizes a Lagrangian
combination of sensing uncertainty and energy consumption.
To support arbitrary routing protocols in WASNs, the routing-
dependent necessary conditions for the optimal deployment are
explored. Based on these necessary conditions, we propose a
routing-aware Lloyd-like algorithm to optimize node deployment.
Simulation results show that our proposed algorithm outperforms
the existing deployment algorithms, on average.

Index Terms—node deployment, wireless ad-hoc sensor net-
works, Lloyd algorithm, optimization.

I. INTRODUCTION

Recent developments in wireless communications, digital
electronics and computational power have enabled a large
number of applications of wireless ad-hoc sensor networks
(WASNs) in various fields such as agriculture and industry to
name a few. In a general WASN, spatially dispersed sensors
collect data, e.g. temperature, sound, pressure and radio signals
from the physical environment, and then forward the gathered
information to one or more fusion centers (FCs).

In order to collect accurate data from the physical sur-
roundings, high sensing quality or sensitivity is required. In
general, sensing quality diminishes as the distance between
the sensor and its target point increases [1]–[6]. Thus, two
distance-dependent measures, i.e., sensing coverage [1], [7]–
[10] and sensing uncertainty [2], [11]–[16] are widely studied
in the literature to evaluate the sensing quality. In the binary
coverage model [1], [7]–[10], each sensor node can only detect
the events within its sensing radius. Then, sensing coverage
represents the percentage of events that is covered by at least
one sensor [1], [7]–[9]. Another common model, centroidal
Voronoi tessellation, formulates the sensing quality as a source
coding problem with sensing uncertainty as its distortion [2],
[11]–[16]. Sensing uncertainty reflects the distortion of a
quantizer, and provides a distance-based measure of sensing
quality [11], [13], [17], [26].

Energy efficiency is another key metric in WASNs as it is
inconvenient or even infeasible to recharge the batteries of
numerous and densely deployed sensors. In general, wireless

communication, sensing and data processing are three primary
energy consumption components of a static node. However, in
many WASN applications, wireless communication dominates
the node energy consumption [18], [19]. There are four
primary energy saving methods for WASNs in the literature: (i)
topology control [20], [21], in which unnecessary energy con-
sumption is reduced by properly switching the nodes’ states
between sleeping and working; (ii) clustering [22], [23] which
is used to balance the energy consumption among nodes in
one-hop communication models by iteratively selecting cluster
heads; (iii) energy-efficient routing [24], [25], [27], a widely
used method that attempts to find the optimal routing paths to
forward data to FCs while the communication cost between
two nodes are held fixed; and (iv) deployment optimization
that plays an important role in the energy consumption of
WASNs since the communication cost between two nodes
depends on their distance. Our previous works [26], [28]
proposed Lloyd-like algorithms to save communication energy
in homogeneous and heterogeneous WASNs by optimizing
the node deployment. Nonetheless, a pre-existing network
infrastructure, which only includes two-hop communications,
is a basic assumption in [26], [28]. Compared to one-hop and
two-hop communications, the generalized multi-hop commu-
nications can, on average, reduce the transmission distance and
save more energy. However, to the best of our knowledge, the
optimal node deployment with generalized multi-hop commu-
nications in WASNs is still an open problem.

In this paper, we study the node deployment problem
in WASNs with arbitrary multi-hop routing algorithms. Our
primary goal is to find the optimal FC and sensor deployment
to minimize both sensing uncertainty and total energy con-
sumption of the network. By deriving the routing-dependent
necessary conditions of the optimal deployments in such
WASNs, we design a Lloyd-like algorithm to deploy nodes.

The rest of this paper is organized as follows: In Section II,
we introduce the system model and problem formulation. In
Section III, we study the optimal FC and sensor deployment
for a given routing algorithm. A numerical algorithm is
proposed in Section IV to optimize the node deployment.
Section V presents the experimental results and Section VI
concludes the paper. Due to the page limit, proofs are provided
in [30].



II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless ad-hoc sensor network consisting
of M homogeneous FCs and N homogeneous sensors over
a target region Ω ∈ R2. Let IS = {1, . . . , N} and IF =
{N+1, . . . , N+M} denote the set of node indices for sensors
and FCs, respectively. When i ∈ IS , Node i refers to Sensor
i; however, when i ∈ IF , Node i refers to FC (i − N). Let
P = (p1, . . . , pN , pN+1, . . . , pN+M )T ∈ R(N+M)×2 be the
node deployment, where pi ∈ Ω denotes the location of Node
i. Throughout this paper, we assume that each event within
the target region is sensed by only one sensor. Therefore, for
each i ∈ IS , Sensor i monitors the events occurred in the cell
Wi ⊆ Ω, and W = (W1, . . . ,WN ) provides a cell partitioning
of Ω. According to [26], the frequency of random events taking
place over Ω is modeled via a continuous and differentiable
spatial density function f(ω) : Ω → R+. Therefore, the
amount of data generated at Sensor i during a unit of time
is given by Γ(Wi) = κ

∫
Wi

f(ω)dω where κ is a positive
constant, [26]. The data collected by each sensor node is
forwarded to other nodes in the network until it eventually
reaches to one or more fusion centers.

According to [27], this WASN can be modeled as a directed
acyclic graph G(IS

∪
IF , E) where E is the set of directed

links (n, k) such that n ∈ IS and k ∈ IS
∪
IF . In particular,

sensors and FCs are source nodes and sink nodes of this
network, respectively, and there is no cycle in the flow network
since each cycle can be eliminated by reducing the flows along
the cycle without influencing the in-flow and out-flow links to
that cycle. We define F = [Fi,j ]N×(N+M) to be the flow
matrix, where Fi,j is the amount of data transmitted through
the link (i, j) in the unit time. Since F depends on the cell
partitioning W, we can define the normalized flow matrix as
follows:

S =

N+M︷ ︸︸ ︷
s1,1 s1,2 · · · s1,N+M


N,

s2,1 s2,2 · · · s2,N+M

...
...

. . .
...

sN,1 sN,2 · · · sN,N+M

(1)

where si,j , Fi,j∑N+M
j=1 Fi,j

is the ratio of in-flow data to Node i

that is transmitted to Node j. The normalized flow matrix S
satisfies the following properties:
(a) si,j ∈ [0, 1];1

(b)
∑N+M

j=1 si,j = 1, ∀i ∈ {1, . . . , N};

(c) No cycle: if there exists a path l0 → l1 → · · · → lK , i.e.,∏K
k=1 slk−1,lk > 0, then we have slK ,l0 = 0. In particular,

1For time-invariant routing algorithms, such as Bellman-Ford Algorithm
[24], [25], the flows construct a tree-structured graph in which each node has
only one successor. Under such a circumstance, the normalized flow from
Node i to Node j is either 0 or 1, i.e., si,j ∈ {0, 1}. However, the time-
variant routing algorithms, such as Flow Augmentation Algorithm [27], will
generate different flows during different time periods. As a result, the overall
normalized flow from Node i to Node j can be a real number between 0 and
1, i.e., si,j ∈ [0, 1].

sii = 0, ∀i ∈ {1, . . . , N}.
Since the flow Fi,j can be determined by the cell partition-

ing W and normalized flow matrix S, in the remaining of
this paper we use F(W,S) instead of F. Let Fi(W,S) ,∑N+M

j=1 Fi,j(W,S) be the total flow originated from Node
i. Since the in-flow to each sensor, say i, should be equal
to the out-flow, we have

∑N
j=1 Fj,i(W,S) + Γ(Wi) =∑N+M

j=1 Fi,j(W,S). In what follows, we provide an example
to elucidate how to calculate F (W,S) in terms of W and S.
Example 1. We consider a WASN with three sensor nodes

and one FC, i.e., N = 3 and M = 1. The parameter κ
is set to 4. For a cell partitioning W with cell volumes
v(W1) = v(W2) = 0.25, v(W3) = 0.5, and the normalized

flow matrix S =

 0 0.5 0.5 0
0 0 0.4 0.6

0 0 0 1
, the correspond-

ing flow network is illustrated in Fig. 1.

Fig. 1. Example 1

The amount of data generated from each sensor node can be
calculated as: Γ(W1) = κv(W1) = 1, Γ(W2) = κv(W2) = 1,
and Γ(W3)=κv(W3)=2. As a leaf node, Sensor 1 does not
receive data from any other sensor nodes, and only transmits
its sensed data; thus, F1(W,S)=Γ(W1)=1. The flows from
Sensor 1 are then F1,2(W,S) = s1,2×F1(W,S) = 0.5 and
F1,3(W,S)= s1,3×F1(W,S)=0.5, respectively. Sensor 2’s
flows come from F1,2(W,S) and the data gathered from the
region W2. Hence, F2(W,S) = Γ(W2)+F1,2(W,S) = 1.5.
Therefore, the flows from Sensor 2 are F2,3(W,S) = s2,3×
F2(W,S) = 0.6 and F2,4(W,S) = s2,4×F2(W,S) = 0.9.
Similarly, for Sensor 3, we have F3(W,S) = Γ(W3) +
F1,3(W,S)+F2,3(W,S)=3.1; hence, the unique flow from
Sensor 3 is F3,4(W,S)=s3,4 × F3(W,S)=3.1.
We focus on power consumption of sensors since FCs are

usually equipped with reliable energy sources and their power
consumption is not the main concern. The average power
consumption through link (i, j) consists of two components:
(i) average transmitter power, PT

i,j ; and (ii) average receiver
power, PR

i,j . As shown in [26], because of the free-space
path-loss, the instant transmission power is proportional to the
square of distance between nodes i and j. Therefore, Sensor
i’s average transmitter power through link (i, j) is modeled



as PT

i,j = β∥pi − pj∥2Fi,j(W,S) where the coefficient β
depends on the characteristics of nodes i and j [26]. In
homogeneous WASNs, all nodes share the same character-
istics; thus, the coefficient β is the same for all links (i, j).
According to [31], Sensor j’s average receiver power through
link (i, j) can be modeled as PR

i,j = ρFi,j(W,S), where ρ is
a constant coefficient for receiving data. In sum, the average
power consumption over link (i, j) can be written as

Pi,j(P,W,S) = PT

i,j + PR

i,j

=

{(
β∥pi − pj∥2 + ρ

)
Fi,j(W,S), j ∈ IS(

β∥pi − pj∥2
)
Fi,j(W,S), j ∈ IF

(2)

and the total power consumption can be written as

P(P,W,S) =
N∑
i=1

N+M∑
j=1

Pi,j(P,W,S)

=
N∑
i=1

N+M∑
j=1

β∥pi−pj∥2Fi,j(W,S)+ρ
N∑
j=1

Fi,j(W,S)

 .

(3)

According to [2], [11]–[16], for a given node deployment
P and cell partitioning W, the sensing uncertainty can be
formulated as:

H(P,W) =
N∑

n=1

∫
Wn

∥pn − ω∥2f(ω)dω. (4)

Our main goal is to minimize the power consumption and
sensing uncertainty defined in (3) and (4), respectively. How-
ever, as will be shown in Section V, there is a trade-off be-
tween sensing uncertainty and power consumption. Intuitively,
sensing uncertainty is minimized when sensors are located
on the centroid of their corresponding regions; however, this
will usually increase the pair-wise distance between nodes
which leads to an increase in power consumption. Therefore,
one objective is to minimize the sensing uncertainty given a
constraint on the total power consumption, or vice versa. This
constrained optimization can equivalently be formulated as the
following Lagrangian cost function:

D(P,W,S) = H(P,W) + λP(P,W,S)

=
N∑
i=1

∫
Wi

∥pi − ω∥2f(ω)dω + λρ
N∑
i=1

N∑
j=1

Fi,j(W,S)

+
N∑
i=1

N+M∑
j=1

(
λβ∥pi−pj∥2

)
Fi,j(W,S),

(5)

where λ ≥ 0, i.e. the Lagrangian multiplier, makes a trade-
off between sensing uncertainty and total power consumption.
Our main goal in this paper is to minimize the cost function
defined in (5) over the node deployment P, cell partitioning
W, and the normalized flow matrix S.

III. OPTIMAL NODE DEPLOYMENT IN WASNS

As it is shown in (5), the cost function depends on three
variables P, W and S. Therefore, our goal is to find the
optimal node deployment, cell partitioning and the normalized

flow matrix, denoted by P∗ =
(
p∗1, . . . , p

∗
N+M

)
, W∗ =

(W ∗
1 , . . . ,W

∗
N ) and S∗ =

[
s∗i,j
]
N×(N+M)

, respectively, that
minimizes the cost function. Note that not only the optimal
values of these variables depend on each other, but also the
optimization problem is NP-hard. We aim to design an iterative
algorithm that optimizes the value of one variable while the
other two variables are held fixed. To accomplish this goal,
we study the necessary conditions for optimal deployment at
each step. Let

ei,j(P) , Pi,j(P,W,S)

Fi,j(W,S)
=

{
β∥pi − pj∥2 + ρ, j ∈ IS
β∥pi − pj∥2, j ∈ IF

(6)

be the Link (i, j)’s energy cost (Joules/bit). Without loss of
generality, we assume that Sensor i’s collected data goes
through Ki paths {L(i)

k (S)}k∈{1,...,Ki}, where L
(i)
k (S) =

l
(i)
k,0 → l

(i)
k,1 → · · · → l

(i)

k,J
(i)
k

, l(i)k,0 = i, l(i)
k,J

(i)
k

∈ IF , and

J
(i)
k is the number of nodes on the k-th path except Node

i. Then, the data rate (bits/s) and the path cost (Joules/bit)
corresponding to the k-th path can be written as

µ
(i)
k (W,S) = Fi(W,S)

J
(i)
k∏

j=1

s
l
(i)
k,j−1,l

(i)
k,j

, (7)

and

e
(i)
k (P,S) =

J
(i)
k∑

j=1

e
l
(i)
k,j−1,l

(i)
k,j

(P), (8)

respectively. Note that
∑

k µ
(i)
k (W,S) = Fi(W,S) which

means the data from Node i eventually reaches one or more
FCs. Sensor i’s power coefficient, denoted by gi(P,S), is
then defined to be the energy consumption (Joules/bit) for
transmitting 1 bit data from Sensor i to the FCs, i.e, we have2:

gi(P,S) =

∑Ki

k=1 µ
(i)
k (W,S)e

(i)
k (P,S)

Fi(W,S)

=

Ki∑
k=1

J(i)
k∏

j=1

s
l
(i)
k,j−1,l

(i)
k,j

J
(i)
k∑

j=1

β
∥∥∥pl(i)k,j−1

− p
l
(i)
k,j

∥∥∥2+ρ
(
J
(i)
k −1

) .

(9)
In what follows, we provide an example to clarify how to
calculate the sensor power coefficients.
Example 2. Consider the WASN described in Fig. 1, and

let P = ((0, 0), (0, 1), (1, 0), (1, 1)), β = 1 and ρ = 1. We
aim to find Sensor 1’s power coefficient g1(P,S). The link
energy costs for this network can be calculated as e1,2(P) =
e1,3(P) = 2, e2,3(P) = 3, and e2,4(P) = e3,4(P) = 1.
Note that Sensor 1’s data goes through the following 3 paths:
L
(1)
1 (S)=1→2→4, L(1)

2 (S)=1→3→4, and L
(1)
3 (S)=1→

2→3→4. The data rate through the above paths are, respec-
tively, µ(1)

1 (W,S) = F1(W,S)×s1,2×s2,4 = 0.3F1(W,S),
µ
(1)
2 (W,S) = F1(W,S)× s1,3 × s3,4 = 0.5F1(W,S), and

2The term Fi(W,S) is canceled in (9), indicating that power coefficient
gi(P,S) is independent of W.



µ
(1)
3 (W,S) = F1(W,S)×s1,2×s2,3×s3,4 = 0.2F1(W,S).

Moreover, we can calculate the path costs using (8) as follows:
e
(1)
1 (P) = e1,2(P) + e2,4(P) = 3, e

(1)
2 (P) = e1,3(P) +

e3,4(P) = 3, and e
(1)
3 (P) = e1,2(P)+e2,3(P)+e3,4(P) = 6.

Then, Sensor 1’s power coefficient is g1(P,S) = 0.3 × 3 +
0.5× 3 + 0.2× 6 = 3.6.

Note that the average power consumption for transmitting
Sensor i’s data is gi(P,S)Γ(Wi) = gi(P,S)κ

∫
Wi

f(ω)dω.
Thus, the total power consumption (3) can be rewritten as:

P(P,W,S) =
N∑
i=1

gi(P,S)κ

∫
Wi

f(ω)dω. (10)

Therefore, the cost function in (5) can be rewritten as:

D(P,W,S) = H(P,W) + λP(P,W,S)

=
N∑
i=1

∫
Wi

(
∥pi − ω∥2 + λκgi(P,S)

)
f(ω)dω.

(11)

Now, given the node deployment P and normalized flow
matrix S, the optimal cell partitioning is equal to:

Vi(P,S) ={ω|∥pi − ω∥2 + λκgi(P,S) ≤
∥pj − ω∥2 + λκgj(P,S), ∀j ̸= i}, i ∈ IS .

(12)

Moreover, given the link costs {eij(P)}s and generated sens-
ing data rates {Γ(Wi)}s, the total power consumption can
be minimized by Bellman-Ford Algorithm [24], [25]. For
convenience, we represent the functionality of Bellman-Ford
Algorithm by R(P,W), where P and W are inputs and S
is the output, i.e., R(P,W) = argminS P(P,W,S). Since
sensing uncertainty H(P,W) is independent of S, we have:

R(P,W) = argmin
S

H(P,W) + λP(P,W,S)

= argmin
S

D(P,W,S).
(13)

The optimal flow matrix for a given P and W is then
F(W,R(P,W)). The following theorem provides the nec-
essary conditions for the optimal deployment.

Theorem 1. The necessary conditions for the optimal deploy-
ments in the WASNs with the cost defined in (5) are

p∗i =

c∗i v
∗
i + λβ

(
N+M∑
j=1

F ∗
i,jp

∗
j +

N∑
j=1

F ∗
j,ip

∗
j

)

v∗i + λβ

(
N+M∑
j=1

F ∗
i,j +

N∑
j=1

F ∗
j,i

) , ∀i ∈ IS (14)

p∗i =

N∑
j=1

F ∗
j,ip

∗
j

N∑
j=1

F ∗
j,i

, ∀i ∈ IF (15)

W∗ = V(P∗,S∗), (16)
S∗ = R(P∗,W∗), (17)

where v∗i =
∫
Vi(P∗,S∗)

f(ω)dω and c∗i =

∫
Vi(P

∗,S∗)
ωf(ω)dω∫

Vi(P
∗,S∗)

f(ω)dω

are the Lebesgue measure (volume) and geometric centroid of
the region Vi(P

∗,S∗), respectively, and F ∗
i,j = Fi,j(W

∗,S∗)
is the optimal flow from Node i to Node j.

The proof of Theorem 1 is provided in [30]. Let NP
i (S) ,

{j|Fj,i(W,S) > 0} be the set of Node i’s predecessors,
and N S

i (S) , {j|Fi,j(W,S) > 0} be the set of Node i’s
successors. Hence, (14) and (15) can be simplified as

p∗i =

c∗i v
∗
i + λβ

( ∑
j∈NS

i (S∗)

F ∗
i,jp

∗
j +

∑
j∈NP

i (S∗)

F ∗
j,ip

∗
j

)

v∗i + λβ

( ∑
j∈NS

i (S∗)

F ∗
i,j +

∑
j∈NP

i (S∗)

F ∗
j,i

) (18)

for each i ∈ IS , and

p∗i =

∑
j∈NP

i (S∗)

F ∗
j,ip

∗
j∑

j∈NP
i (S∗)

F ∗
j,i

(19)

for each i ∈ IF , respectively. In other words, Sensor i’s
optimal location is a linear combination of its geometric
centroid, predecessors, and successors while FC i’s optimal
location is a linear combination of its predecessors.

IV. ROUTING-AWARE LLOYD ALGORITHM

First, we quickly review Lloyd Algorithm [29]. Lloyd
Algorithm iterates between two steps: (i) Voronoi partitioning
and (ii) Moving each node to the geometric centroid of
its corresponding Voronoi region. Although the conventional
Lloyd Algorithm can be used for one-tier quantizers or one-tier
node deployment tasks, it cannot be applied to WASNs with
multi-hop wireless communications. Based on the properties
explored in Section III, we design a Routing-aware Lloyd
(RL) Algorithm to optimize the node deployment in WASNs
and minimize the cost function in (5). To avoid a poor initial
deployment, first, we design a quantizer with N (M ) points
for the spatial density function f(ω) and place the sensors
(FCs) on the corresponding centroids. This results in an even
distribution of sensors among FCs as the initial deployment.
RL Algorithm then iterates between three steps: (i) Update
the node deployment P according to (14) and (15); (ii) run
Bellman-Ford Algorithm to update the normalized flow matrix
S and obtain the sensor power coefficients gi(P,S) and the
flow matrix F(W,S); and (iii) update the cell partitioning
W according to (16) and update the value of volumes vn and
centroids cn. The algorithm continues until the stop criterion,
Dold−Dnew

Dold
≥ ϵ is satisfied (Dold and Dnew are the cost functions

in the previous and current iterations, respectively).

Theorem 2. RL Algorithm is an iterative improvement al-
gorithm, i.e., the cost function is non-increasing and the
algorithm converges.

The proof of Theorem 2 is provided in [30].



V. PERFORMANCE EVALUATION

We provide the experimental results for a WASN including
4 FCs and 40 sensors. To make a fair comparison, we use the
same target region and density function as in [26], [28], i.e.,
Ω = [0, 10]2 and f(ω) = 1∫

Ω
dω

= 0.01. Other parameters are
set as follows: β = 1, ρ = 0.1, κ = 1, ϵ = 10−6.
To the best of our knowledge, this is the first work to

consider both sensing uncertainty and power consumption in
WASNs. Bellman-Ford Algorithm [24], [25] is the best routing
algorithm to minimize the total energy consumption, but it
does not take node deployment into account. To compare with
Bellman-Ford Algorithm, we apply random deployment and
Lloyd Algorithm [29] for the node deployment part. Random
deployment + Bellman-Ford (RBF) employs Bellman-Ford
Algorithm on 100 random node deployments and selects the
best one. Similarly, Lloyd + Bellman-Ford (LBF) first applies
Lloyd Algorithm to both FCs and Sensors to obtain a node
deployment with small cost, and then employs Bellman-Ford
Algorithm to reduce the average power. Furthermore, we
compare RL with Combining Lloyd (CL) [26] which combines
two Lloyd-like algorithms to optimize the node deployment
with one-hop communications.

Performance results3 for different values of
λ ∈ {0, 0.05, 0.15, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 7, 10, 16}
are provided in Fig. 2. Note that the trade-off between
sensing uncertainty and power consumption, represented by
the constant parameter λ, is taken into account in both CL
and RL algorithms. However, RBF and LBF algorithms are
independent of λ. In particular, since LBF determines the
node deployment by Lloyd Algorithm before employing
Bellman-Ford Algorithm, LBF’s performance is almost
independent of the initial deployments, and its experimental
results in Fig. 2 converge to a point with small sensing
uncertainty but large power consumption. For small values
of λ, the cost function in (5) favors the sensing uncertainty
over power consumption, which leads to the points on the
left-hand side of the RL curve in Fig. 2. Similarly, large
values of λ results in points on the right-hand side of the RL
curve. Overall, the proposed RL algorithm outperforms other
algorithms by saving more power and reducing more sensing
uncertainty, in addition to providing a trade-off.

The node deployments of the four algorithms (RBF, LBF,
CL, and RL) in the WASN with λ = 0.25 are illustrated in
Figs. 3a, 3b, 3c, and 3d. FCs and sensors are denoted by five-
pointed stars and circles, respectively. Flows are denoted by
black dotted lines. As shown in Fig. 3, cell partitions in LBF,
CL and RL algorithms tend to have similar shapes; however,
RBF does not result in a similar pattern. Moreover, sensors
in Fig. 3b are placed on top of their corresponding centroids
while sensors in Fig. 3c are placed between their correspond-
ing FC and centroid. However, in Fig. 3d, location of each
sensor depends on its centroid, predecessors, and successors,
as provided in Theorem 1. Note that in Figs. 3b, 3c and 3d,

3To better exhibit the performance of LBF, CL, RL, we do not show the
results of RBF with excessive powers (P > 6) in Fig. 2.
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Fig. 2. Performance comparison for RBF, LBF, CL and RL algo-
rithms.
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Fig. 3. Node deployments of different algorithms with λ = 0.25: (a)
RBF (b) LBF (c) CL (d) RL.

sensors inside each cluster tend to be close to each other
with their FC in the middle; however, the same relationship
does not appear in Fig. 3a. Besides, CL only uses one-hop
communications, i.e., sensors are directly connected to the FC
while other algorithms utilize multi-hop communications to
reduce the average power. The corresponding cost function
given λ = 0.25 for RBF, LBF, CL, and RL are, respectively,
1.87, 1.25, 1.17, 1.01; thus, our RL Algorithm achieves a
lower cost function and outperforms other algorithms.



VI. CONCLUSIONS AND DISCUSSION

In this paper, we formulated the node deployment in
WASNs as an optimization problem to make a trade-off
between sensing uncertainty and energy consumption. The
necessary conditions for the optimal deployment imply that
each sensor location should be a linear combination of its cen-
troid, predecessors and successors. Based on these necessary
conditions, we proposed a Lloyd-like algorithm to minimize
the total cost. Our experimental results show that the proposed
algorithm significantly reduces both sensing uncertainty and
energy consumption. Although we only considered Bellman-
Ford Algorithm as the routing algorithm in this paper, the pro-
posed system model in Section II can be applied to arbitrary
routing algorithms, such as Flow Augmentation Algorithm
[27] (a network lifetime maximization routing algorithm). The
optimal deployment with maximum network lifetime will be
our future work.
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